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Identifying Extract Method Refactoring       
Opportunities based on Functional Relevance 

Sofia Charalampidou, Apostolos Ampatzoglou, Alexander Chatzigeorgiou,                                 

Antonios Gkortzis, Paris Avgeriou, Senior Member IEEE 

Abstract—‘Extract Method’ is considered one of the most frequently applied and beneficial refactorings, since the 

corresponding Long Method smell is among the most common and persistent ones. Although Long Method is conceptually 

related to the implementation of diverse functionalities within a method, until now, this relationship has not been utilized while 

identifying refactoring opportunities. In this paper we introduce an approach (accompanied by a tool) that aims at identifying 

source code chunks that collaborate to provide a specific functionality, and propose their extraction as separate methods. The 

accuracy of the proposed approach has been empirically validated both in an industrial and an open-source setting. In the 

former case, the approach was capable of identifying functionally related statements within two industrial long methods (approx. 

500 LoC each), with a recall rate of 93%. In the latter case, based on a comparative study on open-source data, our approach 

ranks better compared to two well-known techniques of the literature. To assist software engineers in the prioritization of the 

suggested refactoring opportunities the approach ranks them based on an estimate of their fitness for extraction. The provided 

ranking has been validated in both settings and proved to be strongly correlated with experts’ opinion.   

Index Terms— D.2.2 Design Tools and Techniques, D.2.3.a Object-oriented programming, D.2.8 Metrics/Measurement 

——————————      —————————— 

1 INTRODUCTION

he term code smell1 has been introduced by Kent Beck 
[10] in late 1990s to refer to parts of the source code 

that suffer from specific problems, usually related to a 
quality attribute. The term was widely popularized 
through the influential book of Fowler et al. [17] in 1999. 
According to Fowler et al. [17], code smells can be re-
solved through the application of refactorings, i.e., trans-
formations that improve certain quality attributes but do 
not affect the external behavior of the software.  

In their seminal book on refactorings, Fowler et al. 
[17] describe 22 possible code smells and the associated 
refactorings. In order to investigate the application fre-
quency of refactorings in practice, Murphy-Hill et al. [33] 
performed a case study with 99 Java developers that 
used the Eclipse IDE refactoring tools. Based on their 
results the most commonly applied refactorings (among 
those proposed by Fowler et al.) are the Rename Method 
and the Extract Method. Similarly, based on the usage 
statistics2 of JDeodorant (i.e., an Eclipse plugin for 

 

1  Bad smells, despite its original definition at the implementation level, 
is mostly used for higher levels of abstraction, like design [29] and ar-
chitecture [21]. In this paper, we focus on code smells. 

2  https://users.encs.concordia.ca/~nikolaos/stats.html  

providing refactoring suggestions), the Extract Method 
refactoring stands for approximately 45% of the total 
refactoring actions performed by the tool. 

In a similar context, but by investigating the occur-
rence frequency of code smells in real projects, Chat-
zigeorgiou and Manakos [15] conducted a case study 
using past versions of two open source software (OSS) 
systems. Specifically, they investigated the presence and 
evolution of four types of code smells, i.e., Long Method, 
Feature Envy, State Checking, and God Class. Their re-
sults indicated that Long Method was considerably more 
common than the other smells. In addition, according to 
Gregg et al. [22] in real-world applications 35%-55% of 
the methods consist of more than 90 statements. Consid-
ering that methods larger than 30 lines of code [27] are 
more error prone, one can understand the need for refac-
toring such large methods (longer than 90 statements). 
Given the high frequency of both the Long Method smell 
and its refactoring (the Extract Method3), this paper fo-
cuses on the suggestion of Extract Method opportunities 
that are able to resolve the Long method smell. 

The Long Method smell concerns methods of large size 
that serve multiple purposes or functionalities. To Extract 
Methods out of longer ones we propose the use of the 
Single Responsibility Principle (SRP) [29]. SRP is an ob-
ject-oriented principle that has been introduced at the 
class or package level and we tailor it so as to apply at 
the method level. SRP states that every module (package 
or class) should have exactly one responsibility, i.e., be 
related to only one functional requirement, and therefore 
 

3  According to Fowler et al. Extract Method is the most appropriate 
solution for eliminating Long Method smells. Extract Method suggests 
to group functionally related statements into a method, whose name 
explains it purpose [20]. 
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have only one reason to change. The term single respon-
sibility has been inspired by the functional module decom-
position, as introduced by De Marco [17] in 1979. In order 
to assess if a class conforms to the SRP, one needs to as-
sess its cohesion [23, 29], which is related to the number 
of diverse functionalities that a class is responsible for 
[17]. Despite the fact that Long Methods tend to violate 
the SRP in their implementations (by serving more than 
one unrelated functionalities), to the best of our 
knowledge there are no approaches in the literature that 
aim at identifying Extract Method opportunities by 
checking their conformance to the Single Responsibility 
Principle. Although the application of the SRP is not the 
only way for extracting methods out of longer ones, we 
argue that it can identify large and functionally meaning-
ful parts of a method, in contrast to existing approaches. 
As the research state-of-the-art stands, current approach-
es extract rather small methods, mostly involving one 
variable, and are not retrieved based on functionality, 
but based on other techniques (e.g., abstract syntax tree 
parsing, slicing, etc.). A detailed comparison to related 
work can be found in Section 2.4. 

In this study we propose an approach called SRP-
based Extract Method Identification (SEMI). In particu-
lar, the approach recognizes fragments of code that col-
laborate for providing functionality by calculating the 
cohesion between pairs of statements. The extraction of 
such code fragments can reduce the size of the initial 
method, and subsequently increase the cohesion of the 
resulting methods (i.e., after extraction); therefore, it can 
produce more SRP-compliant methods, since the number 
of diverse functionalities is decreased. To validate the 
ability of the proposed approach to extract parts of a 
Long Method that concern a specific functionality, we 
conducted:  

 an industrial case study in a large company pro-
ducing printers in Netherlands. Specifically, we 
applied the proposed approach to two Long 
Methods (approximately 1,000 lines in total) and 
validated the appropriateness of the proposed re-
factoring opportunities with three software engi-
neers. The study’s outcome suggests that the 
proposed approach is able to perform method ex-
traction based on functionality with a high recall 
rate. 

 a comparative case study on open source soft-
ware. In particular, we applied SEMI on five 
benchmark software systems (obtained from the 
literature) and compared the accuracy (in terms 
of precision and recall) of our approach to two 
state-of-the-art tools (namely JDeodorant [38] 
and JExtract [37]). The outcome of this study 
suggested that our approach achieves the best 
combination of recall and precision (i.e., F-
measure) among the examined tools. Addition-
aly, it scales better in terms of accuracy compared 
to other approaches/tools (i.e., its accuracy is al-
most uniform for medium- and large-sized 
methods). 

The organization of the rest of the paper is as follows: 
In Section 2 we present related work, whereas in Section 
3 we present in detail the rationale of the proposed ap-
proach. In Section 4, we discuss the industrial case study 
design and present its results, and in Section 5 we pre-
sent the design and the results of our comparative case 
study. Next, in Section 6 we discuss the main findings, 
and in Section 7 the threats to validity. Finally, in Section 
8 we conclude the paper. 

2 RELATED WORK 

In the literature there are two different types of studies 
dealing with refactoring opportunities. The first type of 
studies concerns the introduction of new approaches 
aiming to identify refactoring opportunities for a single 
bad smell, while the second type, uses existing ap-
proaches (usually identifying different types of refactor-
ing opportunities) aiming at investigating the issues of 
ranking or prioritizing the identified opportunities (e.g., 
[39], [31], [35]).  

In this section we will focus only on the first type of 
studies, and specifically on studies that propose ap-
proaches for identifying Extract Method opportunities 
(see Section 2.1) or Extract Class opportunities (see Sec-
tion 2.2). Both are considered related to our study, in the 
sense that they both focus on extracting parts of the code 
on a new artifact at a different level of granularity (i.e., 
method and class). Additionally, we will present studies 
that are indirectly related work, in the sense that they 
aim at feature or functionality identification (see Section 
2.3). These studies are considered related to ours, as the 
proposed approach aims to identify code fragments that 
provide a specific functionality. Finally, in Section 2.4, 
we will compare related work to our study.  

2.1 Extract Method Identification 

Tsantalis and Chatzigeorgiou [38], suggest an approach 
that uses complete computational slices (i.e., the code 
fragments that are cooperating in order to compute the 
value of a variable) for identifying Extract Method op-
portunities. The evaluation of the approach consists of 
qualitative and quantitative assessment for an open-
source project. Specifically, the authors have investigat-
ed: (a) the soundness and usefulness of the extracted 
slices, (b) their impact on slice-based cohesion metrics, 
and (c) their impact on the external behavior of the pro-
gram. Additionally, as part of the evaluation process 
precision and recall metrics have been calculated, against 
the findings of independent evaluators on two research 
projects. The precision and recall has been calculated for 
28 methods and ranged from 50-52% and from 63-75% 
respectively.   

Yang et al. [40] suggest that the code of the Long 
Method should be decomposed either based on control 
structures (i.e. for-statements, if-statements, etc.) or code 
styling (i.e., blank lines in the code). The approach sug-
gests that the composition of Extract Method opportuni-
ties should basically consider the size of the created 
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method, by setting appropriate thresholds. Later the cal-
culation of coupling metrics is used in order to rank the 
Extract Method opportunities. The evaluation of the 
study aims at investigating three aspects: (a) the accura-
cy of the proposed approach, (b) its impact on refactor-
ing cost, and (c) its impact on software quality. To 
achieve these evaluation goals, the authors conducted a 
case study using an open source software system of 
about 20,000 lines of code, spread into 269 classes. The 
results of the case study showed that the proposed ap-
proach achieves an accuracy of 92.82% (i.e. recommend-
ed fragments that were accepted without any adjust-
ments) and achieves up to 40% cost reduction, in the 
sense of less working hours due to the automation of the 
process. The impact on software quality is calculated 
through 10 metrics and the results show improvement 
after the Extract Method refactoring is applied. We note 
that the accuracy, as calculated by Yang et al. is not 
comparable to precision and recall, since the independ-
ent evaluator assesses the results obtained by the pro-
vided tool and has not built a golden standard to carry 
out the assessment before obtaining the results of the 
method. 

Meananeatra et al. [30] propose the decomposition of 
source code using the abstract syntax tree (i.e., data flow 
and control flow graphs) and the proposition of Extract 
Method opportunities based on the calculation of com-
plexity and/or cohesion metrics. Specifically, Meanane-
atra et al., proposed an approach aiming at resolving the 
Long Method smell by applying several refactorings (not 
only the Extract Method one). Their approach consists of 
four steps. Initially they calculate a set of metrics with 
regard to the maintainability of the software. In the sec-
ond step they calculate another set of metrics to find 
candidate refactorings. Candidate refactorings are also 
found using a set of predefined filtering conditions. Dur-
ing the third step they apply the refactorings and re-
compute the maintainability metrics, in order to compare 
them with the initial measurements. In the final step, the 
refactoring that can achieve the better maintainability 
improvement is proposed. The effectiveness of this ap-
proach has been evaluated through a toy example pro-
vided by Fowler’s book on refactorings [17]. Through 
this illustration no recall and precision measures could 
be obtained. 

Finally, Silva at al. [37] proposes the use of the ab-
stract syntax tree and the creation of all possible combi-
nations of lines within the blocks as candidates for ex-
traction. These candidates are subsequently filtered 
based on syntactical and behavioral preconditions, and 
finally ranked by using their structural dependencies to 
the rest of the method. The precision and recall of the 
algorithm is evaluated through two case studies: (a) one 
with a system that has been developed from the authors 
for this reason (where Long Methods have been deliber-
ately created), and (b) on two OSS projects (JUnit and 
JHotDraw). Concerning precision and recall, in the au-
thor-developed system the approach achieved a preci-
sion of 50% and a recall of 85%, whereas for the two OSS 

projects the precision varied from under 20% to 48%, and 
recall from 38% to 48%.  

2.2 Extract Class Identification 

Bavota et al. [8] created an extract class refactoring ap-
proach based on graph theory that exploits structural 
and semantic relationships between methods. Specifical-
ly, the proposed method uses a weighted graph to repre-
sent a class to be refactored, where each node represents 
a method of the class. The weight of an edge that con-
nects two nodes (methods) is a measure of the structural 
and semantic relationship between two methods that 
contribute to class cohesion. A MaxFlow-MinCut algo-
rithm is used to split the built graph in two sub-graphs, 
cutting a minimum number of edges with a low weight. 
These two sub-graphs can be used to build two new 
classes having higher cohesion than the original class. 
The attributes of the original class are also distributed 
among the extracted classes according to how they are 
used by the methods in the new classes. The method was 
empirically evaluated through two case studies. The first 
case study was performed on three open source projects 
(ArgoUML, Eclipse, and JHotDraw) and aimed at ana-
lyzing the impact of the configuration parameters on the 
performance of the proposed approach as well as verify-
ing whether or not the combination of structural and 
semantic measures is valuable for the identification of 
refactoring opportunities.  The second case study was 
based on a real usage scenario and focused on the user’s 
opinion while refactoring classes with low cohesion. The 
results of the empirical evaluation highlighted the bene-
fits provided by the combination of semantic and struc-
tural measures and the potential usefulness of the pro-
posed method as a feature for software development 
environments. The approach has been evaluated using F-
measure, which has been calculated as approximately 
0.75 for all examined applications. 

Fokaefs et al. [19] implemented an Eclipse plugin that 
identifies extract class refactoring opportunities, ranks 
them based on the improvement each one is expected to 
bring to the system design, and applies the refactoring 
chosen by the developer, in a fully automated way. The 
first step of the approach relies on an agglomerative 
clustering algorithm, which identifies cohesive sets of 
class members within the system classes, while the sec-
ond step relies on the Entity Placement metric as a 
measure of design quality. The approach was evaluated 
on various systems in terms of precision and recall, 
while it was also assessed by an expert and through the 
use of metrics. The evaluation showed that the method 
can produce meaningful and conceptually correct sug-
gestions and extract classes that developers would rec-
ognize as meaningful concepts that improve the design 
quality of the underlying system. The accuracy of the 
proposed approach has been evaluated on six open 
source classes, leading to a precision of 77% and a recall 
rate of 87%. 

Bavota et al. [9] proposed an approach recommend-
ing extract class refactoring opportunities, based on 
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game theory. Given a class to be refactored, the approach 
models a non-cooperative game with the aim of improv-
ing the cohesion of the original class. A preliminary 
evaluation, which was inspired by mutation testing (i.e. 
merging two classes and then trying to recreate the orig-
inal classes using an extract class approach), was per-
formed using two open source projects (ArgoUML and 
JHotDraw). The evaluation aimed at comparing: (a) the 
results derived using the Nash equilibrium and the Pare-
to optimum, as well as (b) the results of the proposed 
approach to state-of-the-art. The comparison has been 
performed based on F-measure [18], the applicability and 
the benefits of the proposed approach were demonstrat-
ed. The mean F-measure for the two projects was rang-
ing from 84%-89%, exceling compared to the other two 
approaches. 

2.3 Feature/ Functionality Identification 

In this subsection, we present research efforts that at-
tempt to identify parts of the source code that are 
providing a specific functionality through static analysis. 
Although in the literature there are several studies using 
information retrieval techniques aiming to connect fea-
tures to computational units in the source code (e.g., [43], 
[44]), such a mapping has the opposite direction com-
pared to our approach, and therefore, are omitted from 
this section. In addition to that, the majority of these 
studies use dynamic analysis in contrast to our approach 
which employs static analysis. 

The approach proposed by Yoshida et al. [41] consists 
of three steps. The first involves syntax analysis of the 
source code into fragments, creating a syntax tree where 
the program syntax consist the nodes, and the code 
fragments the leaves. The second involves the extraction 
of functional elements, i.e., code fragments that work in 
cooperation. The extent to which code fragments coop-
erate is calculated using the Normalized Cohesion of 
Code fragments (NCOCP2) metric and the results are 
compared to a threshold set in the same study. Finally, 
as last step, the approach proposes the combination of 
functional elements that show high cohesion. To verify 
the outcomes proposed by the approach, the authors 
conducted a case study using one software system of 
3,641 lines of code, 70 classes, and 600 methods. The de-
veloper of the software was responsible for confirming 
the outcomes of the approach, which achieved to identi-
fy 51 out of the 80 functionalities (i.e., recall 63.7%), 
however, the precision of the approach is not provided 
by the authors. 

Additionally, Antioniol et al. [4] compared the use of 
two different information retrieval approaches, one us-
ing a probabilistic and the other a vector space approach, 
aiming at associating high-level concepts with program 
concepts. To evaluate the two approaches they per-
formed two case studies, one of which aimed at tracing 
source code to functional requirements using a Java sys-
tem, consisting of 95 classes and about 20,000 lines of 
code. The validation of the study was performed based 
on experts who identified 58 correct functionalities 

among the 420 that had been suggested by the approach. 
The results of the study showed that both approaches 
can score about 13% - 48% precision for achieving a recall 
rate between 100% - 50%.  

2.4 Comparison to Related Work 

In this section, we compare SEMI with the approaches 
discussed in Section 2.1, from two perspectives: (a) in 
terms of the rationale of the approach, and (b) in terms of 
empirical validation. 
Approach Rationale. First we discuss possible limita-
tions of the approaches presented in Section 2.1, for ex-
tracting functionally coherent code blocks. We note that 
these limitations do not imply that the specific approach-
es are not adequate for suggesting relevant Extract 
Method opportunities, but we only discuss them against 
their fitness for creating SRP-compliant methods. To 
make this section more readable, we group the state-of-
the-art approaches based on the rationale of their extrac-
tion algorithm, as follows: 

 Approaches based on complete computation slic-
ing (i.e., identification of code fragments that are 
cooperating in order to compute the value of a 
variable) [38]—The complete computation slice of 
a variable considers only cases when the variable 
changes value, without considering the lines 
where the variable is used, although such lines 
might participate in a code fragment serving a 
“larger” functionality. To our understanding, 
“large” functionalities are not easy to be offered 
by calculating only one variable, but sets of them. 
In that sense, the use of complete computation 
slicing is expected to only identify rather “small” 
functionalities, whereas the proposed approach 
can incorporate multiple calculations in the ex-
tracted fragments of code. We note that there are 
some slicing approaches taking also into account 
the use of variables (see e.g. [32]). However, none 
of these approaches has been exploited for the 
purpose of identifying extract method opportuni-
ties. 

 Approaches based on code styling (e.g., blank 
lines in the code) [40]—Depending on code styl-
ing assumptions, like the separation of code 
fragments that concern unique functionalities us-
ing an empty line, is considered as a threat to the 
validity of the approach proposed by Yang et al. 
In particular, such approaches cannot be accurate 
for cases in which the assumption does not hold, 
e.g., a developer makes excessive or limited use of 
blank lines. 

 Approaches based only on the abstract syntax 
tree (i.e., the iteration and decision nodes of the 
code) [41] and [30]—Approaches that are only 
based on the abstract syntax tree, might miss Ex-
tract Method opportunities, since some potential-
ly large code fragments are considered as blocks 
and are not further examined. For example, con-
sider the case that a method consists of multiple 
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statements, offering two different functionalities 
by every branch of an if-statement. In such cases, 
since these nodes are not further decomposed, po-
tential Extract Method opportunities, which cap-
ture functionalities, may not be identified. 

 Approaches based on the abstract syntax tree & 
all possible combinations of lines within the 
blocks [37]—An exhaustive set of all possible 
combinations of continuous lines within the syn-
tax blocks may cause an enormous number of Ex-
tract Method opportunities, which have not been 
selected based on any quality characteristic. Alt-
hough most of the functionalities will be identi-
fied, this exhaustive tactic is not considered as op-
timal. 

Empirical Validation. In terms of empirical validation, 
we compare our study to existing state-of-the-art based 
on the following criteria: (a) research setting (e.g., indus-
trial, open source, etc.), and (b) size of examined meth-
ods. The results of this comparison are presented in Ta-
ble I. 

TABLE I. Comparison to Related Work 

 

Study 
Research         

Setting 
Average Examined 

Method Size 

[38] OSS 33.68 

[40] OSS 41.32 

[30] Illustration 46.00 

[37] Illustration 

OSS 
8.75 

48.40 

Our Study Industrial & OSS 525.00 

Contributions. Therefore, our work advances the state-
of-the-art, as follows: 

 it is the first study that investigates the functional 
relevance of source code fragments to identify Ex-
tract Method opportunities. Extracting methods 
based on the offered functionality is considered a 
benefit, since it is conceptually closer to system 
design and modularization principles. 

 it is the first study that is empirically validated with 
methods of hundreds of lines of code. Validating 
an approach in a different order of magnitude is 
important for two reasons: (a) it tests the scalabil-
ity of the approach, (b) it offers a more realistic 
validation environment than toy examples, as for 
methods of maximum 50 lines of code the assis-
tance that a software engineer needs is minimum.  

 it is the first study that is empirically evaluated in 
an industrial setting by professional software engi-
neers. This aspect is important since industrial ex-
perts are more experienced, aware of the prob-
lems that specific methods have, and contribute to 
increasing the realism of the empirical setting. 

3 THE SEMI APPROACH 

In this section we discuss the proposed approach for 
identifying Extract Method opportunities, based on the 

single responsibility principle. The approach can be de-
composed into two major parts that for simplicity are 
discussed in separate subsections: (a) the identification of 
candidate Extract Method opportunities, based on the 
functional relevance of code statements (see Section 3.1), 
and (b) the grouping and ranking of these candidates 
(see Section 3.2). Step (b) of the approach is important 
since the list of Extract Method opportunities can be 
large and may contain multiple overlapping suggestions. 

3.1 Identification of candidate Extract Method 
opportunities 

In the first part of the SEMI approach we are interested 
in identifying successive statements that are cooperating 
in order to provide a specific functionality to the system. 
According to De Marco et al. [17], cohesion is character-
ized as a proxy of the number of distinct functionalities 
that a module is responsible for. In this paper, we are 
interested in cohesion at method level and specifically in 
the coherence of statements. Therefore, as coherent we 
characterize two statements if they [14]4:  

 are accessing the same variable. This choice is 
based on the definition of all method-attribute co-
hesion metrics [1], in which cohesion is calculated 
based on whether two methods are accessing a 
common class attribute. We note that in the con-
text of this study, as variables we consider attrib-
utes, local variables and method parameters (i.e., 
every variable that is accessible through all state-
ments in one method’s body); or  

 are calling a method for the same object. This 
choice is based on the previous one, by taking into 
account the fact that objects are a special case of 
variables. This type of cohesion is named commu-
nication/information cohesion [42], according to 
which modules that are grouped together because 
they work on the same data, are coherent; or  

 are calling the same method for a different object 
of the same type. This choice is based on the defi-
nition of several cohesion metrics (e.g., LCOM4 
(Lack of Cohesion Of Methods) [24], TCC (Tight 
Class Cohesion) and LCC (Loose Class Cohesion) 
[11], DCD (Degree of Cohesion-Direct) and DCI 
(Degree of Cohesion-Indirect) [5]) that consider 
two statements as coherent if they call the same 
method for a different object. The rationale of such 
metrics lies on the fact that although a function is 
performed on different data the two statements 
are related, since they are in need of the same ser-
vice. Specifically, by calling the same method (e.g., 
start()) on two different objects (e.g., 
rightAirplaneEngine and leftAirplaneEn-
gine), the same functionality is performed on dif-
ferent data. However, the two lines provide exact-
ly the same functionality (in our example, starting 
first the right and then the left engine of the same 

 

4  This definition is in accordance to the cohesion among methods of a 
class, based on which two methods are coherent if they access the 
same attribute. 
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plane). Therefore, they should be considered func-
tionally relevant (which is exactly the goal of our 
approach—i.e., identifying which lines are func-
tionally coherent). We need to note that the two 
objects (left and right) are instances of the 
same class (e.g., AirplaneEngine), and therefore 
share the same set of possible method invocations. 
Finally, based on our previous work [14] that em-
pirically explored the ability of cohesion metrics 
to predict the existence and the refactoring urgen-
cy of long method occurrences, LCOM4 and DCD 
have been found to be among the most efficient 
indicators.  

Based on this definition we identify all possible sets of 
successive statements that are coherent to each other (re-
gardless of their size). To achieve this goal, we follow the 
process described in the flow chart of Fig. 1. We note that 
the final state of Fig. 1 does not correspond to the end of 
the approach, but only to the end of its first part (i.e., 
Identification of candidate Extract Method oppor-

tunities).  

 
Fig. 1: Flow chart of Extract Method opportunities algorithm 

A detailed explanation for each step of the aforemen-
tioned process will be presented through an illustrative 
example as follows: Suppose we are applying the pro-
posed approach to the source code of a sample method, 
as presented in Fig. 2. In Fig. 2 all variables which are 
accessible by the method’s statements (i.e., local varia-
bles, attributes, and parameters) and method calls have 
been underlined, in order to ease the calculation of the 
cohesion between statements. We note that we are only 
focusing on distinct accessible variables and method calls 
per statement, i.e., in cases that a variable or method call 
appears more than once in a single statement, we consid-
er it only once. For example, the use of variable i in line 
3 is underlined only once. 

As an initialization step, a table that contains an index 
of used variables/called methods per statement is devel-
oped (see Table II). We note that, similarly to a program 
dependence graph for the special case of conditional 
statements, the else and the else-if statements include 
an indirect use of the variables used in the condition 
(e.g., the else statement in line 7 suggests that the value 

of variable rcs should be considered). Therefore, the var-
iables or method calls used in conditions are copied to all 
branches of the statement. 

1.public Resource[][] grabManifests(Resource[] rcs) { 

2.  Resource[][] manifests = new Resource[rcs.length][] ; 

3.  for(int i=0; i<rcs.length; i++) { 

4.    Resource[][] rec = null; 

5.    if(rcs[i] instanceof FileSet) {  

6.      rec = grabRes(new FileSet[] {(FileSet)rcs[i]}); 

7.    } else { 

8.      rec = grabNonFileSetRes(new Resource []{ rcs[i] }); 

9.    } 

10.   for(int j=0; j< rec[0].length; j++) { 

11.     String name = rec[0][j].getName().replace('\\','/'); 

12.     if(rcs[i] instanceof ArchiveFileSet) { 

13.         ArchiveFileSet afs = (ArchiveFileSet) rcs[i]; 

14.         if (!"".equals(afs.getFullpath(getProj()))) { 

15.            name.afs.getFullpath(getProj()); 

16.         } else if(!"".equals(afs.getPref(getProj()))) { 

17.            String pr = afs.getPref(getProj()); 

18.            if(!pr.endsWith("/") &&  !pr.endsWith("\\")) { 

19.               pr += "/"; 

20.            } 

21.            name = pr + name; 

22.         }  

23.      } 

24.      if (name.equalsIgnoreCase(MANIFEST_NAME)) { 

25.        manifests[i] = new Resource[] {rec[0][j]}; 

26.        break; 

27.      } 

28.   } 

29.   if (manifests[i] == null) { 

30.      manifests[i] = new Resource[0]; 

31.   } 

32. } 

33. return manifests; 

34.} 

Fig. 2: Example Code 

TABLE II. Variable/Method Call Index in Example 

#Line Accessed Variables / Called Method 

2 manifests; rcs.length; rcs; length 

3 i; rcs.length; rcs; length 

4 rec  

5 rcs; i 

6 rec; grabRes; rcs; i 

7 rcs; i 

8 rec; grabNonFileSetRes; rcs; i 

10 j; rec.length; rec; length 

11 name; rec.getName.replace; j; rec; getName.replace; 

getName;replace 

12 rcs; i 

13 afs; rcs; i 

14 rcs; i; equals; afs.getFullpath; getProj; afs; getFullpath 

15 name.afs.getFullpath; getProj; name; afs.getFullpath; 

afs; getFullpath 
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#Line Accessed Variables / Called Method 

16 rcs; i; equals; afs.getFullpath; getProj; afs.getPref; afs; 

getFullpath; getPref 

17 pr; afs.getPref; getProj; afs; getPref 

18 rcs; i; equals; afs.getFullpath; getProj; afs.getPref; afs; 

getFullpath; getPref; pr.endsWith; pr; endsWith 

19 pr 

21 name; pr  

24 name.equalsIgnoreCase; name; equalsIgnoreCase 

25 manifests; i; rec; j 

29 manifests; i 

30 manifests; i 

33 Manifests 

Next, and in order to ease the comprehension of the 
next steps of the algorithm, we visualize the information 
of Table II in a matrix (see Fig. 3). In the matrix, as lines 
we add all accessible variables and called methods, as 
columns the corresponding source code line (for simplic-
ity, in the example we assume that each line has only one 
statement), whereas in the cells we denote the use of a 
specific variable or method call in the corresponding 
statement. 

 

Fig. 3:  Matrix visualization of accessible variables and 

method calls per statement 

In the initialization of the iterative part of the algo-
rithm, we begin with a step that equals one (step=1). 
With this step, the algorithm creates clusters of all the 
successive statements that access at least one common 
variable or call the same method, as shown in Fig. 4.  

 

 
Fig. 4:  Selection of statements using the same attribute or 

calling the same method, with step=1 

The identification of Extract Method opportunities 
continues by increasing the step by one in each iteration. 
So, with step=2, new clusters are formed by treating 
statements with distance equal to 2 as successive. The 
newly clustered lines are presented in Fig. 5 with dark 
shading. Next, the algorithm performs a merging activity 
based on the agglomerative hierarchical clustering ap-
proach [23]. The criterion used for merging two clusters 
is the existence of an overlap between statements. In oth-
er words, the algorithm merges clusters that include 
even one common statement. To derive these Extract 
Method opportunities, the overlapping sets of statements 
are merged, as presented in Fig. 6. Concerning merging, 
as an example, we can look at that the cluster including 
statements 2-8 and the cluster including statements 4-11. 
The clusters are merged in a larger cluster of statements, 
since statements 4-8 are common in both clusters. We 
note that as candidate Extract Method opportunities we 
include both the original (i.e., 2-8 and 4-11) and the 
merged (2-11) clusters. This process can merge sets of 
statements that are only indirectly relevant. For example, 
statements 2-11 are only indirectly related, through the 
use of variable rec and method call rcs. 

 

 
Fig. 5:  Selection of statements accessing the same variable or 

calling the same method, with step=2 

 

Fig. 6:  Extract Method opportunities, derived with step=2 

The algorithm continues to iterate until we reach the 
maximum step, i.e. method size. After all possible Ex-
tract Method opportunities have been identified, the al-
gorithm removes the duplicate and the invalid clusters. 
This second task is very important because in many cases 
extracting a set of statements from a code would create 
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compile errors by violating syntactical or semantic pre-
conditions, or behavioral inconsistencies [37].  

The syntactical preconditions taken into consideration 
require that the selected fragment to be extracted should 
consist only by complete blocks of sequential statements. 
For example, if we want to extract statements A and B, 
but statement A is just before the block of an if statement 
and statement B inside the block of this if statement, then 
the extracted code should include all statements starting 
from statement A, until the closing statement of the if 
block. These preconditions guarantee that the recommen-
dations provided by our approach can be directly ap-
plied to methods, without statement reordering. In addi-
tion, preservation of the syntax in combination with the 
fact that the extracted continuous statements are re-
placed by a method invocation, eliminate the possibility 
of breaking program semantics. In particular, according 
to the definition of Komondoor et al. [26] two methods 
are syntactically equivalent, if when they are called in the 
same state (i.e., same values for all variables) they pro-
duce the same output; this is true for our approach, since 
the sequence of statement execution and variable values 
are not altered compared to the original method. Finally, 
a set of behavioral preconditions should apply to ensure 
the preservation of functionality. For example, it should 
not be possible to extract a fragment in which two or 
more primitive variables are assigned that are also used 
by other statements out of this fragment. The reason be-
hind this precondition is that due to Java restrictions, it is 
not possible to return the value of two variables.  

The rationale of checking if a set of statements is valid 
for extraction has been exhaustively discussed in the lit-
erature (e.g., [37], [38]) and is for simplicity not discussed 
in this section. An example of such a case, is shown in 
Fig. 2, where the proposed set of statements suggested to 
be extracted (i.e., 25 - 33) is not valid, because it does not 
include complete blocks of code. Similarly, to Silva et al. 
[37], as blocks of code we refer to a sequence of continu-
ous statements that follow a linear control flow. In par-
ticular, blocks 24-27 and 2-33 are only partially included. 
We note that in order to assist in the process of identify-
ing the input and output parameters of the proposed 
extract method opportunity, the tool makes all required 
calculations, so that the values of the variables are not 
lost when invoking the new method.  

3.2 Extract Method Opportunity Grouping/ 
Ranking 

Once a list of all candidate Extract Method opportunities 
is created, the SEMI algorithm first groups them and 
then ranks them. The main idea for grouping Extract 
Method opportunities is that every two opportunities 
that are heavily overlapping and are of similar size5 are 
highly probable to offer the same functionality. In par-
ticular, we expect that sets of statements of different size 
 

5  The thresholds for characterizing two extract method opportunities as 
heavily overlapping and being similar in size are parameters of the 
algorithm. These two, along with other parameters of the algorithm 
are discussed just after its high-level description.  

(i.e., number of statements) are not able to provide the 
same functionality. For example, suppose a set of 100 
instructions that rotate a matrix clock-wise, perform a 
transformation on it, and then rotate it counter-clock-
wise, so as to bring it in the original position. Let us as-
sume that a set of 30 instructions that perform the clock-
wise rotation overlaps with the identified set of 100 in-
structions. The opportunity to extract the 30 instructions 
cannot be considered as an alternative opportunity to the 
extraction of the entire set of 100 instructions, since it is 
not reasonable to assume that these 30 instructions can 
deliver the same functionality.  

1. FOR each opportunity IN opportunity_list 

2.   IF (opportunity.isAlreadyAnAlternative()) THEN 

3.     SKIP to next opportunity 

4.   END IF 

5.   FOR each other_opp IN opportunity_list 

6.     IF  

7.       NotSimilarSize(opportunity, other_opp) AND 

8.       SignificantlyOverlapping(opportunity, other_opp) 

9.       AND other_opp.isAlreadyAnAlternative()==false)  

10.    THEN 

11.      IF  

12.        (opportunity.HasMoreBenefitThan(other_opp))  

13.      THEN 

14.        opportunity.alternatives.Add(other_opp) 

15.        set other_opp.isAlternative = true  

16.      ELSE 

17.        other_opp.alternatives.Add(opportunity) 

18.        set opportunity.isAlternative = true 

23.      END IF    

24.    END IF 

25.  END FOR 

26. END FOR 

Fig. 7: Extract Method Opportunity Grouping Algorithm 

For every group of Extract Method opportunities, the 
optimal opportunity is set as the primary suggestion for 
extraction, and the rest are characterized as its alterna-
tives. As optimal opportunity we consider the one that 
offers the highest benefit in terms of a specific fitness 
function (the selection of this fitness function is dis-
cussed in detail later in this section). The definition of the 
benefit that a software engineer would get from splitting 
a long method cannot be strictly defined, since it heavily 
depends on his perception. In particular, the benefit can 
range from purely measurable source code quality as-
pects (such as size, lack of cohesion, etc.) to more abstract 
ones (e.g., understandability, maintainability, etc.). This 
approach is based on measureable aspects, such as the 
cohesion metrics discussed in Section 3.1, which never-
theless affect the more abstract ones. The steps followed 
for executing this process are outlined in the pseudocode 
of Fig. 7. The pseudocode of Fig. 7, includes five parame-
ters provided by the user at the execution time: 

max_size_difference: The maximum allowed difference 
in size between two opportunities so as to be considered 
valid for grouping (see NotSimilarSize—statement 7). 
The difference in size is calculated as the ratio of absolute 
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difference of the two Extract Method opportunities, over 
the size of the smaller method: 

Difference_in_Size(A, B) = 
|𝐴.𝐿𝑜𝐶 – 𝐵.𝐿𝑜𝐶|

𝑀𝐼𝑁(𝐴.𝐿𝑜𝐶,𝐵.𝐿𝑜𝐶)
 

For example, if max_size_difference is set to 0.2, and the 
size of the two opportunities is 15 and 10, respectively, 
the difference in size can be calculated as (15-10) / 
10 = 0.5, which is larger than the maximum allowed dif-
ference. As a default max_size_difference in this pa-
per we use 0.2, i.e., a method is considered to be of simi-
lar size if it is ±20% larger or smaller. The use of a smaller 
default value (e.g., ±10%) would not be fitting for a ra-
ther small opportunity, since opportunities of size<10 
would not be able to group with any other opportunity.  
The fact that the selection of these thresholds does not 
heavily influence the achieved accuracy of the proposed 
approach is discussed in Section 5.1 and the threats to 
validity section. 

min_overlap: The minimum allowed overlap in the 
range of two opportunities so as to be considered valid 
for grouping (see SignificantlyOverlapping— state-
ment 8). The overlap between two Extract Method op-
portunities is calculated as the percentage of overlapping 
statements, as follows: 

𝑜𝑣𝑒𝑟𝑙𝑎𝑝(𝐴,𝐵) =

{
 
 
 
 
 
 

 
 
 
 
 
 

|𝐵. 𝑒𝑛𝑑 − 𝐵. 𝑠𝑡𝑎𝑟𝑡 + 1|,
   𝐴. 𝑠𝑡𝑎𝑟𝑡 ≤ 𝐵. 𝑠𝑡𝑎𝑟𝑡 ⋀  𝐴. 𝑒𝑛𝑑 ≥ 𝐵. 𝑒𝑛𝑑

 
|𝐴. 𝑒𝑛𝑑 − 𝐴. 𝑠𝑡𝑎𝑟𝑡 + 1|,

𝐴. 𝑠𝑡𝑎𝑟𝑡 ≥ 𝐵. 𝑠𝑡𝑎𝑟𝑡 ⋀  𝐴. 𝑒𝑛𝑑 ≤ 𝐵. 𝑒𝑛𝑑 
 

|𝐴. 𝑒𝑛𝑑 − 𝐵. 𝑠𝑡𝑎𝑟𝑡|,
𝐴. 𝑠𝑡𝑎𝑟𝑡 ≤ 𝐵. 𝑠𝑡𝑎𝑟𝑡 ⋀ 𝐴. 𝑠𝑡𝑎𝑟𝑡 ≤ 𝐵. 𝑒𝑛𝑑 ⋀  

𝐴. 𝑒𝑛𝑑 ≥ 𝐵. 𝑠𝑡𝑎𝑟𝑡
 

|𝐴. 𝑠𝑡𝑎𝑟𝑡 − 𝐵. 𝑒𝑛𝑑|,
𝐴. 𝑠𝑡𝑎𝑟𝑡 ≤ 𝐵. 𝑠𝑡𝑎𝑟𝑡 ⋀ 𝐴. 𝑒𝑛𝑑 ≥ 𝐵. 𝑠𝑡𝑎𝑟𝑡⋀  

𝐴. 𝑠𝑡𝑎𝑟𝑡 ≤ 𝐵. 𝑒𝑛𝑑

 

Overlap = 
𝑜𝑣𝑒𝑟𝑙𝑎𝑝(𝐴,𝐵) 

𝑀𝐴𝑋(𝐴.𝐿𝑜𝐶,𝐵.𝐿𝑜𝐶)
 

We note that (A|B).start and (A|B).end correspond to 
the starting and ending statement numbers. To better 
facilitate the understanding of the four cases in which 
Extract Method opportunities A and B can overlap, we 
visualize all possible relations in Fig. 8. In this work as a 
default value for min_overlap we set 0.1. Therefore, 
even slightly overlapping opportunities can be grouped. 
This decision has been taken so as to reduce as much as 
possible the suggestions that are provided to the users. 

 

Fig. 8: Cases of Extract Method Overlap 

significant_difference_threshold: The minimum differ-
ence in the benefit incurred by the two opportunities, so 
as to decide which one is the optimal. There are two 
measures of benefit outlined below (a primary and a sec-
ondary one). First, we check the difference between the 
primary benefit scores by calculating the normalized 
absolute difference:  

Difference_Between_Benefits = 
|𝐴.𝑏𝑒𝑛𝑒𝑓𝑖𝑡−𝐵.𝑏𝑒𝑛𝑒𝑓𝑖𝑡|

𝑀𝐴𝑋(𝐴.𝑏𝑒𝑛𝑒𝑓𝑖𝑡,𝐵.𝑏𝑒𝑛𝑒𝑓𝑖𝑡)
 

In case it is lower than the threshold for characterizing 
differences as significant, the secondary measure is used. 
In this study, we used 0.01 as the default value for the 
significant difference threshold. The value has 
been selected as the default strict value for checking sig-
nificance in most statistical tests. 

primary_measure_of_benefit: The method body cohe-
sion metric that is used for comparing two opportunities. 
The term method body cohesion metric refers to 
measures that quantify the relevance/coherence of 
statements inside a single method [14]. We note that the 
selection of one metric as a primary measure of benefit is 
a choice of the software engineer, based on his personal 
intuition (a sample catalog is provided in [14]). However, 
for this study we selected to use LCOM2

6 for the follow-
ing reasons: 

 it is a metric that although it assesses method 
cohesion, it is correlated to method’s size as well. 
This correlation is due to the way the metric is 
calculated, i.e., the upper limit of the metric 
score is the number of combinations by any two 
of the statements of method7. 

 it takes into account both cohesive and non-
cohesive pairs of statements. Although both 
LCOM1 and LCOM2 conform to the aforemen-
tioned claim (i.e., they assess cohesion and are 
correlated to size), LCOM1 is a count of only the 
non-cohesive pairs of statements. Such a calcula-
tion miss-assesses two methods of different sizes 
that have the same number of non-cohesive 
statements, but one has a bigger number of co-
hesive statements. 

 it is among the top predictors for Long Methods 
identification, based on a case study performed 
by Charalampidou et al. [14]. We expect that 
since the Long Method bad smell and the Extract 
Method refactoring are closely related, metrics 
that perform well in identifying the one, will be 
adequate for the other as well. 

Benefit is calculated as the gain of applying the refac-
toring in terms of cohesion. Specifically, we use the worst 
case scenario for this calculation, by using the following 
 

6  We note that the numbering of LCOM metrics has been adopted from 
the overview by Al Dallal and Briand [1]. LCOM2 has been tailored so 
as to assess cohesion at method level as follows: LCOM2 = P – Q, if P − 
Q ≥ 0 / otherwise LCOM2 = 0, where P is the number of pairs of 
statements that do not share variables and Q is the number of pairs of 
lines that share variables. 

7  LCOM2 ∈  [0, (
𝐿𝑂𝐶

2
)], where LOC equals the number of statements  



10 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 

 

formula. The rationale for using the MAX function is that 
we want to guarantee that none of the resulting methods 
has cohesion worse than that of the original method. 

BenefitLCOM2 = LCOM2(original) –                              
MAX(LCOM2(opportunity), LCOM2(original_after_refactoring)) 

secondary_measure_of_benefit: The secondary measure 
that we use is method size (in number of statements). To 
explain the choice of size as the secondary metric for 
comparing opportunities, we use the example of Fig. 9. In 
the left hand side of Fig. 9 we denote sets of statements 
that are 100% cohesive (i.e., all lines are cohesive to each 
other) within the same fill pattern (i.e., first and third sets 
of statements are cohesive). Also, we consider that state-
ments with different fill patterns are 100% non-cohesive 
(i.e., no variable is shared). In this case, LCOM1 for the left 
method8 [14] is 38, and we compare two Extract Method 
opportunities: (Opp1) which extracts the block of 4 LoC, 
and (Opp2) which extracts the block of 2 LoC. We note 
that the extracted methods are totally cohesive and are 
not shown in the Figure. The remaining method from 
applying (Opp1) is a method with an LCOM1 value equal 
to 10, whereas the remaining method of (Opp2) is a 
method with an LCOM1 value equal to 20. Therefore, the 
benefit from extracting a larger number of statements (of 
same cohesion) is higher. Although this example de-
scribes an extreme scenario, the effect is similar in other 
cases.  

 
Fig. 9: Extract Method Benefit 

After the grouping is completed, the created groups of 
opportunities are sorted based on the prima-

ry_measure_of_benefit. Similarly to grouping, if 
there is no significant difference between the primary 
suggestions of two groups, the larger Extract Method 
opportunity is prioritized. An illustrative example of the 
aforementioned process is presented below.  

For example, consider the method of Fig. 2. By applying 
the Identification of candidate Extract Meth-
od opportunities part of the SEMI algorithm, we 
ended up with an opportunity list of 11 candidate refac-
torings, as presented in Table III. The first column of Ta-
ble III is a simple identifier for the Extract Method can-
didate, the second column refers to the involved state-
 

8  Although LCOM1 has been originally introduced at the class level by 
Chidamber and Kemerer [16], in this study we used the method-level 
definition as tailored by Charalampidou et al. [14]. In particular, 
LCOM1 is calculated as LCOM1 = P, where P is the number of pairs 
of statements that do not share variables. 

ments (line numbers), the third column is the prima-
ry_measure_of_benefit that is achieved by extracting 
the specified statements, whereas the last column repre-
sents the size (in number of statements) of the candidate 
Extract Method. For the sake of illustration, let’s suppose 
that we use the default grouping parameters (described 
earlier in Section 3.2) 

TABLE III. Initial extract method opportunities 

 
opportunity 

Primary 

benefit 
size 

1 002 to 032 35 22 

2 002 to 034 0 24 

3 003 to 032 49 21 

4 003 to 034 14 23 

5 004 to 031 46 20 

6 010 to 031 60 16 

7 013 to 022 68 9 

8 014 to 022 63 8 

9 017 to 020 29 4 

10 017 to 021 29 5 

11 029 to 031 11 3 

The grouping algorithm selects two opportunities of the 
aforementioned opportunity list and checks if they satis-
fy the grouping criteria (i.e., based on max_size_difference 
and min_overlap). For this first step we select opportuni-
ties 1 & 2 as shown in Table IV.  

TABLE IV. Comparison of Extract Method Opportunities 

 
Opportunity 

Primary 

benefit 
size 

1 002 to 032 35 22 

2 002 to 034 0 24 

3 003 to 032 49 21 

4 003 to 034 14 23 

5 004 to 031 46 20 

6 010 to 031 60 16 

7 013 to 022 68 9 

8 014 to 022 63 8 

9 017 to 020 29 4 

10 017 to 021 29 5 

11 029 to 031 11 3 

By checking opportunities 1 and 2 we can observe that 
they satisfy the grouping criteria since difference_in_size = 
0.09 (i.e., 2/22) < max_size_difference (0.2) and overlap = 
0.91 (i.e., 22/24)> min_overlap (0.1). Thus opportunities 1 
and 2 can create a group of opportunities. The next step 
is to find which opportunity will be the primary sugges-
tion of the group. The current difference between the two 
opportunities, in terms of BenefitLCOM2 is 1.00 (i.e., (35 - 0) 
/ 35) > 0.01, which means that we need to compare the 
two opportunities based on their prima-
ry_measure_of_benefit. Therefore, and since BenefitLCOM2 of 
opportunity 1 has a higher value compared to the Bene-
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fitLCOM2 of opportunity 2, opportunity 1 will be the pri-
mary suggestion of the group, and will “include” oppor-
tunity 2 as an alternative. For opportunities 1 and 3 the 
same criteria (max_size_difference and overlap) are met 
and thus, they can form a group. The current difference 
between the two clusters, in terms of BenefitLCOM2, is 0.28 
> 0.01. Therefore, in this case, and since opportunity 3 
has a greater BenefitLCOM2, it will be the primary sugges-
tion of the group and will “absorb” opportunity 1 and its 
existing alternatives.  

Next, by comparing opportunity 3 to opportunities 4 
and 5, we can inspect that they both satisfy the grouping 
criteria and are also included as alternatives of oppor-
tunity 3. Opportunity 3 will thus be the primary sugges-
tion with opportunities 1, 2, 4 and 5 as alternatives, as 
shown in Table V.  

TABLE V. Grouping of Extract Method Opportunities 

 
opportunity 

Primary 
benefit size 

3 003 to 032 49 21 

1 002 to 032 35 22 

2 002 to 034 0 24 

4 003 to 034 14 23 

5 004 to 031 46 20 

6 010 to 031 60 16 

7 013 to 022 68 9 

8 014 to 022 63 8 

9 017 to 020 29 4 

10 017 to 021 29 5 

11 029 to 031 11 3 

The reason that we choose to store alternatives of Extract 
Method opportunities is to help software engineers in 
identifying slightly deviating opportunities. For exam-
ple, suppose a Long Method of 600 statements, in such a 
method suppose a primary suggestion starting at state-
ment 100 and finishing in statement 180. When the soft-
ware engineer inspects the suggested refactoring, he/she 
notices that one functionality starts at statement 100, fin-
ishes near 180, but not exactly there. In that case, he/she 
can go through the alternatives and easily identify the 
most accurate source code part that offers the complete 
functionality. 

The next comparison is between opportunities 3 and 6, 
which however does not satisfy one of the grouping cri-
teria, namely difference_in_size = 0.22 (i.e., 11/49) > 
max_size_difference = 0.2. Therefore, these two opportuni-
ties cannot be grouped. This is also the result of the com-
parison of opportunity 3 with opportunities 7 to 11. The 
next step of the algorithm is to select the next opportuni-
ty that does not participate in any group and repeat the 
process. If we apply the same steps on the remaining 
opportunities and the sorting based on the primary bene-
fit, the final result will be five groups of opportunities as 
shown in Table VI. 

 

TABLE VI. Final Set of Extract Method Opportunities 

 
opportunity 

Primary 

benefit 
size 

7 013 to 022 68 9 

8 014 to 022 63 8 

6 010 to 031 60 16 

3 003 to 032 49 21 

5 004 to 031 46 20 

1 002 to 032 35 22 

4 003 to 034 14 23 

2 002 to 034 0 24 

10 017 to 021 29 5 

9 017 to 020 29 4 

11 029 to 031 11 3 

4 INDUSTRIAL CASE STUDY  

In this section we present the design and the results of 
the industrial case study, which aimed at assessing if the 
extract method opportunities identified by SEMI, can be 
linked to specific functionalities. The case study has been 
performed within a large company producing printers, 
in the Netherlands. 

4.1 Case Study Design 

The goal of this case study, expressed with a GQM for-
mulation [7], is to analyze the SEMI approach for the pur-
pose of evaluation, with respect to its ability to (a) accurate-
ly identify the functionalities of the original method, and (b) 
efficiently rank the candidate Extract Method opportunities 
based on their extraction benefit, from the viewpoint of soft-
ware engineers in industry. This case study is designed and 
reported according to the linear-analytic structure tem-
plate suggested by Runeson et al. [36]. In particular in 
the next sections we present the four parts of our re-
search design, i.e., research questions (see Section 4.1.1), 
case selection (see Section 4.1.2), data collection (see Sec-
tion 4.1.3), and analysis (see Section 4.1.4). 

4.1.1 Research Questions 

According to the above-mentioned goal we have derived 
two research questions (RQ) that will guide the case 
study design and the reporting of the results: 

RQ1:  Is the proposed approach able to accurately identify the 
functionalities in a given method? 

This research question will explore the recall and preci-
sion rates [18]. Specifically, first we assess whether the 
approach has successfully identified all functionalities 
offered by the methods under study (i.e., the percentage 
of functionalities identified); and second the precision of 
the identification (i.e., the percentage of the identified 
Extract Method opportunities that match a specific func-
tionality). 

RQ2:  Are the candidate refactorings, as proposed by the ap-
proach, ranked according to practitioners’ perception of 
the benefit of applying those refactorings?  
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This research question will explore the efficiency of the 
sorting part of the approach, based on the benefit ob-
tained from extracting the candidate refactoring. The 
benefit is measured in terms of LCOM2. The sorting algo-
rithm should be able to prioritize the Extract Method 
opportunities that concern a specific functionality (which 
would constitute a coherent new method), among a 
number of candidates. 

4.1.2 Case Selection 

This study is a holistic multiple case study that has been 
conducted in a large company producing printers in the 
Netherlands. In this study as cases and corresponding 
units of analysis we consider the Long Methods. As case 
study participants we selected three software engineers 
that are currently working on improving the under-
standability of the explored methods. 

In particular we have been provided with two Long 
Methods (for confidentiality reasons named as M1 and 
M2). M1 consists of 408 lines of code and is responsible 
for preparing an image for printing, whereas M2 consists 
of 642 lines of code and is responsible for processing the 
image while printing. 

4.1.3 Data Collection 

Collected Data. To answer the research questions men-
tioned in Section 4.1.1, we collected the following data 
items for each method: 

 A list of the blocks of code that provide a specific 
functionality, based on the expert opinion of the 
participants. This list of functionalities is going to be 
used as the gold-standard for assessing the preci-
sion and recall of the SEMI approach (onwards re-
ferred to as set of functionalities). 

 A sorted list of candidate refactorings (i.e., blocks of 
code) with respect to the benefit that can be ob-
tained when these blocks are extracted as separate 
methods, based on the expert opinion of the partici-
pants (onwards referred to as sorted refactoring op-
portunities). The list of candidate refactorings oppor-
tunities (before sorting) has been obtained from 
SEMI to the two Long Methods of the company. 

Collection Process. To collect the data required for our 
study, we conducted a workshop with three industrial 
practitioners, working for the company. The participants 
have been involved in the original construction and/or 
maintenance of the source code of the company, and 
more specifically with methods M1 and M2. The work-
shop was composed of two parts:  
 Structured interviews. According to [36] structured 

interviews consist basically of closed questions and 
can be similar to questionnaire-based surveys. For 
the needs of our study, we asked a set of closed 
questions (in some cases followed by an open ques-
tion for explanation purposes). Due to the technical 
nature of the questions, the participants received 
the questions on paper and they were asked to 
write down their answers after working on the re-
spective tasks. The researchers were present during 

the whole process, so the method can be compared 
to a supervised questionnaire-based survey [34]. 
The presence of the researchers in the room aimed 
at eliminating the disadvantages of simply distrib-
uting a questionnaire, like the lack of clarifications.  

 Focus group. During the focus group the answers 
provided in the first part were discussed, giving the 
opportunity to clarify potentially different points of 
view or disagreements between the participants. 
The focus group could not bias the participants, be-
cause it was conducted at the end of the workshop, 
after the participants had submitted their completed 
questionnaires. The main goal of the focus group 
was to discuss and finalize starting and ending 
points of statement clusters that provide functional-
ities. For example, one engineer might have sug-
gested that a specific functionality starts on state-
ment 72 and another that the same functionality 
starts on statement 75. In this case, only one starting 
point was assigned to the cluster. 

As preparation for the workshop we applied the pro-
posed approach using as input the source code of meth-
ods M1 and M2. Therefore, two sets of ranked candidate 
Extract Method opportunities have been identified (a set of 
33 Extract Method opportunities for M1 and a set of 25 
for M2). The questions of both interviews and the focus 
group regarded the functionalities existing in the meth-
ods, the accuracy and completeness of the candidate re-
factorings, and the importance of extracting them to new 
methods. 
Collecting the Set of Functionalities: First we asked the par-
ticipants to identify as many functionalities as possible in 
the source code of M1 and M2, as well as the parts of the 
code that implement these functionalities. With this task 
we aimed at exploring if all functionalities have been 
identified by our approach (RQ1). In particular, the par-
ticipants identified eight functionalities for M1, and six 
functionalities for M2. The extracted functionalities are 
listed below: 

 M1: (a) Fill swath entry, (b) Prepare plane, (c) Ex-
tract mask, (d) Mask swath, (e) Fill working buff-
er, (f) Update swath position, (g) Perform nozzle 
failure correction, and (h) Column reduction 

 M2: (a) Calculate Y-offset, (b) Y-correction, (c) Ro-
tate, (d) Update dot counter, (e) Determine array 
range, and (f) Scramble swath 

Collecting the Sorted Refactoring Opportunities: Next, we 
provided the participants of the case study with a shuf-
fled subset of the aforementioned Extract Method oppor-
tunities9 and asked the participants to assign a score 
(1=min-5=max) based on the benefit of extracting each of 
the candidate methods into a new method. The benefit is 
evaluated based on two components: (a) the extent to 
which the approach identifies a complete functionality 
 

9  We were not able to provide practitioners with the whole set of 
refactoring opportunities (96 for M1 and 65 for M2, including their 
alternatives), due to time limitation. For selecting the 21 extract 
method opportunities we randomly selected opportunities from all 
parts of the list (7 from first 1/3 of the ranked list, and so on). 
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and (b) the design benefit gained from the extraction10. 
These two components of the scale are based on the two 
pillars of the proposed approach: each extract method 
opportunity should correspond to one functionality 
(compliance to SRP); and it should improve the design 
quality of the resulting system (the enhancement of qual-
ity is a basic advantage that should be offered by any 
refactoring [17]). The used scale is described as follows: 

1. No Benefit (Not a functionality): The part of the 
code can’t be mapped to a concrete functionality.  

2. Limited Benefit (Not complete functionality): The 
part of the code does not provide a functionality 
(as a whole), but an adequate part of it. 

3. Partial Benefit (Almost complete functionality): 
The part of the code could provide a functionality, 
by adding or deleting a small number of lines. 

4. Only Functional Benefit (Complete functionality 
– No design improvement): The part of the code 
provides a functionality, but the benefit of extract-
ing is not clear (e.g., it is highly coupled to the rest 
of the method, it is too small/large in size, etc.). 

5. Optimal Benefit (Complete functionality - Design 
Benefit): The part of the code provides a function-
ality and its extraction as a different method pro-
vides benefits for the design of the system. 

With this task we aimed at investigating the efficiency of 
the ranking approach, which is responsible for prioritiz-
ing the Extract Method opportunities with respect to 
their benefit for extraction (RQ2). The ranking of the op-
portunities for the two methods is presented in Table VII.  
We note that each opportunity is assigned an id, com-
posed by the method name and the number of the op-
portunity (i.e. O1.1. is the first opportunity of method M1).  

For assessing the evaluators’ agreement, we used in-
ter-rater reliability calculated through the intra-class cor-
relation coefficient (ICC) [18]. The reliability for M1 has 
been calculated as 0.81 and as 0.29 for M2. The low relia-
bility score for M2 suggests that the three reviewers ex-
pressed different opinions on the proposed ranking. A 
possible interpretation for this is the large size of M2 (ap-
prox. 200 lines more than M1), which hindered its under-
standing, rendering the evaluation of refactoring oppor-
tunities more difficult. Thus, refactoring M2 has proven 
to be challenging even for experienced software engi-
neers, with expertize on the specific method. For this 
reason, specifically for M2, we decided to consider only 
the opinion of the most experienced reviewer. The work-
shop organization and the questions used in the inter-
views and focus group are presented in the Appendix. 

4.1.4 Data Analysis 

In this section, we present the data analysis process that 
has been used for answering the research questions de-
scribed in Section 4.1.1.  

 

10  The term design benefit has been intentionally provided to the partic-
ipants in such an abstract form, since we were not aiming at a spe-
cific quality attribute, but only to the generic feeling of the software 
engineer, on whether the design would improve after the refactor-
ing. 

TABLE VII. Sorted Refactoring Opportunities 

Method and 
Opportunity 

Mean Score 
(SD) 

Method and 
Opportunity 

Mean Score 
(SD) 

M1 O1.1 5.00 (0.00) M2 O2.1 4.33(1.15) 

O1.2 5.00 (0.00) O2.2 3.67 (2.31) 

O1.3 5.00 (0.00) O2.3 3.67 (1.15) 

O1.4 4.67 (0.58) O2.4 3.67(1.15) 

O1.5 4.67(0.58) O2.5 3.33(0.58) 

O1.6 4.33 (1.15) O2.6 3.33 (2.08) 

O1.7 4.33 (0.58) O2.7 3.33(0.58) 

O1.8 4.33 (0.58) O2.8 3.33(2.08) 

O1.9 4.33 (1.15) O2.9 3.00(2.83) 

O1.10 4.33 (1.15) O2.10 3.00(0.00) 

O1.11 4.00 (1.00) O2.11 3.00(2.00) 

O1.12 4.00 (1.41) O2.12 3.00(2.00) 

O1.13 3.00(1.00) O2.13 3.00(1.73) 

O1.14 3.00 (1.00) O2.14 2.67(1.53) 

O1.15 2.33 (1.53) O2.15 2.33(0.58) 

O1.16 2.33 (1.53) O2.16 2.33(1.53) 

O1.17 2.33 (1.53) O2.17 2.33(1.53) 

O1.18 1.67 (0.58) O2.18 2.00(1.00) 

O1.19 1.33 (0.58) O2.19 1.67(0.58) 

O1.20 1.33 (0.58) O2.20 1.33(0.58) 

O1.21 1.00 (0.00) O2.21 1.33(0.58) 

 
Identification Accuracy: For answering RQ1 we will use 
three well-known metrics: namely F-measure, recall and 
precision [18]. All metrics are calculated three times for 
every method, by varying the tolerance in the approach. 
Specifically, we use the following tolerance values: 1%, 
2%, and 3%. We note that although the accurate identifi-
cation of functionalities is desirable there are cases that a 
functionality might be approximately identified. Howev-
er, especially in large methods (e.g., 500 lines), pointing 
to a functionality with an accuracy of ±15 statements (i.e. 
3% tolerance) is still expected to be beneficial for the 
software engineer. Further increasing the tolerance 
would lead to even higher precision and recall; however, 
we preferred to be strict in the evaluation of our ap-
proach so as to present a “worst-case scenario”.    
Recall is calculated as the fraction of correctly identified 
functionalities over the total number of functionalities 
that exist in the method according to experts’ opinion 
(i.e., eight for M1 and six for M2). Similarly, precision is 
calculated as the ratio of correctly identified functionali-
ties over the total number of identified refactoring op-
portunities (i.e., 33 for M1 and 25 for M2). 

Ranking Accuracy: For answering RQ2, we calculate the 
Spearman Rank Correlation between the expert ranking of 
refactoring opportunities, presented in Table VII, and the 
ranking that the approach offers for the same list of op-
portunities (O1.x and O2.x, as discussed in Section 4.1.3). 
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We note that the correlation analysis is only based on the 
ranking and not the actual values that are assigned on 
the one side from the experts and on the other side from 
the approach. Therefore, the difference in nature of the 
two assessments (i.e., a scale for evaluators and cohesion 
for SEMI) is not biasing the results.  

4.2 Results 

In this section we present the results of our study orga-
nized by research question. In this section we compare 
our results to the literature and provide initial interpreta-
tions. A joint discussion of the results of both case stud-
ies is provided in Section 6.1. 

4.2.1 Identification Accuracy (RQ1) 

In this section we evaluate the proposed approach with 
respect to its accuracy when identifying Extract Method 
opportunities. As explained in Section 4.1.4, we will pre-
sent results for each method separately and for three 
tolerance values. Therefore, in Table VIII we present the 
recall and precision of the SEMI approach for M1 and M2. 

TABLE VIII. Approach Accuracy 

 

 #Funcs 

Total 

EMO11 

Tole-

rance 

Correct 

Func12  Recall  

Preci-

sion 

F-

measure 

M1 8 33 1% 5 62.5% 15.1% 24.32% 

33 2% 8 100.0% 24.2% 38.97% 

33 3% 8 100.0% 24.2% 38.97% 

M2 6 25 1% 3 33.3% 12.0% 17.64% 

25 2% 5 83.3% 20.0% 32.26% 

25 3% 5 83.3% 20.0% 32.26% 

Total 14 58 1% 8 57.1% 13.8% 22.23% 

58 2% 13 92.8% 22.4% 36.09% 

58 3% 13 92.8% 22.4% 36.09% 

As it can be observed from Table VIII, the recall rate of 
the proposed approach ranges from 57% (i.e., 8 out of the 
14 functionalities offered by both methods) to 93 % (i.e., 
13 out of the 14 functionalities offered by both methods). 
Precision ranges from approximately 14% to 22%, i.e., the 
algorithm identifies 58 Extract Method opportunities, 
and through these opportunities 8-13 functionalities (de-
pending on the tolerance) are retrieved. Compared to 
related work (i.e., other techniques that aim at the identi-
fication of Extract Method opportunities), the proposed 
approach achieves the highest recall rate, since the high-
est recall until now was 63%-75%, achieved by jDeodor-
ant [38]. Concerning studies aiming at feature location, 
the recall rate of the proposed approach is comparable to 
the one of Antoniol et al. [4] and higher than the recall 
rate of the approach of Yosida et al. [41]. With regard to 
precision, our approach presents a rather low rate, com-
pared to the highest rates in one study (i.e., jDeodorant 
achieves approximately 50% precision), but is compara-
ble to the rest of the studies (see [4], [37]). However, an 
 

11  Total EMO: Total Number of Identified Extract Method Opportunities 
12  Correct Func: Correctly located functionalities 

independent evaluation of the Extract Method algorithm 
provided by jDeodorant, suggested that its precision rate 
is closer to the average precision of similar techniques 
(i.e., lower than 10% [37]). We note that such compari-
sons are coarse-grained, in the sense that different da-
tasets have been used in the compared studies. A fair 
comparison of the approaches will be provided in Sec-
tion 5, where we present the results of a comparative 
case study using a uniform dataset and golden standard 
for the involved approaches. Therefore, no interpreta-
tions on the outcome of the comparison are provided in 
this section. 

A possible interpretation of the lower recall and preci-
sion rates for M2 can be the larger size of the method per 
se. The difficulty of functionality identification inside 
larger methods is also evident by the differences in the 
expert responses, as implied by the low reliability rates 
(see end of Section 4.1.3). To investigate the scalability of 
the proposed approach in Section 5.2.2 we further inves-
tigate the differences of recall and precision rates when 
investigating methods of various sizes. 

4.2.2 Ranking Accuracy (RQ2) 

To evaluate the ability of the approach to rank Extract 
Method opportunities, we present the results of the 
Spearman correlation test that we performed between 
the algorithm ranking, and experts’ opinion. The results 
shown in Table IX concern the correlation between the 
ranking as obtained by our approach and the opinion of 
experts as presented in Table VII. 

TABLE IX. Raking Accuracy 

 M1 M2 
Correlation Coefficient 0.479 0.477 

Sig. < 0.02 < 0.02 

The results of Table IX suggest that the ranking of-
fered by the approach is moderately correlated with the 
ranking based on experts’ opinion [22]13. Thus, if a soft-
ware engineer starts evaluating the proposed opportuni-
ties by following the suggested order, he/she might be 
able to identify all relevant Extract Method opportunities 
without exhaustively parsing the list. A similar approach 
has been employed also by Silva et al. [37]. We note that, 
for the special case of M2 (i.e., low agreement rate among 
raters), the correlation of the rankings becomes 0.63, if 
we consider, only the opinion of the software engineer 
with the highest expertise on the specific method. 

Furthermore, the results suggest that the ranking of 
candidate extract method opportunities based on the 
benefit in terms of cohesion can help improve the identi-
fication accuracy. In particular, we can observe that 93% 
of the functionalities have been identified in the Top-33 
suggestions concerning M1, and the Top-25 suggestions 
concerning M2 (see Table VIII). This ability of the ranking 
algorithm to reduce the searching space for applying 
extract method opportunities, by 63 and 40 opportunities 

 

13  According to Marg et al. [28] a correlation is characterized as strong 
if the correlation coefficient ranges from 0.40 to 0.69. 
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respectively, leads to an increased precision rate. The 
increase of precision by using a ranking/prioritization of 
Extract Method opportunities has also been reported by 
Silva et al. [37], and therefore is considered as an ex-
pected finding.  

Finally, since we acknowledge that software engineers 
would more probably inspect only a limited number of 
suggestions (e.g., Top-10), we highlight that the ap-
proach is still able of identifying 7 out of 14 industrial 
functionalities, with a precision rate of 35% (F-measure: 
0.41). Thus, based on F-measure, retaining the Top-10 
suggestions from SEMI we achieve the better combina-
tion of precision and recall, compared to retaining Top-
33 and Top-25 suggestions for M1 and M2. Summing up, 
although the correlation scores in Table IX do not sug-
gest a strong relationship, but only a moderate one, pre-
cision and recall of the approach increases, when parsing 
only the top-X extract method refactoring opportunities. 
In particular by retaining only the top-10 suggestions for 
both methods, SEMI achieves an accuracy of 41% based 
on the F-measure, which is increased compared to retain-
ing top-25 and top-33 suggestions (F-measure: 36%). 

5 COMPARATIVE CASE STUDY 

In this section we present the design and the results of a 
case study on open source software projects, which aims 
at comparing the accuracy of SEMI to other state-of-the-
art approaches. The case study has been performed on 
projects that have already been used in the literature as a 
benchmark for extract method identification approaches.  

5.1 Case Study Design 

The goal of this case study, expressed with a GQM (Goal 
Question Metric) formulation [7], is to analyze the SEMI 
approach for the purpose of evaluation with respect to: (a) 
its ability to accurately identify extract method opportunities, 
and (b) the scaling of SEMI’s accuracy when investigating 
longer methods from the viewpoint of software engineers. 
Similarly to Section 4, this case study is also designed 
and reported according to the linear-analytic structure 
template suggested by Runeson et al. [36], and the same 
sub-section structure is used. 

5.1.1 Research Questions 

According to the above-mentioned goal we have derived 
two research questions (RQs): 

RQ1:  How does the accuracy of the SEMI approach compare 
to other state-of-the art tools/approaches? 

SEMI is not the only approach/tool proposed in the lit-
erature for suggesting extract method refactoring oppor-
tunities. Therefore, the aim of this research question is to 
compare the accuracy of SEMI to the accuracy of two 
state-of-the-art approaches: JDeodorant [37] and JExtract 
[38]. We note that we have preferred not to perform the 
comparison within the industrial setting presented in 
Section 4, because the industrial data could not be made 
available, a fact that would weaken the presentation and 
the replicability of this case study. To answer this re-

search question we will use the same metrics as in Sec-
tion 4 (i.e., F-measure, recall and precision rates [18]). In 
order to be able to provide a fair comparison among the 
approaches/tools we execute all of them in the same 
software projects/methods. 

RQ2:  How does the scalability of the SEMI approach compare 
to other state-of-the-art approaches?  

All existing approaches for extract method opportunities 
identification (including SEMI—as presented in Section 
4.2) suffer from either low precision or low recall. In ad-
dition to that, in Section 4.2 we have discussed that the 
accuracy of SEMI is slightly decreased when applied to 
the longer industrial method. This can be considered as 
an expected finding, in the sense that the difficultly of 
analyzing a longer method is considered a more complex 
task. Thus, an interesting point of investigation is the 
scability of a method extraction approach, i.e. the ability 
of the approach to retain a certain level of accuracy as the 
size of the examined method increases. This research 
question aims at assessing the scalability of all the ap-
proaches compared in RQ1, and investigating the ex-
pected decrease in accuracy. 

5.1.2 Case Selection 

This study is a holistic multiple case study that has been 
conducted on five open source software (OSS) projects. 
In this study as cases (and therefore also units of analy-
sis) we consider a subset of the OSS projects’ methods. 
The selection of methods and projects has been based on 
the original studies in which JDeodorant and JExtract 
have been evaluated (i.e., [38] and [37] respectively). We 
preferred to not limit our investigation to only one of the 
two approaches’ benchmarks, so as not to bias our vali-
dation in favor of one of the two approaches. The exam-
ined OSS projects are: (a) Wikidev, (b) MyPlanner, (c) 
MyWebMarket, (d) Junit, and (e) JHotDraw. 
In total, among the methods of the five projects the au-
thors of the original studies have isolated 132 methods, 
in which they have identified 155 extract method oppor-
tunities. To identify the extract method opportunities 
Tsantalis et al. (projects: MyPlanner and Wikidev) have 
contacted projects’ main developers to get their expert 
opinions, whereas Silva et al. used the first author’s opin-
ion for MyWebMarket (he is the developer of the pro-
ject), and artificially created long methods for JUnit and 
JHotDraw, by merging methods that were invoked in-
side others (for more details see [39]).  

5.1.3 Data Collection 

To answer the RQs mentioned in Section 5.1.1, for every 
method we have recorded the following data items: 

 LoC—Method Size in statements. 
 Golden Standard—Lines of code to be extracted in a 

new method, as suggested either by experts or by 
the technique followed by Silva et al. [37]. 

 Best Matching Opportunity Identified in the Top-5 
suggestions of SEMI 

 Best Matching Opportunity Identified in the Top-5 
suggestions of JDeodorant 
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 Best Matching Opportunity Identified in the Top-5 
suggestions of JExtract 

We note that we have selected to retain the Top-5 sug-
gested opportunities for all tools, since practitioners are 
expected not to investigate all opportunities provided by 
the tools. The decision to limit the size of the set with 
retained opportunities to five, was driven by our inten-
tion to be as strict as possible while evaluating the exam-
ined approaches/tools.  

To collect the data, SEMI and JDeodorant have been 
executed with their default parameters, whereas JExtract 
has been configured so as to: (a) suggest extract method 
opportunities of minimum size of 2 lines, (b) provide 
unlimited number of recommendations, and (c) suggest 
only the extraction of continuous code fragments. This 
configuration has been performed so as to ensure the fair 
comparison to the other two tools/approaches. Finally, 
to ensure the replicability of our case study, we have 
made our dataset and golden standard available online14. 

5.1.4 Data Analysis 

In this section we present the data analysis process that 
has been followed for answering the research questions 
described in Section 5.1.1.  
 Identification Accuracy: For answering RQ1 we will 

use the three metrics used in Section 4, namely F-
measure, recall and precision [18]. Similarly to Sec-
tion 4, all metrics are calculated three times for eve-
ry method, by varying the tolerance of the approach 
(1%, 2% and 3%). 

 Scalability of the Accuracy: For answering RQ2, we 
calculate F-measure, recall and precision for a sub-
set of the benchmark methods, including only the 
longest ones. Therefore, we isolated 15 methods 
with more than 30 statements15 and compared the 
accuracy of the approaches in the complete dataset 
(on average approximately 18 LoC/method) with 
the accuracy of the approaches in only the longer 
ones (on average approximately 58 LoC/method).  

5.2 Results 

In this section we present the results of our comparative 
case study organized by research question. The number 
of extract method opportunities identified by each ap-
proach for all projects is presented in Table X. 

TABLE X. Identified Opportunities 

Tool All Methods 

(132 cases) 

Longer Methods 

(15 cases) 

SEMI 737 228 

JDeodorant 137 28 

JExtract 7,612 4,057 

From the results of Table X we can observe that the most 
conservative tool/approach is JDeodorant that makes on 
average 1 suggestion for smaller methods and less than 2 
 

14  http://www.cs.rug.nl/search/uploads/Resources/TSEdataset.xls  

15  The intuition that methods with more than 30 lines are expected to be 
long has been suggested by Lippert and Roock [27]. 

for longer methods, whereas the exhaustive approach of 
JExtract identifies approximately 55 opportunities for all 
methods and approximately 270 opportunities for the 
longer methods. Nevertheless, by retaining the Top-5 
suggestions from JExtract and SEMI, the number of op-
portunities is limited to 638 and 75 respectively for all 
and long methods. 

5.2.1 Identification Accuracy (RQ1) 

In this section we compare the accuracy of SEMI to state-
of-the-art approaches. Therefore, in Table XI we present 
the F-measure, recall and precision of the three examined 
approaches for all methods. In Table XI with grey cell 
shading we denote the approach that presents the best 
accuracy.  

TABLE XI. Approach Accuracy (all methods) 

Tools Tolerance Recall Precision F-Measure 

SEMI 1% 38,0% 12,9% 19,2% 

2% 47,0% 14,6% 22,3% 

3% 55,5% 18,8% 28,1% 

JDeodorant 1% 14,8% 17,4% 16,0% 

2% 18,4% 21,1% 19,7% 

3% 23,8% 28,0% 25,7% 

JExtract 

 

1% 52,2% 12,6% 20,4% 

2% 59,3% 13,1% 21,5% 

3% 61,9% 15,0% 24,2% 

Based on the results of Table XI, we can observe that 
SEMI presents the most accurate approach in terms of F-
measure, whereas JDeodorant in terms of precision and 
JExtract in terms of recall. The fact that jDeodorant is 
presenting the highest precision rate is probably due to 
the conservative strategy in identifying extract method 
opportunities, which leads to a low number of false posi-
tives. In particular, the slicing algorithm of jDeodorant 
calculates the computational slice of exactly one variable, 
without any provision for merging extract method op-
portunities into larger ones. Nevertheless, this strategy 
limits recall as well. We note that by considering the 
whole list of extract method opportunities suggested by 
all tools (not retaining only Top-5 suggestions), JExtract 
achieves a recall rate of nearly 96% (with 3% tolerance), 
but with a very limited precision (approx. 2%), leading to 
an F-measure of 4%. In the same setting SEMI and JDeo-
dorant present a similar F-measure (23% and 25% respec-
tively). 

5.2.2 Scalability of the Accuracy (RQ2) 

By focusing on only the long methods of our dataset, the 
accuracy of the examined tools/approaches is substan-
tially differentiated, as presented in Table XII. 

TABLE XII. Approach Accuracy in Long Methods 

Tools Tolerance Recall Precision F-Measure 

SEMI 1% 38,7% 16,4% 23,0% 

2% 41,9% 17,9% 25,0% 

3% 45,1% 19,1% 26,9% 

http://www.cs.rug.nl/search/uploads/Resources/TSEdataset.xls
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Tools Tolerance Recall Precision F-Measure 

JDeodorant 1% 9,6% 12,0% 10,7% 

2% 12,9% 14,3% 13,5% 

3% 12,9% 16,0% 14,2% 

JExtract 

 

1% 16,1% 6,6% 9,4% 

2% 19,3% 8,0% 11,3% 

3% 19,3% 8,0% 11,3% 

From the results of Table XII, we can observe that by 
focusing only on methods with more than 30 lines of 
code, SEMI presents the best precision, recall, and F-
measure for all levels of tolerance. Another, interesting 
finding is that SEMI performs very similarly for long and 
small methods, in contrast to other approaches/tools. In 
particular, by comparing the results of Table XI and Ta-
ble XII, we can observe that in longer methods JDeodor-
ant performs approx. 36% worse in F-measure, whereas 
JExtract approx. 51% worse. On the contrary, the recall of 
SEMI is decreased by only 9%, the precision increases 
17%, and the F-measure increases by 9%.  

6 DISCUSSION 

6.1 Interpretation of Results 

The results of the performed case studies suggest that 
the SEMI approach achieves top F-measure rates com-
pared to the state-of-the-art approaches on both Extract 
Method opportunities identification (see Section 3.1) and 
feature/functionality identification (see Section 3.2). This 
result becomes more evident in cases that extract method 
opportunities identification is performed on longer 
methods (i.e., more than 30 statements). This outcome 
suggests that the single responsibility principle can be applied 
inside the body of a method. SRP has been originally intro-
duced at the design level and specifically for the extrac-
tion of classes from other larger ones. However, the re-
sults of this study suggest that multiple functionalities 
offered by the same method can be identified using the 
same approach. The extraction of such sets of statements 
to separate methods has been validated as useful by the 
experts participating in our case study. In addition to 
that, the results strongly suggest that the use of method 
body cohesion metrics for identifying Extract Method oppor-
tunities is accurate. In particular, the proposed approach 
has in total identified 13 out of 14 functionalities offered 
by two very long methods (approx. 500 lines of code) 
that we have examined, as indicated by the software en-
gineers working on them (i.e., a recall rate of 92.8%). Fur-
thermore, although the results of our case study suggest 
that the proposed approach is not achieving high preci-
sion rates, this is can be explained as follows: 
Expected trade-off between precision and recall. In every 
classification approach the two measures of accuracy 
(i.e., precision and recall) are contradicting. Therefore, 
since the goal of this algorithm is to identify as many 
functionalities/Extract Method opportunities as possible, 
lower precision rate is preferable, in order to achieve top 
recall. The same outcome can be observed also in the 

study of Antoniol et al. [4], where in order to achieve 
100% recall, the precision dropped to 13%. A possible 
reason for the improved precision of slicing-based ap-
proaches is that they have a much narrower scope, since 
they aim at extracting statements affecting a variable or 
in the best case scenario, the entire calculation of a varia-
ble. Such a goal is significantly more bounded than the 
selection of arbitrary functionalities involving numerous 
variables. Nevertheless, we note that the comparative 
case study has revealed that other existing approaches 
for extract method opportunities identification suffer 
from the same problem. To combine precision and recall 
in a single measure that takes into account this trade-off, 
we have used F-measure. The results suggest that based 
on F-measure, SEMI can handle this trade-off more effi-
ciently compared to other approaches (highest F-
measure rates). 
The order of magnitude in the method size. As explained 
in Section 2 (see Table I), our industrial case study has 
tested SEMI on substantially long methods than any oth-
er approach. Since the size of the problem searching 
space increases exponentially with the growth of the 
method size, it is expected that the longer the method, 
the harder it is to accurately identify all functionalities. 
We expect especially precision to be influenced from this 
factor since the number of identified opportunities in-
creases in longer methods. Nevertheless, the evidence 
obtained by the comparative case study, suggested that 
SEMI scales better than existing techniques in terms of 
precision, when the size of the method is increasing. 

6.2 Reliability of Results 

To test if the use of a different cohesion metrics differen-
tiates the previously discussed results, we replicated the 
data collection for the industrial case study by using an-
other cohesion metric (namely, Class Cohesion - CC [13]) 
in the calculation of the primary benefit measure. The 
selection of CC has been based on the facts that: (a) it is 
the top predictor of the existence of the long method bad 
smell [14], and (b) it has different properties compared to 
LCOM2 in the sense that it is a normalized measure, it is 
not correlated to size, and it captures cohesion instead of 
its lack. The precision and recall of the proposed ap-
proach when using CC are presented in Table XIII.  

TABLE XIII. Approach Accuracy (Metric: CC) 

 

 #Funcs 

Total 

EMO 

Tole-

rance 

Correct 

Func  Recall  

Preci-

sion 

F-

measure  

M1 8 41 1% 5 62.5% 12.2% 20.41% 

42 2% 7 87.5% 16.7% 28.05% 

42 3% 8 100.0% 19.0% 31.93% 

M2 6 72 1% 4 66.6% 5.6% 10.33% 

72 2% 5 83.3% 6.9% 12.74% 

72 3% 5 83.3% 6.9% 12.74% 

Total 14 113 1% 9 64.3% 7.9% 14.07% 

114 2% 12 85.7% 10.5% 18.71% 

114 3% 13 92.8% 11.4% 20.31% 
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The results suggest that using CC:  
 recall is increased (64.3% - 92.8%) and thus pro-

duces top results compared to the state of the art; and 
 precision is decreased (7.9% - 11.4%), but is still 

comparable to research state of the art (precision 
of such approaches is approximately 10%). 

6.3 Implications for Researchers & Practitioners 

The results of this study are expected to prove useful to 
both researchers and practitioners. Concerning practi-
tioners, we expect that the proposed approach and the 
corresponding tool (see Section 6.3) will help them to 
improve the design-time quality of their code. This im-
provement comes from two characteristics, namely the 
generic benefits of Extract Method refactoring and the 
benefits of applying the SRP: 

 Generic benefits. The refactoring of Long Methods 
and the consequent improvement of cohesion, 
caused by applying the SEMI approach has been re-
lated to improving quality attributes (e.g., main-
tainability [16] and reusability [6]). 

 SRP-based benefits. The Extract Method opportuni-
ties derived based on the Single Responsibility 
Principle [29] are expected to provide additional 
benefits in terms of modularity. In particular, the 
fact that each functionality is going to be encapsu-
lated in a separate method decouples the axes of 
change for a specific class [29]. Furthermore, the 
enhanced modularity is expected to further boost 
reusability, not only in terms of ease in adjusting 
the reusable part of the code into the target system 
[25], but also in terms of “cleanly” reusing only the 
desired code, without needless repetition [29]. Fi-
nally, resolving modularity issues is expected to re-
duce the amount of technical debt16 accumulated in 
software systems, since according to Alves et al. [2] 
modularity violations and code smells are its most 
common indicators. 

Regarding researchers, the study led to some interest-
ing implications and future work directions. First, the 
benchmark created for our comparative case study can 
be useful both in the domain of feature location and re-
factorings identification, which currently lack a set of 
methods with identified functionalities/extraction op-
portunities. The provision of this benchmark will enable 
the fair comparison of future approaches and reduce 
deviations in recall and precision, caused by using dif-
ferent systems as objects. Second, the fact that SRP and 
cohesion are successfully tailored to apply at the method 
level, opens new research directions on how other prin-
ciples can be transferred to different levels of granularity, 
e.g., architecture or code. Finally, the approach can be 
tailored to fit the identification of additional refactoring 
opportunities. We believe that such a tailoring consti-
tutes an interesting future work, since different refactor-
ing opportunities require completely different identifica-
 

16 Technical debt is perceived as any compromise made in order to add 
business value to software systems (e.g., shrink product time to mar-
ket). More details on technical debt research can be found in [3]. 

tion algorithms, checking of preconditions, ranking ap-
proaches and evaluation strategies. For example, even 
for refactorings of similar purpose (e.g., extract parts of 
the code in different levels of granularity—i.e., extract 
methods, extract class, etc.) the required approaches 
should be different: in extract class you need to investi-
gate the clusters of methods and attributes that should be 
placed in the new class, whereas in the extract method 
you need to investigate which lines of code are function-
ally relevant, do not violate AST preconditions, deter-
mine the number of parameters for the new method, etc. 
Thus, despite the fact that in both cases a cohesion-based 
approach is required, the same approach cannot be di-
rectly transferred from the one code smell to the other.  

6.4 Tool Support 

The SplitLongMethod tool is comprised of two parts: the 
Long Method detector that identifies Long Methods in 
large codebases (as presented in our previous work—see 
[14]); and the Extract Method opportunities that pre-
sents the identification, grouping and ranking of all pos-
sible Extract Method opportunities identified in a single 
Long Method. We note that the user has the option to 
freely select the metric that will be used for assessing the 
cohesion among statements and prioritizing the Extract 
method refactoring opportunities. 
Long Method Detector: The tool analyses Java classes 
and the results are presented in two components, as 
shown in Fig. 10: 

 Results Table (see right side of the User Interface 
(UI)): Presents method names, the cohesion metric 
score, and a suggestion whether the method is in 
need of refactoring or not. The methods are ranked 
based on the selected metric.  

 Heatmap (see left side of the UI): Visually represents 
the same information. The size of each box depends 
on the ranking of the method, whereas the color 
(binary value) if it needs refactoring or not. 

Extract Method Detector. The second part of the tool 
(related to the SEMI approach) focuses on a specific 
method. The selected method is analyzed and Extract 
Method opportunities are identified. After the identifica-
tion of the Extract Method opportunities, the grouping 
and ranking algorithm is executed. The obtained groups 
of Extract Method opportunities are ranked based on the 
selected cohesion metric and are presented in Fig. 11: 

 Extract Method Opportunities (left side of the UI): 
Lists all the identified extract method opportunities, 
and their expected benefit, ranked by benefit. 

 Alternatives (center of the UI): Lists all alternatives 
(i.e. similar opportunities with minor differences in 
terms of starting/ending LoC), for the selected ex-
tract method opportunity, ranked by benefit. 

 Source Code (right side of the UI): Highlights the 
code of the selected extract method opportunity 
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Fig. 10: Long Method Detector 

 

Fig. 11: Extract Method Opportunities UI 

7 THREATS TO VALIDITY 

In this section, we present and discuss potential threats 
to the validity of our case studies [36]. Internal validity is 
not considered, since causal relations are not in its scope. 

7.1 Construct Validity 

A possible threat to construct validity is related to the 
accuracy of approaches that are used to identify and rank 

Extract Method opportunities. Such a threat is classified 
as construct validity in the sense that inaccurate results 
might lead to measuring a different phenomenon than 
the one originally intended to investigate. 

The proposed algorithm for identifying, grouping, 
and ranking Extract Method opportunities is performed 
based on the assumption that common method calls and 
the use of common objects can indicate a potential rela-
tion between the corresponding statements. Thus, they 
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should be taken into account during the clustering pro-
cess, which is performed considering cohesion. This as-
sumption may pose a threat to validity since there are 
many definitions of cohesion [12] that do not take such 
relationships into account. However, the call of a same 
method, even with a different object denotes some simi-
larity between statements, since they are in need of a 
same service (i.e., the one provided by the called meth-
od). Following a similar mindset, the use of the same 
object calling any method indicates the use of the same 
data and thus we can talk about data cohesion [42]. In 
addition to that, concerning the accuracy of the selected 
cohesion metric (i.e., LCOM2), it is possible that the use 
of a different metric could affect the results of this study. 
However, we selected to use LCOM2 based on our previ-
ous experience on method level cohesion metrics and 
their relation to Long Methods identification [14]. The 
main benefit of using LCOMs is its inherent correlation 
to both method’s size and cohesion [14]. 

Moreover, the case study participants may have a dif-
ferent background and experience and thus influence the 
choice of selected functionalities and the ranking of re-
factoring opportunities. To avoid this threat, we in-
volved three employees who were all familiar with the 
project under investigation. However, it is possible that 
participants have a different perspective of the methods, 
due to their different roles in the company (i.e., one re-
factorings expert and two developers). To mitigate this 
risk, we calculated their agreement rate (see Section 4.1). 
Specifically, we observed that concerning the first meth-
od the results show high agreement and thus constitute 
reliable results. On the other hand, regarding the second 
method the answers of the interviewees were not strong-
ly correlated (but only moderately); this may suggest 
that more participants would be needed to obtain fully 
reliable results. However, this was not possible due to 
resource constraints in our industrial case study. To mit-
igate this threat we explore the ranking efficiency of 
SEMI not only based on the aggregated opinion of all 
experts but also to the opinion of the most experienced 
one. The results suggested that in both cases SEMI is able 
to provide a moderate to strong rank correlation. 

7.2 Reliability 

With regard to reliability, we consider any possible 
researchers’ bias, during the data collection and data 
analysis process. The design of the study concerning data 
collection, does not contain threats, since the material 
provided to the participants included the source code of 
the company and clusters of code that had been created 
automatically by a tool. Additionally, the researchers 
themselves were not required to interpret the results at 
any point, since the participants were answering the 
tasks on paper. Moreover, with respect to the data analy-
sis process, to mitigate any potential threats to reliability, 
two researchers were involved in the process, aiming at 
double checking the work performed and thus reducing 
the chances of reliability threats. 

7.3 External Validity 

Concerning external validity, a potential threat to 
generalization is the possibility that performing the 
study on different methods of different companies might 
affect the precision and recall rates. However, we believe 
that the selected industrial case, given its size and com-
plexity, represents a realistic industrial system. Never-
theless, acknowledging the fact that this threat exists not 
only for this work, but also for all related previous stud-
ies, we emphasize the need for creating a benchmark for 
assessing such approaches (see Section 6.2). 

Additionally, although the precision and recall of the 
proposed approach might change with the use of differ-
ent parameters (e.g., a different cohesion metric in the 
calculation of the primary benefit measure), a sample 
experimentation (see Table XIII) has shown that these 
rates are not significantly influenced. A detailed discus-
sion of these findings can be seen in Section 6.1. 

8 CONCLUSION 

This study proposes an approach for identifying Ex-
tract Method opportunities in the source code of Long 
Methods (namely SEMI), and ranking them according to 
the benefit that they yield in terms of cohesion. The pro-
posed approach is based on the Single Responsibility 
Principle and its inherent relation to cohesion. Therefore, 
the approach identifies the largest possible cohesive sets 
of instructions and suggests their extraction.  

To evaluate the approach, we conducted two case 
studies: (a) using two industrial Long Methods, which 
consisted of a total of 1,000 lines of code, and used ex-
perts’ opinion as a golden standard, and (b) using open-
source data to compare SEMI to state-of-the-art ap-
proaches/tools. To the best of our knowledge, the indus-
trial case study is the largest one with regard to the size 
of the methods investigated. The results of the industrial 
case study indicate that the proposed approach can ade-
quately identify functionalities inside the body of long 
methods, with high recall rates. In particular, we have 
been able to locate (with a ±3% tolerance) approximately 
90% of functionalities that exist in these methods and 
suggest their extraction into different methods. The re-
sults of the comparative case study have indicated that 
SEMI outperforms existing approaches in terms of F-
measure (i.e., a combination of precision and recall), and 
that it is the only approach that scales (i.e., retains high 
levels of F-measure) for methods of different sizes (rang-
ing from 18 – 500 lines of code). In order to ease the 
adoption of our approach, we have developed a tool that 
automates its application for Java classes. Finally, we 
argue that the proposed approach can be useful to practi-
tioners for applying the Extract Method refactoring. 
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