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Abstract We consider oriented long-range percolation on a graph with vertex set Z
d × Z+

and directed edges of the form 〈(x, t), (x + y, t + 1)〉, for x, y in Z
d and t ∈ Z+. Any edge

of this form is open with probability py , independently for all edges. Under the assumption
that the values py do not vanish at infinity, we show that there is percolation even if all edges
of length more than k are deleted, for k large enough. We also state the analogous result for
a long-range contact process on Z

d .

Keywords Contact processes · Oriented percolation · Long-range percolation · Truncation

Mathematics Subject Classification 60K35 · 82B43

1 Introduction

Let G = (V, E) be the graph with set of vertices V = Z
d × Z+ and set of (oriented) bonds

E =
{
〈(x, t), (x + y, t + 1)〉 : x, y ∈ Z

d , t ∈ Z+
}

. (1)

Let (py)y∈Zd be a family of numbers in the interval [0, 1] and consider a Bernoulli bond
percolation model where each bond 〈(x, t), (x + y, t + 1)〉 ∈ E is open with probability py ,
independently for all bonds. That is, take (�, A, P), where � = {0, 1}E,A is the canonical
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product σ -algebra, and P = ∏
e∈E μe, where μe(ωe = 1) = py = 1 − μe(ωe = 0) for

e = 〈(x, t), (x + y, t + 1)〉 ∈ E. An element ω ∈ � is called a percolation configuration.
A (finite or infinite) sequence (v0, v1, . . . )with vi ∈ G for each i is called an oriented path

if, for each i , vi − vi−1 = (y, 1) for some y ∈ Z
d ; the oriented path is open if each oriented

edge 〈vi , vi+1〉 is open. For (x, t), (x ′, t ′) ∈ V with t < t ′, we denote by {(x, t) � (x ′, t ′)}
the event that there is an open oriented path from (x, t) to (x ′, t ′). If A ⊂ V, we denote by
{(x, t) � A} the event that (x, t) is connected by an open oriented path to some vertex of
A. Finally, we denote by {(x, t) � ∞} the event that there is an infinite open oriented path
started from (x, t).

Wenowconsider a truncation of the family (py)y∈Zd at somefinite range k.More precisely,
for each k ∈ N consider the truncated family (pky)y∈Zd , defined by

pky =
{
py, if |y‖∞ � k,
0, otherwise,

(2)

and the measure Pk = ∏
e∈E μk

e , where μk
e(ωe = 1) = pky = 1 − μk

e(ωe = 0) for e =
〈(x, t), (x + y, t + 1)〉 ∈ E. Then, one can ask the truncation question: is it the case that,
whenever percolation can occur for a sequence of connection probabilities, it can also occur
for a sufficiently high truncation of the sequence? That is: in case P{0 � ∞} > 0, is there
a large enough truncation constant k for which we still have Pk(0 � ∞) > 0 ?

Numerous works ([1–8] in chronological order) addressed this question considering dif-
ferent models (such as: the Ising model, oriented and non-oriented percolation, the contact
process) or different assumptions on the sequence (pn) or on the graph.We direct the reader to
the introductory sections of [3] and [2] for amore thorough discussion. Ourmain contribution
is the following:

Theorem 1 If there exists ε > 0 such that py > ε for infinitely many vectors y, then the
truncation question has an affirmative answer. Moreover,

lim
k→∞ Pk{(0, 0) � ∞} = 1.

This result generalizes the analogous result obtained in [4] for non-oriented percolation
on the square lattice. In that paper, the authors were able to construct a proper subgraph of
Z
2 with long (but limited) range edges that was isomorphic to a slab with two “unbounded”

directions and arbitrarily large number of “bounded” dimensions and thickness. This allowed
them to apply [9] to obtain their result. In our case however, this approach is fruitless, since [9]
is not applicable in the case of oriented percolation processes. Therefore, we need to devise
a new strategy.

In Sect. 3, we present two settings where a positive answer to the truncation question
can be readily obtained from the above theorem: an anisotropic two-dimensional oriented
percolation model and a long-range contact process on Z

d . We prove Theorem 1 in Sect. 2.

2 Proof of Theorem 1

We first prove the theorem for the case where d = 1, so that the family (py) is given
by a doubly-infinite sequence (. . . , p−1, p0, p1, . . .) (we replace y by n in the notation).
Moreover, we assume that pn = 0 if n � 0. In the end of this section, we will show how we
can obtain the general statement from this particular case.
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aL1 − a1 a2L1 − aL1

(x, y)

Z+ × {y +1 }

Z+ × {y +2 }

a1

aL2

Fig. 1 A realization of the events T (x,y)
− and T (x,y)

+ , with dashed (respectively, dotted) lines representing
open directed edges

By assumption,we can take ε > 0 such that lim supn→∞ pn > ε > 0.Define the sequence
(an)n as

a1 = inf{i : pi > ε}, an = inf{i > an−1 : pi > ε}, n > 1.

Fix δ ∈ (0, 1) to be chosen later. Define the integers L0 and L1

P(Bin(L0, ε) � 1) > 1 − δ

3
, P(Bin(L1, ε) � L0) > 1 − δ

3
(3)

here Bin(n, p) denotes a Binomial distribution with parameters n and p. Next, define R such
that

R = max{aL1 , a2L1 − aL1}. (4)

Finally, take L2 large enough such that

aL2 > a1 + 3R. (5)

Given a vertex (x, y) ∈ Z
2+ and i ∈ N, define the events

R(x,y)
i =

{ 〈(x, y), (x + i, y + 1)〉 and
〈(x + i, y + 1), (x + i + a1, y + 2)〉 are open

}
,

S(x,y)
i =

{ 〈(x, y), (x + i, y + 1)〉 and
〈(x + i, y + 1), (x + i + aL2 , y + 2)〉 are open

}
.

Also define

T (x,y)
− =

(
∪aL1
i=1R

(x,y)
i

)
∩

(
∪aL1
i=1S

(x,y)
i

)
,

T (x,y)
+ =

(
∪a2L1
i=aL1+1R

(x,y)
i

)
∩

(
∪a2L1
i=aL1+1S

(x,y)
i

)
.

Observe that by (3),

PaL2
(
T (x,y)

−
)

> 1 − δ, PaL2
(
T (x,y)

+
)

> 1 − δ. (6)

Also,
on T (x,y)

− , (x, y) � [x + 2a1, x + a1 + aL1 ] × {y + 2},
(x, y) � [x + a1 + aL2 , x + aL1 + aL2 ] × {y + 2} (7)

and
on T (x,y)

+ , (x, y) � [x + a1 + aL1 , x + a1 + a2L1 ] × {y + 2},
(x, y) � [x + aL2 + aL1 , x + aL2 + a2L1 ] × {y + 2} (8)
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v0,0

v−1,1 v1,1

v0,2v−2,2 v2,2

I0,0

I−1,1

I−2,2 I0,0

I1,1

I0,0

a1 + aL1 aL2 − a1 R

Fig. 2 The vertices vi, j and the line segments Ii, j , for (i, j) ∈ V
∗

note that, by (4) and (5), the two horizontal segments in (8) are disjoint, and similarly in (7)
(Fig. 1).

The next step is to define a renormalized latticeG∗ (also an oriented graph); vertices ofG∗
will correspond to certain horizontal line segments in the original graphG. An exploration of
the points reachable from the origin inG under the measure PaL2 will produce, as its ‘coarse-
grained’ counterpart, a site percolation configuration on G∗. As is usual, two properties will
result from the coupling: first, percolation inG∗ will occur with high probability, and second,
percolation in G∗ will imply percolation in G.

We let G∗ = (V∗, E
∗), where V

∗ = {(i, j) ∈ Z × Z+; i + j is even} and E
∗ is the set

of oriented edges E
∗ = {〈(i, j), (i ± 1, j + 1)〉; (i, j) ∈ V

∗}. Define the following order
in V

∗: given (i1, j1), (i2, j2) ∈ V
∗ we say that (i1, j1) ≺ (i2, j2) if and only if j1 < j2 or

( j1 = j2 and i1 < i2). Given S ⊂ Z × Z+, we define the exterior boundary of S as the set

∂eS = {(i, j) ∈ V
∗\S; (i − 1, j − 1) ∈ S or (i + 1, j − 1) ∈ S}.

For each (i, j) ∈ V
∗, define

zi, j = j · aL1 + i + j

2
· aL2 + j − i

2
· a1.

Also let

vi, j = (zi, j , 2 j) ∈ V, Ii, j = [zi, j − R, zi, j + R] × {2 j} ⊂ V.

These vertices and intervals are depicted in Fig. 2. Note that, for all (i, j),

zi+2, j − zi, j = aL2 − a1, (9)

so, by the choice of L2 in (5), the segments Ii, j are pairwise disjoint. Additionally,

zi−1, j+1 − zi, j = a1 + aL1 , (10)

zi+1, j+1 − zi, j = aL1 + aL2 . (11)

Let us now present our exploration algorithm. We will define inductively two increasing
sequences (Ai )i and (Bi )i of subsets of V

∗. Set A0 = B0 = ∅ and x0 = (0, 0). We declare
the vertex x0 = (0, 0) as good if the event T (0,0)

− occurs. Then, we define:

A1 =
{
A0 ∪ {x0}, if x0 is good,

A0, otherwise,
B1 =

{
B0, if x0 is good,

B0 ∪ {x0}, otherwise.
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976 C. Alves et al.

If x0 is not good, then we stop our recursive procedure. Note that, if x0 is good, then by (8)
and (7),

(0, 0) � [2a1, a1 + aL1 ] × {2}
⊂ [a1 + aL1 − R, a1 + aL1 + R] × {2} = I−1,1,

(0, 0) � [a1 + aL2 , aL1 + aL2 ] × {2}
⊂ [aL1 + aL2 − R, aL1 + aL2 + R] × {2} = I1,1.

Assume An, Bn have been defined for n � 1, and the following conditions are satisfied:

(a) An is connected,
(b) Bn ⊂ ∂e An ,
(c) bonds started from vertices outside ∪(i, j)∈An∪Bn Ii, j are still unexplored, and
(d) (0, 0) � Ii, j for each (i, j) ∈ (∂e An)\Bn .

Now, if (∂e An)\Bn = ∅ we stop our recursive definition. Otherwise we let xn = (i, j) be the
minimal point of (∂e An)\Bn with respect to the order≺ defined above. By property (d) above,
we can fix a vertex (u, 2 j) ∈ Ii, j such that (0, 0) � (u, 2 j). In case u ∈ [zi, j − R, zi, j ] that
is, (u, 2 j) belongs to the left half of Ii, j (including the midpoint), then we declare that xn is

good if the event T (u,2 j)
+ occurs. In case (u, 2 j) ∈ (zi, j , zi, j + R], then we declare the xn is

good if the event T (u,2 j)
− occurs. Then we define

An+1 =
{
An ∪ {xn}, if xn is good,

An, otherwise,
Bn+1 =

{
Bn, if xn is good,

Bn ∪ {xn}, otherwise.

It is clear that (a), (b), (c) listed above are satisfied with An+1, Bn+1 in the place of An, Bn .
Let us now verify that our steering mechanism [that is, choosing T+ or T− according to the
position of (u, 2 j)] guarantees property (d). Consider first the case where (u, 2 j) is in the
left half of Ii, j , that is, u ∈ [zi, j − R, zi, j ]; then,

u + a1 + aL1 � zi, j − R + a1 + aL1

(10)= zi−1, j+1 − R,

u + a1 + a2L1 � zi, j + a1 + a2L1

(10)= zi−1, j+1 + a2L1 − aL1

(4)
� zi−1, j+1 + R,

u + aL2 + aL1 � zi, j − R + aL2 + aL1

(11)= zi+1, j+1 − R,

u + aL2 + a2L1 � zi, j + aL2 + a2L1

(11)= zi+1, j+1 + a2L1 − aL1

(4)= zi+1, j+1 + R,

so (8) implies that, if T (u,2 j)
+ occurs, we have

(0, 0) � (u, 2 j) � Ii−1, j+1, (0, 0) � (u, 2 j) � Ii+1, j+1.

The casewhere (u, 2 j) is in the right half of Ii, j is treated similarly [using (7)]. This completes
the proof that (d) remains satisfied after each recursion step.

Regardless of whether or not the recursion ever ends, we let C be the union of all sets An

that have been defined. By construction, it follows that {|C| = ∞} ⊆ {(0, 0) � ∞}.
Now, observe that

PaL2 (xn is good | (Am, Bm) : 0 � m � n) � 1 − δ. (12)

This implies that C stochastically dominates the cluster of the origin in Bernoulli oriented site
percolation on G∗ with parameter 1 − δ (see Lemma 1 of [9]). As δ can be taken arbitrarily
small, this proves the desired result for d = 1.
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Now let us show how the statement of Theorem 1 can be obtained from the case we have
already treated. Take ε > 0 as in the assumption of the theorem; we can then take an infinite
set S ⊂ Z

d so that py > ε for all y ∈ S.
Let

	−
i (S) =

{
xi < 0 : (y1, . . . , yi−1, xi , yi+1, . . . , yd) ∈ S

for some y1, . . . , yi−1, yi+1, . . . , yd ∈ Z

}
,

	+
i (S) =

{
xi > 0 : (y1, . . . , yi−1, xi , yi+1, . . . , yd) ∈ S

for some y1, . . . , yi−1, yi+1, . . . , yd ∈ Z

}

(in words, these sets are given by the projection of S to the i th axis, intersected with (−∞, 0)
and (0,∞), respectively). Since S is infinite, there exists i ∈ {1, . . . , d} and a ∈ {−,+}
such that 	a

i (S) is infinite; for simplicity, assume that this is the case for a = + and i = 1.
It is then easy to see that the cluster of 0 for percolation on G, when projected on the first
coordinate axis times Z+, stochastically dominates a percolation configuration on Z × Z+
which belongs to the case we have already treated. Percolation of this configuration then
implies percolation on G.

3 Truncation Question for Related Oriented Models

In this section, we consider different oriented percolation models in which the truncation
question can be posed, and an affirmative answer follows almost directly from Theorem 1.

3.1 Anisotropic Oriented Percolation on the Square Lattice

For the first model, let G = (Z2, E), where E = Ev ∪ (∪∞
n=1Eh,n):

Ev = {〈(x, y), (x, y + 1)〉 : x, y ∈ Z+},
Eh,n = {〈(x, y), (x + n, y)〉 : x, y ∈ Z+, n ∈ N},

that is, G is an oriented square lattice equipped with long-range horizontal bonds. Given
σ > 0 and (qn)n with qn ∈ [0, 1] for each n, we define an oriented bond percolation model
where each bond e is open, independently of each other, with probability σ or qn , if e ∈ Ev

or e ∈ Eh,n , respectively. Let P be a probability measure under which this model is defined.
For the graphG, an oriented path is a sequence (v1, v2, . . .) such that, for each i , vi+1−vi =

(0, 1) or (n, 0) for some n ∈ N; the path is open if each oriented bond in it is open. We use
also the notation {(0, 0) � ∞} to denote the set of configurations such that the origin is
connected to infinitely many vertices by oriented open paths on G.

As in Sect. 1, we denote by (qkn )n and Pk the truncated sequence and the truncated
probability measure. Thus, for this graph we have a result analogous to Theorem 1:

Theorem 2 For the Bernoulli long-range oriented percolationmodel onG, if lim sup qn > 0,
then the truncation problem has an affirmative answer. Moreover,

lim
k→∞Pk{(0, 0) � ∞} = 1.

Proof From the percolation model on G, we define an induced bond percolation model on
the graph G of the previous sections with d = 1, that is, G = (V, E) with V = Z × Z+ and
E as in (1). We declare each bond 〈(x, y); (x + n, y + 1)〉 in G as open if and only if both
the bonds 〈(x, y); (x + n, y)〉 and 〈(x + n, y); (x + n, y + 1)〉 in G are open. Observe that:
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• each bond 〈(x, y); (x + n, y + 1)〉 ∈ E is open with probability pn := σqn and by
hypothesis lim sup qn > 0;

• if there is an infinite open path in the induced model on G then this implies the existence
of an infinite oriented path in the original model on G;

• the induced percolation model on G is not an independent model, because the open or
closed statuses for bonds with the same end vertex are positively correlated. However,
given any collection of bonds in which any two bonds have distinct end vertices, the
statuses of all these bonds are independent. Therefore, there exist no problems regarding
the definition of events analogous to T (x,y)

− and T (x,y)
+ and in showing lower bounds

like (6).

Remark The range of the dependence on the induced model on G goes to infinity as the
truncation parameter k → ∞. Hence, the conclusion of Theorem 2 could not be derived
from standard techniques of stochastic comparison with product measures (see for instance
the main result in [10]).

We can now prove that, for the induced model onG, percolation occurs with high probability
if k is large by an argument that is almost identical to the one of the previous section. The
only difference is that, in the renormalized site percolation configuration on G∗ that results
from the exploration algorithm, some dependence with range one now arises. This is because
the probability that a vertex xn = (i, j) ∈ V

∗ in our exploration is good will be affected
by a previous query of the vertex (i − 2, j). This issue is settled by choosing the constant
δ so that, for one-dependent oriented percolation configurations on G∗ with density of open
bonds above 1− δ, percolation occurs with high probability, since we are now in the context
of one-dependent percolation, where [10] applies. ��
3.2 Long-Range Contact Processes on Z

d

The second model we consider is a contact process on Z
d with long-range interactions, such

as the one considered in [2]. To define themodel, we fix a family of non-negative real numbers
(λy)y∈Zd , and take a family of independent Poisson point processes on [0,∞):

• a process Dx of rate 1 for each x ∈ Z
d ;

• a process B(x,y) of rate λx−y for each ordered pair (x, y) with x, y ∈ Z
d .

We view each of these processes as a random discrete subset of [0,∞) and write, for 0 �
a < b, Dx

[a,b] = Dx ∩[a, b] and B(x,y)
[a,b] = B(x,y) ∩[a, b]. We letP be a probability measure

under which these processes are defined.
Fix k ∈ N. Given x, y ∈ Z

d and 0 � s � t , we say (x, s) and (y, t) are k-connected,

and write (x, s)
k� (y, t), if there exists a function γ : [s, t] → Z

d that is right-continuous,
constant between jumps and satisfies:

γ (s) = x, γ (t) = y and, for all r ∈ [s, t],
r /∈ Dγ (r),

r ∈ B(γ (r−),γ (r)) if γ (r) �= γ (r−),

‖γ (r) − γ (r−)‖∞ � k.

(13)

This provides a continuous-time percolation structure for the lattice Z
d . From the point of

view of interacting particle systems, one usually defines

ξt,k(x) = 1{(0, 0) k� (x, t)}, x ∈ Z
d , t � 0,
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where 1 denotes the indicator function, thus obtaining a Markov process (ξt,k)t�0 on the

state space {0, 1}Zd
. For this process, the identically zero configuration (denoted by 0) is

absorbing.

Theorem 3 For the long-range contact process onZ
d , if there exists λ > 0 such that λy > λ

for infinitely many y, then

lim
k→∞P

(
ξt,k �= 0 for all t

) = 1.

Proof Similarly to the proof in Sect. 2, we can easily reduce the proof to the case of d = 1
and λan > λ > 0 for an increasing sequence (an)n∈N. So we now turn to this case.

Fix δ > 0. Choose τ > 0 such that

P(D0[0,τ ] �= ∅) < δ/4. (14)

Given thePoissonprocesses {(Dx )x , (B(x,y))(x,y)},wenowdefine apercolation configuration
on the graph G = (V, E). We declare a bond 〈(x, n), (x + y, n + 1)〉 of E to be open if:

Dx
[τn,τ (n+1)] = ∅, Dx+y

[τn,τ (n+1)] = ∅, B(x,x+y)
[τn,τ (n+1)] �= ∅.

Let P be the probability distribution of this induced percolation configuration, and Pk the cor-
responding truncation (that is, the induced configuration obtained from {(Dx )x , (B(x,y))(x,y)}
by suppressing the Poisson processes B(x,y) with |y − x | > k).

We observe that

• each bond 〈(x, n), (x + y, n + 1)〉 ∈ E is open with probability larger than

(1 − δ/4)2 · (1 − exp{−λyτ });
• if there is an infinite open path in the inducedmodel onG for some k, thenwe can construct

a function γ : [0,∞) → Z with γ (0) = 0 and satisfying the three last requirements of
(13) for r ∈ [0,∞), so that have ξk,t �= 0 for all t ;

• given any collection of bonds in which any two bonds have distinct start vertices and
distinct end vertices, the statuses of all these bonds are independent. Note that there is
more dependence here than in themodel of Sect. 3.1 (since bondswith coinciding starting
points are dependent here), so we have to be more careful in implementing the proof of
Sect. 2.

We let ε = (1 − δ
4 )

2 · (1 − exp{−λτ }) and choose L0 and L1 such that

P(Bin(L0, ε) > 0) > 1 − δ

8
, P(Bin(L1, ε) > L0) > 1 − δ

8
. (15)

We now choose R and L2 and, for (x, y) ∈ Z
2+, we define events R

(x,y)
i , S(x,y)

i , T (x,y)
− and

T (x,y)
+ exactly as in Sect. 2.

Note that the event ∪aL1
i=1R

(0,0)
i is guaranteed to occur if the following items are satisfied:

(a) D0[0,τ ] = ∅;
(b) for at least L0 indices i ∈ {1, . . . , L1}, we have

Dai[0,τ ] = ∅, B(0,ai )[0,τ ] �= ∅.

(c) out of the indices i satisfying the requirements of item (b), at least one also satisfies

Dai[τ,2τ ] = ∅, Dai+a1[τ,2τ ] = ∅, B(ai ,ai+a1)
[τ,2τ ] �= ∅.
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Hence, by (14) and (15), we have P(∪aL1
i=1R

(0,0)
i ) > 1 − δ/2, and, by translation invariance

of the Poisson processes, P(∪aL1
i=1R

(x,y)
i ) > 1− δ/2 for any (x, y) ∈ Z

2+. Similarly, we have

P(∪aL1
i=1S

(x,y)
i ) > 1 − δ/2, so that

P
(
T (x,y)

−
)

> 1 − δ,

and the same argument shows that

P
(
T (x,y)

+
)

> 1 − δ

also holds.
From here onward, the proof proceeds as in Sect. 2, with the only difference that already

appeared in the treatment of the model of Sect. 3.1: in the site percolation configuration in
the lattice G∗ that results from the exploration algorithm, dependence of range one arises.
As in Sect. 3.1, this issue is resolved (and percolation is guaranteed) as soon as 1 − δ is
supercritical for one-dependent site percolation on G∗. ��
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