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Abstract Weconsider different problemswithin the general theme of long-range percolation
on oriented graphs. Our aim is to settle the so-called truncation question, described as follows.
We are given probabilities that certain long-range oriented bonds are open; assuming that the
sum of these probabilities is infinite, we ask if the probability of percolation is positive when
we truncate the graph, disallowing bonds of range above a possibly large but finite threshold.
We give some conditions in which the answer is affirmative. We also translate some of our
results on oriented percolation to the context of a long-range contact process.

Keywords Contact processes · Oriented percolation · Long-range percolation · Truncation

Mathematics Subject Classification 60K35 · 82B43

1 Introduction

Let G = (V(G), E(G)) be the graph with set of vertices V = Z
d and set of (unoriented)

bonds E = {〈�x, �x + i · �em〉 : �x ∈ Z
d , i ∈ Z, m ∈ {1, . . . , d}}, where �e1, . . . , �ed denote

the vectors in the canonical basis of Z
d . Let (pi )∞i=1 be a sequence in the interval [0, 1] and

consider a Bernoulli bond percolation model where each bond e ∈ E is open with probability
p‖e‖, where ‖e‖ denotes the l∞ distance between the two endpoints of e. That is, take
(�, A, P), where � = {0, 1}E, A is the canonical product σ -algebra, and P = ∏

e∈E μe,
where μe(ωe = 1) = p‖e‖ = 1 − μe(ωe = 0). An element ω ∈ � is called a percolation
configuration. As usual, the set {0 ↔ ∞} denotes the set of configurations such that the
origin is connected to infinitely many vertices by paths of open bonds (bonds where ωe = 1).
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Truncated Long-Range Percolation on Oriented Graphs 167

We now consider a truncation of the sequence (pi )i at some finite range k. More precisely,
for each k > 0 consider the truncated sequence (pki )

∞
i=1, defined by

pki =
{
pi , if i ≤ k,
0, if i > k.

(1)

and the measure Pk = ∏
e∈E μk

e , where μk
e(ωe = 1) = pk‖e‖ = 1 − μk

e(ωe = 0). Then, the

truncation question is: in case P{0 ↔ ∞} > 0, do we have Pk{0 ↔ ∞} > 0 for k large
enough?

The problem seems to have been considered first in [14], who studied the question for
exponentially decaying (pi )i in two or more dimensions, where an affirmative answer to
the truncation question was found. Afterwards, affirmative answers have been derived under
different sets of assumptions on the dimension d and the sequence (pi )i in the works [2,7,8,
13,15,17].

The principal assumption concerning the sequence (pi )i for us will be

∞∑

i=1

pi = ∞, (2)

so that, by the Borel–Cantelli Lemma, we have P{0 ↔ ∞} = 1. [7] gives an affirmative
answer to the truncation question for d ≥ 3 and no assumption on (pi ) other than (2);
moreover, this work shows how the analogous question for the long-range Potts model can
be studied via a long range percolation model. We would like to mention that the general
truncation question for d = 2 under the assumption (2) is still open and it is not difficult to
see that for d = 1 the answer is negative.

In the nonsummable situation, the positive answer to the truncationquestion (in dimensions
more than1) appears to bemore robust than in the summable case. Indeed, the presenceoffirst-
order transitions in the occupation density, or in a temperature-like parameter for summable
infinite-range models, causes the truncation question to have a negative answer, as observed
in [7]. Although continuity of the transition is known for Ising models, and their associated
random-cluster models, in considerable generality (see for example the recent work [1]), this
is not the case for independent percolation, where even in d = 3 it is a famous open question
in the nearest-neighbor model, while for q-state Potts models first-order transitions are quite
common for q ≥ 3 (see the Refs. [4,6,9]).

In this paper, we consider the truncation question in an oriented graph. Let G =
(V(G), E(G)) be the oriented graph defined as follows. The vertex set is V(G) = Z

d × Z+,
where Z+ = {0, 1, . . .}; elements of V(G) will be denoted (�x, n), where �x ∈ Z

d and n ∈ Z+.
The set E(G) of oriented bonds is

{〈
(�x, n), (�x + i · �em, n + 1)

〉 : �x ∈ Z
d , n ∈ Z+, m ∈ {1, . . . , d}, i ∈ Z

}
. (3)

Again we are given a sequence (pi )∞i=1 satisfying (2) and we assume each bond 〈(�x, n), (�x +
i · �em, n + 1)〉 is open with probability pi independently of each other. Again denoting by P
the probability measure corresponding to this percolation configuration and by {(�0, 0) ↔ ∞}
the event that there exists an infinite open oriented path starting from (�0, 0), Borel–Cantelli
gives P{(�0, 0) ↔ ∞} = 1. For each k > 0, we then consider the truncated sequence given
in (1) and the corresponding measure Pk and ask the truncation question, that is, whether
Pk{(�0, 0) ↔ ∞} > 0. We prove:
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168 A. C. D. van Enter et al.

Theorem 1 For any d ≥ 2, if the sequence (pi )i satisfies (2), the truncation question has
an affirmative answer for the graph G. Moreover,

lim
k→∞ Pk{(�0, 0) ↔ ∞} = 1.

Oriented percolation is an active field of study, and the model is both studied for its own
sake, as well as a tool for analysis of and comparison with other models (see for example [3,
16]). The separate study of oriented versus unoriented versions of latticemodels is justified by
several considerations. First, in some cases one of the two versions turns out to be technically
more accessible, or to lend itself to be studied by different approaches. For example, the
oriented Toommodel has been shown to have a phase transition (see [12]), which is still open
for the related symmetric majority probabilistic cellular automaton and interacting particle
system [5]. Another example is the present paper: we obtain some (2 + 1)-dimensional results
whereas the equivalent result is still open in the unoriented 2-dimensional case (known results
for the unoriented case do not imply our results in any dimension). Second, there are cases
in which the unoriented and oriented models present distinct properties. For instance, in
percolation the upper critical dimensions are 6 for unoriented and 4 + 1 for oriented models
(see [18]). Third, the two models typically serve distinct purposes: in the oriented case, one
of the coordinates plays a separate role, as it often models time, as opposed to space which
is modeled by the other coordinate(s).

We also notice that, given a particular unoriented percolation problem (such as the trunca-
tion question), there is often more than one way to consider analogous questions for oriented
models, which is why in the present work we consider a number of different settings.

Theorem 1 is proved in the next section. In Sect. 3, we will treat a related question for the
contact process and also for a different oriented graph.

2 Proof of Theorem 1

We obtain Theorem 1 as an immediate consequence of a stronger result, which we now
describe. We fix d = 2 and consider G defined as above, with vertex set Z

2 × Z+ and set of
oriented bonds given in (3). We take two sequences (pi ), (qi ) and now prescribe that bonds
of the form 〈(�x, n), (�x + i · �e1, n + 1)〉 are open with probability pi and bonds of the form
〈(�x, n), (�x+ i · �e2, n+1)〉 are open with probability qi . The truncated measure Pk is obtained
by truncating both sequences (pi )i and (qi )i at range k.

Proposition 1 If (pi )∞i=1 satisfies (2) and (qi )∞i=1 is not identically zero, then
lim
k→∞ Pk{(�0, 0) ↔ ∞} = 1.

Proof By assumption, we can fix β ∈ N such that qβ > 0.
We will define certain bifurcation events which will imply that a point (�x, n) is connected

to two new points (�y, n+2) and (�z, n+2). For each (�x, n) ∈ G, define the bifurcation event

E(�x,n) =
⋃

a,a′∈Z

⎧
⎨

⎩

ω〈(�x,n),(�x+a�e1,n+1)〉
= ω〈(�x+a�e1,n+1),(�x+a�e1+β�e2,n+2)〉
= ω〈(�x+a�e1,n+1),(�x+a�e1+a′ �e1,n+2)〉 = 1

⎫
⎬

⎭
.

We have

Pk(E(�x,n)

) = 1 −
∏

a:|a|≤k

⎛

⎝1 − p|a| · qβ ·
⎛

⎝1 −
∏

a′:|a′|≤k

(1 − p|a′|)

⎞

⎠

⎞

⎠ = γk,
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β

Fig. 1 The occurrence of each bifurcation event is represented by a triple of arrows with the same color.
On the left side of the picture, we represent a certain projection which will be defined from these events: red
vertices will appear at the (projected) starting points of bifurcations. With the information available in the
picture, it is impossible to tell whether or not the three vertices on top are red

which can be made arbitrarily close to 1 by increasing k, by (2). Also note that

{(�0, 0) ↔ (�x, n)} ∩ E(�x,n) ⊆
⋃

a,a′∈Z+

{
(�0, 0) ↔ (�x + a�e1 + a′ �e1, n + 2),
(�0, 0) ↔ (�x + a�e1 + β�e2, n + 2)

}

. (4)

Finally, under P and Pk , E((a,b),m) and E((a′,b′),n) are independent and identically distributed
as soon as either b �= b′ or |m − n| ≥ 2.

The next step is to prove that, if k is large enough, a certain projection of the k-truncated
process dominates an oriented supercritical Bernoulli percolation onZ

2+. Define the following
order in Z

2+: given (m1, n1), (m2, n2) ∈ Z
2+ we say that (m1, n1) ≺ (m2, n2) if and only if

n1 < n2 or (n1 = n2 and m1 < m2). Given X ⊂ Z
2+, we define the exterior boundary of X

as the set

∂e X = {(m, n) ∈ Z
2+\X : (m, n − 1) ∈ X or (m − 1, n − 1) ∈ X}.

We define the vertex (m, n) ∈ Z
2+ as red if and only if the following event occurs:

⋃
a∈Z

({
(�0, 0) ↔ ((a,mβ), 2n)

} ∩ E((a,mβ),2n)

)
.

To avoid confusion, let us emphasize that, if a vertex in Z
2+ has coordinates (m, n), then

this vertex is defined as red through an event in the original latticeZ
2×Z+; this event involves

a bifurcation with some starting point in the line {((a,mβ), 2n) : a ∈ Z}. In particular, in
Fig. 1, one horizontal unit and one vertical unit in the lattice depicted on the left correspond
respectively to β units and 2 units in the lattice on the right.

We will construct a red cluster dynamically, defining inductively two sequences (Ai )i and
(Bi )i of subsets of Z

2+. Set A0 = B0 = ∅ and x0 = (0, 0). Assuming A j , Bj and x j have
been defined for j = 0, . . . , i , we let

Ai+1 =
{
Ai ∪ {xi }, if xi is red,

Ai , otherwise,
Bi+1 =

{
Bi , if xi is red,

Bi ∪ {xi }, otherwise.

Now, if (∂e Ai+1)\Bi+1 = ∅, we stop our recursive definition. Otherwise we let xi+1 be the
minimal point of (∂e Ai+1)\Bi+1 with respect to the order ≺ defined above, and continue the
recursion. Regardless of whether or not the recursion ever ends, we let C be the union of all
sets Ai that have been defined. It follows from (4) that {|C| = ∞} ⊆ {(�0, 0) ↔ ∞}.
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170 A. C. D. van Enter et al.

Now, observe that

Pk(xi is red | (A j , Bj ) : 0 ≤ j ≤ i) ≥ γk .

This implies that C stochastically dominates the cluster of the origin in Bernoulli oriented
site percolation on Z

2+ with parameter γk (see Lemma 1 of [10]). As noted earlier, γk can be
made arbitrarily close to 1; this proves that lim

k→∞ Pk(|C| = ∞) = 1. ��

3 Contact Process and Oriented Percolation on Other Graphs

3.1 The Contact Process

Herewewill give a counterpart of Theorem 1 for the contact process obtained from truncating
an infinite set of rates. Let us define precisely the model that we have in mind. We are given
a sequence of non-negative real numbers, (λi )∞i=1. We take a family of independent Poisson
point processes on [0,∞):

• a process D �x of rate 1 for each �x ∈ Z
d ;

• a process B(�x,�y) of rate λ|i | for each ordered pair (�x, �y) with �x ∈ Z
d and �y = �x + i · �em

with i ∈ Z and m ∈ {1, . . . , d}.
We view each of these processes as a random discrete subset of [0,∞) and write, for

0 ≤ a < b, D �x
[a,b] = D �x ∩ [a, b] and B(�x,�y)

[a,b] = B(�x,�y) ∩ [a, b].
Fix k ∈ N. Given �x, �y ∈ Z

d and 0 ≤ s ≤ t , we say (�x, s) and (�y, t) are k-connected,

and write (�x, s) k↔ (�y, t), if there exists a function γ : [s, t] → Z
d that is right-continuous,

constant between jumps and satisfies:

γ (s) = �x, γ (t) = �y and, for all r ∈ [s, t], γ (r) /∈ Dγ (r),

r ∈ B(γ (r−),γ (r)) if γ (r) �= γ (r−),

|γ (r) − γ (r−)| ≤ k.

We then define

ξt,k(�x) = I {(�0, 0) k↔ (�x, t)}, �x ∈ Z
d , t ≥ 0.

(ξt,k)t≥0 is then a Markov process on the space {0, 1}Zd
for which the configuration that is

identically equal to 0 (denoted here by 0) is absorbing. In case λi > 0 only for i = 1, (ξt,1)
is the contact process of Harris [11].

Theorem 2 For all d ≥ 2, if
∑∞

i=1 λi = ∞, then

lim
k→∞ P

(
ξt,k �= 0 for all t

) = 1.

Proof It is enough to prove the case d = 2. Fix δ > 0 and k ∈ Z+. Let tn = nδ, for
n ∈ {0, 1, . . .}. Fix b such that λb > 0.

For �x ∈ Z
d and n ∈ Z+, let F(�x,n) be the event

{
D �x[tn ,tn+1] = ∅

}
∩
⋃

a∈Z

{
D �x+a�e1[tn ,tn+1] = D �x+a�e1+b�e2[tn ,tn+1] = ∅,

B(�x,�x+a�e1)
[tn ,tn+δ/2] �= ∅, B(�x+a�e1,�x+a�e1+b�e2)

[tn+δ/2,tn+1] �= ∅

}

.
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Then,

Pk(F(�x,n)) = e−δ

(

1 −
k∏

a=−k

(

1 − e−2δ ·
(

1 − e− λ|a|δ
2 ) · (1 − e− λ|b|δ

2

)))

.

By first taking δ small and then taking k large, the probability of these events can be made
arbitrarily close to 1. Moreover,

{ξtn ,k(�x) = 1} ∩ F(�x,n) ⊆
⋃

a∈Z

{
ξtn+1,k(�x + a�e1)
= ξtn+1,k(�x + a�e1 + b�e2) = 1

}

.

The proof is then completed with a comparison with oriented percolation almost identical
to the one that established Proposition 1. ��
3.2 Other Oriented Graphs

In this section we consider a graph G∗ = (V(G∗), E(G∗)). Once more, the vertex set is
V(G∗) = Z

d × Z+, d ≥ 1. The set of bonds E(G∗) consists of two disjoint subsets; one of
them, denoted Ev , only contains oriented bonds, and the other, Eh , only unoriented bonds.
These subsets are given by

Ev =
{
〈(�x, n), (�x, n + 1)〉 : �x ∈ Z

d , n ∈ Z+
}
,

Eh = {〈(�x, n), (�x + i · �em, n)〉 : �x ∈ Z
d , n ∈ Z+, i ∈ Z, m ∈ {1, . . . , d}}.

That is, we are considering the hypercubic lattice where there are nearest neighbour, oriented
bonds along the vertical direction and long range, unoriented bonds parallel to all other
coordinate axes.

We consider an anisotropic oriented Bernoulli percolation on this graph. Given ε ∈ (0, 1)
and a sequence (pi )∞i=1 in the interval [0, 1], each bond e ∈ E is open with probability ε or
p‖e‖, if e ∈ Ev or e ∈ Eh , respectively.

Given two vertices (�x,m) and (�y, n) with m < n, we say that (�x, n) and (�y,m) are
connected if there exists a path

〈
(�x, n) = (�x0, n0), (�x1, n1), . . . , (�xs, ns) = (�y,m)

〉

such that 〈(�xi , ni ), (�xi+1, ni+1)〉 ∈ Eh or (�xi = �xi+1 and ni+1 = ni + 1) for all i =
0, . . . , s − 1, and the bonds 〈(�xi , ni ), (�xi+1, ni+1)〉 are open for all i = 0, . . . , s − 1. That
is, all allowed paths use vertical bonds only in the upward direction. We use the notation

{(�0, 0) ∗↔ ∞} to denote the set of configurations in which there is an infinite open path
starting at (�0, 0). We use also the notations P and Pk to denote the non-truncated and the
truncated (in the range k) probability measures, respectively.

Theorem 3 For any d ≥ 2, any ε > 0 and any sequence (pi )∞i=1 such that
∑

i∈N pi = ∞,

we have lim
k→∞ Pk{(�0, 0) ∗↔ ∞} = 1.

Aweaker result was proven in [7] (see Theorem 6 therein) in the context of non-oriented and
isotropic percolation. The proof of Theorem 3 is inspired by the proof thereof [7].

Proof It is sufficient to prove the theorem for d = 2.
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Let γ : Z → Z
2 be the function satisfying

γ (0) = �0, γ (m + 1) − γ (m) =
{

�e1 if m is even,

−�e2 if m is odd.

Define the events

Hm,n =

⎧
⎪⎪⎨

⎪⎪⎩

(γ (m), n) and (γ (m + 1), n) are connected
by a path of open bonds of Eh that is
entirely contained in the line that contains
(γ (m), n) and (γ (m + 1), n)

⎫
⎪⎪⎬

⎪⎪⎭
, m ∈ Z, n ∈ Z+.

Clearly, Pk(Hm,n) = Pk(H0,0) for all m, n. Also note that, if (m1, n1) �= (m2, n2), then
the line that contains (γ (m1), n1) and (γ (m1 + 1), n1) does not share any bonds of Eh with
the line that contains (γ (m2), n2) and (γ (m2+1), n2). Hence, the events Hm,n defined above
are independent. Moreover, we have

lim
k→∞ Pk(Hm,n) = 1 (5)

(a proof of this can be found in the first few lines of the proof of Theorem 6 in [7]).
Now, fix ε > 0 and δ > 0. Let N be an integer satisfying (1 − (1 − ε)N )2 > 1 − δ/2.

Then, using (5), choose k > 0 such that (Pk(H0,0))
2N > 1 − δ/2. Then let

�0 = {(a, n) ∈ Z × Z+ : a + n is even} .

For each (a, n) ∈ �0, let ζ(a, n) be the indicator function of the event
(
aN+2N−1⋂

m=aN

Hm,n

)

∩
(
aN+N−1⋃

m=aN

{〈(γ (m), n), (γ (m), n + 1)〉 is open}
)

∩

(
aN+2N−1⋃

m=aN+N

{〈(γ (m), n), (γ (m), n + 1)〉 is open}
)

.

Then, the elements of the sequence of random variables (ζ(a, n))(a,n)∈�0 are independent
and, by the choice of N , each of them is equal to 1 with probability 1 − δ. Now note that
an infinite sequence (ai )∞i=0 such that a0 = 0, |ai+1 − ai | = 1 and ζ(ai , i) = 1 for each i
necessarily corresponds to an infinite open path in G. Moreover, the probability of existence
of such a sequence can be taken arbitrarily close to 1 since δ is arbitrary. ��
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