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Abstract We introduce a novel model for continuous reversible phenotypic plastic-
ity. The model includes a one-dimensional environmental gradient, and we describe
performance of an organism as a function of the environmental state by a Gaussian
tolerance curve. Organisms are assumed to adapt their tolerance curve after a change
of the environmental state. We present a general framework for calculating the geno-
type fitness if such adaptations happen in a continuous manner and apply the model
to a periodically changing environment. Significant differences of our model with
previous models for plasticity are the continuity of adaptation, the presence of inter-
mediate phenotypes, that the duration of transformations depends on their extent,
fewer restrictions on the distribution of the environment, and a higher robustness with
respect to assumptions about environmental fluctuations. Further, we show that con-
tinuous reversible plasticity is beneficial mainly when environmental changes occur
slow enough so that fully developed phenotypes can be exhibited. Finally we discuss
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how the model framework can be generalized to a wide variety of biological scenarios
from areas that include population dynamics, evolution of environmental tolerance
and physiology.

Keywords Continuous adaptation ·Environmental stress ·Environmental tolerance ·
Reversible phenotypic plasticity · Phenotypic flexibility

Mathematics Subject Classification 92B05

1 Introduction

Changing environmental conditions are ubiquitous, both on small and large temporal
and spatial scales. Daily, tidal, seasonal or annual rhythms affect the way of life of
individuals, and most mobile organisms encounter diverse habitat during the course
of their lives. Individuals are impelled to adapt to these changes lest they face fitness
loss or death. (Adaptive) phenotypic plasticity is the ability of an organism to adjust to
changing environmental conditions on the phenotypic level. If such adaptations occur
repeatedly and reversibly we speak of ‘reversible phenotypic plasticity’ or ‘phenotypic
flexibility’ and the underlying trait is often referred to as being ‘labile’.Most organisms
are in fact phenotypically plastic in one or several traits, and reversible plasticity is
common in all kingdoms of life.

The manner of adaptation of a reversibly plastic organism varies among organisms
and traits. Behavioural modifications occur often instantaneously, such as the attempt
of prey to escape as soon as they recognize approaching predators. However, mor-
phological transformations develop or degenerate rather continuously over a period
of time. To name but a few examples, our human skin tans when exposed to sun light
and pales when covered; muscle parts grow or reduce with regular activity or passiv-
ity; the digestive system of animals is generally quite flexible [e.g. in snakes (Starck
and Beese 2001), migratory birds (Piersma and Lindström 1997) or lactating mam-
mals (Diamond and Hammond 1992)]; marine iguanas can switch repeatedly between
growth and shrinkage, depending on environmental conditions (Wikelski and Thom
2000); Kosciuscola tristis grasshoppers can repeatedly alter their body colour due to
the surrounding temperature (Key and Day 1954); barnacles show reversible pheno-
typic plasticity in the length of their cirri depending on how exposed their habitat is to
waves (Marchinko 2003; Neufeld 2012), and deciduous trees hibernate without leaves
to minimize water loss during winter.

Phenotypic plasticity has been studied for over a century and continues to be in
the focus of many investigations—not least because of its implications for current
burning ecological issues. Invasive species are believed to be often highly plastic
(Davidson et al. 2011; Engel et al. 2011) and plastic species are thought to be favoured
by global change (Matesanz et al. 2010; Nicotra et al. 2010). Mathematical models
are essential for the understanding of mechanisms underlying phenotypic plasticity
and for estimating its impact on ecological and evolutionary processes. Particularly
the comparison of irreversible and reversible plasticity was formalized by Gabriel and
co-workers (Gabriel 1999, 2005, 2006; Gabriel et al. 2005; Utz et al. 2014). These
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Reversible phenotypic plasticity with continuous adaptation 437

authors developed models where temporal maladaptation (reduced fitness) during lag
times is explicitly implemented by a time delay that precedes instantaneous adaptation
to a changed environment. Here, we present a framework for continuous adaptations.
We employ the theory of environmental tolerance curves and assume that the fitness
of an organism expressing a given phenotype follows a Gaussian function along an
environmental gradient (Lynch and Gabriel 1987). Phenotypic plasticity is regarded as
changing the parameters of the tolerance curve in response to a changed environment.

We introduce the general idea of continuously changing tolerance curves in Sect. 2
of this paper. In Sect. 3, we confine this framework to a specific scenario. One of
our specific assumptions is the normalization of the tolerance curve in order to model
a trade-off between being well adapted at the mode of the curve and being able to
cope with a wide range of environmental conditions. As a consequence continuous
reversible plasticity can be seen as the ability to shift the peak of the tolerance curve
(cf. Fig. 1). We assume that such shifts occur along a straight line with constant
speed. Concerning the environment we assume periodic changes (as illustrated in
Fig. 2). (Although in the online appendix Pwe briefly discuss a stochastically changing
environment). We distinguish between stressful and stress-free periods and assume
that stress intensities vary between stress events. Although we mainly have changing
external conditions in mind (e.g., predator threat, variation in temperature, droughts
or floods), ‘stress’ may also refer to changing internal conditions such as parasitic
infections. The calculation for the specific scenario is worked out in Appendix A. The
results of this calculation are discussed in Sect. 4 of the main text, together with a
comparison of the current model with previous models for reversible plasticity with
instantaneous but delayed adaptation, irreversible plasticity and non-plasticity.

2 The model framework

We characterise a phenotype by the mode m, breadth b and enclosed area c of a
Gaussian tolerance curve that defines performance as a function of the environmental
state φ,

f (m, b, c, φ) = c√
2πb

e− 1
2

(m−φ)2

b2 , (1)

and we define phenotypic plasticity as the ability of an organism to adapt its phenotype
by smoothly transforming this tolerance curve (see Fig. 1).

We assume that the tolerance curve directly gives the (life-time) fitness of an
individual that experiences no environmental or phenotypic changes during life. For
individuals that encounter different environmental conditions or have a changing phe-
notype, we assume that the performance during different phases during life affect the
fitness multiplicatively (like a scenario with a single reproductive event at the end of
life and several predation events that determine fitness; for a comparison of multi-
plicative and additive fitness effects, see Utz et al. 2014). We therefore calculate the
fitness of an individual by dividing lifetime into phases with constant phenotype and
environmental state
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438 F. Pfab et al.

Fig. 1 Transformation between a non-induced tolerance curve f (m0, b0, 1, φ) and an induced tolerance
curve f (m1, b1, 1, φ). Here the area under the tolerance curve is normalized and its peak shifts along a
straight line

(mi, bi, ci, φi), (mii, bii, cii, φii), . . . (2)

and then multiplying the performances during these phases [see formula (1)], each
raised to the power of its duration ti, tii, . . . (these are measured relative to lifetime)

wi (mi, bi, ci, φi;mii, bii, cii, φii; . . .) =
∏

k=i,ii,...

f (mk, bk, ck, φk)
tk . (3)

We assume that during a transformation from phenotype (ma, ba, ca) to phenotype
(mz, bz, cz), the parameters m, 1

b and c adapt simultaneously and linear with time. If
such a transformation lasts for a time δ and if the environmental state changes linearly
from φa to φz , the fitness contribution of this phase is

lim
n→∞

n∏

r=1

f

(
n − r

n
ma + r

n
mz,

1
n−r
n

1
ba

+ r
n

1
bz

,
n − r

n
ca + r

n
cz,

n − r

n
φa + r

n
φz

) δ
n

= g(ma, ba, ca, φa,mz, bz, cz, φz)
δ. (4)

If either m, 1
b or c is constant, the peak of the tolerance curve shifts along a straight

line. An expression for formula g is derived in Appendix A.4.
The genotype fitness is, according to Haldane and Jayakar (1963), given by the

geometric mean of the fitness of an infinite number of generations. If we assume
equal fitness for all offspring of a genotype within one generation, this is equiv-
alent to calculating the geometric mean of the fitness of n → ∞ independent
individuals,

w = lim
n→∞

n∏

i=1

wi
1
n . (5)
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3 Application of the general model to a specific scenario

To imply a trade-off between beingwell adapted at themode of the tolerance curve and
having a wider breadth of adaptation, we now normalize the area c under the tolerance
curve to 1 and we no longer include the parameter c in the formulas. We consider a
genotype with two fully developed phenotypes: the stress-induced phenotype (m1, b1)
and the non-induced phenotype (m0, b0). Due to the linearity of the adaptation, inter-
mediate phenotypes can be described by the phenotypic state s ∈]0, 1[

ms = (1 − s)m0 + sm1,

bs = 1
1−s
b0

+ s
b1

. (6)

Because of the normalization of the area under the tolerance curve, a phenotype is
equivalently defined by the peak of its tolerance curve with coordinates (m, 1√

2πb
),

and the peaks of intermediate phenotypes lie on a straight line between the peak of the
induced and the peak of the non-induced tolerance curve (cf. Fig. 1). Concerning the
speed of adaptation, we assume that during stress-full times the peak of the tolerance
curve shifts with constant speed v1 towards the peak of the induced tolerance curve
f (m1, b1, φ), and in the absence of stress it shifts with constant speed v0 towards the
peak of the non-induced tolerance curve f (m0, b0, φ). We assume that the peak does
not shift anymore when the target phenotype is reached.

Further, we adopt a temporal distribution of environmental states that was used in
previousmodels for phenotypic plasticity byGabriel et al. (2005) andUtz et al. (2014).
A stress-free environmental state (to which we assign the environmental state 0) is
interrupted by stress events with frequency p (see Fig. 2) and the environmental state
does not change continuously but suddenly. We assume that the stress events persist
for a constant time t ≤ 1

p and do hence not overlap. The environmental state (stress
intensity) during a stress event is assumed to be constant and the stress intensities
of different stress events are independently and identically distributed with mean φ

and standard deviation σφ . We assume that a change of the phenotype depends only
on whether stress is present or absent, and the organisms cannot detect the actual
stress intensity (the genotype, of course, can be adapted to the model parameters such
as φ and σφ). This assumption is referred to as ’incomplete information’ by Gabriel
et al. (2005). In order to keep the model simple and to facilitate its comparison to
previous models of Gabriel and others, we furthermore assume that organisms are

Fig. 2 Time line. Stress events (striped boxes) occur with frequency p and persist for a time t . The shaded
area indicates the lifetime of an organism
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born with the induced or non-induced phenotype, depending on whether stress is
present or absent at the time of birth. In the Discussion we consider the phenomenon
of early anticipation of environmental changes due to different environmental cues
and in periodically changing environments. The lifetime of an organism is assumed
to be 1, and p and t are measured relative to it. We let the time of birth of an
organism be uniformly distributed in the sequence of stress events and stress-free
times.

In Appendix A we show how the genotype fitness can be calculated in this specific
scenario. In the following section we discuss the results of this fitness calculation.

4 Results and comparison with other models of plasticity

In this section we compare the introduced model for reversible plasticity with contin-
uous adaptation (continuous reversible plasticity) with other models for phenotypic
plasticity that inspired the modelling approach presented here (see references below).
The comparison is based on the scenario described in Sect. 3 which implies a nor-
malized tolerance curve, a constant adaptation speed and a periodically changing
environment. Based on the assumption that evolution adapts the genotype parameters
m0, m1, b0 and b1 for any given set of model parameters (p, t , φ, σφ , v0, v1) such
that the fitness w is maximized, we numerically maximized the fitness derived in the
appendix [formula (45)].

4.1 Other kinds of plasticity

Non-plasticity (Gabriel et al. 2005): A non-plastic organism can exhibit only a single
phenotype with constant parameters (m, b) of the tolerance curve.
Irreversible plasticity (Gabriel 2006; Utz et al. 2014): An irreversibly plastic organism
fixes its phenotype at birth. If organisms have only information about the presence or
absence of stress but not about the actual intensity (which is assumed to be randomly
distributed), only two phenotypes are exhibited: the induced phenotype with parame-
ters (m1, b1) if life starts during stress and the non-induced phenotype with parameters
(m0, b0) otherwise.
Reversible plasticity with delayed instantaneous adaptation (instantaneous reversible
plasticity) (Gabriel et al. 2005; Gabriel 2005, 2006; Utz et al. 2014): An instan-
taneously reversibly plastic organism can exhibit two phenotypes: the non-induced
phenotype with parameters (m0, b0) and the induced phenotype with parameters
(m1, b1). The phenotype at birth is chosen according to the prevalent environment.
Again, organisms have only information about the presence or absence of stress.
Throughout life, stress induces the expression of the induced phenotype instanta-
neously but after a delay d1 during which the phenotype stays unchanged. Likewise,
the cessation of stress causes the opposite transformation instantaneously but after a
delay d0. Since these delay times are assumed to be constant, the time needed for a
transformation is independent of howmuch the two phenotypes differ. This is different
in the present model for continuous reversible plasticity because there the time needed
for a phenotypic transformation depends on the distance of the peaks of the tolerance
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Fig. 3 Effect of the stress
proportion pt on the maximal
fitness w for non-plasticity
(solid) irreversible plasticity
(dashed), instantaneous
reversible plasticity
(dash-dotted) and continuous
reversible plasticity (dotted).
Parameter values are: p =
0.25 (t = pt

p ), φ = 1, σφ = 0.3,
v0 = v1 = 3, d0 = d1 = 0.2

0.2 0.4 0.6 0.8 1.0
pt

0.6

0.8

1.0

1.2

w

curves. In addition, as opposed to the model for continuous reversible plasticity, the
model for instantaneous reversible plasticity can only be applied when phenotypic
transformations are always completed before the environment changes again because
the model does not include in-between phenotypes. That means that the time needed
to transform to the induced phenotype must be shorter than or equal to the length t of
a stress event, and the time needed to transform to the non-induced phenotype must
be shorter than or equal to the length 1

p − t of a gap between two stress events, where
p is the frequency of stress events,

d1 ≤ t and d0 ≤ 1

p
− t. (7)

The optimal genotype parameters for these three types of plasticity have been obtained
analytically in the cited articles. Plots that show how the maximal fitness and optimal
genotype parameters depend on the model parameters for the different kinds of plas-
ticity are included in the online appendix S of this article. Several excerpts are shown
in this section and, based on them, we investigate differences and similarities between
the models.

4.2 Comparison of plasticity and non-plasticity

It is obvious that plasticity is generally only beneficial in a changing environment.
In the case that stress never occurs (the stress proportion pt → 0) or is omnipresent
(pt → 1) the maximal fitness of an irreversibly plastic genotype and of a continuously
reversibly plastic genotype equals the maximal fitness of a non-plastic genotype (see
Fig. 3 at pt = 0 and pt = 1 and also Figures S.3, S.7, S.10, S.13 and S.14 in the online
appendix S). [Note that the model for instantaneous reversible plasticity is not applied
in this case due to the constraints (7)]. For pt → 0 plastic organisms express only
the non-induced tolerance curve which adopts the same values as the tolerance curve
of non-plastic organisms: m0 = 0 and b0 = 0. That implies that the maximal fitness
approaches infinity. (Note that for biological reasons the fitness could be prevented
to approach infinity in such cases by including additional constraints on the height
of the tolerance curve.) For pt → 1 plastic organisms always express the induced
tolerance curve and this tolerance curve adopts the same values as the tolerance curve
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Fig. 4 Effect of the stress
frequency p on the optimal
mode m of the tolerance curve
for non-plasticity (solid) and the
optimal mode m0 of the
non-induced tolerance curve for
irreversible plasticity (dashed),
instantaneous reversible
plasticity (dash-dotted) and
continuous reversible plasticity
(dotted). Parameter values are:
pt = 0.3 (t = pt

p ),

φ = 1, σφ = 0.3, v0 = v1 =
8, d0 = d1 = 0.1

1 2 3 4
p

0.1

0.2

0.3

0.4

m0

of non-plastic organisms: m1 = φ and b1 = σφ (see the formulas in Gabriel et al.
2005). All organisms then have the same maximal fitness (see Fig. 3) but the fitness
only approaches infinity when the stress intensities are not stochastic (σφ = 0).
When the environment changes very fast (p → ∞), irreversible plasticity as well
as continuous reversible plasticity loose its benefits, and the model for instantaneous
reversible plasticity exceeds its limit of applicability due to the constraints (7). For
irreversible plasticity and for continuous reversible plasticity, the optimal values for
the parameters of the induced and the non-induced tolerance curve approach the opti-
mal values of the tolerance curve for non-plasticity, m0 = m1 = m and b0 = b1 = b
(see Fig. 4 and also Figures S.1, S.6, S.7, S.8 and S.9 in the online appendix S). For
irreversible plasticity the optimal parameter values and the maximal fitness approach
the respective values for non-plasticity in an oscillating fashion with increasing stress
frequency p. The reason is that these optimal parameter values depend on the expected
time of stress during a lifetime, given that stress is prevalent at birth, and this expecta-
tion value approaches the stress proportion pt in an oscillating fashion with increasing
p (see the online appendix P for an investigation of this behaviour and an alternative
environmental distribution without resulting fluctuations). In Fig. 4 these oscillations
do not affect the model for continuous reversible plasticity but they obviously will
have an effect if the adaptation speed is reduced because continuous reversible plas-
ticity with adaptation speed v0 = v1 = 0 resembles irreversible plasticity. When
the environment changes very rarely (p → 0), organisms virtually experience no
environmental change during their lives and reversible plasticity is the same as irre-
versible plasticity. Organisms born at a stressful time experience stress during their
whole life and therefore the optimal parameter values of the induced tolerance curves
for the plastic organisms equal the optimal parameter values of the tolerance curve
of a non-plastic organism if the stress proportion pt was 1: m1 = φ and b1 = σφ .
Analogously, organisms born during a stress-free time experience no stress during
their whole life and the optimal parameter values of the non-induced tolerance curve
of a plastic organism equal the optimal parameter values of the tolerance curve of a
non-plastic organism if pt was 0: m0 = 0 and b0 = 0. Since organisms born during
stress-free times are hence perfectly adapted in this case, all kinds of plasticity lead to
infinitely high maximal fitness when p → 0.
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Fig. 5 Effects of the expected stress intensity φ and the standard deviation σφ of the stress intensities on the
optimal modem1 of the induced tolerance curve for instantaneous (left) and continuous reversible plasticity
(right). Note that the values of the isoclines differ. Parameter values are: p = 0.7, pt = 0.3 (t = pt

p ),
v0 = v1 = 6, d0 = d1 = 0.1

4.3 Comparison of continuous and instantaneous reversible plasticity

We focus now on differences between the two models for reversible plasticity. The
models include different kinds of parameters: For continuous reversible plasticity, the
parameters v0 and v1 determine the speed with which the peak of the tolerance curve
can be shifted, whereas for instantaneous reversible plasticity, the parameters d0 and d1
determine the delay of adaptation after environmental change. This difference makes
not only quantitative comparison difficult and limits the applicability of the model for
instantaneous reversible plasticity [see the constraints (7)], it also affects how fitness
depends on the model parameters and therefore the mechanism of how the fitness is
optimized.

One important consequence of the different approaches is that for instantaneous
reversible plasticity the transformation delays are independent of how much the
induced and the non-induced phenotype differ, whereas for continuous reversible
plasticity the time needed for a phenotypic transformation depends on the Euclidean
distance between the peaks of the two tolerance curves. Since this distance depends
on modi and breadths of the tolerance curves, continuous reversible plasticity can
lead to an additional trade-off between changing the mode and the breadth of adap-
tation. An example of how this trade-off affects the outcome of optimization in the
two models is depicted in Fig. 5. The figure shows that, for instantaneous reversible
plasticity, the optimal mode m1 of the induced tolerance curve depends linearly on
the expected stress intensity φ and is independent of the standard deviation σφ of the
stress intensities. [This is also shown analytically in Gabriel et al. (2005)]. In contrast,
for continuous reversible plasticity,m1 first increases and then decreases with φ when
σφ is low. To understand this behaviour, it is useful to see how the optimal values
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of the other genotype parameters depend on φ and σφ . In Figure S.11 in the online
appendix S in the panels for continuous plasticity, when φ or σφ is high,m1 is close to
the optimal modem0 of the non-induced tolerance curve (note thatm0 itself increases
slightly with φ) and adaptation happens more via the breadth of the tolerance curve
[the difference between b0 and b1 is larger for continuous reversible plasticity than
for instantaneous reversible plasticity (left panels)]. This effect is also observed in
Figures S.2, S.6 and S.12 in the online appendix S.

Another mechanism is at work only in the model for instantaneous reversible plas-
ticity inwhich adaptations to environmental changes occur after constant delays:When
these delays are almost as long as the stress events or stress-free times, then a pheno-
typic transformation occurs shortly before the next change of the environment. Hence,
fitness is maximized when the induced tolerance curve is adapted to stress-free times
and the non-induced tolerance curve is adapted to stressful times. In Figure S.1 in
the online appendix S, for instantaneous reversible plasticity (dash-dotted lines) the
optimal mode m1 of the induced phenotype is smaller than the optimal mode m0 of
the non-plastic tolerance curve when the value of p is close to 3 where the model
is close to the limit of applicability [cf. constraints (7)]. This behaviour results from
the periodicity of the environment. A similar conclusion has been found by other
authors including Lande (2009), who states, in the jargon of quantitative genetics, that
“a negative environmental autocorrelation over a developmental time lag can select a
norm of reaction with slope of opposite sign to that of the optimum phenotype as a
function of the environment”. Such ‘optimal maladaptations’ could not be observed
in the present model for continuous reversible plasticity since phenotypic adaptation
begins immediately after environmental change.

4.4 Continuous reversible plasticity with non-optimized genotype parameters

A closer look at the model for continuous reversible plasticity reveals an interesting
behaviour for the case that the environment changes so quickly that phenotypic trans-
formations cannot be completed. [Note that the model for instantaneous reversible
plasticity cannot be applied at high stress frequencies because of the constraints (7).]
For the graphs in Fig. 6, we chose constant (non-optimized) but tendentiously realistic
genotype parameter values—i.e. the induced mode m1 is closer to the expected stress
intensity φ than the non-induced mode m0, and the induced breadth b1 is greater than
the non-induced breadth b0. With constant transformation speeds, this implies that for
each direction of adaptation the time needed for a full phenotypic transformation is
constant. The lower plot of Fig. 6 shows these times as horizontal lines. The decreas-
ing curves represent the durations of the stress events (solid curve) and of the gaps
between the stress events (dashed curve) as functions of the stress frequency p. The
upper plot shows the fitness as a function of p. In both plots, the stress proportion pt is
kept constant. We can see that the fitness first decreases rapidly with p until the stress
events last just as long as an organism needs to completely transform from the non-
induced to the induced phenotype. After that the organism can no longer entirely adapt
to stress but instead is in a transient state of phenotypic change during stress events
(intersection point of the two solid lines in the lower plot). At this breaking point, the
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Fig. 6 Upper plot Effect of the
stress frequency p on the fitness
w for continuous reversible
plasticity with constant, not
optimized, genotype parameters.
Lower plot Length t of the stress
events (solid curve) and length
1
p − t of the stress-free times
(dotted curve) and the durations
of full transformation from the
non-induced to the induced
phenotype (solid horizontal) and
full transformation from the
induced to the non-induced
phenotype (dotted horizontal),
all as a function of stress
frequency p. Parameter values
are: pt = 0.3 (t = pt

p ), φ = 1,
σφ = 0.3, v0 = 8, v1 = 6,
m0 = 0.1, m1 = 0.95,
b0 = 0.6, b1 = 0.7
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0.45

0.50

0.55

0.60
w

2 4 6 8 10 12
p

0.1

0.2

0.3

0.4

time

slope of the fitness curve is discontinuous and afterwards the fitness decreases much
slower. Presumably, the reason for the discontinuity of the slope is that plasticity is
mainly beneficial in phases where the phenotype is fully adapted. The benefit of an
incomplete transformation seems to be compensated by the elongated distance for the
transformation back in the other direction. Further plots concerning this behaviour can
be found in the online appendix S. Interestingly, plot S.17 suggests that this discon-
tinuity of the slope does not occur in such a strong manner when only the breadth of
adaptation is changed. That may have to do with the fact that a changing breadth of
adaptation usually does not change the fitness as abruptly as a shift of the mode of
adaptation.

5 Discussion

Asmuch as phenotypic plasticity is a universal phenomenon as diverse are the ways in
which organisms exhibit it across different biological scenarios. We presented a new
model for reversible plasticity where adaptations occur in a continuous way. In this
section, we discuss the assumptions and limitations of the model and its relevance for
real situations, and we present potential further investigations and possibilities how it
can be embedded into other modelling frameworks.
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A central aspect of our theory is the assumption that the performance of a pheno-
type along an environmental gradient can be described by a Gaussian tolerance curve.
Although all one-dimensional unimodal tolerance curves that imply lethality on both
ends of the gradient can assume a Gaussian shape via appropriate scale transforma-
tion, the Gauss property and the normalization become real assumptions because the
same scale transformation does not necessarily result in a Gauss curve for different
original tolerance curves. In reality, tolerance curves may be shaped differently. For
example, it is known that heat tolerance curves can be strongly skewed (see Huey
and Kingsolver 1989). Such considerations are therefore important when applying
the model framework to a specific scenario. Preliminary tests showed that analytic
formulas for the mean performance during phases of transformation can be obtained
for some differently shaped tolerance curves.

For the specific scenario we analysed, a trade-off between being well adapted at
the mode of the tolerance curve and having a larger breadth of adaptation has been
implemented by normalizing the area under the tolerance curve (note that the actual
value for the normalization is arbitrarywhen fitness is thought of as a relativemeasure).
Such trade-offsmay bewidespread in biology (e.g. for a stress-induced phenotypewith
increased metabolism) but our realization may seem somewhat arbitrary. Therefore,
when applying the model framework to a different scenario it might be important to
include aflexible area under the tolerance curve. (Note that also deterministic processes
like ageing can change the phenotype and hence this area.) For this reason we already
include the possibility of a linear change of the area under the tolerance curve in the
formulas presented in this paper. A natural way of obtaining such a trade-off between
breadth and height of adaptation has recently been presented by Lande (2014). In his
quantitative genetic approach, cost and benefit of a plastic continuous trait are used to
derive a (Gaussian) tolerance curve with such a trade-off. Although a similar trade-
off appears in our scenario, the two approaches differ fundamentally. While Lande
(2014) finally derives a tolerance curve that indicates the fitness of a plastic individual
or population in a constant environment, we model phenotypic plasticity by applying
tolerance curves that change during life.

The environmental gradient we considered is one-dimensional. Multiple or multi-
dimensional gradients may be necessary to describe a real scenario but can only be
analysed separately with the introduced techniques, and only for the generally unreal-
istic case that adaptations along the different gradients or dimensions are independent
of each other. For scenarios where adaptations along different gradients or dimensions
are not independent of each other, it seems however straightforward to generalize the
model framework for multidimensional tolerance curves.

For the scenario we analysed in detail, the environment was modelled as a stress-
free state that is interrupted by stress events with constant frequency and duration, but
our general framework can be applied to all kinds of environmental scenarios. These
include fast or stochastic fluctuations or continuous change of the environment, i.e.,
scenarios to which the previous model for instantaneous reversible plasticity could not
be applied because it required a non-changing environment during adaptation delays.
Pfab (2012) examined different stochastic distributions for the temporal distribution of
stressful and stress-free states. For a wide parameter range, the different distributions
did not considerably effect the results for continuous reversible plasticity. However,
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note that our way of calculating the fitness for continuous reversible plasticity can
readily be transferred to scenarios with periodically changing environments. For our
scenario, it is straightforward to additionally distribute the stress-free environmental
state in the same way as the stress intensities. Furthermore, the introduced techniques
can be used to calculate the fitness in a continuously changing environment and in a
predefined (e.g. via simulation) set of environmental changes.

An interesting consequence of the periodicity of the environment is that for irre-
versible and instantaneous reversible plasticity the function of the two fully-developed
phenotypes can switch, i.e. the induced phenotype becomes less adapted to stress than
the non-induced phenotype (see Fig. 4 and the discussion of this graph in Sect. 4).
For irreversible plasticity, the optimal parameters and the fitness of the genotype fluc-
tuate (i.e., repeated switches) when regarded as a function of the model parameter p
that determines the frequency of environmental change, whereas for instantaneous
reversible plasticity, the exchange of functionality of the two phenotypes is only
expressed when the times to switch between phenotypes are virtually as long as the
times during which a given phenotype is advantageous. However, both cases base
on the fact that information about coming environmental changes is available and
certain, due to the strict environmental periodicity. (In the online appendix P, we
discuss a scenario where, for irreversible plasticity, such behaviour is prevented by
an exponential distribution of the environmental changes. In the present model for
continuous reversible plasticity, we did not observe such switches.) Although early
anticipation of environmental changes is certainly biologically relevant (see the fol-
lowing paragraph), the way they are implied by the model for instantaneous reversible
plasticity seems not appropriate for most scenarios since these switches only occur
when the durations of environmental periods are similar to the adaptation delays. Envi-
ronmental changes then trigger a phenotypic change away from the new environment
and in the direction of the previous (i.e., the following ’anticipated’) environment. In
the present model for continuous reversible plasticity, adaptations start immediately
after environmental changes, and hence this new model is more robust with respect to
environmental fluctuations.

For the analysed scenario, we assumed that phenotypic transformations are directly
induced by appearance or cessation of stress. However, real scenarios may not satisfy
that assumption. Not only the environment often changes continuously rather than
instantaneously, but also phenotypic change can be induced by triggers different from
the environmental factor to which the phenotype adapts. The triggering may happen at
a different time than the change of the corresponding environmental factor. Especially
in periodically changing environments, early anticipation of environmental changes
is probably widespread. For example, deciduous trees hibernate without leaves to
minimize water loss through transpiration in winter. The fall of leaves is triggered by
changing length of the days and takes place already in autumn, a season during which
maintenance of water balance is easy and photosynthesis still seems attractive. To
capture such scenarios, additional parameters or mechanisms that determine when the
phenotype transforms could be introduced. That would presumably not only increase
the maximal fitness but also change the optimal parameters. Hence, in a model with
early anticipation of environmental changes, the optimal modi of the induced and
non-induced tolerance curves could be separated by a greater distance since more
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intermediate phenotypes would be expected at times close to environmental changes.
One more assumption is that the phenotype at birth is completely induced or non-
induced, depending on whether stress is prevalent at birth or not. This assumption is
met in order to focus on the presentation of the framework and the comparison of the
model to preceding works. On biological grounds it certainly can be more realistic
to assume more intermediate phenotypes at birth. It is straightforward to include and
optimize parameters that determine the initial phenotype depending on the prevalent
environmental state.

The different parameters of the tolerance curve were assumed to change simulta-
neously and in a linear manner with constant speed. While these assumptions may be
appropriate for some scenarios, theymight need to be adjusted for others. For example,
when we assume that the parameters of the tolerance curve can change independently
but the speed with which the peak of the tolerance curve can shift is constant, it might
become advantageous to start adaptation to a changed environment by first increasing
the breadth of the tolerance curve, then shifting the mode of adaptation, and finally
reducing the breadth of adaptation again for the sake of a higher fitness close to the
mode of adaptation. In our approach not only the direction of adaptation but also the
speed of adaptation was assumed to be constant during a transformation. Although
a limitation of the transformation speed generally seems realistic due to physiologi-
cal constraints, the mechanisms and trade-offs on which the limitation depends can
vary. It may be realistic for some scenarios to assume that the speed of adaptation can
change depending on the progress of transformation or on other circumstances. For
instance, the speed could be maximal at the beginning of a transformation and then
decrease. The model by Gabriel et al. (2005) for instantaneous reversible plasticity
can be seen as the opposite case where the speed of adaptation after an environmental
change is first zero and then suddenly increases to virtually infinity so that an organ-
ism adapts instantaneously after a certain delay. Altogether it remains an interesting
question how transformations occur in natural scenarios. A general method to describe
different courses for the change of the parameters could for instance be to introduce
systems of differential equations that define the current change of the phenotype.

Scenarios to which the introduced model for continuous reversible plasticity can be
readily applied include different types of irreversible plasticity. Gabriel et al. (2005)
modelled irreversible plasticity such that an organism fixes its phenotype at birth
according to the prevalent environment and that no further adaptations can occur
during life. Our model resembles this case if the adaptation speed in both directions is
zero, v0 = v1 = 0. By choosing the adaptation speed for only one direction to be zero,
our model can be additionally applied to scenarios where adaptations in one direction,
either towards the induced phenotype or towards the non-induced phenotype, can occur
irreversibly during the life of an organism.

The quality of information that organisms possess about the current environment
can differ and may strongly affect the results, especially when the undetected variance
of the environment is large. For the scenario we analysed here, organisms possess
information only about the momentary presence or absence of stress but not about the
actual intensity (while genotypes, of course, can be adapted to the general distribu-
tion of the environment). In Gabriel et al. (2005), this was referred to as “incomplete
information” and was opposed by “complete information”, where exact information
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about the current environmental state is available to the organisms. A pleasant fea-
ture of the case of incomplete information is that the fitness of a genotype can be
obtained analytically and that the genotype parameters can be optimized numerically
without (possibly extensive) stochastic simulations. In real scenarios, the quality of
information often lies between these two extremes. This fact is, for instance, captured
in the model by Tufto (2000), where obtained cues are distributed unbiased with a
certain variance around the environmental state. An interesting approach to modelling
reversible phenotypic adaptationwith uncertain cues about the environmental state that
are accumulated during life has been introduced by Fischer et al. (2014). There the
environment changes between two discrete states at discrete points in timewith certain
transition probabilities. At the same time points the phenotype can adjust according
to the information gathered about the state of the environment. The fitness is then
estimated via survival and fecundity rates that depend on the interaction of phenotype
and environment and on direct costs of expressing plasticity. It may be interesting to
combine their and our approach, e.g. by Bayesian estimation of the current environ-
ment via information collected during life (as in Fischer et al. 2014) together with
continuous time, a continuous environmental gradient and a continuously adapting
tolerance curve (as in our model).

In this article, performance during different phases of life was assumed to affect
the fitness of an organism multiplicatively. That may be a realistic approach for e.g.
survival probabilities, while other properties, like fecundity, may affect fitness in an
additive way. The multiplicative and additive approach have been compared before for
differentmodels of plasticity (Utz et al. 2014)without observing qualitative differences
in the results. However, it cannot be ruled out that additive fitness contributions may
gain importance in our continuous model. Note that the assumption of constant life
length does not necessarily affect the generality of ourmodel because,when calculating
the fitness, we do not need to literally refer to single lives but we can rather refer to
an average fitness in a given sequence of environmental changes.

We optimized genotype parameters and hence focused on adaptive phenotypic
plasticity. However, non-adaptive phenotypic plasticity, where phenotypic changes
cannot be interpreted as an adaptation to the environment, is found in all kinds of
organisms and can be modelled by our approach as well. In particular, mode and
breadth of the tolerance curve and other model parameters such as the area under the
tolerance curve or the adaptation speed itself can be changed in a non-adaptive way.
Such phenotypic change can be caused by various external influences as well as inner
processes like ageing or random events and obviously is an important factor in the life
of an organism.

After these considerations, it will be interesting to compare the assumptions and
expectations of our model to real scenarios and to data gained from field research or
laboratory experiments. For this it seems important to carefully study the biology of
the organisms of interest and modify the model according to the points mentioned,
i.e. to implement additional assumptions on the shape of the tolerance curve, the
way of adaptation and the cost and constraints of plasticity. See for example DeWitt
et al. (1998) for a general review on costs and limitations of phenotypic plasticity. In
order to experimentally investigate how environmental tolerance of organisms changes
during life, one has to measure performance of individuals in changing environments
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repeatedly. Althoughmeasuring fitness can be difficult in practice, it might be possible
in some cases to find easily estimated fitness proxies that can be used for parameter
estimation and verification and adaptation of our theory.

Most important is probably that our approach to phenotypic plasticity can be embed-
ded into other models. Besides using the model to estimate the performance of a
genotype in a certain environment, the framework can for example be implemented
into ecological agent-basedmodels where organisms have individual tolerance curves.
Another interesting approach for modelling population dynamics in a changing envi-
ronment may be to consider a plastic tolerance curve of a whole population and to
describe properties of the population like the growth rate or carrying capacity with
the values of the tolerance curve in the given environment. For a quantitative genetic
approach to model the dynamics and genetic evolution of a plastic population in a
changing environment see Chevin et al. (2010) where the concept of “reaction norms”
is used to describe phenotypic plasticity. Chevin et al. (2013) offer a review of recent
theory on the interplay of phenotypic plasticity, genetic evolution and demography
in environments that change in time and space. A connection between the impact of
plasticity on the fitness of a single organism and on the fitness of whole populations
has been made by Lynch and Gabriel (1987) who showed that the environmental fit-
ness dependency of a population of individuals that have Gaussian tolerance curves
again has approximately Gaussian shape. The idea of continuously changing tolerance
curves could also be applied to evolutionary scenarios where a population of (not nec-
essarily plastic organisms) adapts to a changing environment over many generations.
Furthermore, our theory of continuous reversible phenotypic plasticity may not only
be applied to scenarios from ecology but from different fields of biology. For example
the performance of single organs or cells could be modelled with plastic tolerance
curves in order to implement our approach into models for physiology, cell biology,
neurobiology or molecular biology.
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Appendix A

A.1 Calculating the fitness of a continuously reversibly plastic genotype

In this appendix we derive a formula for the fitness of a genotype in the scenario
introduced in Sects. 2 and 3. That includes that the peak (m, 1√

2πb
) of a normalized

tolerance curve shifts with constant speed v1 (respectively v0) towards the peak of an
induced (respectively non-induced) tolerance curve in order to adjust the phenotype to
a periodically changing environment. A stress-free environmental state is interrupted
by stress events with frequency p and the stress events are assumed to have length t and
their stress intensities are randomly distributed with mean φ and standard deviation
σφ . Individuals are born at uniformly distributed times and we will use the law of
large numbers to average out the stochasticity in the individual lives and calculate
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Fig. 7 Change of the phenotypic state s over time. The striped boxes symbolise stress events and the lines
in between are stress-free times. The upper course describes lives that begin during a stress event, and the
lower course describes lives that begin during a stress-free time. Dashed lines indicate phases that are only
partly experienced by a given individual, depending on the exact time of birth, whereas solid lines indicate
phases that are experienced completely by all individuals, depending only on whether their life starts during
stress or not

the fitness of the genotype. We then maximize the fitness numerically by finding
optimal parameter values for the induced and non-induced tolerance curve. To increase
comprehensibility of this section, the reader is referred to a list of notations and
abbreviations at the end of this appendix.

The following calculations base on the fact that—due to the assumption that phe-
notypes are fully developed at birth—all organisms born during stress (and likewise
all organisms born during stress-free times) have a common course of the phenotypic
state for part of their lives given the same sequence of stress events and given the
stress frequency is high enough (see Fig. 7). Since the phenotypic state s [definition
(6)] changes both the modems and the breadth bs of the tolerance curve, we introduce
the following shorthand notation for the phenotype (ms, bs),

mb(s) = ms, bs . (8)

A.2 Calculating the fitness in a simplified scenario

The stress intensities of all stress events are first assumed to be constant ψ , that is
σφ = 0. We define environmental states Φ(γ ) by environmental settings

γ ∈ {0, 1}, (9)
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Fig. 8 The environmental course shown in Fig. 7 is abstracted into a sequence of phases with alternating
environmental setting (γ0 and 1− γ0) and length (t1 and t2). In this example, the interval [t1, 1[ is divided
into k = 5 intervals A j = [q j , q j+1[ with alternating environmental setting [cf. definition (13)]

where stress is indicated by γ = 1 and the stress-free environment by γ = 0,

Φ(γ ) =
{

ψ if γ = 1

0 if γ = 0.
(10)

In order to avoid repeating similar calculations, we consider a sequence of phases
with alternating environmental settings and lengths t1 and t2 (see Fig. 8). It is arbitrary
whether the phases of length t1 have environmental setting γ = 1 and the phases of
length t2 have environmental setting γ = 0 or vice versa. The environmental setting of
the phases with length t1 is denoted by γ0 and the environmental setting of the phases
with length t2 is 1 − γ0. The length of a life was set to be 1 and for the time being
we additionally assume that the length of the first phase is not longer than lifetime,
t1 ≤ 1. We assume that organisms are born at uniformly distributed points during the
first phase.

With this simplification, the lives of all organisms lie within the interval [0, 1+ t1[.
According to formula (3) in the main text the fitness of an individual is calculated by
dividing the interval [0, 1 + t1[ into subintervals with constant phenotypic state and
environmental setting, andmultiplying the performance during each subinterval, raised
to the power of the subintervals length (since life length is 1). Naturally, subintervals
duringwhich the individual is not alive do not contribute to the fitness. Since the fitness
of an individual is calculated by the geometric mean of the contribution of the different
phases of life, we can formally assume that the fitness during subintervals that are not
experienced is 1. According to formula (5), the fitness of the genotype (in short: the
genotype fitness) is the geometric mean of the fitness of n → ∞ individuals.

This is equivalent to first dividing the interval [0, 1 + t1[ into a partition A; then
for each subinterval A ∈ A, calculating the performance of a given individual during
the subinterval; then calculating the geometric mean of such performances of n → ∞
individuals (we term that the interval’s contribution to the genotype fitness w̃(A)); and
finally assembling the genotype fitness as

w̃([0, 1 + t1[) =
∏

A∈A
w̃(A). (11)

We divide the interval [0, 1 + t1[ into three subintervals:
• [0, t1[: Individuals are born at uniformly distributed points during that interval.
• [t1, 1[: All individuals experience that interval completely.
• [1, 1 + t1[: Individuals die at uniformly distributed points during that interval.
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These intervals are again divided such that each change of the environmental setting
marks a division point. Once more we divide these smaller intervals into intervals
during which the phenotype changes and intervals during which the phenotype stays
constant. The genotype fitness contribution of these smallest intervals are the building
blocks of which we will assemble the genotype fitness.

A.2.1 Interval [0, t1[

The time of birth ui of an individual is uniformly distributed on [0, t1[ and independent
of the time of birth of other individuals. The environmental setting at birth, and conse-
quently the phenotypic state during this first interval, is γ0. Therefore the contribution
of the interval [0, t1[ to the fitness of that individual is f (mb(γ0),Φ(γ0))

t1−ui , and
the contribution of the interval [0, t1[ to the genotype fitness is

w̃([0, t1[) = lim
n→∞

n∏

i=1

(
f (mb(γ0),Φ(γ0))

t1−ui
) 1
n

= f (mb(γ0),Φ(γ0))
limn→∞

∑n
i=1

1
n (t1−ui )

(	)= f (mb(γ0),Φ(γ0))
E[t1−ui ]

= f (mb(γ0),Φ(γ0))
1
2 t1 , (12)

where (	) holds by the law of large numbers.

A.2.2 Interval [t1, 1[

Independently of the time of birth, all individuals experience the interval [t1, 1[ com-
pletely and with the same course of the phenotypic state (consider one of the two
solid courses in Fig. 7). Therefore, the genotype fitness contribution of that interval
equals the contribution of the interval to the fitness of one individual. To obtain that
contribution, we divide the interval [t1, 1[ into subintervals

A j = [q j , q j+1[ (13)

with altering environmental settings. The number k of such subintervals can be
obtained by adding the number of intervals with environmental setting 1 − γ0 that
start during [t1, 1[ to the number of intervals with environmental setting γ0 that start
during [t1 + t2, 1[,

k = min{n ∈ N : n(t1 + t2) ≥ 1 − t1} + min{n ∈ N : n(t1 + t2) ≥ 1 − t1 − t2}
(14)

The left boundary of the first interval A1 is q1 = t1 and the right boundary of the last
interval Ak is qk+1 = 1. The other boundaries q j (for j = 2, . . . , k) can be calculated
recursively,
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q1 = t1,

for j = 2, . . . , k : q j = q j−1 +
{
t2 if j even

t1 if j odd,

qk+1 = 1. (15)

The environmental setting during the phase A j is,

γ (A j ) =
{

γ0 if j even

1 − γ0 if j odd.
(16)

We use the shorthand notations γ j = γ (A j ) and φ j = Φ(γ j ).
During the environmental setting γ , let ϑ(γ ) be the rate with which the phenotypic

state changes until the target state γ is reached. This rate is equivalent to the signed
speed with which the peak of the tolerance curve shifts, measured relative to the
Euclidean distance between the peaks of the tolerance curves of the induced and the
non-induced phenotype,

ϑ(γ ) =
(

(m1 − m0)
2 +

(
1√
2πb1

− 1√
2πb0

)2
)− 1

2

·
{

v1 if γ = 1
−v0 if γ = 0.

(17)

We use the shorthand notation ϑ j = ϑ(γ j ).
The phenotypic state s(q1) at time q1 is identical to the phenotypic state γ0 at

birth. The phenotypic states s(q j ) at the other boundary points can be calculated
recursively by adding the product of the adaptation rate ϑ j−1 and the length |A j−1| of
the preceding interval to the phenotypic state s(q j−1) at the previous boundary point,
and constraining to the interval [0, 1],

s(q1) = γ0

for j �= 1 : s(q j ) = max{0,min{1, s(q j−1) + ϑ j−1|A j−1|}}. (18)

We use the shorthand notation s j = s(q j ).
With the phenotypic states s j and s j+1 we can calculate the time δ(A j ) of trans-

formation during the interval A j ,

δ(A j ) = min

{
|A j |, s j+1 − s j

ϑ j

}
. (19)

We use the shorthand notation δ j = δ(A j ).
The phases with constant phenotype are infinitesimally short during a transforma-

tion. We divide the transformation interval [q j , q j + δ j [ into n → ∞ equal steps. One

step has length
δ j
n and the phenotypic state during the q’th step is n−q

n s j + q
n s j+1.

Hence the genotype fitness contribution of the interval is
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w̃([q j , q j + δ j [) = lim
n→∞

n∏

r=1

f

(
mb

(
n − r

n
s j + r

n
s j+1

)
, φ j

) δ j
n

= g(mb(s j ),mb(s j+1), φ j )
δ j (20)

The function g is defined in a general form in formula (4) in Sect. 2 and further derived
in Sect. A.4, whereby there additionally the area under the tolerance curve and the
environmental state is changing linearly. For the application here those parameters are
constant and hence their initial and terminal parameters are equal. Note again that the
area c under the curve is not included in the formulas here because it is normalized
and the environmental state is represented by a single parameter since it stays constant
during the considered phase.

During the remaining part [q j + δ j , q j+1[ of the interval A j , the phenotypic state
is constant γ j and hence the fitness contribution of the interval [q j + δ j , q j+1[ is

w̃([q j + δ j , q j+1[) = f (mb(γ j ), φ j )
|A j |−δ j . (21)

Finally, the contribution of an interval A j can be assembled from its two parts,

w̃(A j ) = w̃([q j , q j+1[) = w̃([q j , q j + δ j [)w̃([q j + δ j , q j+1[) (22)

and the contribution of the entire interval [t1, 1[ is

w̃([t1, 1[) =
k∏

j=1

w̃(A j ). (23)

A.2.3 Interval [1, 1 + t1[

Since the lifetime of an organism is 1 and the time of birth ui is uniformly distributed
on [0, t1[, an individual lives until the time ui + 1, which is uniformly distributed on
[1, 1 + t1[. Because both the interval [1, 1 + t1[ and the phases with environmental
setting γ0 have length t1, the interval [1, 1+ t1[ can include at most three subintervals
with alternating environmental settings,

A′
j = [q ′

j , q
′
j+1[. (24)

The boundaries of the subintervals are:

q ′
1 = qk+1 = 1

q ′
2 = min{1 + t1, qk−1 + t1 + t2}

q ′
3 = min{1 + t1, qk + t1 + t2}

q ′
4 = 1 + t1. (25)

123



456 F. Pfab et al.

For the case k = 0 (that is when t1 = 1) or k = 1, we formally define q−1 = −t2 and
q0 = 0. Note that |A′

1| = 0 (q ′
1 = q ′

2 ) if
1

t1+t2
∈ N or 1−t1

t1+t2
∈ N0. The other intervals

A′
j can have length 0, too, depending on the values for t1 and t2.
The environmental setting during the interval A′

1 is the same as the environmental
setting γk at the end of [t1, 1[, and the environmental settings of the intervals A′

j alter,

γ (A′
j ) =

{
γk if j odd

1 − γk if j even.
(26)

We use analogous shorthand notations as before, γ ′
j = γ (A′

j ), ϑ ′
j = ϑ(γ ′

j ) and
φ′
j = Φ(γ ′

j ).
Since q ′

1 = qk+1, the phenotypic state s(q ′
1) is sk+1 and the phenotypic states at the

succeeding boundaries are calculated analogous to formula (18),

s(q ′
1) = sk+1

for j �= 1 : s(q ′
j ) = max{0,min{1, s(q ′

j−1) + ϑ ′
j−1|A′

j−1|}}. (27)

We use the shorthand notation s′
j = s(q ′

j ).
Analogous to formula (19), the phenotype is transforming during the interval A′

j
for a time

δ(A′
j ) = min

{
|A′

j |,
s′
j+1 − s′

j

ϑ ′
j

}
. (28)

We use the shorthand notation δ′
j = δ(A′

j ).
The probability that the point ui + 1 where a given life ends lies in the interval

[q ′
j , q

′
j + δ′

j [ during which the phenotype is transforming is

P(ui + 1 ∈ [q ′
j , q

′
j + δ′

j [) = δ′
j

t1
. (29)

Given that an individual’s life ends during the transformation [q ′
j , q

′
j + δ′

j [, the exact
time when the life ends is uniformly distributed on this interval. We divide the trans-

formation into n → ∞ steps. The step length is
δ′
j
n and the contribution of the interval

[q ′
j , q

′
j + δ′

j [ to the fitness of an individual whose life ends at the i’th step is

lim
n→∞

i∏

r=1

f

(
mb

(
n − r

n
s′
j + r

n
s′
j+1

)
, φ′

j

) δ′j
n

. (30)

We consider n → ∞ individuals and due to the law of large numbers we can assume
that during each step the life of one individual ends. Therefore the interval’s genotype
fitness contribution, under the condition that life ends during this interval, is
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w̃([q ′
j , q

′
j + δ′

j [: ui + 1 ∈ [q ′
j , q

′
j + δ′

j [)

= lim
n→∞

n∏

i=1

⎛

⎜⎝
i∏

r=1

f

(
mb

(
n − r

n
s′
j + r

n
s′
j+1

)
, φ′

j

) δ′j
n

⎞

⎟⎠

1
n

= h(mb(s′
j ),mb(s′

i+ j ), φ
′
j )

δ′
j (31)

The function h is derived in a generalized form in Sect. A.5. As for the general formula
for g, there additionally the area under the tolerance curve and the environmental state
is changing linearly. Again for the application here those parameters are constant and
hence their initial and terminal parameters are equal. As before the area c under the
curve is not included in the formulas because it is normalized and the environmental
state is represented by a single parameter since it stays constant during the considered
phase.

The probability that a given individual is alive after the interval [q ′
j , q

′
j + δ′

j [ is

P(ui + 1 ≥ q ′
j + δ′

j ) = 1 + t1 − (q ′
j + δ′

j )

t1
. (32)

Under the condition that all individuals are alive after the transformation [q ′
j , q

′
j +δ′

j [,
the interval’s genotype fitness contribution is according to formula (20),

w̃([q ′
j , q

′
j + δ′

j [: ui + 1 ≥ q ′
j + δ′

j ) = g(mb(s′
j ),mb(s′

j+1), φ
′
j )

δ′
j . (33)

The unconditioned genotype fitness contribution of the interval [q ′
j , q

′
j + δ′

j [ is then
the product of the two conditioned contributions, each raised to the corresponding
probability,

w̃([q ′
j , q

′
j + δ′

j [) = w̃([q ′
j , q

′
j + δ′

j [: ui + 1 ∈ [q ′
j , q

′
j + δ′

j [)P(ui+1∈[q ′
j ,q

′
j+δ′

j [)

· w̃([q ′
j , q

′
j + δ′

j [: ui + 1 ≥ q ′
j + δ′

j )
P(ui+1≥q ′

j+δ′
j ). (34)

During the remaining part [q ′
j + δ′

j , q
′
j+1[ of the interval A′

j the phenotypic state is
constant γ ′

j .
The probability that a given life ends during that part is

P(ui + 1 ∈ [q ′
j + δ′

j , q
′
j+1[) = q ′

j+1 − (q ′
j + δ′

j )

t1
. (35)

Under the condition that all lives end during the interval [q ′
j + δ′

j , q
′
j+1[, the individ-

ual lives end at points that are uniformly distributed on this interval. The interval’s
genotype fitness contribution can hence be derived analogously to formula (12),

w̃([q ′
j + δ′

j , q
′
j+1[: ui + 1 ∈ [q ′

j + δ′
j , q

′
j+1[) = f (mb(γ ′

j ), φ
′
j )

1
2 (|A′

j |−δ′
j ). (36)
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The probability that a given individual is alive after the interval [q ′
j + δ′

j , q
′
j+1[ is

P(ui + 1 ≥ q ′
j+1) = 1 + t1 − q ′

j+1

t1
. (37)

Under the condition that individuals are alive after the interval [q ′
j + δ′

j , q
′
j+1[, the

interval’s genotype fitness is

w̃([q ′
j + δ′

j , q
′
j+1[: ui + 1 ≥ q ′

j+1[) = f (mb(γ ′
j ), φ

′
j )

|A′
j |−δ′

j . (38)

The unconditioned genotype fitness contribution of the interval [q ′
j + δ′

j , q
′
j+1[ is

therefore

w̃([q ′
j + δ′

j , q
′
j+1[)

= w̃([q ′
j + δ′

j , q
′
j+1[: ui + 1 ∈ [q ′

j + δ′
j , q

′
j+1[)P(ui+1∈[q ′

j+δ′
j ,q

′
j+1[)

· w̃([q ′
j + δ′

j , q
′
j+1[: ui + 1 ≥ q ′

j+1)
P(ui+1≥q ′

j+1). (39)

Finally, the fitness contribution of an interval A′
j can be assembled from its two parts,

w̃(A′
j ) = w̃([q ′

j , q
′
j + δ′

j [) · w̃([q ′
j + δ′

j , q
′
j+1[), (40)

and the genotype fitness contribution of the entire interval [1, 1 + t1[ is

w̃([1, 1 + t1[) =
3∏

j=1

w̃(A′
j ). (41)

A.2.4 The complete interval [0, t1 + 1[

We now assemble the genotype fitness contributions of the subintervals and so obtain
the genotypefitness. It is a function of the lengths t1 and t2 of the phaseswith alternating
environmental setting and the environmental setting γ0 of the first phase. We still
consider the case that t1 ≤ 1,

w̃t1≤1(t1, t2, γ0) = w̃([0, 1 + t1[) = w̃([0, t1[) · w̃([t1, 1[) · w̃([1, 1 + t1[). (42)

A.3 Generalization to the original scenario

We now relax the assumptions of Sect. A.2 and generalize the introduced method to
calculate the genotype fitness for the original scenario where the first phase can last
longer then a lifetime (t1 > 1) and stress intensities are distributed randomly (σφ > 0),
see Sect. 2.
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Fig. 9 Sequence of phases with alternating environmental settings (γ0 and 1 − γ0) and lengths (t1 and
t2). When t1 > 1, individuals born during [0, t1 − 1[ experience the environmental setting γ0 during their
whole life

A.3.1 Generalization for t1 > 1

We excluded the case t1 > 1 (see Fig. 9). In that case, organisms born during [0, t1−1[
experience the environmental setting γ0 during their whole life and consequently have
the fitness f (mb(γ0),Φ(γ0)). Individuals that are born during [t1 − 1, t1[ experience
the same environmental distribution as if the length of the first phase with constant
environmental setting was 1 instead of t1. Under the condition that all individuals are
born during that interval, the genotype fitness is therefore w̃t1≤1(1, t2, γ0). The general
genotype fitness is then the product of the conditioned genotype fitness expressions,
each raised to the power of the birth probability in the according interval, t1−1

t1
or 1

t1
.

For all t1 > 0, the generalized formula for the genotype fitness is hence

w̃t1>0(t1, t2, γ0) =
{

w̃t1≤1(t1, t2, γ0) if t1 ≤ 1

f (mb(γ0),Φ(γ0))
t1−1
t1 w̃t1≤1(1, t2, γ0)

1
t1 if t1 > 1.

(43)

A.3.2 Generalization for σφ > 0

We now relax the assumption that all stress events have the same stress intensity
(σφ = 0) and instead assume a random distribution of stress intensities with known
expectation value φ and variance σ 2

φ . In the formulas, we can simply replace the stress

intensity ψ by φ and ψ2 by σ 2
φ + φ

2
after expanding all terms that are connected to

ψ . This can be verified by calculating the genotype fitness contribution of a stressful
interval Awith constant phenotype (m, b) as the geometric mean of the contribution of
A to the fitness of n → ∞ individuals with independently drawn stress intensitiesψi ,

w̃(A) = lim
n→∞

n∏

i=1

f (m, b, ψi )
1
n |A|

= lim
n→∞

n∏

i=1

(
1√
2πb

e− 1
2
m2−2mψi+ψi

2

b2

) 1
n |A|

= 1√
2πb

e− 1
2

1
n

∑n
i=1(m

2−2mψi+ψi
2)

b2
|A|

(	)= 1√
2πb

e− 1
2

m2−2mφ+σ2
φ

+φ
2

b2
|A|

, (44)

where (	) holds by the law of large numbers.
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Technically, the terms ψ and ψ2 are substituted by φ and σ 2
φ + φ

2
, respectively,

in formula (1) of the tolerance curve f ; then the formulas for g (20) and h (31) need
to be recalculated. Alternatively, the exchange of the terms can be realized directly
in the formulas for the functions f , g and h. In all other formulas the terms with ψ

only interact additively and hence they do not need to be changed directly. Note that
stochasticity of the stress-free state could be introduced in the same way.

A.3.3 The original temporal distribution of stress

We can finally assemble the fitness of a genotype in the originally introduced environ-
mental distribution, where stress events occur with frequency p and persist for a time
t (hence the gaps between the stress events have length 1

p − t), and where the individ-
ual times of birth are uniformly distributed within the sequence of stress events and
stress-free times. Under the condition that all organisms are born during a stress event,
the exact times of birth are uniformly distributed on the stress event. The genotype
fitness under that condition is obtained by formula (43) with t1 = t , t2 = 1

p − t and
γ0 = 1. Given all organisms are born during the gap between two stress events, the
exact times of birth are uniformly distributed on the gap. The genotype fitness under
that condition is formula (43) with t1 = 1

p − t , t2 = t and γ0 = 0. Altogether, the
genotype fitness (here with all parameters as arguments) is then,

w(p, t, φ, σφ, v0, v1,m0,m1, b0, b1)

= w̃t1>0

(
t,

1

p
− t, 1

)pt

· w̃t1>0

(
1

p
− t, t, 0

)1−pt

. (45)

where pt and 1− pt are the probabilities for a birth during stress or during a stress-free
time, respectively.

A.4 Derivation of the function g

Here, we derive an expression for the function g, formula (4) in Sect. 2 in the main
text. The formula is applied in the calculation (20) where the area under the tolerance
curve is normalized, ca = cz = 1, and the environmental state does not change during
the transformation, φa = φz = φ. In (20) we hence use the short-hand notation
g(ma, ba,mz, bz, φ) or g(mb(a),mb(z), φ). The general formula is

g (ma, ba, ca, φa,mz, bz, cz, φz)

= lim
n→∞

n∏

r=1

f

(
n − r

n
ma + r

n
mz,

1
n−r
n

1
ba

+ r
n

1
bz

,
n − r

n
ca + r

n
cz,

n − r

n
φa + r

n
φz

) 1
n

= lim
n→∞

n∏

r=1

⎛

⎝
( n−r

n ca + r
n cz

) (
n−r
n

1
ba

+ r
n

1
bz

)

√
2π

e
− 1

2 (
n−r
n ma+ r

n mz−( n−r
n φa+ r

n φz ))
2
(
n−r
n

1
ba

+ r
n

1
bz

)2
⎞

⎠

1
n
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= 1√
2π

lim
n→∞

n∏

r=1

((
n − r

n
ca + r

n
cz

) 1
n

(
n − r

n

1

ba
+ r

n

1

bz

) 1
n
)

.

·e− 1
2 limn→∞

∑n
r=1

1
n (

n−r
n ma+ r

n mz−( n−r
n φa+ r

n φz ))
2
(
n−r
n

1
ba

+ r
n

1
bz

)2

= 1√
2π

ζg1ζg2e
− 1

2 ζg3 (46)

where ζg1 = ca if ca = cz and otherwise

ζg1 = lim
n→∞

n∏

r=1

(
n − r

n
ca + r

n
cz

) 1
n

= exp

(
lim
n→∞ log

(
n∏

r=1

(
n − r

n
ca + r

n
cz

) 1
n
))

= exp

(
lim
n→∞

n∑

r=1

1

n
log

(
n − r

n
ca + r

n
cz

))

= exp

(
1

cz − ca

∫ cz

ca
log(x) dx

)

= exp

(
1

cz − ca
(cz log(cz) + ca − ca log(ca) − cz)

)
. (47)

Accordingly ζg2 = 1
ba

if ba = bz and otherwise

ζg2 = lim
n→∞

n∏

r=1

(
n − r

n

1

ba
+ r

n

1

bz

) 1
n

= exp

(
1

1
bz

− 1
ba

(
1

ba
log(ba) + 1

ba
− 1

bz
log(bz) − 1

bz

))
, (48)

and

ζg3 = lim
n→∞

n∑

r=1

1

n

(
n − r

n
ma + r

n
mz −

(
n − r

n
φa + r

n
φz

))2 (
n − r

n

1

ba
+ r

n

1

bz

)2

=
∫ 1

0
((1 − x)ma + xmz − ((1 − x)φa + xφz))

2
(
1 − x

ba
+ x

bz

)2

dx

= 1

30b2ab2z

[
b2z (6m

2
a + m2

z − 3mzφa + 6φ2
a + 3ma(mz − 4φa − φz)

−2mzφz + 3φaφz + φ2
z ) + babz(3m

2
a + 3m2

z − 4mzφa + 3φ2
a

+ma(4mz − 6φa − 4φz) − 6mzφz + 4φaφz + 3φ2
z )
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+ b2a(m
2
a + 6m2

z + φ2
a + ma(3mz − 2φa − 3φz)

+ 3φaφz + 6φ2
z − 3mz(φa + 4φz))

]
. (49)

A.5 Derivation of the function h

Here, we derive an expression for the function h which is introduced in the calculation
(20). In the generalized form here, all parameters of the tolerance curve, m, 1

b and c,
and the environmental state φ change linearly from ma , 1

ba
, ca , φa to mz , 1

bz
, cz , φz .

In the calculation (20) the area under the tolerance curve is normalized, ca = cz = 1,
and the environmental state is not changing during the transformation, φa = φz = φ,
andwe hence use the short-hand notation h(ma, ba,mz, bz, φ) or h(mb(a),mb(z), φ).
The general formula is given by

h (ma, ba, ca, φa,mz, bz, cz, φz)

= lim
n→∞

n∏

i=1

⎛

⎝
i∏

r=1

f

(
n − r

n
ma + r

n
mz,

1
n−r
n

1
ba

+ r
n

1
bz

,
n − r

n
ca + r

n
cz,

n − r

n
φa + r

n
φz

) 1
n
⎞

⎠

1
n

= lim
n→∞

n∏

i=1

f

(
n − i

n
ma + i

n
mz,

1
n−i
n

1
ba

+ i
n

1
bz

,
n − i

n
ca + i

n
cz,

n − i

n
φa + i

n
φz

) n−i
n2

= lim
n→∞

n∏

i=1

f

(
i

n
ma + n − i

n
mz,

1
i
n

1
ba

+ n−i
n

1
bz

,
i

n
ca + n − i

n
cz,

i

n
φa + n − i

n
φz

) i
n2

= lim
n→∞

n∏

i=1

⎛

⎝
( i
n ca + n−i

n cz
) (

i
n

1
ba

+ n−i
n

1
bz

)

√
2π

e
− 1

2

(
i
n ma+ n−i

n mz−( i
n φa+ n−i

n φz )
)2(

i
n

1
ba

+ n−i
n

1
bz

)2
⎞

⎠

i
n2

= 1
4
√
2π

lim
n→∞

n∏

i=1

((
i

n
ca + n − i

n
cz

) i
n2

) (
i

n

1

ba
+ n − i

n

1

bz

) i
n2 ·

·e− 1
2 limn→∞

∑n
i=1

i
n2

(
i
n ma+ n−i

n mz−( i
n φa+ n−i

n φz )
)2(

i
n

1
ba

+ n−i
n

1
bz

)2

= 1
4
√

(2π)
ζh1ζh2e

− 1
2 ζh3 (50)

where ζh1 = √
ca if ca = cz and otherwise

ζh1 = lim
n→∞

n∏

i=1

(
i

n
ca + n − i

n
cz

) i
n2

= exp

(
lim
n→∞ log

(
n∏

i=1

(
i

n
ca + n − i

n
cz

) i
n2

))

= exp

(
lim
n→∞

n∑

i=1

1

n

i

n
log

(
i

n
ca + n − i

n
cz

))
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= exp

(
1

ca − cz

∫ ca

cz

x − cz
ca − cz

log(x) dx

)

= exp

(
2c2z log(cz) − (ca − 3cz)(ca − cz) + 2ca(ca − 2cz) log(ca)

4(ca − cz)2

)
. (51)

Accordingly ζh2 =
√

1
ba

if ba = bz and otherwise

ζh2 = lim
n→∞

n∏

i=1

(
i

n

1

ba
+ n − i

n

1

bz

) i
n2

= exp

(
4babz − 3b2a − b2z + 2bz(2ba − bz) log(ba) − 2b2a log(bz)

4(ba − bz)2

)
, (52)

and

ζh3 = lim
n→∞

n∑

i=1

i

n2

(
i

n
ma + n − i

n
mz −

(
i

n
φa + n − i

n
φz

))2 (
i

n

1

ba
+ n − i

n

1

bz

)2

=
∫ 1

0
x

(
xma + (1 − x)mz −

(
i

n
φa + n − i

n
φz

))2 (
x

ba
+ 1 − x

bz

)2

dx

= 1

60b2ab
2
z

[
2babz(2m

2
a + m2

z + 2φ2
a + 2ma(mz − 2φa − φz) + 2φaφz + φ2

z − 2mz(φa + φz))

+ b2z (10m
2
a + m2

z + 10φ2
a + 4ma(mz − 5φa − φz) + 4φaφz + φ2

z − 2mz(2φa + φz))

+ b2a(m
2
a + 2m2

z + φ2
a + 2ma(mz − φa − φz) + 2φaφz + 2φ2

z − 2mz(φa + 2φz)))
]
. (53)

A.6 Notations and abbreviations

This list contains a selection of notations and abbreviations. Notations which are only
introduced and used in a short context are mostly not listed here.

Notation Description Introduction

Section 2

m Mode of the tolerance curve

b Breadth of the tolerance curve

c Area under the tolerance curve

φ Environmental state

f Tolerance curve (1)

wi Fitness of an individual (3)

gτ Fitness contribution of a phase with length τ during which the
parameters change linearly

(4), (20)
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Notation Description Introduction

w Fitness of the genotype (5), (45)

Section 3

m0, b0 Mode and breadth of the non-induced tolerance curve

m1, b1 Mode and breadth of the induced tolerance curve

s Phenotypic state

v0 Adaptation speed of the peak of the tolerance curve in the direc-
tion of the peak of the non-induced tolerance curve

v1 Adaptation speed of the peak of the tolerance curve in the direc-
tion of the peak of the induced tolerance curve

p Frequency of stress occurrence

t Duration of a stress event

φ Expected stress intensity

σφ Standard deviation of the stress intensities

Section 4

d0 Instantaneous model: transforming delay from the induced to the
non-induced phenotype

d1 Instantaneous model: transforming delay from the non-induced
to the induced phenotype

v Continuous model: adaptation speed of the peak of the tolerance
curve in either direction when v0 = v1

d Instantaneousmodel: transforming delay in either directionwhen
d0 = d1

pt Proportion of time stress is present. Product of p and t

Appendix A

mb(s) = ms , bs Mode and breadth of the tolerance curve at phenotypic state s (8)

ψ Stress intensity

t1, t2 Lengths of phases with constant environmental state

w̃(A) Genotype fitness contribution of the interval A of the time line
in the simplified scenario, with t1 ≤ 1

(11)

w̃(A : E) Same as w̃(A) but the individual times of birth are conditioned
according to E

w̃t1≤1(t1, t2, γ0) Genotype fitness in the simplified scenario with t1 ≤ 1 (42)

w̃t1>0(t1, t2, γ0) Genotype fitness in the simplified scenario with arbitrary t1 > 0 (43)

γ Environmental setting (9)

Φ(γ ) Environmental state as a function of the environmental setting (10)

A j [q j , q j+1[, j’th interval with alternating environmental setting
in [t1, 1[

(13)

k Number of intervals with alternating environmental setting in
[t1, 1[

(14)

q j j’th boundary point in [t1, 1[ between intervals with alternating
environmental setting, left boundary point of A j

(15)

γ (A j ) Environmental setting of the interval A j (16)

γ j Abbreviation for γ (A j )
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Notation Description Introduction

φ j Abbreviation for Φ(γ j )

ϑ(γ ) Adaptation rate of the phenotypic state in the environmental set-
ting γ

(17)

ϑ j Abbreviation for ϑ(γ j )

s(q j ) Phenotypic state at the point q j , abbreviation: s j (18)

δ(A j ) Time of phenotypic change in the interval A j , abbreviation: δ j (19)

A′
j [q ′

j , q
′
j+1[, j’th interval with alternating environmental setting

in [1, 1 + t1[. Attention: the A′
j can have length zero!

(24)

q ′
j j’th boundary point in [1, 1+ t1[ between intervals with alternat-

ing environmental setting, left boundary of A′
j

(25)

γ (A′
j ) Environmental setting of the interval A′

j (26)

γ ′
j Abbreviation for γ (A′

j )

φ′
j Abbreviation for Φ(γ ′

j )

ϑ ′
j Abbreviation for ϑ(γ ′

j )

s(q ′
j ) Phenotypic state at the point q ′

j , abbreviation: s
′
j (27)

δ(A′
j ) Time of phenotypic change in the interval A′

j , abbreviation: δ
′
j (28)

hτ Fitness contribution of a phase with length τ during which the
parameters change linearly and which is experienced up to on its
length uniformly distributed points

(31)
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