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1.1.  MOTOR FLEXIBILITY IS A KEY FEATURE OF THE 
HEALTHY NEUROMUSCULAR SYSTEM

In daily life we reach and move objects of different size, shape and weight to different locations. 
While the gross appearance of reaching movements is the same, its’ details are modified 
depending on the constraints to the movement (e.g., target location, shape, weight of objects) 
[1,2]. The gross shape of a prehension movement to a glass in an upright position as compared 
to it lying on a table is the same but the orientation of the hand slightly changes to grasp the 
glass. Similarly, when rising from a chair, the height of the chair and size of the support surface 
modify the trajectory of the lower and upper extremity joints but the global appearance of the 
sit-to-stand movement remains invariant. Even when we repeatedly reach to the same location 
small changes in initial body postures lead to different motions at the shoulder, elbow, and 
wrist joint but the trajectory of the hand is the same between repetitions. This ability to adapt to 
small changes in the constraints to movement and perform the same motor task with different 
motions at the joints reflects a key feature of human motor behavior: motor flexibility [3–7].  

This flexibility in motor behavior is possible because the number of possible joint motions is 
usually more than actually needed to perform reaching, sit-to-stand and other tasks of our daily 
life [3]. Consider for example the task of pressing a button on a table. The goal of this task is to 
keep the finger on a pre-defined position on the table. There are two dimensional constraints 
to the task goal, the x and y coordinates of the fingertip position on the table. We can keep the 
fingertip on the button even if we flex or extend our elbow by adjusting the shoulder, wrist and 
finger angle. Imagine now that only elbow and wrist flexion-extension was possible during the 
same button-pressing task. In this case the number of possible joint motions equals the number 
of constraints to the task goal, that is, two. Any change in shoulder or elbow angle will move 
the fingertip away from the button. Hence there is only one possible combination in shoulder 
and elbow angle, which brings the fingertip on the button. If we add again a joint motion at the 
shoulder, different combinations in shoulder, elbow and wrist angles can be used for the same 
fingertip position. This example illustrates that if the number of possible joint motions exceeds 
the number of constraints to the task goal, different coordination patterns between joints can be 
used to perform that task. When we reach and move objects in daily life there are usually more 
than seven joints in the arm, determining the three-dimensional position of the hand in space. 
Hence the number of possible joint motions, the degrees of freedom, is more than absolutely 
necessary. Due to this redundancy in the available joints there is an infinite range of movement 
possibilities to perform the same reaching task. The question arises which coordination patterns 
are selected from the many possibilities during performance. 

When humans perform voluntary movements, the goal of the task and rules of performance, 
the environment in which we move, and the characteristics of our body define how we can 
coordinate our joints to achieve the task goal [1,2]. When we reach for an object at a given 
location, the length of our arm segments in combination with the distance to the target, the 
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initial body posture and any interference in the environment, define which joint coordination 
patterns can be used to bring the hand to the target. These constraints to movement can be 
categorized into task and intrinsic constraints (adapted from Hu and Newell, 2011; Newell, 
1986). Task constraints are defined by the goal of the task, rules of performance and the 
environment in which we move. The movement distance, required time to reach the target and 
metabolic costs associated with the movement are examples of task constraints. Other task 
constraints are the weight of an object, the size of the target or any obstacle in the environment. 
Constraints associated with our body are defined as intrinsic constraints. The given segment 
length, available muscle strength, level of fatigue, joint range of motion and actual body posture 
are examples of intrinsic constraints. Importantly, the constraints to movement interact with 
each other and based on this interaction a given coordination pattern can be observed during 
performance [1,2,8]. 

Summarizing, redundant joint degrees of freedom characterize human voluntary movements, 
including daily tasks such as reaching and rising from a chair. Motor redundancy provides humans 
with flexibility to successfully perform upper and lower extremity voluntary movements under 
different intrinsic and task constraints. The main research question of this thesis was whether and 
if so how age-related changes in intrinsic constraints affect flexibility in joint coordination during 
reaching and sit-to-stand movements. The hypotheses are based on two motor control perspectives, 
the internal model approach and the principle of motor abundance. Based on these frameworks 
the thesis examines two competing hypotheses with regard to age-differences in motor flexibility. 
Based on the internal model approach, detailed in the third section, the central hypothesis posits 
that age-related declines in neuromuscular functions impair flexibility in joint coordination 
during reaching and sit-to-stand. Based on the principle of motor abundance, detailed in section 
4, the alternative hypothesis states that age-related deficits in intrinsic constraints facilitate the 
emergence of alternative coordination patterns leading to an increase in motor flexibility during 
old adults’ reaching and sit-to-stand performance.  

To test these hypotheses, we established age-differences in motor flexibility during repeated 
performance of challenging reaching and sit-to-stand tasks in four experimental studies 
(Chapter 2 – 5). We chose reaching and sit-to-stand tasks because these are fundamental 
activities of daily living, performed frequently under different task constraints.    

1.2.  HEALTHY AGING IMPAIRS NEUROMUSCULAR 
FUNCTIONS AND MOTOR PERFORMANCE

Healthy aging, the disease-free progression of life, affects functions of the central and peripheral 
neuromuscular system. Healthy old as compared to young adults have fewer and smaller muscle 
fibers resulting in 10% per decade decline in maximal voluntary force and power [9–15]. Age-
related degradation in connective tissue and articular cartilage leads to joint stiffening and 
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limitations in the available joint range of motion in which old adults can move [16,17]. Age-
related remodeling of motor units leads to an increased number of muscle fibers per motor 
unit impairing the old adults force coordination abilities [18–21]. Furthermore old adults have 
fewer and smaller afferent fibers[22], a reduced motor cortical inhibition [23–26], more white 
matter lesions[27–30] and impaired central nervous system connectivity [31–33]. This loss in 
functional and physiological degrees of freedom with aging has been associated with a general 
decline in old adults’ motor performance. Healthy old as compared to young adults perform 
reaching and sit-to-stand tasks slower and less smoothly, execute gross postural and fine finger 
movements less accurately, show impaired performance of bimanual motor tasks and are less 
able to adapt to systematic errors in new motor tasks [30,34–49]. The age-related deficits in 
intrinsic constraints and the decline in kinematic performance measures with aging motivates 
the idea that healthy aging also impairs flexibility in joint coordination. 

1.3.  HEALTHY AGING IMPAIRS FLEXIBILITY IN JOINT 
COORDINATION. AN INTERNAL MODEL APPROACH

The idea of a direct link between age-related deficits in neuromuscular functions and flexibility 
in joint coordination is in line with motor control theories such as the internal model approach 
[50–53] (Figure 1). The idea is that the neuromuscular system restricts the available degrees 
of freedom and chooses a specific coordination pattern for a given motor task. This unique 
coordination pattern is chosen to minimize the required effort associated with the task (e.g. 
metabolic costs) [50–54]. During movement inverse and forward models are used to minimize 
deviations from the desired joint trajectories in space. Internal models are neurophysiological 
structures which reside in distinct areas of the central nervous system such as the cerebellum 
[50,55–59].

Based on the internal model approach humans define a desired, optimal trajectory of 
consecutive shoulder, elbow and wrist positions before they start and move the hand in space 
[50] (Goal in Figure 1). Given the actual and desired joint positions inverse models are used 
to calculate the required inputs into the alpha-moto-neuronal pools at a given point along the 
movement path to achieve the desired muscle activity and joint trajectories in space. Based 
on these computations, motor commands are generated by the central nervous system (motor 
command generator) to activate the corresponding motor units. To generate adequate motor 
commands the central nervous system requires an estimate of the actual length, velocity and 
force of the muscles in the shoulder, elbow and wrist joint. This sensory information provides 
an estimate of the actual joint positions and state of our body in the environment (“belief 
about the state of our body” in Figure 1). Two distinct sources provide the central nervous 
system with this sensory information. First, central and peripheral feedback loops (e.g. muscle 
spindles and the cerebellum) measure the actual level of muscle activity, muscle length and 
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joint positions. However, measured sensory information is delayed in time and corrupted by 
noise. To compensate for the delayed and noisy feedback signals feedforward models are used. 
Feedforward models use information from the generated motor commands to predict the 
sensory consequences and expected change in muscle length and joint positions. The predicted 
sensory information is combined with the actually measured sensory information to provide 
an estimate about the actual state of our body and joint positions in space. Age-related changes 
in the neuromuscular system would impair the accuracy of the actual state of our body through 
feedforward models leading to an inaccurate estimate of the actual joint positions.

Figure 1. The internal model approach to movement control [50].

 

The age-related change in intrinsic constraints affects the relation between the generated motor 
commands and the sensory consequences. This change in input-output relation results in an 
increased discrepancy between expected and actually measured sensory consequences [33,59,60]. 
For example, old as compared to young adults have fewer motor units and the available motor 
units innervate a larger number of muscle fibers [18–21]. Activating an old, remodeled motor 
unit as compared to a healthy young motor unit at the same frequency would lead to a higher 
level of muscle activity and faster change in muscle length. This age-related change between 
generated motor commands and actual sensory consequences leads to inaccurate forward 
model predictions and inaccurate estimations about the actual state of the body. 

There might be two adaptation mechanisms which old adults could use to compensate for 
inaccurate estimations in the actual body positions through feedforward models. First, old 
adults might rely more on the measured sensory information [35,36,61,62]. However, measured 
sensory information is delayed in time and corrupted by noise. Therefore, more reliance on 
delayed and noisy feedback signals seems undesirable to improve accuracy in the estimation 
of the actual body positions during fast reaching movements. Alternatively, old adults might 
update existing forward models based on the age-related change in the relation between motor 
commands and sensory consequences. However, this adaptation process is probably impaired 
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as well by age-related dysfunctions in the cerebellum and a loss of central nervous system 
connectivity [22,26,32,33,55]. Hence, based on the internal model framework, we hypothesized 
that age-related deficits in neuromuscular functions impair the control of individual degrees of 
freedom and therefore flexibility in joint coordination during reaching, sit-to-stand and other 
motor tasks. Age-related deficits in motor flexibility impair reaching accuracy and sit-to-stand 
stability in daily life possibly leading to task failure and falls. 

Following this line of reasoning, recent studies comparing old and young adults’ motor flexibility 
during reaching, sit-to-stand, standing balance, walking and multi-finger force coordination 
tasks provide somewhat unexpected results [38,63–75]. Overall these studies report inconclusive 
findings on whether and if so how the age-related reductions in neuromuscular function might 
affect motor flexibility. Even for similar reaching tasks, studies reported opposing results. For 
example, Verrel et al. (2012 ) and Dutta et al (2013) reported less whereas Krüger et al (2013) 
reported greater and Xu et al. ( 2013 ) similar motor flexibility in old and young adults’ reaching 
behavior [38,63–65]. These studies imply that there is not a general decline in motor flexibility 
with aging. Instead, the inconclusiveness in previous studies might suggest that individual 
differences in the characteristics of the young and old adults’ neuromuscular system interacted 
with the details of the reaching tasks leading to individual and task specific age-differences in 
joint coordination patterns.   

The following paragraph will introduce the principle of motor abundance as an alternative to 
the internal model approach and provide a framework to predict how age-related changes in 
intrinsic constraints affect flexibility in joint coordination during reaching, sit-to-stand and 
possibly other motor tasks. 

1.4. THE PRINCIPLE OF MOTOR ABUNDANCE 

The principle of motor abundance assumes that having more degrees of freedom than absolutely 
necessary to perform a given motor task is an advantage [4,76]. Abundance means that there is 
something extra but that this extra is actually nice to have rather than needless (or redundant). 
The idea is that our neuromuscular system does not restrict a certain range of the available 
degrees of freedom by selecting a single coordination pattern. Instead, the neuromuscular 
system makes use of the many degrees of freedom to use a range of different but equivalent 
coordination patterns for the same movement [4,6,7,77]. Hence there are abundant rather than 
redundant degrees of freedom.

Having a range of movement possibilities for the same task is an advantage because it improves 
the neuromuscular systems’ capacity to maintain task success in case of an unexpected change 
in the actual constraints to movement or internal (e.g. noise) and external perturbations. 
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Imagine to place a full cup of coffee on a table. During this task, the horizontal position of the 
cup needs to be stabilized to prevent spilling content (content which is so relevant to finish a 
PhD). Imagine now that at a given point along the movement path an external perturbation 
leads to an undesired change in shoulder, elbow or wrist position (e.g. by another person). If we 
would have only one possible combination in joint positions to stabilize the horizontal position 
of the cup we could not adapt to the perturbation and spill the coffee. However, if we allow 
different coordination patterns to emerge while moving, the horizontal position of the cup 
can be stabilized against the perturbation through small coordinated adjustments among the 
shoulder, elbow and wrist joint. Hence, motor abundance allows us to safely and successfully 
perform reaching and sit-to-stand movements in daily life environments where the actual 
constraints to movement are unpredictable and frequently change. This idea of performance 
stability through flexibility might be interpreted in the context of a dynamical systems approach 
[1,2,8,78–81].

During fast reaching movements, the constraints of the task (e.g. target location) and our body 
(e.g. segment length) define the desired trajectory of the hand in space [1,2].  At each point along 
this movement path is a given joint range within which small changes in the shoulder, elbow and 
wrist positions do not affect the position of the hand in space (Figure 2). Within this solution 
space the shoulder, elbow and wrist joint co-vary and all possible joint combinations form 
equivalent motor solutions for the same task. During performance, the individual degrees of 
freedom converge to this solution space leading to joint coordination patterns which best satisfy 
the actual constraints to movement [1,2,8,78,79,82,83]. The details of the solution spaces evolve 
during performance based on the actual state of the moving body (e.g. level of muscle activity) 
and the constraints to movement. A fluent, goal-directed movement might be described as the 
transition between consecutive solution spaces [83]. This form of performance stability through 
flexibility allows the neuromuscular system to adjust individual joint positions in response to 
unexpected changes in movement constraints or small perturbations without compromising 
task success.

Based on this framework, the idea emerges that age-related deficits in intrinsic constraints (e.g., 
muscle strength) change the interaction between the actual constraints to movement leading 
to age-differences in motor flexibility. We hypothesized, that if age-related deficits in intrinsic 
constraints compromise stability of task important variables old as compared to young adults 
increase co-variation among the involved joints and employ a larger range of the available 
coordination patterns. Using a larger range of different coordination patterns for the same task 
would allow old adults to guarantee reaching and sit-to-stand stability in daily life environments 
despite deficits in neuromuscular functions.      

general introduction

1



522461-L-bw-Greve522461-L-bw-Greve522461-L-bw-Greve522461-L-bw-Greve
Processed on: 20-8-2018Processed on: 20-8-2018Processed on: 20-8-2018Processed on: 20-8-2018 PDF page: 16PDF page: 16PDF page: 16PDF page: 16

16

Figure 2. Goal equivalent coordination patterns.

Y

X

Within this pointing task there are three possible joint motions and two dimensional constraints to the task goal (x and y 
coordinates of the target). The same pointertip position can be achieved with different joint configurations (solid vs dashed 
segments). The solution space contains all joint configurations leading to the same pointertip position [6]. 

1.5. THE UNCONTROLLED MANIFOLD METHOD

Bernstein (1967) provided the first experimental evidence for the principle of motor abundance 
[3]. During his experiment Bernstein asked professional blacksmiths to repeatedly hit a chisel 
with their hammer. The idea was that if the neuromuscular system employs a unique optimal 
motor solution, these highly trained blacksmiths would have discovered this solution and use 
it during actual performance. However, Bernstein observed that trial-to-trial variability in the 
joints was relatively large while the trajectory of the hammer tip position was kept fairly constant 
between repetitions. The main conclusion of this observation was that the neuromuscular 
system does not employ unique optimal coordination patterns. Instead, individual joints co-
varied to stabilize the hammer tip at the desired trajectory in space.

Based on the findings from Bernstein in 1967 many experimental studies with more sophisticated 
experiments and analytical techniques followed and provided further evidence for the principle 
of motor abundance [5–7,82]. In 1995 the concept of the uncontrolled manifold (UCM) method 
was introduced to study flexibility in joint coordination during functional motor tasks [81]. 
When repeatedly performing the same reaching task, the UCM method makes it possible to 
decompose trial-to-trial variability in joint motions into those coordination patterns stabilizing 
the trajectory of the hand in space (coordination patterns within the solution space (VUCM) or 
goal equivalent variability (GEV)) and coordination patterns causing a deviation of the hand 
position away from the mean value (variability orthogonal to the solution space (VORT) or non-
goal equivalent variability (NGEV); Figure 3). Recall the button pressing example from the 
second paragraph. All combinations in joint positions not affecting the position of the fingertip 
would be attributed to GEV. Those joint configurations moving the fingertip away from the 
button would be attributed to NGEV. The amount of GEV reflects the extent to what our 
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neuromuscular system makes use of the available range of possible motor solutions to stabilize 
task important variables at the mean. NGEV reflects the extent to what the neuromuscular 
system employs coordination patterns leading to a change in task important variables from 
the mean value. Based on these definitions large values of GEV imply that the neuromuscular 
system has a larger capacity to stabilize task important variables in case of unexpected changes 
in the actual constraints to movement [5–7,82].

Figure 3. Variability components GEV and NGEV in UCM analyses.

Goal-equivalent Non goal-equivalent

Examples of goal equivalent (dashed black lines) and non-goal equivalent variability (dashed red lines) during reaching 
and sit-to-stand movements with the end-effector and whole body center of mass position (dark filled dot and grey dot) as 
performance variable of primary importance. 

The UCM method has been tested and elaborated in various methodological and experimental 
studies involving sit-to-stand, reaching, jumping, balance and multi-finger force coordination 
tasks [5,69,84–97]. For example, Scholz and Schöner (1999) showed that when healthy young 
adults repeatedly performed sit-to-stand tasks the lower and upper extremity joints co-varied 
to stabilize the whole-body center of mass position within the base of support (large GEV, 
low NGEV) [5]. The whole body center of mass position is the key variable, which needs to 
be controlled to during sit-to-stand movements [98]. Furthermore, UCM measures have been 
shown to be sensitive to changes in task constraints and external perturbations [99–103]. For 
example, when healthy young adults performed a bi-manual coordination task in addition to a 
standing balance task GEV increased more than NGEV to guarantee COM stability [99]. Hence, 
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the additional coordination constraint interacted with the actual constraints to movement 
leading to a compensatory increase in motor flexibility.   

In the current thesis we used the UCM method to establish whether and if so how age-related 
changes in the constraints to movement affect flexibility in joint coordination during reaching 
and sit-to-stand. We proposed that age-related deficits in task relevant neuromuscular functions 
lead to a compensatory increase in GEV during reaching and sit-to-stand tasks. There have 
been previous attempts to establish whether healthy old as compared to young adults differently 
employ flexibility in joint coordination [38,63–74]. However, these studies revealed inconclusive 
findings during even similar motor tasks and used rather simple motor tasks without changes in 
task constraints. We tested the hypothesis that healthy old adults employ larger motor flexibility 
when the actual constraints to movement challenge stability of task performance. During daily 
life, reaching and sit-to-stand tasks are performed under various accuracy, force and balance 
constraints. Therefore we manipulated accuracy, force and balance constraints during repeated 
sit-to-stand and reaching performance to establish age-differences in motor flexibility. 

1.6. OUTLINE OF THE THESIS

The first experiment in chapter 2 established how healthy young as compared to old adults 
made use of flexibility in joint coordination to stabilize the whole body center of mass position 
during repeated chair rises. Based on the acquired results we established whether healthy old 
as compared to young adults differently adapt flexibility in joint coordination to guarantee a) 
reaching accuracy under high accuracy and force demands (chapter 3 and 4) and b) center of 
mass stability during repeated chair rises under high force and balance demands (chapter 5). 
Chapter 6 provides a general discussion and conclusion of our findings. 
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