
 

 

 University of Groningen

Learning to Evaluate Chess Positions with Deep Neural Networks and Limited Lookahead
Sabatelli, Matthia; Bidoia, Francesco; Codreanu, Valeriu; Wiering, Marco

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Final author's version (accepted by publisher, after peer review)

Publication date:
2018

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Sabatelli, M., Bidoia, F., Codreanu, V., & Wiering, M. (2018). Learning to Evaluate Chess Positions with
Deep Neural Networks and Limited Lookahead. Paper presented at 7th International Conference on
Pattern Recognition Applications and Methods, Madeira, Portugal.

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license.
More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-
amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 03-06-2022

https://research.rug.nl/en/publications/5e5b49b3-cc41-4a9c-b7b2-140c9aa62f38


Learning to Evaluate Chess Positions with Deep Neural Networks and
Limited Lookahead

Matthia Sabatelli1,2, Francesco Bidoia2, Valeriu Codreanu3 and Marco Wiering2

1Montefiore Institute, Department of Electrical Engineering and Computer Science, Université de Liège, Belgium
2Institute of Artificial Intelligence and Cognitive Engineering, University of Groningen, The Netherlands

3Surfsara BV, Science Park 140, Amsterdam, The Netherlands
{matthia.sabatelli, francesco.bidoia}@gmail.com, valeriu.codreanu@surfsara.nl, m.a.wiering@rug.nl

Keywords: Artificial Neural Networks, Classification, Regression, Chess Patterns, Deep Learning.

Abstract: In this paper we propose a novel supervised learning approach for training Artificial Neural Networks (ANNs)
to evaluate chess positions. The method that we present aims to train different ANN architectures to understand
chess positions similarly to how highly rated human players do. We investigate the capabilities that ANNs
have when it comes to pattern recognition, an ability that distinguishes chess grandmasters from more amateur
players. We collect around 3,000,000 different chess positions played by highly skilled chess players and label
them with the evaluation function of Stockfish, one of the strongest existing chess engines. We create 4 different
datasets from scratch that are used for different classification and regression experiments. The results show
how relatively simple Multilayer Perceptrons (MLPs) outperform Convolutional Neural Networks (CNNs) in
all the experiments that we have performed. We also investigate two different board representations, the first
one representing if a piece is present on the board or not, and the second one in which we assign a numerical
value to the piece according to its strength. Our results show how the latter input representation influences the
performances of the ANNs negatively in almost all experiments.

1 INTRODUCTION

Despite what most people think, highly rated
chess players do not differ from the lower rated ones
in their ability to calculate a lot of moves ahead.
On the contrary, what makes chess grandmasters so
strong is their ability to understand which kind of
board situation they are facing very quickly. Accord-
ing to these evaluations, they decide which chess lines
to calculate and how many positions ahead they need
to check, before committing to an actual move.

In this paper we show how to train Artificial Neu-
ral Networks (ANNs) to evaluate different board po-
sitions similarly to grandmasters. This approach is
largely inspired by (van den Herik et al., 2005), where
the authors show how important it is in the field of
Computational Intelligence and Games, to not only
take into account the rules of the considered game,
but also the way the players approach it. To do so, we
model this particular way of training as a classifica-
tion task and as a regression one. In both cases dif-
ferent ANN architectures need to be able to evaluate
board positions that have been played by highly rated
players and scored by Stockfish, one of the most pow-

erful and well known chess engines (Romstad et al.,
2011). To the best of our knowledge, this is a com-
pletely new way to train ANNs to play chess that aims
to find a precise evaluation of a chess position without
having to deeply investigate a big set of future board
states.

ANNs have recently accomplished remarkable
achievements by continuously obtaining state of the
art results. Multilayer Perceptrons (MLPs) are well
known both as universal approximators of any mathe-
matical function (Sifaoui et al., 2008), and as power-
ful classifiers, while Convolutional Neural Networks
(CNNs) are currently the most efficient image clas-
sification algorithm as shown by (Krizhevsky et al.,
2012). However, whether the pattern recognition abil-
ities of the latter ANN architecture would be as effec-
tive in chess, rather than more simple MLPs, is still
an open question.

The main goal of this work is twofold: on the one
hand we aim to answer the question whether MLPs
or CNNs would be a powerful tool to train programs
to play chess, while on the other hand we propose a
novel training framework that is based on the previ-
ously mentioned grandmasters’ games. The outline of



the paper is as follows. Section 2 investigates the link
between machine learning and board games by focus-
ing on the biggest breakthroughs that have made use
of ANNs in this domain. In section 3 we present the
methods that have been used for the experiments, the
datasets and the ANN structures that have performed
best. In section 4 we present the results that are later
discussed in section 5. The paper ends with our con-
clusions in section 6 where we summarize the rele-
vance and novelty of our research. Moreover, we pro-
vide further insights about our results and relate them
to some potential future work.

2 MACHINE LEARNING AND
BOARD GAMES

Literature related to the applications of machine
learning techniques to board games is very exten-
sive. The task of teaching computer programs to play
games such as Othello, Backgammon, Checkers and
more recently Go has been tackled numerous times
from a machine learning perspective. Regardless of
what the considered game is, the main thread that
links all the research that has been done in this do-
main is very simple: teaching computers to play as
highly ranked human players without providing them
with expert handcrafted knowledge. In (Chellapilla
and Fogel, 1999) the authors show how, by making
use of a combination of genetic algorithms together
with an ANN, the program managed to get a rat-
ing > 99.61% of all players registered on a reputable
checkers server. This has been achieved without pro-
viding the system with any particular expert and do-
main knowledge features. A very similar approach, is
presented in (Fogel and Chellapilla, 2002) where the
program managed to play Checkers competitively as
a ≈ 2050 rated player.

An alternative approach to teach programs to
play board games that does not make use of evolu-
tionary computing is based on the combination be-
tween ANNs and Reinforcement Learning. This ap-
proach is based on the famous TD(λ ) learning algo-
rithm proposed by (Sutton, 1988) and made famous
by (Tesauro, 1994). Tesauro’s program, called TD-
Gammon managed to teach itself how to play the
game of backgammon by only learning from the final
outcome of the games. Also in this case, no pre-built
knowledge besides the general rules of the game it-
self was programmed into the system before starting
the training. Thanks to the detailed analysis described
in (Sutton and Barto, 1998), the TD(λ ) algorithm has
been successfully applied to Othello (van den Dries
and Wiering, 2012), Draughts (Patist and Wiering,

2004) and Chess firstly by (Thrun, 1995), and later by
(Baxter et al., 2000) and (Lai, 2015). It is worth men-
tioning that all the research presented so far has only
made use of MLPs as ANN architecture. In (Schaul
and Schmidhuber, 2009) a scalable neural network
architecture suitable for training different programs
on different games with different board sizes is pre-
sented. Numerous elements of this work already sug-
gested the potential of the use of CNNs that have
been so successfully applied in the game of Go (Sil-
ver et al., 2016) and the End-to-End ANN architecture
used by (David et al., 2016) in chess.

The idea of teaching a program to obtain particu-
lar knowledge about a board game, while at the same
time not making any use of handcrafted features, has
guided the research proposed in this paper as well.
Nevertheless, neither the Reinforcement Learning nor
Evolutionary Computing techniques will be used. In
fact, as already introduced, the coming sections will
present the performances of ANNs in a Supervised
Learning task that aims to find a very good chess eval-
uation function.

3 METHODS

This section explains how we have created the
datasets on which we have performed all our exper-
iments. Furthermore, we describe the board represen-
tations that have been used as input for the ANNs and
the architectures that have provided the best results.

3.1 Dataset and Board Representations

The first step of our research is creating a labeled
dataset on which to train and test the different ANN
architectures. We have downloaded a large set of
games played by highly ranked players between 1996
and 2016 from the Fics Games Database1 and parsed
them to create two different board representations
suitable for the ANNs. The first technique represents
all 64 squares on the board in a linear sequence of
bits and the second one as 8 × 8 images. For both
techniques we have two categories of input: Bitmap
Input and Algebraic Input.

The Bitmap Input represents all the 64 squares of
the board through the use of 12 binary features. Each
of these features represents one particular chess piece
and which side is moving it. A piece is marked with
0 when it is not present on that square, with 1 when it
belongs to the player who should move and with −1
when it belongs to the opponent. The representation

1http://www.ficsgames.org/download.html



is a binary sequence of bits of length 768 that is able
to represent the full chess position. There are in fact
12 different piece types and 64 total squares which
results in 768 inputs.

In the Algebraic Input we not only differentiate
between the presence or absence of a piece, but also
its value. Pawns are represented as 1, Bishops and
Knights as 3, Rooks as 5, Queens as 9 and the Kings
as 10. These values are negated for the opponent.
Both representations have been used as inputs for the
CNNs as well, with the difference that the board states
have been represented as 8 × 8 images rather than
stacked vectors. The images have 12 channels in total,
that again correspond to each piece type on the board.
Every single square on the board is represented by
an individual pixel. These pixels can either have val-
ues of −1, 0 and 1, in the case of the Bitmap Input
as used by (Oshri and Khandwala, 2016), or between
[−10,10] for the Algebraic Input.

Once these board representations have been cre-
ated we made Stockfish label around 3,000,000 po-
sitions derived from the previously mentioned Fics
Games Database through the use of its evaluation
function and lookahead algorithm. Stockfish mainly
evaluates chess positions based on a combination of 5
different features and the Alpha-Beta pruning looka-
head algorithm.

The output of the evaluation process is a value
called the centipawn (cp). Centipawns correspond to
1/100th of a pawn and are the most commonly used
method when it comes to board evaluations. As al-
ready introduced previously, it is possible to represent
chess pieces with different integers according to their
different values. When Stockfish’s evaluation output
is a value of +1 for the moving side, it means that the
moving side has an advantage equivalent to one pawn.

Through the use of this cp value we have created
4 different datasets. The first 3 have been used for
the classification experiments, while the fourth one is
used for the regression experiment.

• Dataset 1: This dataset is created for a very ba-
sic classification task that aims to classify only 3
different labels. Every board position has been la-
beled as Winning, Losing or Draw according to
the cp Stockfish assigns to it. A label of Win-
ning has been assigned if cp > 1.5, Losing if it
was < −1.5 and Draw if the cp evaluation was
between these 2 values. We have decided to set
this Winning/Losing threshold value to 1.5 based
on chess theory. In fact, a cp evaluation > 1.5
is already enough to win a game (with particular
exceptions), and is an advantage that most grand-
masters are able to convert into a win.

• Dataset 2 and Dataset 3: These datasets consist

of many more labels when compared to the previ-
ous one. Dataset 2 consists of 15 different labels
that have been created as follows: each time the
cp evaluation increases with 1 starting from 1.5, a
new winning label has been assigned. The same
has been done if the cp decreases with 1 when
starting from −1.5. In total we obtain 7 different
labels corresponding to Winning positions, 7 la-
bels for Losing ones and a final Draw label as al-
ready present in the previous dataset. Considering
Dataset 3, we have expanded the amount of labels
relative to the Draw class. In this case each time
the cp evaluation increases with 0.5 starting from
−1.5 a new Draw label is created. We keep the
Winning and Losing labels the same as in Dataset
2 for a total of 20 labels.

• Dataset 4: For this dataset no categorical labels
are used. In fact to every board position the target
value is the cp value given by Stockfish. How-
ever we have normalized all these values to be
in [0,1]. Since ANNs, and in particular MLPs,
are well known as universal approximators of any
mathematical function we have used this dataset
to train both an MLP and a CNN in such a way
that they are able to reproduce Stockfish’s evalua-
tions as accurately as possible.

For all the experiments we have split the dataset
into 3 different parts: we use 80% of it as Train-
ing Set while 10% is used as Testing Set and 10%
as Validation Set. All experiments have been run on
Cartesius, the Dutch national supercomputer. We
use Tensorflow and Python 2.7 for all program-
ming purposes in combination with cuda 8.0.44
and cuDNN 5.1 in order to allow efficient GPU sup-
port for speeding up the computations.

3.2 Neural Network Architectures

This subsection presents in detail the ANN architec-
tures that have achieved the results presented in Sec-
tion 4. Considering the first 3 Datasets, related to
the different classification experiments, all ANNs are
trained with the Categorical cross entropy loss func-
tion. On the other hand, the ANNs that are used for
the regression experiment on Dataset 4 use the Mean
Squared Error loss function. No matter which kind of
input is used (Bitmap or Algebraic), in order to keep
the comparisons fair we did not change the architec-
tures of the ANNs.

It is also important to highlight that we have per-
formed a lot of preliminary experiments in order to
fine tune the set of hyperparameters of the different
ANNs. The best performing parameters will now be
described.



3.2.1 Dataset 1

We have used a three hidden layer deep MLP with
1048, 500 and 50 hidden units for layers 1, 2, and 3
respectively. In order to prevent overfitting a Dropout
regularization value of 20% on every layer has been
used. Each hidden layer is connected with a non-
linear activation function: the 3 main hidden layers
make use of the Rectified Linear Unit (ReLU) activa-
tion function, while the final output layer consists of
a Softmax output. The Adam algorithm has been used
for the stochastic optimization problem and has been
initialized with the following parameters: η = 0.001;
β1 = 0.90; β2 = 0.99 and ε = 1e−0.8. The network
has been trained with Minibatches of 128 samples.

The CNN consists of two 2D convolution layers
followed by a final fully connected layer of 500 units.
During the first convolution layer 20 5× 5 filters are
applied to the image, while the second convolution
layer enhances the image even more by applying 50
3 × 3 filters. Increasing the amount of filters and
the overall depth of the network did not provide any
significant improvements to the performances of the
CNN. The Exponential Linear Unit (Elu) activation
function has been used on all the convolution layers,
while the final output consists of a Softmax layer. The
CNN has been trained with the SGD optimizer initial-
ized with η = 0.01 and ε = 1e− 0.8. We do not use
Nesterov momentum, nor particular time based learn-
ing schedules, however, a Dropout value of 30% was
used on all layers together with Batch Normalization
in order to prevent the network from overfitting. Also
this ANN has been trained with Minibatches of 128
samples.

It is important to mention that the CNNs have been
specifically designed to preserve as much geometrical
information as possible related to the inputs. When
considering a particular chess position, the location of
every single piece matters, as a consequence no pool-
ing techniques of any type have been used. In addition
to that also the “border modes” related to the outputs
of the convolutions has been set to “same”. Hence,
we are sure to preserve all the necessary geometrical
properties of the input without influencing it with any
kind of dimensionality reduction.

3.2.2 Dataset 2 and Dataset 3

On these datasets we have only changed the structure
of the MLP while the CNN architecture remained the
same. The MLP that has been used consists of 3 hid-
den layers of 2048 hidden units for the first 2 layers,
and of 1050 hidden units for the third one. The Adam
optimizer and the amount of Minibatches have not
been changed. However, in this case all the hidden

layers of the network were connected through the Elu
activation function.

3.2.3 Dataset 4

A three hidden layer deep perceptron with 2048 hid-
den units per layer has been used. Each layer is ac-
tivated by the Elu activation function and the SGD
training parameters have been initialized as follows:
η = 0.001; ε = 1e− 0.8 in combination with a Nes-
terov Momentum of 0.7. In addition to that Batch Nor-
malization between all the hidden layers and Mini-
batches of 256 samples have been used. Also in this
case, except for the final single output unit, the CNN
architecture has not been changed when compared to
the one used in the classification experiments. We
tried to increment the amount of filters and the overall
depth of the network, however, this only drastically
incremented the amount of training time without any
performance improvement.

4 RESULTS

This section presents the results that have been
obtained on the previously described 4 datasets.
We show comparisons between the performances of
MLPs and CNNs and investigate the role of the two
different input representations: the Bitmap one, that
only provides the ANNs with information whether a
piece is present on the board or not, and the Alge-
braic one that includes a numerical value according to
the strength of the piece. Training has been stopped
as soon as the validation loss did not improve when
compared to the current minimum loss for more than
5 epochs in a row, meaning that the ANNs started to
overfit.

4.1 Dataset 1

Starting from the experiments that have been per-
formed on Dataset 1, presented in Figure 1, it is pos-
sible to see that the MLP that has been trained with
the Bitmap Input outperforms all other 3 ANN archi-
tectures. This better performance can be seen both on
an accuracy level and in terms of convergence time.
However, the performance of the CNN trained with
the same input is quite good as well. In fact the MLP
only outperforms the CNN with less than 1% on the
final Testing Set 2.

We noticed that adding the information about the
value of the pieces does not provide any advantage to

2All the experiments have been performed on exactly the
same dataset.



the ANNs. On the contrary both for the MLP and the
CNN this penalizes their overall performances. How-
ever, while on the experiments that have been per-
formed on Dataset 1 this gap in performance is not
that significant, with the MLP and the CNN that still
obtain > 90% of accuracy, the same cannot be said for
the ones that have been run on Dataset 2 and Dataset
3.

0 50 100 150 200
0.4

0.6

0.8

1

Epochs

A
cc

ur
ac

y

MLP Bitmap Input
MLP Algebraic Input
CNN Bitmap Input

CNN Algebraic Input

Figure 1: The Testing Set accuracies on Dataset 1

0 100 200 300 400
0.4

0.6

0.8

1

Epochs

A
cc

ur
ac

y

MLP Bitmap Input
MLP Algebraic Input
CNN Bitmap Input

CNN Algebraic Input

Figure 2: The Testing Set accuracies on Dataset 2

4.2 Dataset 2

On Dataset 2, a classification task consisting of 15
classes, we observe in Figure 2 lower accuracies by
all the ANNs. But once more, the MLP trained with
the Bitmap Input is the ANN achieving the high-
est accuracies. Besides this, we also observe that
for the CNNs, and in particular the one trained with
the Algebraic Input, the increment in the amount

of classes to classify starts leading to worse results,
which shows the superiority of the MLPs. A supe-
riority that becomes evident on the experiments per-
formed on Dataset 3.

4.3 Dataset 3

This dataset corresponds to the hardest classification
task on which we have tested the ANNs. As already
introduced, we have extended the Draw class with 6
different subclasses. As Figure 3 shows, the accura-
cies of all ANNs decrease due to the complexity of the
classification task itself, but we see again that the best
performances have been obtained by the MLPs, and in
particular by the one trained with the Bitmap Input. In
this case, however, we observe that the learning curve
is far more unstable when compared to the one of the
Algebraic Input. This may be solved with more fine
tuning of the hyperparameters.

0 50 100 150 200 250
0

0.2

0.4

0.6

0.8

1

Epochs

A
cc

ur
ac

y

MLP Bitmap Input
MLP Algebraic Input
CNN Bitmap Input

CNN Algebraic Input

Figure 3: The Testing Set accuracies on Dataset 3

We summarize the performances of the ANNs on
the first 3 datasets in the following tables. Table 1 re-
ports the accuracies obtained by the MLPs while Ta-
ble 2 shows the accuracies of the CNNs.

Dataset Bitmap Input Algebraic Input
ValSet TestSet ValSet TestSet

Dataset1 98.67% 96.07% 96.95% 93.58%
Dataset2 93.73% 93.41% 87.45% 87.28%
Dataset3 69.44% 68.33% 69.88% 66.21%

Table 1: The accuracies of the MLPs on the classification
datasets.



Dataset Bitmap Input Algebraic Input
ValSet TestSet ValSet TestSet

Dataset1 95.40% 95.15% 91.70% 90.33%
Dataset2 87.24% 87.10% 83.88% 83.72%
Dataset3 62.06% 61.97% 48.48% 46.86%

Table 2: The accuracies of the CNNs on the classification
datasets.

With the regression experiment that aims to train
the ANNs to reproduce Stockfish’s evaluation func-
tion, we have obtained the most promising results
from all architectures. Table 3 reports the Mean
Squared Error (MSE) that has been obtained on the
Validation and Testing Sets.

ANN Bitmap Input Algebraic Input
ValSet TestSet ValSet TestSet

MLP 0.0011 0.0016 0.0019 0.0021
CNN 0.0020 0.0022 0.0021 0.0022

Table 3: The MSE of the ANNs on the regression experi-
ment.

We managed to train all the ANNs to have a Mean
Squared Error lower than 0.0025. By taking their
square root, it is possible to infer that the evaluations
given by the ANNs are on average less than 0.05 cp
off when compared to the original evaluation function
provided by the chess engine. Once again, the best
performance has been obtained by the MLP trained
on the Bitmap Input. The MSE obtained corresponds
to 0.0016, meaning that Stockfish evaluates chess po-
sitions only ≈ 0.04 cp differently when compared to
our best ANN that does not use any lookahead. It is
also important to highlight the performances of the
CNNs. While during the classification experiments
the superiority of the MLPs was evident, the gap be-
tween CNNs and MLPs is not that large, even though
the best results have been obtained by the latter ar-
chitecture. Our results show in fact how both types
of ANNs can be powerful function approximators in
chess.

4.4 The Kaufman Test

In order to evaluate the final performance of the
ANNs we have tested our best architecture with the
Kaufman Test3, a special dataset of 25 extremely com-
plicated positions, created by the back then Interna-
tional Master Larry Kaufman (Kaufman, 1992). The
test has been specifically designed to evaluate the
strength of chess playing programs and has as main
goal the prediction of what, given a particular board

3The test can be downloaded in the PGN format from
http://utzingerk.com/test_kaufman

state, is considered as the best possible move. This
optimal move is chosen according to the evaluation
that is given by the strongest existing chess engines.

We have performed this experiment with the MLP
trained on the Bitmap Input on Dataset 4. The ANN
only evaluates the board states corresponding to a
lookahead depth of 1 node. This means that, given
one particular position as input, it scores the possible
future board states corresponding to the set of candi-
date moves of depth 1, without exploring any further.
The final move is the one corresponding to the highest
evaluation given by the ANN.

Besides checking if the move played by the ANN
corresponds to the one prescribed by the test we also
introduce the ∆cp measurement, which is able to es-
tablish the goodness or badness of the moves per-
formed by the ANN. We compute ∆cp as follows:
we firstly evaluate the board state that is obtained by
playing the move suggested by the test with Stockfish.
The position is evaluated very deeply for more than
one minute, as a result we assign Stockfish’s cp evalu-
ation to it. We name this evaluation δTest . We then do
the same on the position obtained by the move of the
ANN in order to obtain δNN . ∆cp simply consists of
the difference between δTest and δNN . The closer this
value is to 0, the closer the move played by the ANN
is to the one prescribed by the test.

Table 4 reports the results that have been obtained
on the Kaufman Test. For each position in the dataset
we show which is the best move that should be played
according to the test, and the move that has been cho-
sen by our ANN.

We observe that the MLP only plays Kaufman’s
optimal move twice, in Position 3 and in Position
6. Even though at first glance these results can seem
disappointing, a deeper analysis of the quality of the
moves played by the ANN lead to more promising re-
sults. Reconsidering the logic that has been used for
labeling positions as Draws in the classification ex-
periments performed on Datasets 2 and 3, 17 moves
played by the ANN do not exceed a cp evaluation
of 1.5. This means that, even though the move that
is chosen is not the optimal one, the position on
the board remains balanced. Furthermore, while the
ANN does not play the same move as the test dictates
in Position 1, this move was still evaluated equally
well by the engine. Hence a cp difference of 0.

There are, however, moves chosen by the ANN
that lead to a Losing position, in particular the ones
played in Positions 12, 14, 15, 19, 22 and 23. These
positions are very complex: they rely on deep looka-
head calculations necessary to see tactical combina-
tions that are very hard to see, even for expert human
players. Even though the ANN is still far from the



Position Best Move ANN Move ∆cp
1 Qb3 Nf3 0
2 e6 Bd7 0.8
3 Nh6 Nh6 0
4 b4 Qc2 0.8
5 e5 e6 0.3
6 Bxc3 Bxc3 0
7 Re8 Bc4 0.1
8 d5 Qd2 0.9
9 Nd4 Ne7 0.3
10 a4 a3 0.1
11 d5 h5 1.2
12 Bxf7 Nf3 4.2
13 c5 Nxe4 1.7
14 Df6 f5 5.9
15 exf6 Bd4 4.6
16 d5 Rb8 0.6
17 d3 c4 0.8
18 d4 Qe1 1.4
19 Bxf6 h3 4.2
20 Bxe6 Bd2 1.7
21 Ndb5 Rb1 1.4
22 dxe6 Kxe6 10
23 Bxh7+ Nh4 5.7
24 Bb5+ b4 1.2
25 Nxc6 bxc6 0.6

Table 4: Comparison between the best move of the Kauf-
man Test and the one played by the ANN. The value of 10
in position 22 is symbolic, since the ANN chose a move
leading to a forced mate.

strongest human players it still reached an Elo rating
of ≈ 2000 on a reputable chess server 4. The ANN
played in total 30 games according to the following
time control: 15 starting minutes are given per player
at the start of the game, while an increment of 10 sec-
onds is given to the player each time it makes a move.

The ANN played against opponents with an Elo
rating between 1741 and 2140 and obtained a final
game playing performance corresponding to a strong
Candidate Master titled player. The games show how
the ANN developed its own opening lines both when
playing as White and as Black and performed best dur-
ing the endgame stages of the game, when the chances
of facing heavy tactical positions on the board are
very small. The chess knowledge that it learned, al-
lowed it to easily win all the games that were played
against opponents with an Elo rating lower than 2000,
which correspond to ≈ 70% of the total games. How-
ever, this knowledge turned out to be not enough
to competitively play against Master titled players,
where only two Draws were obtained. An analysis

4https://chess24.com/en

of the games shows how the chess Masters managed
to win most of the games already during the middle
game.

5 DISCUSSION

The results that have been obtained make it possi-
ble to state three major claims. The first one is related
to the superiority of MLPs over CNNs as best ANN
architecture in chess, while the second one shows the
importance of not providing the value of the pieces as
inputs to the ANNs.

We think that the superiority of MLPs over CNNs,
that is highlighted in our classification experiments, is
related to the size of the board states. The large suc-
cess of CNNs is mainly due to their capabilities to re-
duce the dimensionality of pictures while at the same
time enhancing their most relevant features. Chess,
however, is only played on a 8×8 board, which seems
to be too small to fully make use of the potential of
this ANN architecture in a classification task. Gener-
alization is made even harder due to the position of the
pieces. Most of the time they cover the whole board
and move according to different rules. On the other
hand, this small dimensionality is ideal for MLPs
since the size of the input is small enough to fully
connect all the features between each other and train
the ANN to identify important chess patterns.

Considering the importance of not providing the
ANNs with the material information of the pieces,
we have identified a bizarre behavior. Manual checks
show how the extra information provided by the Al-
gebraic Input is able to trick the ANNs especially in
endgame positions.

Last, but not least, considering the results obtained
on the Kaufman Test and on the chess server, we show
that it is possible to create a chess program that mostly
does not have to rely on lookahead algorithms in order
to play chess at a high level. It is important to mention
however, that to make this possible, the ANN needs to
be able to learn as much domain knowledge as possi-
ble. Taking inspiration from (Berliner, 1977), we state
that deep lookahead can be discarded as long as it is
properly compensated with relevant chess knowledge.

Nevertheless, we are also aware that the perfor-
mance of the ANN still needs to be improved when it
faces heavy tactical positions. Hence, we believe that
the most promising approach for future work will be
to combine the evaluations given by the current ANN
together with quiescence search algorithms. By do-
ing so the ANN will be able to avoid the horizon ef-
fect (Berliner, 1973) and also perform well on tactical
positions.



6 CONCLUSION

We believe that this paper provides strong in-
sights about the use of ANNs in chess. Its main
contributions can be summarized as follows: Firstly
we propose a novel training framework that aims to
train ANNs to evaluate chess positions similar to how
highly skilled players do. Current State of the Art
methods have always relied a lot on deep lookahead
algorithms that help chess programs to get as close
as possible to an optimal policy. Our method focuses
a lot more on the discovery of the pattern recognition
knowledge that is intrinsic in the chess positions with-
out having to rely on expensive explorations of future
board states.

Secondly we show that MLPs are the most suit-
able ANN architecture when it comes to learning
chess. This is both true for the classification experi-
ments as for the regression one. Furthermore, we also
show how providing the ANNs with information rep-
resenting the value of the pieces present on the board
is counter-productive.

To the best of our knowledge this is one of the few
papers besides (Oshri and Khandwala, 2016) that ex-
plores the potential of CNNs in chess. Even though
the best results have been achieved by the MLPs we
believe that the performance of both ANNs can be im-
proved. As future work we want to feed both ANN ar-
chitectures with more informative images about chess
positions and see if the gap between MLPs and CNNs
can be reduced. We believe that this strategy, ap-
propriately combined with a quiescence or selective
search algorithm, will allow the ANN to outperform
the strongest human players, without having to rely
on deep lookahead algorithms.

REFERENCES

Baxter, J., Tridgell, A., and Weaver, L. (2000). Learning
to play chess using temporal differences. Machine
Learning, 40(3):243–263.

Berliner, H. J. (1973). Some necessary conditions for a mas-
ter chess program. In IJCAI, pages 77–85.

Berliner, H. J. (1977). Experiences in evaluation with BKG-
A program that plays Backgammon. In IJCAI, pages
428–433.

Chellapilla, K. and Fogel, D. B. (1999). Evolving neural
networks to play checkers without relying on expert
knowledge. IEEE Transactions on Neural Networks,
10(6):1382–1391.

David, O. E., Netanyahu, N. S., and Wolf, L. (2016).
Deepchess: End-to-end deep neural network for auto-
matic learning in chess. In International Conference
on Artificial Neural Networks, pages 88–96. Springer.

Fogel, D. B. and Chellapilla, K. (2002). Verifying Ana-
conda’s expert rating by competing against Chinook:
experiments in co-evolving a neural checkers player.
Neurocomputing, 42(1):69–86.

Kaufman, L. (1992). Rate your own computer. Computer
Chess Reports, 3(1):17–19.

Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). Im-
agenet classification with deep convolutional neural
networks. In Advances in neural information process-
ing systems, pages 1097–1105.

Lai, M. (2015). Giraffe: Using deep reinforcement learning
to play chess. arXiv preprint arXiv:1509.01549.

Oshri, B. and Khandwala, N. (2016). Predicting moves in
chess using convolutional neural networks. Stanford
University Course Project Reports-CS231n.

Patist, J. P. and Wiering, M. (2004). Learning to play
draughts using temporal difference learning with neu-
ral networks and databases. In Benelearn’04: Pro-
ceedings of the Thirteenth Belgian-Dutch Conference
on Machine Learning, pages 87–94.

Romstad, T., Costalba, M., Kiiski, J., Yang, D., Spitaleri,
S., and Ablett, J. (2011). Stockfish, open source chess
engine.

Schaul, T. and Schmidhuber, J. (2009). Scalable neural net-
works for board games. Artificial Neural Networks–
ICANN 2009, pages 1005–1014.

Sifaoui, A., Abdelkrim, A., and Benrejeb, M. (2008). On
the use of neural network as a universal approximator.
International Journal of Sciences and Techniques of
Automatic control & computer engineering, 2(1):336–
399.

Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L.,
Van Den Driessche, G., Schrittwieser, J., Antonoglou,
I., Panneershelvam, V., Lanctot, M., et al. (2016).
Mastering the game of Go with deep neural networks
and tree search. Nature, 529(7587):484–489.

Sutton, R. S. (1988). Learning to predict by the methods of
temporal differences. Machine learning, 3(1):9–44.

Sutton, R. S. and Barto, A. G. (1998). Reinforcement learn-
ing: An introduction, volume 1. MIT press Cam-
bridge.

Tesauro, G. (1994). TD-gammon, a self-teaching backgam-
mon program, achieves master-level play. Neural
computation, 6(2):215–219.

Thrun, S. (1995). Learning to play the game of chess. In
Advances in neural information processing systems,
pages 1069–1076.

van den Dries, S. and Wiering, M. A. (2012). Neural-
fitted td-leaf learning for playing othello with struc-
tured neural networks. IEEE Transactions on Neural
Networks and Learning Systems, 23(11):1701–1713.

van den Herik, H. J., Donkers, H., and Spronck, P. H.
(2005). Opponent modelling and commercial games.
In Proceedings of the IEEE 2005 Symposium on Com-
putational Intelligence and Games (CIG’05), pages
15–25.


