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A B S T R A C T

Budesonide is a hydrophobic glucocorticoid with high anti-inflammatory activity for the treatment of asthma,
inflammatory bowel disease and rheumatoid arthritis. A micellar drug-delivery system based on lipid-DNA may
provide a strategy to maximize its drug efficacy and reduce adverse effects. In this work, we report the use of
lipid-DNAA (UU11mer), featuring two hydrophobic alkyl chains and forming micelles at a comparatively low
critical micelle concentration, to render budesonide water-soluble with a high loading capacity (LC). The in-
hibition of interleukin-8 (IL-8) release shows that the new delivery system retains the inhibitory activity in cell-
based assays. In conclusion, this research provides a novel approach to formulate and administer budesonide in a
non-invasive manner, which dramatically improves its water-solubility while retaining its bioavailability.

1. Introduction

Asthma [1], inflammatory bowel diseases (IBDs, such as Crohn's
disease [2] or ulcerative colitis [3]) and rheumatoid arthritis [4] are
distinct disorders that are all characterized by chronic inflammation.
The etiology of these diseases is not yet fully understood, but a complex
interaction of environmental and genetic factors has been identified to
contribute to the pathogenesis of these diseases [5,6]. As these diseases
are incurable, the aim of current treatment is directed toward treatment
of inflammation-induced symptoms [7–9]. Various anti-inflammatory
regimens exist for the different disease states, yet, anti-inflammatory
glucocorticoids are used in all. The anti-inflammatory activity of glu-
cocorticoids is generally attributed to the repression of pro-in-
flammatory genes through signal transduction by the glucocorticoid
receptors (GRs, NR3C1). The GRs are ligand-inducible transcription
factors belonging to the nuclear receptor superfamily, which are ex-
pressed predominantly in the cytoplasm of virtually all cell types.
Glucocorticoids exert their anti-inflammatory effects by binding to the
GRs. The mechanisms modulating the repression of pro-inflammatory
genes expression remain incompletely understood. Direct interaction of
the GRs with inflammatory transcription factors to repress

transcriptional activity of inflammatory genes, which subsequently re-
sults in decreased production of pro-inflammatory proteins, i.e. trans-
repression, represents the generally accepted mechanism of action for
the most effective anti-inflammatory drugs presently used [10].

Budesonide is a glucocorticoid with high anti-inflammatory activity
that is commonly used for the treatment of chronic inflammation.
Depending on the disease that is treated, the delivery route for bude-
sonide can be rectal [11], oral [12], intranasal [13], intravenous [14]
or pulmonary [15]. Hence, various delivery strategies have been de-
veloped for each case [16–20]. Because of its hydrophobicity and poor
water-solubility [21], which require organic solvents like DMSO for in
vitro studies, budesonide presents low local bioavailability during
treatment. As a result, higher doses have to be utilized, increasing the
risk of systemic adverse effects [22,23]. Systemic bioavailability of
orally administered budesonide is only 10–15% due to extensive first-
pass metabolism [24], which limits the therapeutic potential of this
efficacious glucucorticosteroid. In order to maximize drug efficacy and
reduce the adverse effects, new delivery strategies are necessary.

Micelles have specific properties such as high efficiency, good re-
producibility, simple preparation and stimuli-responsiveness [25–29],
making them widely used nanocarriers of poorly water-soluble drugs.
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Amphiphilic molecules consist of a hydrophilic and a hydrophobic
moiety and self-assemble into micelles in aqueous solution. Micelles
have a hydrophilic external corona, and a hydrophobic interior in
which hydrophobic drugs can be encapsulated through non-covalent
interactions with minimal impact on the drug.

Despite various amphiphilic materials being used [30], it is still a
challenge to construct a biocompatible and effective micellar drug-de-
livery systems. Previous studies have shown that lipid-DNA amphi-
philes, consisting of a hydrophilic DNA moiety and hydrophobic alkyl
tails, can undergo self-assembly into micelles, leading to potential na-
nocarriers of hydrophobic drugs [31,32]. Owing to their small size and
the use of biocompatible DNA as a component, these nanocarriers
provide several advantages including: (1) high drug loading capacity
(LC) attributed to the interactions of hydrophobic interactions between
the drugs and the hydrophobic interior; (2) improved biocompatibility
by reducing the dose; (3) automated synthesis [33,34]; and (4) ease of
modification by taking advantage of DNA hybridization to endow li-
gand-receptor-mediated drug targeting properties (such as folic acid to
sites of inflammation [35]). For instance, de Vries et al. recently re-
ported the first use of la amphiphiles in the field of ophthalmic drug
delivery. These nanocarriers showed improved efficiency compared to
the free drug and exhibited an excellent biosafety and biocompatibility
with human tissue [36]. It demonstrates that these advantages can be of
benefit to almost all drug-administration routes.

Based on the above considerations, the aim of this study is to in-
vestigate a lipid- DNA amphiphile, UU11mer [32], featuring two hy-
drophobic alkyl chains (Fig. 1d), that forms micelles at comparatively
low critical micelle concentration (CMC) as solubilizers of budesonide
(Fig. 1a) and to test the anti-inflammatory properties of the novel form
of solubilized budesonide.

2. Materials and methods

2.1. Materials

All chemicals were purchased from Sigma-Aldrich (Sigma-Aldrich

Chemie N.V., Zwijndrecht, The Netherlands) or TCI Europe (TCI Europe
N.V., Antwerp, Belgium) and were used without further purification,
unless otherwise noted. In all experiments, MilliQ standard water
(Millipore Inc., USA) with a typical resistivity of 18.2MΩ/cm was used.
Pristine oligonucleotide 11mer (5′-TTTGGCGTCTT-3′) was purchased
from Biomers.net (Ulm, Germany) at high-performance liquid chro-
matography (HPLC) purification grade.

2.2. Synthesis of lipid-DNA

Lipid-modified oligonucleotide UU11mer (5′-UUTGGCGTCTT-3′)
with two modified uracils (U represents the modified uracils) was
prepared by using solid-phase synthesis [32].

2.3. Preparation of budesonide loaded lipid-DNA micelles

Budesonide (107.63 µg, 0.25 µmol) (generous gift of H.W. Frijlink,
University of Groningen) in ethanol (1 mg/mL) was loaded into a
2.0 mL vial. Ethanolwas removed by vacumn at 30°C for 3 h. In the
mean time, an aqueous solution of UU11mer (50 µM) 1000 µL in 3
500 µL Eppendorf tubes was thermally cycled (90 °C, 30min; −1 °C/2
min until room temperature) by using a polymerase chain reaction
(PCR) thermocycler (Biorad, USA) before use. After that, UU11mer
solution was added directly to budesonide, and the mixture was stirred
(1000 r/min) for 12 h at room temperature. Then the mixture was
centrifuged at the relative centrifugal force (RCF) of 8609 g for 15min
using an Eppendorf 5418 centrifuge (Eppendorf, Hamburg, Germany)
and passed through a 0.22 µm pore-sized syringe filter (Millipore,
Bedford, MA, USA).

2.4. Cryo-electron microscopy (Cryo-EM)

Cyro-EM as performed according to standard procedure. 3 µL of
suspension was placed on a glow-discharged holy carbon coated grid
(Quantifiol 3.5/1, Quantifiol GmbH, Jena, Germany) blotted and vi-
trified in a Vitrobot (FEI Company, Eindhoven, The Netherlands).

Fig. 1. Representation of (a) budesonide (1); (b) 5-(dodec-1-ynyl)uracil deoxyribophosphoramidite (2) used in solid-phase synthesis of UU11mer, this nucleotide
building block is abbreviated as U in the corresponding sequence UU11mer; (c) pristine control 11mer; (d) UU11mer used for the solubilization of 1.
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Samples were observed in a Gatan 626 cryo-stage (Gatan, Pleasanton,
CA) in a Philips CM120 (Philips, Eindhoven, The Netherlands) oper-
ating at 120 keV or in a FEI Tecnai T20 (FEI Company, Eindhoven, The
Netherlands) operating at 200 keV. Images were recorded under low-
dose conditions on a slow-scan CCD camera.

2.5. Determination of budesonide concentration and LC

The concentration of budesonide in the dispersions was determined
by reversed-phase high-performance liquid chromatography (RP-
HPLC). RP-HPLC conditions used: column, Xterra Prep MS C18 (Waters,
Milford, MA, US), 10 µm, 7.8×150mm; flow rate, 1.0 mLmin−1;
wavelength 244 nm; eluent A, H2O (0.1% trifluoroacetic acid (TFA, Iris
Biotech GmbH, Marktredwitz, Germany)); eluent B, acetonitrile (0.1%
TFA); injection volume, 20 µL; gradient, Table 1. The calibration curve
of budesonide in ethanol was obtained by using the linear least square
regression procedure of the peak area versus the concentration (Fig.
S1). Each measurement was performed in triplicate; the average value
was used for the calibration curve.

To determine the concentration of budesonide in the micellar dis-
persions, 500 µL of the supernatant was lyophilized, and cold ethanol
500 µL was added to extract budesonide. After being centrifuged at
8609 g for 15min, 300 µL supernatant was removed to run the RP-HPLC
measurement. Each measurement was performed in triplicate (Fig. S2).
The budesonide concentration was obtained according to the calibra-
tion curve. Budesonide LC was calculated by the following equation:

= ×%LC
Weight of budesonide loaded

Weight of DNA
100%

(1)

2.6. Cell culture

Human bronchial smooth-muscle cell lines, immortalized by stable
expression of human telomerase reverse transcriptase (hTERT), were
used for the Interleukin-8 (IL-8) determination experiments. hTERT

airway smooth-muscle cells were generated from primary cultured
human bronchial smooth muscle cells as described before [37].

2.7. IL-8 determination

Cells were plated in 24-well cluster plates (Costar, Corning
Incorporated, NY, USA) and grown to confluence, using Dulbecco's
modified eagle medium (DMEMsupplemented with 10% foetal bovine
serum and antibiotics (50 U/mL streptomycin, 50 μg/mL penicillin and
1.5 μg/mL amphotericin B, (all from Gibco, Grand Island, NY, USA).
Cultures were maintained in a humidified incubator at 37 °C, gassed
with 5% CO2.

Upon confluence, cells were washed two times with sterile phos-
phate-buffered saline (PBS) and serum-starved for 24 h in DMEM sup-
plemented with antibiotics and ITS (5 μg/mL insulin, 5 μg/mL trans-
ferrin, and 5 ng/mL selenium (Gibco, Grand Island, NY, USA)). Cells
were then washed with PBS and stimulated with interleukin-1β (IL-1β,
0.1 ng/mL) (Sigma-Aldrich Chemie N.V., Zwijndrecht, The
Netherlands) in serum-free medium. UU11mer micelles loaded with
budesonide (3 nM, 30 nM and 300 nM) were added 30min before sti-
mulation with IL-1β. Supernatants were collected 24 h after stimulation
and stored at –80 °C until use.

IL-8 levels were determined using a specific sandwich enzyme-
linked immunosorbent assay (ELISA) (Sanquin, Amsterdam, The
Netherlands) according to the manufacturers’ instructions.

3. Results and discussion

In the different protocols, we used a pristine DNA, 11mer (Fig. 1c),
that has the same nucleic acid sequence as UU11mer as a reference.
UU11mer, which contains two modified uracil bases (Fig. 1b), where U
represents the modified uracil base) was synthesized according to the
published procedure [32]. The CMC was determined to be 29 µM for
UU11mer. Therefore, we chose a concentration of 50 µM for the solu-
bilization experiment because this concentration is greater than the
CMC of UU11mer. We used Cryo-EM to visualize the empty and loaded
UU11mer micelles and to corroborate their sizes and morphological
aspects. Cryo-EM images (Fig. 2) show the formation of micelles with a
narrow size distribution and regular shape both before and after bu-
desonide loading. No obvious aggregation was visible and the diameter
of UU11mer micelles increases slightly from 9.0+1.2 nm to
10.3 ± 1.5 nm after budesonide loading. Various methods have been
reported for producing delivery systems of water-insoluble drugs
[37–41]. In our research, budesonide was successfully incorporated into
lipid-DNA micelles by simply mixing the solid budesonide with an

Table 1
RP-HPLC gradient.

Time (min) %A %B

0 95 5
3 95 5
30 5 95
35 5 95
40 95 5

Fig. 2. Cryo-EM images of (a) UU11mer micelles; (b) UU11mer micelles loaded with budesonide. No stain was used and image acquisition was achieved at a 2 μm
defocus. Scale bar= 50 nm.
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aqueous solution of the carrier and stirring at room temperature for
12 h. In this way, the budesonide was incorporated gradually into the
micelles to reach the maximum LC and equilibrium. As a result, the new
solution was stable without any precipitate being observed after one
month at 4 °C.

We determined and calculated the loaded concentration of bude-
sonide in H2O, 11mer micelles and UU11mer micelles by RP-HPLC
according to the calibration curve (Fig. S1). We performed the solubi-
lization of budesonide into H2O or 11mer following the same proce-
dure as for UU11mer micelles. The solubility of budesonide is 44.9 µM
in H2O and 47.4 µM in 11mer aqueous solution (50 µM), respectively
(Table 2). The slight difference indicates that the usage of pristine
oligonucleotide does not significantly improve the solubility of bude-
sonide. However, the loaded concentration of budesonide into
UU11mer micelles (94.5 µM) is much greater than that in 11mer,
which illustrates that the formation of micelles greatly improves the
solubility of budesonide in aqueous solution. In conclusion, budesonide
was loaded into UU11mer micelles at an improved concentration and a
high LC (22.4%), leading to a new stable delivery system for budeso-
nide.

Encouraged by this result, we studied the anti-inflammatory activity
of the different delivery systems of budesonide by its effect on IL-1β-
induced release of IL-8 from hTERT immortalized human airway
smooth muscle (ASM) cells (Fig. 3). Their nanoscale size suggests the
non-specific pinocytotic uptake of UU11mer micelles into the cells,
which is followed by endosomal escape and the release of budesonide to
complex with the GRs [42]. The diffusion of the budesonide-GR

complex into the nucleus to target the pro-inflammatory genes can lead
to the therapeutic effect through the repression of pro-inflammatory
genes. IL-1β is a representative inflammatory stimulus. In this setting,
we compared the effect of budesonide (3 nM, 30 nM and 300 nM)
loaded UU11mer micelles to the effect of 30 nM budesonide in 0.3%
dimethyl sulfoxide (DMSO) on basal and IL-1β-induced IL-8 release.
Basal IL-8 release, without IL-1β stimulation, is not significantly af-
fected by any of the budesonide solutions or vehicles used (Fig. 3a).
Stimulation with IL-1β induces a strong increase in the release of IL-8
from ASM cells (basal: 0.12 ng/mL vs. IL-1β: 188 µg/mL, p < 0.0001).
Whereas DMSO has no significant effect on this response, the empty
UU11mer micelles induce a 30% inhibition of the IL-1β response
(p < 0.01; Fig. 3b), demonstrating that empty UU11mer micelles by
themselves have some inhibitory effect on IL-8 release. However, the
reduction induced by the empty UU11mer micelles is not significantly
different from the 22% reduction caused by DMSO. As expected, bu-
desonide dissolved in DMSO (0.3% final concentration) at a con-
centration of 30 nM inhibits IL-1β induced IL-8 release by 78%
(p < 0.01, Fig. 3b). Interestingly, budesonide solubilized using
UU11mer micelles inhibits IL-1β induced IL-8 release in a concentra-
tion-dependent manner (Fig. 3b). At concentrations of 3 nM, 30 nM and
300 nM, the inhibition is 84.7% (p < 0.01), 90.1% (p < 0.001) and
92.2% (p < 0.001), respectively. In addition, the inhibition with 3 nM
using the UU11mermicelles is stronger than previously described using
DMSO [43]. These results demonstrate that UU11mer micelles are an
effective way to solubilize budesonide while maintaining its anti-in-
flammatory properties.

4. Conclusions

In conclusion, we successfully incorporated the water-insoluble
budesonide into biocompatible nanoparticles, lipid-DNA (UU11mer)
micelles. The new delivery system features an improved concentration
(up to 94.5 µM), a high drug LC and good stability. The study on the
inhibition of IL-8 release showed that in this new delivery system, bu-
desonide maintains its anti-inflammatory activity. This new way to
solubilize budesonide offers opportunities to formulate and administer
budesonide in novel ways and would potentially allow for the treatment
of additional conditions that are currently limited by the poor solubility
and very low bioavailability of budesonide.
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