

Copyright

By

Arasi Aravindhan

2010

The Report committee for Arasi Aravindhan Certifies that this is

the approved version of the following report:

 A Pilot Study of Test Driven Development

APPROVED BY

SUPERVISING COMMITTEE:

Supervisor: ____________________________________

 Dewayne Perry

__

 Herb Krasner

A Pilot Study of Test Driven Development

By

Arasi Aravindhan, B.E.

Master’s Report

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

In Partial Fulfillment

Of the Requirements

For the Degree of

Master of Science in Engineering

The University of Texas at Austin

December 2010

Dedication

To my husband, for his infinite patience, encouragement and support!

v

Acknowledgements

I would like to express my sincere gratitude to Dr. Dewayne Perry for consenting

to be my advisor for this report. I would like to extend my whole hearted thanks to Prof.

Herb Krasner for enthusiastically agreeing to be the Reader.

I am also indebted to thank all my team members at Intel who were always

willing to share their technical insight by way of meaningful and instructive discussions.

A very special thanks to my foul weather friend, Divya Vasanth for always being

there for me.

Dec 2010

vi

Abstract

A Pilot Study of Test Driven Development

Arasi Aravindhan, M.S.E.

The University of Texas at Austin, 2010

Supervisor: Dewayne Perry

Test Driven Development is a software technique which uses automated unit tests

to drive software design and to force decoupling of dependencies. This report describes

the pilot study that was conducted to understand Test Driven Development process and to

evaluate its pros and cons before adopting it completely across the software team. The

goal of the pilot study was to use TDD principles to build part of a real life software

project - in particular, to completely implement 3 user stories - and to evaluate the

resulting software. The main questions being discussed are - Is it feasible to adopt TDD

in the development of a real life system with databases and UI? How easy is it to convert

a user story into a set of unit tests? Can a set of unit tests adequately represent a user

story or are requirements lost in translation?

vii

Table of Contents

List of Tables .. ix

List of Figures .. x

Chapter 1: Motivation for a Pilot Study ... 1

1.1 Test Driven Development – Background ... 1

1.2 Current Software Team And Practices Followed 3

1.3 To Adopt Test Driven Development Or Not? .. 6

Chapter 2: Description of the Pilot Study .. 8

2.1 Design Of The Pilot Study .. 8

2.2 Background On Application To Be Developed ... 9

2.3 User Stories .. 9

2.4 Success Criteria For Pilot Study ... 10

Chapter 3: User Story 1 – TDD Using Programmer Tests 12

3.1 Background .. 12

3.2 Database Design... 12

3.3 Data Access Layer (DAL) ... 14

3.4 Business Logic Layer (BLL) ... 18

3.5 Summary .. 22

Chapter 4: User Story 2 – TDD Using Customer & Programmer Tests 23

4.1 Background .. 23

4.2 Customer Tests ... 23

4.3 Programmer Tests .. 25

4.4 Anticipatory Refactoring ... 27

Chapter 5: User Story 3 – TDD for a UI Application ... 29

5.1 Background .. 29

5.2 Programmer Tests in DAL and BLL .. 30

5.3 UI Tests .. 31

viii

5.4 Summary .. 32

Chapter 6: Evaluation of Results .. 33

6.1 Observations: Advantages Of TDD .. 33

6.2 Observations: Possible Vulnerabilities Of TDD 34

6.3 Evaluation of Success Criteria For Pilot Study .. 36

Chapter 7: Summary.. 38

7.1 Customization Of TDD For Our Team .. 38

7.2 Future Work ... 39

Bibliography .. 40

Vita ... 41

ix

List of Tables

Table 1: Task list for Data Access Layer (User Story 1). ..14

Table 2: Test List for connecting to the database (Task 1) ..15

Table 3: Test List for testing data model entities in isolation (Task 2)...............................17

Table 4: Test List for testing relationships between entities (Task 3).17

Table 5: Test List for retrieving Equipment Configuration data (Task 4).17

Table 6: Task List for Business Logic Layer (User Story 1).. ...20

Table 7: Test List for conversion to DTO (Task 1). ...21

Table 8: Test List for retrieving data through Web ServiceRequirements (Task 2).21

Table 9: Task list for Data Access Layer (User Story 2) ...26

Table 10: Test list for Data Access Layer (User Story 2). ...26

Table 11: Task List for Data Access Layer (User Story 3). ..30

Table 12: Task List for Business Logic Layer (User Story 3)...30

x

List of Figures

Figure 1: Flowchart showing the TDD process ..2

Figure 2: The Three Layered Architecture Model ...5

Figure 3: Data Model for storing configuration data. ..13

Figure 4: Table Data Gateway Pattern applied to Equipment table16

Figure 5: Class to return Utilization data. ...18

Figure 6: Layered Architecture model for the web service ...19

Figure 7: Creation of Data Transfer Object by Assembler class ...20

Figure 8: Customer Test to retrieve an Equipment Configuration24

Figure 9: Customer Tests to add an activity and verify addition of activity.25

Figure 10: Modified Utilization class in the DAL..27

Figure 11: Modified UtilizationServiceInterface class in the BLL27

Figure 12: Design diagram showing classes in each layer ..28

Figure 13: A sketch of the search page screen ...29

Figure 14: The EquipmentSearchCriteria struct. ..30

Figure 15: Selenium IDE showing the generated UI test...32

1

Chapter 1: Motivation for a Pilot Study

Test Driven Development (TDD) is a software development practice where tests

are used as a development tool with the focus being on specification rather than

validation. It requires developers to create automated unit tests that define code

requirements before writing the code itself. When the tests pass, the correct behavior is

confirmed as developers evolve and refactor the code. This iterative process is supposed

to result in “Clean code that works” [1].

As a small software team responsible for developing and maintaining applications

which automate the internal processes of a semiconductor company, we are always

looking for new ways to improve software quality as well as boost productivity. This

chapter motivates the need for a small scale study to better understand the benefits and

risks of TDD before adopting it across the team.

1.1 TEST DRIVEN DEVELOPMENT – BACKGROUND

A Unit Test is a piece of code written by a developer which exercises a very

small, specific area of functionality in the code being tested. They are used to prove that a

piece of code does what the developer thinks it should do [2]. Unit testing offers

numerous benefits. Firstly, it makes it easier to make changes – tests should continue to

pass after refactoring activity. Secondly, it serves as executable documentation which

does not drift away from the code with time. Thirdly, it makes integration testing easier

by first checking if the individual modules behave correctly before testing them together.

Automated Unit tests have the additional advantages of being repeatable, reliable

(eliminating human error) and fast.

2

In Test Driven Development, developers are required to create automated unit

tests that define code requirements before writing the code itself. Kent Beck describes

Test Driven Development using 2 rules:

 1. Write new code only if an automated test has failed.

 2. Eliminate duplication.

The first rule prevents the developer from writing any code before a test is

written. So the developer first writes a failing automated test case that defines a desired

improvement or new function, then produces code to pass that test and finally refactors

the new code to acceptable standards [Figure 1].

 Figure 1: Flowchart showing the TDD process

This process is summarized by Kent Beck’s red/green/refactor order to the tasks

of programming:

 1. Red: Create a test and make it fail.

 2. Green: Make the test pass by any means necessary.

3

 3. Refactor: Change the code to remove duplication in your project and to

improve the design while ensuring that all test still pass. The Red/Green/Refactor cycle is

repeated very quickly for each new unit of code.

In TDD, the developer is not only forced to clearly define what he is trying to

achieve (in the form of tests) but also knows when to stop (when the tests pass). Thus

automated unit tests are used to drive the development of software in this process.

1.1.1 Test Driven Development and Extreme Programming

Extreme Programming is a lightweight agile process in which software is

developed in small iterations with little upfront design. The core practices of XP include

planning games, pair programming, small releases, simple design, continuous integration,

on-site customer and 40 hour work weeks.

It uses TDD as its design methodology (though the terms Test First Development

and refactoring are sometimes used to describe it). XP says that the programmer is

finished with a certain piece of code when he cannot come up with any further condition

on which the code may fail.

XP also advocates the use of two types of tests – programmer tests and customer

tests to drive the development process. The programmer tests are the technical unit tests

written by the programmer while the customer tests refers to tests written by the customer

(which serve as acceptance tests).

1.2 CURRENT SOFTWARE TEAM AND PRACTICES FOLLOWED

The software team consisted of 7 developers and 3 interns. All the applications

developed by us are used internally by the company in the different sites across the

world. Most applications are web based and built using C# and ASP.NET. We work close

to the customer – the application has to be successful (high acceptance rate among users)

4

in the Austin site before being customized for and deployed to other sites. The customer

is always available to answer our questions, provide feedback and also to do the

acceptance testing once development was completed.

As our team continues to grow and the size of the projects increases, we were

facing a number of issues.

Firstly, we did not have dedicated testers in the team and testing was an activity

that was largely left to the developers. It was typically done after the entire development

was completed and bugs were fixed before deployment. However, a number of bugs

slipped to production and this caused concern.

Secondly, we have many intern developers (or sometimes contractors) who

typically worked for 3-4 months on a module and then left. Documentation of work done

was either not up to date or not present at all. It took time before the next developer or

intern working on the module gained enough confidence to make changes to the module

without impacting existing functionality.

Lastly, we were finding it difficult to provide accurate project estimates for

bigger projects. We typically gathered all requirements upfront in the form of informal

use cases and then provided estimates. We often under estimated and this did not inspire

customer confidence.

On the bright side, coding standards were strictly adhered to and code reviews

were common. Pair programming was also often used. The model for logical organization

of code for most of the web applications was the three layer model (described below).

1.2.1 The Three-Layer Model

In this model the different components of a distributed application (web pages,

business entities, services, security management etc.,) are logically grouped into layers

5

based on the different kinds of tasks performed by them. This division is conceptual and

not a model for physical deployment. The main goal is reusability.

The layers are organized in a stack like fashion such that every layer uses its

components and those of the layer below it to do its work. Based on experience from

previous projects developed by our team, we found that the components of our

applications could be mapped to the model shown in Figure 2.

 Figure 2: The Three Layered Architecture Model

The Data Access Layer (DAL) has the Data Access Logic Components which

retrieve data from the database. (The DAL could also have service agents if the Business

Logic Layer needs to retrieve data from an external service).

6

The Business Logic Layer (BLL) contains Business Components, Business

Entities and the Service Interface. The Business Components implement business rules

and perform business tasks. The Business Entities are object oriented classes to represent

the real world entities the application has to work with. (The Services Interface is

optional and is implemented if we need to expose the BLL as a service).

The Presentation Layer contains the UI components which manage interaction

with the user. In our projects, it consists of ASP.NET Web Forms and Windows Forms.

There are also components which crosscut the 3 layers such a Security management and

Exception management.

We adhere to this model even while developing small applications. Though it

seems like overkill, we have realized that applications tend to grow rapidly over time as

features are added and it helps to have the code in an organized manner.

1.3 TO ADOPT TEST DRIVEN DEVELOPMENT OR NOT?

We were interested in adopting Test Driven Development for numerous reasons.

Firstly, we were interested in adding automated unit tests (programmer tests) at the time

of development. These unit tests would be a form of executable documentation and

would be up to date if we added tests before coding. They would help new developers

ensure that they have not affected existing functionality while making changes. Also, it

would make integration testing easier by enabling automated testing of individual

modules (before testing them together).

Secondly, we were interested in having automated acceptance tests (or customer

tests) before development begins instead waiting for all development activity to be

completed for acceptance testing. This would provide us continuous feedback on our

progress. Lastly, we felt that by encouraging developers to write just enough code to

7

satisfy the tests and no more, we may have a better chance of sticking to schedule and

meeting deadlines.

However, we were also apprehensive about adopting Test Driven Development

for the following reasons.

Applying TDD to real life systems: Most examples of TDD do not discuss real

life systems with interfaces, databases or interaction with external systems. Infact, very

little information is available on how TDD can be applied in the development of large

systems. How scalable or practical would TDD be?

Paradigm shift in thinking: Software developers are comfortable with writing

automated tests to test software after writing production code. But driving the design of

software through tests requires a paradigm shift in thinking. The team would have to be

convinced of the benefits before adopting it.

Customization: When adopting new practices, software teams often tend to

customize the process to better suit their working practices and environment. What are

the changes that we would have to make to boost productivity with minimum changes to

existing practices?

Hence we felt that the best way to better understand the benefits and risks

associated with TDD would be to conduct a small scale study in our development

environment.

8

Chapter 2: Description of the Pilot Study

The goal of the pilot study is twofold – firstly, to get familiar with the tools and

practices used in TDD and secondly to obtain a better understanding of how TDD can be

applied in the development of a real life application (in our working environment).

2.1 DESIGN OF THE PILOT STUDY

We decided to evaluate TDD by using it to drive the implementation of two types

of application – a web service and a web interface (with a database backend). Three

functional user stories were chosen - the first and second user story require a web service

while the last requires a web interface.

TDD can be driven by programmer tests and/or customer tests (acceptance tests).

We decided to implement the first user story using only programmer tests and the second

using both customer and programmer tests to evaluate the trade offs.

The pilot study team consisted of two experienced programmers. Pair

programming was used in the development of user stories. The programmers were using

TDD for the first time and had prepared by reading books on the same [1][2]. After the

pilot study team gained an understanding of the practices involves in TDD, they were

given 4 weeks to implement the user stories. Based on experience, we knew that the user

stories could be implemented in 3-4 weeks using our old software practices. We were

interested in knowing how much could be completed in that time frame using TDD.

Apart from the functional requirements, non functional requirements such as

performance, having to adhere to the three layer model were also captured and used to

drive implementation.

9

2.2 BACKGROUND ON APPLICATION TO BE DEVELOPED

Semiconductor companies tend to spend millions of dollars on equipment used to

test processors. Test equipment is not present at all sites and is shared by teams in all the

sites (it is possible to work on them remotely). Hence, test equipment time is precious

and all test equipment activities are closely monitored.

A set of test equipment configured in a certain way (through some Settings)

forms an Equipment Configuration. Test activities (referred to as Activity) are

performed using a particular equipment configuration.

It is important that the equipment configurations data - consisting of settings and

activity data - for Austin site are made available to different sites as soon as possible for

analysis. Since this data is processed on a variety of platforms, the data had to be made

available through a web service. This forms the basis for the first user story.

 Additional features are required by the remaining user stories – ability to add

activity description from other sites, ability to search and view data using a web browser

and so on. The user stories are described in the next section.

2.3 USER STORIES

User Stories are written by customers to describe what they want the system to do

(in 2-3 sentences) and are used by developers to provide estimates. At the time of

implementation, face to face conversations occur between the developer and the customer

to obtain more details. We decided start with user stories and later build use cases if the

requirements in each user story became too complex.

The template used for capturing user stories is based on the “As a user I want”

user story template recommended by Mike Cohn [3]. All the user stories implemented in

the pilot study are listed below.

10

User Stories for Pilot Study (Functional Requirements)

1. As a Tester Utilization Analysis Expert, I should be able to access the

equipment configuration data of the Austin site.

2. As a Tester User in a remote site, I should be able to submit information about

the activity performed using an equipment configuration.

 3. As a Manager, I should be able to view all tester activities performed by my

team using an Equipment Configuration.

User Stories for Pilot Study (Non-Functional Requirements)

4. As an IT support person, I want the web applications (i.e. user story 3) to work

smoothly at least in IE7 and IE8 (the browsers officially supported by the IT department

of the company).

5. As the Team lead for the software team, I want the application architecture to

adhere to the three tier architecture standard (so that the maintenance of the web based

project is easier).

2.4 SUCCESS CRITERIA FOR PILOT STUDY

We identified five different success criteria for the pilot study i.e. at the end of the

pilot study we should have information about the following:

Ease of adopting TDD practices: Is it easy to use TDD in the development of

Enterprise applications with databases and UI frontends? Also, to adopt TDD, many tools

like NUnit for writing programmer tests, Fit for customer tests, Selenium for UI tests,

NMock for generating mock objects etc., need to be used. How steep is the learning

curve? Will developers find the practices interesting?

Ease of Translation: In Extreme Programming, the unit of implementation is a

User Story. Conversations between the customer and the developer based on the user

11

story (at the time of implementation) would determine the tests that the developer writes

before beginning to code. How easy is it to convert such a conversation into a set of unit

tests?

Requirements coverage: Can a set of unit tests adequately represent the

requirements or are requirements lost in translation?

Providing estimates and time taken to implement a User Story: Test Driven

Development should result in clean code but not at the expense of unreasonable amount

of developer time. We would compare the time taken using TDD with time taken using

our old practices.

Maintainability of resulting software: The tests written in the development

process would have to be maintained along with the production code.

12

Chapter 3: User Story 1 – TDD Using Programmer Tests

The implementation of the 3 user stories is described in detail. The design and

development of the first user story was driven by programmer tests.

3.1 BACKGROUND

The goal of implementing the first user story is to provide access to the Austin

equipment configuration database. Since the solution needs to be platform independent,

we decided to use ASP.NET Web Service to expose equipment configuration data from

the database.

Based on conversations with the customer (centered on user story 1), we

understood that given a range of dates, the web service should be able to provide

complete information about the different equipment configurations used during that time.

The information would include the settings for the configuration, the different types of

equipments involved in that configuration, the different test activities performed by

different teams using that configuration and so on.

We chose to use a bottom –up approach to implement the application, starting

from the database and moving up to implement layers above

3.2 DATABASE DESIGN

The database to store the configuration data at the Austin site was designed

similar to the data model shown in Figure 3. (Primary keys are denoted by PK while

foreign keys are denoted by FK).

Primary Entities:

The primary entities in the data model shown in Figure 3 are

EquipmentConfiguration and Equipment. An EquipmentConfiguration consists of a

13

group of Equipment. Each EquipmentConfiguration has a start and end date to indicate

the period of its use.

 Figure 3: Data Model for storing configuration data

Secondary Entities:

The Settings entity represents the settings information for an

EquipmentConfiguration. The Activity entity describes an activity performed by a

particular Team using a particular EquipmentConfiguration. The Maintenance entity

represents the person responsible for the EquipmentConfiguration or the Equipment. The

Site entity represents the physical location of the Equipment and the EquipmentType

represents the type of the equipment.

14

3.3 DATA ACCESS LAYER (DAL)

In the DAL, we connect to the database and then retrieve data by querying the

database. Tests that run on data stored in database take longer time to run than tests that

run on data in-memory. Hence, for efficiency, the number of times we interact with the

database should be kept to a minimum. All tests were run on a snapshot of the production

database.

It is important to have a clear idea of what to test in each layer. This is listed in

the Task List (Table 1). Each item in the Task List is then taken up and a Test List is

written for it in NUnit (described in Table 2) as described by Kent Beck [1].

The different steps involved in the TDD process for the DAL layer are as follows:

STEP 1: Make a Task List

A task list is a high level view of what needs to be done.

TASK LIST FOR DATA ACCESS LAYER

1. Test connection to database.

2. Test all data model entities in isolation.

3. Test relationships between entities.

4. Test to retrieve all equipment configurations and all its associated entities (as a typed

Dataset) used within a particular period by specifying a start and end date.

 Table 1: Task list for Data Access Layer (User Story 1)

The different tasks are explained in detail below.

Task 1: For every DAL operation, we need to connect to the database. So we need to

first test if we can retrieve the connection string and check if we can connect to the

database with it.

15

Task 2: The database queries would work correctly only if our assumptions about the

schema of the database are correct. For e.g., the Team entity should have id, name fields.

Task 3: Similarly, we also make assumptions about the primary key – foreign key

relationships between the tables. For instance, the PK-FK relationship between the Team

table and the Activity table. These need to be tested.

Task 4: This is the main functionality test for this layer. If this test fails, then the tests

resulting from task 1-3 will help in pinpointing the exact location of the problem.

STEP 2: Write Test List and Add Code to Make Tests in Test List Pass

A test list consists of a list of unit tests that a developer can think of while

approaching each task. After writing a test list, enough code is written to make the tests

pass. It is possible that the developer thinks of additional tests while coding or refactoring

– this is acceptable as long as he follows the red-green-refactor rule to make it pass.

Test List for Task 1: When a test fails, there should be only one reason for it to fail [1].

It is possible to write 3 simple tests for Task 1 as shown in Table 2.

 TEST LIST FOR CONNECTING TO THE DATABASE

1. Is it possible to retrieve the database connection string from where it is stored?

2. Does the retrieved connection string have a value or is it empty?

3. Is it possible to open a connection to the database with the retrieved string?

 Table 2: Test List for connecting to the database (Task 1)

Test List for Task 2: In order to test the Equipment entity, we should insert a row into

the Equipment table and then retrieve it by id to check if the field values matches with the

one inserted (and then delete it so that the database is unaffected by the test). This can

quickly become tedious if we had to test each entity after creating all the supporting

16

objects. For e.g., having to create Site, EquipmentType, EquipmentConfiguration,

Maintenance objects before being able to test Equipment. To overcome this, a typed

Dataset object was used. (A typed Dataset object is an in-memory cache of data retrieved

from a data source and uses an eXtensible Schema Definition (XSD) schema file to

describe the fields and relationships between the tables. Unlike in the database, the

relationships in the dataset are only defined and do not have to be enforced – so entities

can be tested in isolation).

In order to make the test lists pass, a gateway class based on Martin Fowler’s

“Table Data Gateway” pattern [4] is designed for each database entity as shown below.

This class encapsulates the methods to insert into, delete, update or search through the

table. An example of how this pattern can be applied to the Equipment table to obtain the

EquipmentGateway class is shown in Figure 4 below.

 Figure 4: Table Data Gateway Pattern applied to Equipment table

Test List for Task 3: To test the relationship between Equipment and EquipmentType in

the dataset, both these entities are created and inserted into the database. Then the

relationship between them is established using the key value. Finally, we test if it is

possible to navigate from Equipment to EquipmentType based on the relationship.

17

TEST LIST FOR TESTING DATA MODEL ENTITIES IN ISOLATION

Does the Equipment table have the following fields: id, siteid, equipmenttypeid,

equipmentconfigid and maintenanceid? (…)

and so on for each table.

 Table 3: Test List for testing data model entities in isolation (Task 2)

TEST LIST FOR TESTING RELATIONSHIPS BETWEEN ENTITIES

Can you navigate from Equipment to EquipmentType in the typed Dataset based on the

relationship between them? (…)

and so on for each relationship in the data model.

 Table 4: Test List for testing relationships between entities (Task 3)

Test List for Task 4: Similar to what was done in previous tests, an

EquipmentConfiguration entity and all it associated entities are inserted into the database,

then retrieved based on the search criteria (a date range) and all the different fields are

verified. (And then deleted so that the database is unaffected by the test).

A class to return the above mentioned information as a typed Dataset is designed

to make the test pass (shown in Figure 5).

TEST LIST FOR RETRIEVING EQUIPMENT CONFIGURATION DATA

1. Is it possible to retrieve Utilization data (EquipmentConfiguration and all its associated

entities) between a given range of dates?

 Table 5: Test List for retrieving Equipment Configuration data (Task 4)

18

Figure 5: Class to return Utilization data (EquipmentConfiguration and related entities)

STEP 3: Refactor

Refactoring is done after each test passes and helps in refining the code’s design.

Refactoring is not only done on source code but also on the tests developed. This is

important since tests will continue to exist with the source code through the life of the

product. Apart from traditional refactorings described by Martin Fowler [5], one simple

refactoring rule drives refactoring of tests – each test should only test one thing. So often

a big test was broken into a number of smaller tests to ensure this.

Also, to avoid code duplication, if we find that a particular sequence of actions

needs to be taken before every test is executed, it may make sense to put this sequence of

actions in the Setup part of the test. This is called a SetUp refactoring [2]. And similarly,

code that is run after every test is run can be put in the TearDown part of the test.

3.4 BUSINESS LOGIC LAYER (BLL)

 The layered architecture model for the web service is shown in Figure 6. Having

completed the Data Access Layer (DAL), we proceed to the Business Logic Layer (BLL)

where the web service is exposed through a service interface.

3.4.1 Thinking about the BLL design

The information retrieved from the database by the Data Access Layer is in the

form of a typed Dataset which is an in-memory cache of data from database. It is not

necessary to expose the client to the complexity of the database – with all the tables and

19

 Figure 6: Layered Architecture model for the web service

the relationships between them. Hence we need to create a simpler object called a Data

Transfer Object based on the Martin Fowler’s Data Transfer Design Pattern [5]. The class

which converts the dataset to the data transfer object is called an Assembler.

Figure 7 shows the design of the Utilization Assembler class which takes the

Utilization Dataset and converts it into an Equipment Configuration Data Transfer Object

(DTO) – an object which contains the all information required by the client in a flattened

representation of the original data model. Each Equipment Configuration DTO contains

an array of EquipmentDto objects which forms the equipment configuration and an array

of ActivityDto objects which describes all the tasks performed using that equipment

configuration. It can be noted that the fields in the Data Transfer Object are user friendly

compared to the data table fields. Also, additional fields such as isInternallyOwned and

processorName have also been added based on requirements.

3.4.2 Implementation using TDD

We continue to follow the same steps as before – define a task list, then write a

test list for each task and then refactor and so on till all the tasks have been completed.

The Task List for implementing the Business Logic layer is shown in Table 6.

20

 Figure 7: Creation of Data Transfer Object by Assembler class

STEP 1: Make a Task List

TASK LIST FOR BUSINESS LOGIC LAYER

1. Test to retrieve an EquipmentConfiguration typed dataset from the database and

convert it into an Equipment Configuration Data Transfer Object.

 2. Test to retrieve Equipment Configuration Data Transfer Object through the web

service.

 Table 6: Task list for Business Logic Layer (User Story 1)

21

STEP 2: Write Test List and Add Code to Make Tests in Test List Pass

The Tests List for each item in the task list (Table 6) is shown in Table 7 and Table 8.

 TEST LIST FOR CONVERTING DATASET TO A DATA TRANSFER OBJECT

1. Test to convert a typed dataset object (built in-memory) into an Utilization business

object.

2. Test to retrieve an EquipmentConfiguration typed dataset from the database and

convert it into a Utilization business object.

 Table 7: Test List for conversion to DTO (Task 1)

Test List for Task 1: To make the first test in the test List pass, we create the

Utilization Assembler class [Figure 6] which performs the conversion. A stub/fake of the

Dataset was created in memory (to minimize calls to database) and converted into Data

Transfer Objects expected by the customer. The second test is more of an integration test

and performs the same by using a Dataset retrieved from the database.

 TEST LIST FOR RETRIEVING DTO THROUGH WEB SERVICE

1. Test to retrieve through the web service, all equipment configurations and all its

associated entities (as EquipmentConfigurationDto objects) used within a particular

period by specifying a start and end date.

 Table 8: Test List for retrieving dto through web service (Task 2)

Test List for Task 2: In order to satisfy the test, a class called

UtilizationServiceInterface is created which contains the Web Service method to return

EquipmentConfiguration data (as EquipmentConfigurationDto objects).In order to test

22

the Web service, the EquipmentConfiguration Dto retrieved through the web service is

compared against the data previously inserted into the database.

STEP 3: Refactor

Refactoring was done following the same rules as before.

3.5 SUMMARY

This completes the implementation of the first user story. The issues faced and the

lessons learnt during implementation are discussed later.

23

Chapter 4: User Story 2 – TDD Using Customer & Programmer Tests

The design and development of the second user story was driven by both

customer tests and programmer tests.

4.1 BACKGROUND

All the different equipment in an Equipment Configuration need not be located in

the same site. The goal of implementing the second user story was to provide the ability

to add an activity performed on an Equipment Configuration from a different site through

the web service.

4.2 CUSTOMER TESTS

 One of the main goals of software is to satisfy acceptance tests of the customers

or customer tests. It is a good way to answer the question “Are we done?” .Thus

acceptance tests are an unambiguous way of expressing requirements. We cannot use a

framework like NUnit to build such automated tests since we need software that makes

writing tests as easy as editing a document (to the customer). So we have used an open

source tool called Fit [12] for this purpose.

 For this user story, the goal of the customer test is to add an activity to an

EquipmentConfiguration. So the first test (Figure 7) retrieves an EquipmentConfiguration

by id. The second and third tests (Figure 8) add an activity to that

EquipmentConfiguration and verify that the activity has been added respectively.

4.2.1 Examining a Customer Test in Detail

 The Fit framework contains a class called ActionFixture which parses through

each row of the test and passes the vales to appropriate methods [2]. Each row in the table

(first table in Figure 7) defines a step in the script. The start command initializes a class

24

which acts as an adapter between the Fit framework and the application (based on the

Adapter Design Pattern). The enter command specifies the method to be called in the

adapter class – In this case a method which retrieves an EquipmentConfiguration. The

check command invokes a method inside the adapter class which verifies if the value

returned by the application matches with the one expected with the customer.

 In order to verify all the Activities in each EquipmentConfiguration, we use a

class called RowFixture inside the Fit framework. An adapter class called

ActivityDisplay (second table in Figure 7) which inherits from RowFixture retrieves the

activities and compares each with that expected by the customer.

Figure 8: Customer Test to retrieve an Equipment Configuration

 On similar lines, the customer tests in Figure 8 were developed to insert an

activity and then verify the addition of that activity. Thus, in order for the Fit tests to

25

work, we have the overhead of writing adapter classes before the actual implementation

of the feature.

Figure 9: Customer Tests to add an activity and verify addition of activity.

4.3 PROGRAMMER TESTS

Customer tests test only the end result. We still need programmer tests to drive

the implementation of the feature. Programmer tests test the data at different points – data

26

retrieved in the data access layer, data retrieved in the business logic layer and finally

through the web service. So they co-exist with customer tests.

The implementation using programmer tests is similar to user story 1. As before,

we start in the DAL. Table 9 shows the task list for the DAL and Table 10 shows the test

list. To pass the tests, the AddReview() method is implemented in the Utilization class

(Figure 10) .

TASK LIST FOR DATA ACCESS LAYER

1. Test to retrieve all equipment configurations and all its associated entities

(as a typed Dataset)

 Table 9: Task list for Data Access Layer (User Story 2)

TEST LIST FOR DATA ACCESS LAYER

1. Add an activity (for a team that already exists) and verify that the added review is

present in the database.

2. Add an activity (for a team that is new and does not exist) and verify that the added

review is present in the database.

 Table 10: Test list for Data Access Layer (User Story 2)

On similar lines, we proceed to make changes in the Business Logic Layer. After

defining the tests and writing code to make the tests pass, the service interface class

UtilizationServiceInterface (mentioned in the BLL in the first user story) looks as shown

in Figure 11.

At this stage, all the customer and programmer tests pass indicating that we are

done implementing the feature.

27

Figure 10: Modified Utilization class in the DAL

Figure 11: Modified UtilizationWebServiceInterface class in the BLL

4.4 ANTICIPATORY REFACTORING

After implementing second user story, we realized that in the business logic layer,

instead of two distinct components – business component (which contains the business

logic) and the service interface component (which exposes the web service), there was

just one component which contained the functionality of both.

So refactoring was done in order to separate the two components. This was done

in anticipation of the next user story where a web client (UI) had to be designed which

would need to access only the business component to process and retrieve data (and not

the service interface component).

After refactoring, another class called UtilizationService was added which

contained all the functionality for the business component while the

UtilizationWebServiceInterface class contained the functionality for the service interface

component.

28

The overall design of the application (after first and second user stories were

implemented) showing the different classes in each layer is shown in Figure 11. This

diagram shows all the classes that have been discussed till now. The main class in each

layer is shown in bold.

Figure 12: Design diagram showing classes in each layer

29

Chapter 5: User Story 3 – TDD for a UI Application

The design and development of the third user story was driven by programmer

tests using two different tools – NUnit to write programmer tests and Selenium for UI

tests.

5.1 BACKGROUND

The goal of implementing the second user story is to create a web application

which allows managers to search for activities based on values like Team Name,

Equipment Configuration ID, Activity Start Date and Activity End Date. A sketch of how

the search page should look is shown in Figure 10.

Figure 13: A sketch of the search page screen

30

5.2 PROGRAMMER TESTS IN DAL AND BLL

All the search conditions specified in the search screen above can be contained in

a struct called EquipmentSearchCriteria. A test is written to motivate defining the

EquipmentSearchCriteria struct (Figure 14).

Figure 14: The EquipmentSearchCriteria struct

Similar to the previous two user stories, tests are written for the DAL and the BLL

based on task list in Figure 10 and Figure 11 respectively. The process is not described in

detail again but the resulting design is described.

TASK LIST FOR DATA ACCESS LAYER

1. Test to retrieve all equipment configurations and all its associated entities (as a typed

Dataset) based on values specified in EquipmentSearchCriteria object.

 Table 11: Task list for Data Access Layer (User Story 3)

TASK LIST FOR BUSINESS LOGIC LAYER

1. Test to convert Equipment Configuration Data Transfer Object to EquipmentDisplay

objects.

 Table 12: Task list for Business Logic Layer (User Story 3)

31

A SearchByCriteria method is added to the Utilization class in the DAL to

retrieve the EquipmentConfiguration Dataset. This is then converted into an array of

EquipmentDto objects in the BLL. However, in order to be displayed on the screen using

a repeater control (this control can only display objects which have public property fields

that it can bind to), the DTO objects have to be converted into

EquipmentConfigurationDisplay objects. The adapter class which does the conversion is

added to the business logic.

Now we have the EquipmentConfigurationDisplay objects that we can directly

bind to the repeater control to be displayed in the results screen. At this stage we have

programmer tests in place in DAL and BLL layer similar to the previous user stories.

5.3 UI TESTS

 In the UI layer we did not take a complete TDD approach. Instead of writing

automated unit tests first (which can be tedious for web UI), we adopted a “execute

manual tests, try to view results” approach. First when the search button was clicked, no

results were displayed since no code existed. Then we added the code to bind the

retrieved EquipmentConfigurationDisplay objects to the repeater control. Once this was

done, we could view the results in the search page on clicking the search button.

 However, we needed an automated test in place so that manual testing does not

have to be done every time. We used Selenium for this purpose [Figure 15]. Selenium is a

browser add-on that records clicks, typing, and other actions to make a test, which we can

play back in any browser [9].

In order to record a test, the web application is run, then the Selenium IDE is

launched (recording is started), then the team name and other search criteria are entered

and the Search button is clicked. When the results come up on the Web page, we can

32

mark text (search results in our case) to test if all the information that we expected is

displayed on the screen.

Based on the actions recorded, it generates tests which can be run in the NUnit

framework. This test will ensure that the search results are as we expect every time the

test is run. Thus we have an automated test for the UI layer.

Figure 15: Selenium IDE showing the generated UI test

5.4 SUMMARY

In the third user story we have shown how UI applications can be developed by

adopting TDD for the DAL and the BLL and a “add automated test last” approach for the

Presentation Layer. This completes the implementation of the three user stories.

33

Chapter 6: Evaluation of Results

In the pilot study, 3 user stories were implemented. This helped us to understand

Test Driven Development better and made it possible to think about possible issues that

we may face if we decided to adopt TDD for developing large scale applications.

In this chapter, the advantages and vulnerabilities of TDD (as perceived by the

programmers in the pilot study team) are listed. Then we proceed to evaluate the success

of the pilot study based on criteria defined earlier.

6.1 OBSERVATIONS: ADVANTAGES OF TDD

More modular code: In order to test an application, we re-create a small portion

of it, apply some stimulus to it and check if it behaves the way we expect it to [6]. But in

order to easily recreate a small portion of it, it needs to be modular.

For example, consider a class A that creates a class B in its constructor. It’s

difficult to test class A in isolation since class B may have been creating a class C or a

class D in its code. Its easier to test A, if instead of being allowed to create class B in its

constructor, it can be passed an object of type class B. This can be done if class B is a

friendly (a class that has already been tested). Thus use of Dependency Injection Pattern

in TDD leads to more modular code.

We used this pattern in the first user story in the BLL layer. The Recording

Assembler which converts the Utilization Dataset was passed a Dataset object which

could have either come from the database (a Utilization Dataset object) or has been

constructed in-memory (a Stub object). This makes it easier to test the Assembler class.

Cleaner APIs: In TDD as tests are written before code, APIs are designed by

actually using them. Since the class has to be testable, its dependencies are passed to it.

So with TDD we don’t have classes which have secret dependencies (for e.g. a class A

34

which needs class B and which in turn needs class C and if the order of initialization

changes, the code starts to break). We result having more intuitive APIs. So when we

make changes in one module, it cannot break another module in the background.

Another advantage of having clean interfaces is that it is now easy for testers to

probe in to the system without worrying about secret dependencies.

Customer Test Automation: Having customer tests provides a better

understanding of what is expected by the customer. It also makes it possible to

continuously measure and provide feed back on progress to the customer.

Programmer tests: By having to write tests first, the programmer is placed in the

role of the customer – he has to think about what exactly he wants the code to do and thus

is forced to think carefully about the design.

Having programmer tests (which are nothing but unit tests) makes it possible for

testers to focus on serious bugs in end-to-end scenarios and nonfunctional system

characteristics.[13]

Also having unit tests increases confidence in code, reduces bug fix time and

makes it easier to make changes.

Keep moving: Ideas like “Fake it till you make it” are suggested by Kent Beck

[2] to not get stuck during the development process.

6.2 OBSERVATIONS: POSSIBLE VULNERABILITIES OF TDD

Design Style in TDD: It does not seem a good idea to evolve design "as you go" -

using TDD we may end up with a system which is easy to test but also very complex.

Design decisions should be based good design principles rather than just on testability.

(Or we need experienced developers who have done TDD before and have a good idea

about where the design is heading).

35

In the pilot study, while implementing our user stories, we had a good mental

model of our system (the three layered model) and this make our TDD easier for us by

helping us to break the system into modules and components.

Highly Reliant on Programmer skills: TDD requires experienced developers

with commitment and discipline. Defining the test list and evolving the design constantly

through refactoring (refactoring of tests as well as production code) requires experience

and discipline. It has been suggested that pairing inexperienced TDD developers with

programmers experienced in TDD would be helpful in the learning process and would

impact productivity less. [13]

Also, to unit test a component, it needs to be isolated. Often this isolation is quite

difficult to achieve - it requires programmer expertise. And even once achieved, the code

may become very complex. (For example, when we apply dependency injection while

using Mock objects to test our class.) This can sometimes seem overwhelming for junior

developers.

Maintenance of Tests: The amount of test code to be maintained should not to

be underestimated - in the pilot study, the test code for the user stories was much more

than production code. Misko has estimated the number of unit tests in an application to be

approximately equal to the number of functions [6]. Over time, developer commitment is

needed to keep the test suite continuously updated while making changes to the software

- otherwise it is just a source of false confidence in the code for the developer.

Prototyping using TDD: TDD can be time consuming – it would not be a good

idea to use it for prototyping. The effort spent in refactoring based on changes would be

very high.

36

Documentation: The tests are supposed to serve as an executable documentation

which stays up to date with code. But though documentation in the form of tests is nice,

actual documentation is better –new hires still took a long time to get familiar with the

system (though tests did help them with refactoring).

6.3 EVALUATION OF SUCCESS CRITERIA FOR PILOT STUDY

We had identified five different criteria for the pilot study. We feel that through

the pilot study we have been able to gather enough information about the following:

Ease of adopting TDD practices: We feel that TDD can be used in the

development of applications with databases and UI frontends, but after adapting it

(discussed in the next chapter). Training would be needed for developers to start using

tools/frameworks like NUnit, EasyMock and Selenium.

Ease of Translation: We feel that writing the tests would be easy if adequate

time is spent on lightweight design before starting TDD for each user story– make a

drawing of the class, think about how it will affect other components and about how it

can be tested. Thinking need not be done only while writing tests – this will only increase

the amount of refactoring that has to be done later.

Requirements coverage: We felt that having customer tests pass is a good

indication of requirements coverage.

Maintainability of resulting software: Tests have to be constantly refactored to

be of the same quality as production code and updated anytime changes are made or bugs

are fixed. So maintenance costs would seem higher. But the presence of tests makes it

easy to diagnose and fix bugs – justifying the cost of maintaining tests. Thus the Mean

Time To Fix (MTTF) metric may probably be low for TDD systems. [13]

37

Providing estimates and time taken to implement a User Story: We feel that

in the absence of upfront design, it will still be difficult to provide accurate estimates.

(Though breaking requirements into user stories does help in the process). We took

around 4 weeks to implement 3 user stories. We would have taken 3-4 weeks using our

old practices.

Since the number of user stories implemented is low, it would not be possible for

us to draw any conclusions on the time taken by TDD based on our limited results. Also,

we are fairly new to TDD practices and it has been suggested that productivity during the

learning phase is impacted negatively.[13]

Interestingly, it has been suggested that in the long run, less rework may be

required in TDD systems compared to traditional methods since programmers are forced

to think through their design in the TDD process. So we would need to monitor the

amount of code written over a period of time for a mature system while evaluating TDD.

[13]

38

Chapter 7: Summary

Based on all this information discussed in the previous chapter, we list the

changes/customizations that need to be made to TDD before it can be adopted by our

team.

7.1 CUSTOMIZATION OF TDD FOR OUR TEAM

Design Approach: We recommend that design (or some amount of design) be

done upfront. Then testability need not be the only factor that drives the design. This

would also help junior developers to adapt to TDD faster if they can see the end goal to

some extent.

 Also, while we like the lightweight approach of using user stories for small

projects, we prefer using use cases for bigger projects. Then estimates can be provided

using user stories or use cases as the situation demands.

Types of Tests: TDD does not require customer tests to be in place. But we think

that both automated programmer and customer tests need to be in place for every user

story or use case since they serve different purposes. Programmer tests serve as unit tests

while customer tests are similar to integration tests. Integration testing and System testing

practices should continue as before.

Software practices: We feel that two important practices – continuous

integration and pair programming are essential for the success of TDD. Continuous

integration through build automation is essential to ensure that tests integrate. Nightly

builds can be accompanied by test runs so that tests are run daily.

Pair programming should continue as before. But it can be made more useful if

one programmer writes the tests while the other codes so that the probability of incorrect

assumptions being made by a programmer can be reduced [7].

39

Code Coverage: We think that the ultimate goal should not be 100% code

coverage with tests. Test quality should be the primary concern.

UI components are difficult to test for two reasons. Firstly, UI changes occur

frequently and this makes UI tests brittle. Secondly, it is difficult to test some UIs (Web

UIs) in isolation. It would be easier to add automated selenium tests after the UI is

created. Infact, even with selenium it may be sufficient to just add tests for main

scenarios (defined by customer tests).

Maintenance Model for bugs: Every time a bug is reported, a test should be

written to reproduce the bug and then code should be added to make the test pass. This

would ensure that the bug does not appear again (at least not in the same location).

7.2 FUTURE WORK

The goal of the pilot study was to build a part of a real life system with databases

and UI and to get started with TDD practices. But many more user stories need to be

implemented for the code base to be large enough to be used in actually evaluating TDD

and to come up with useful numbers for code complexity, defect density etc.,

Moreover, there are other sides to TDD which we have not explored – Test

Driven Development of Databases (TDDD), use of frameworks for creating Mock

Objects (like Easy Mock [11]), frameworks for dependency injection (like Guice [10]). It

would be interesting to evaluate these different practices and frameworks.

Lastly, it would be interesting to compare the architectures of a system that has

been separately developed using TDD and a test last development methodology.

40

Bibliography

[1] Kent Beck, “Test- Driven Development by Example”, Addison Wesley, Pearson

Education, Boston, MA, 2003.

[2] Andrew Hunt, David Thomas, “Pragmatic Unit Testing In C# with NUnit”, The
Pragmatic Programmers, Dallas, TX, 2007.

[3] Mike Cohn, “User Stories Applied, for Agile Software Development”, Addison -

Wesley Professional, 2004

[4] Martin Fowler, “Patterns of Enterprise Application Architecture”, Addison -Wesley
Professional, 2002

[5] Martin Fowler,”Refactoring: Improving the Design of Existing Code”, Addison -
Wesley Professional, 1999

[6] Misko Hevery (http://misko.hevery.com/code-reviewers-guide/)

[7] Gertrud Bjonrvig, James O.Coplien, Neil Harrison “A Story about User Stories and

Test Driven Development”, May 2007

[8] NUnit (http://www.nunit.org/)

[9] Selenium (http://seleniumhq.org/)

[10] Guice (http://code.google.com/p/google-guice/)

[11] EasyMock (http://easymock.org)

[12] Fit (http://fit.c2.com/)

[13] Forrest Shull, Grigori Melnik, Burak Turhan, Lucas Layman, Madeline Diep, Hakan

Erdogmus, "What Do We Know about Test-Driven Development?," IEEE
Software, vol. 27, no. 6, pp. 16-19, Nov./Dec. 2010

http://fit.c2.com/

41

Vita

Arasi Aravindhan was born November 2nd, 1983 in Pondicherry, India, the

daughter of Cecily K and Aravindhan P. She completed High School in Clarence High

School, Bangalore. She received B.E in Electronics and Communication from

Visweswariah Technological University, Belgaum.

After graduation she worked for 2 years as a software developer for financial

companies like Unisys and National Financial Partners. In fall 2008, she entered the

Masters Program in the Department of Electrical and Computer Engineering at the

University of Texas at Austin. She also has extensive internship experience with the

Automation group in Austin Validation Centre (AVC) at Intel Corp., Austin, Texas.

Permanent address: 9115 Wampton Way, Austin, TX 78749

This report was typed by Arasi Aravindhan.

