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Model reduction for linear delay systems using a delay-independent
balanced truncation approach

B. Besselink, A. Chaillet, N. van de Wouw

Abstract— A model reduction approach for asymptotically
stable linear delay-differential equations is presented in this
paper. Specifically, a balancing approach is developed on the
basis of energy functionals that provide (bounds on) a measure
of energy related to observability and controllability, respec-
tively. The reduced-order model derived in this way is again a
delay-differential equation, such that the method is structure
preserving. In addition, asymptotic stability is preserved and
an a priori bound on the reduction error is derived, providing a
measure of accuracy of the reduction. The results are illustrated
by means of application on an example.

I. INTRODUCTION

Models of engineering systems or physical phenomena

can often be represented in terms of dynamical systems

with time delays. Examples include models of machine

tool vibrations, control over communication networks, or

population dynamics, see the books [11], [15], [5] for an

overview. In addition, accurate models of such systems are

typically of high order, motivating the need for developing

model reduction techniques for delay differential equations.

This paper addresses this problem by developing a model

reduction technique for linear delay systems.

Methods for model reduction of finite-dimensional linear

systems are well developed (see [1], [2] for overviews) and

popular approaches are given by balanced truncation [16], [7]

and moment matching techniques via Krylov subspaces [6].

For systems with time delays (or, more generally,

infinite-dimensional systems), finite-dimensional approxima-

tions have been considered on the basis of Fourier series

[10], Padé approximations [9], or using the Hankel operator

[8]. An overview of such methods is given in [17].

Next, methods for model reduction of delay differential

equations have been developed by extending methods for

finite-dimensional systems. A moment matching approach

using Krylov methods was presented in [14]. Here, as before,

a finite-dimensional reduced-order model is obtained; as a

consequence, the delay structure is not preserved in the

reduction. Another perspective on moment matching for

systems with time delays is given in [19], where both

finite-dimensional and infinite-dimensional approximations
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are considered. As a class of reduced-order models is char-

acterized in [19], this has the potential to select a reduced-

order model that preserves asymptotic stability properties of

the original high-order delay differential equation.

An extension of balanced truncation towards systems with

delays is presented in [13], based on characterizing measures

of controllability and observability similar to those used

in balanced truncation for finite-dimensional systems. This

method preserves the delay-structure in the reduced-order

model, but asymptotic stability is not necessarily preserved.

The method in [20] does provide such guarantee and in

addition directly exploits reduction techniques for finite-

dimensional linear systems by decomposing the delay system

in a finite-dimensional part and an infinite-dimensional de-

lay operator. This method also guarantees a bound on the

reduction error. Finally, an alternative perspective is given in

[21], where the model reduction problem is formulated as a

rank-constrained optimization problem.

In this paper, a balancing approach for model reduction

of asymptotically stable delay systems is presented. This ap-

proach is based on computing bounds on energy functionals

that provide a measure of observability and controllability

and the use of these bounds in a balancing procedure. These

bounds take the form of Lyapunov-Krasovskii functionals

and hold regardless of the size of the delay, leading to

a delay-independent reduction procedure. In particular, this

reduction procedure features the following properties, which

form the main contributions of this paper. First, the reduction

is structure-preserving, i.e., the reduced-order model is again

in the form of a delay-differential equation, albeit with a

reduced set of equations. This allows for accurately capturing

the infinite-dimensional nature of the original high-order

delay system. Second, the reduced-order model is guaranteed

to be asymptotically stability and, third, an a priori error

bound is available that provides a measure of the accuracy

of the reduction.

The remainder of this paper is outlined as follows. The

problem setting is detailed in Section II, before the energy

functionals and their bounds are presented in Section III.

Section IV discusses the model reduction procedure and the

properties of the reduced-order delay system. An illustrative

example is given in Section V and conclusions are stated in

Section VI.

Notation: The field of real (complex) numbers is de-

noted by R (C). For a vector x ∈ Rn, |x| denotes its

Euclidean norm. Given a symmetric matrix X ∈ Rn×n,

X � 0 (X � 0) indicates that it is positive (semi-)definite.

The Banach space of continuous functions from an interval
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T ⊂ R into Rn is represented as C(T ,Rn). Similarly,

L2(T ,Rn) denotes the class of square integrable functions

from T into Rn.

II. PROBLEM SETTING

Consider the linear delay-differential equation

ẋ(t) = Ax(t) +Adx(t− τ) +Bu(t),
y(t) = Cx(t),

(1)

with x(t) ∈ Rn, input u(t) ∈ Rm, and output y(t) ∈ Rp

for all t ≥ t0. The initial condition for (1) is given by the

function segment ϕ ∈ C([−τ, 0],Rn), such that

x(t) = ϕ(t), ∀t ∈ [t0 − τ, t0]. (2)

Next, the function segment xt ∈ C([−τ, 0],Rn) defined as

xt(s) = x(t + s), s ∈ [−τ, 0] characterizes the state of (1)

at time t ≥ 0, such that the initial condition (2) can also be

written as xt0 = ϕ.

In this paper, model reduction of systems of the form (1) is

pursued under the assumption that (1) is asymptotically sta-

ble. Specifically, a model of the same form is sought that ap-

proximates the input-output behavior of (1), but whose state

ξt is in C([−τ, 0],Rk) with k < n. Note that, even though

this “reduced-order” state remains infinite-dimensional, this

is regarded as model reduction as the number of equations

in the first equation in (1) is reduced. In this setting, the

problem of finding a reduced-order delay-differential equa-

tion is considered that, first, preserves asymptotic stability

of the original high-order system and, second, satisfies an a

priori error bound in order to characterize the accuracy of

the reduction.

III. OBSERVABILITY AND CONTROLLABILITY

FUNCTIONALS

The model reduction approach developed in this paper

will be based on energy functions that respectively provide

a measure for observability and controllability of the delay

system. First, the observability functional is defined as a

measure of energy associated with observing the output

of (1).

Definition 1: The observability functional of (1) is the

functional Lo : C([−τ, 0],Rn) → R defined as

Lo(ϕ) =

∫ ∞

0

|y(t)|2 dt, (3)

where y(t) = Cx(t) = Cxt(0) is the output of (1) for initial

condition x0 = ϕ and zero input (u = 0).

It is clear that the observability functional exists (i.e., the

integral (3) is bounded) if the system (1) is asymptotically

stable. Next, a measure for the energy associated with

controlling (1) is given by the controllability functional.

Definition 2: The controllability functional of (1) is the

functional Lc : Dc → R defined as

Lc(ϕ) = inf

{∫ 0

−∞
|u(t)|2 dt

∣∣∣∣ u ∈ L2((−∞, 0],Rm),

lim
T→∞

x−T = 0, x0 = ϕ

}
, (4)

where xt is the solution of (1) for input u and Dc ⊂
C([−τ, 0],Rn) the domain of Lc, i.e., the collection of

function segments ϕ for which Lc(ϕ) is well-defined.

Remark 1: The definition of the energy functionals in

Definitions 1 and 2 is motivated by the energy functions that

form the basis of balanced truncation for finite-dimensional

linear systems, see, e.g., [16], [7], [1]. In this case, these

energy functions are characterized by the observability and

controllability Gramian, respectively. �
A characterization of the observability functional in Defini-

tion 1 is provided as follows.

Lemma 1: Consider the asymptotically stable delay-

differential equation (1). If there exist matrices Q � 0 and

Qd � 0 such that[
ATQ+QA+Qd + CTC QAd

AT
d Q −Qd

]
� 0, (5)

then the functional Eo : C([−τ, 0],Rn) → R defined as

Eo(ϕ) = ϕT(0)Qϕ(0) +

∫ 0

−τ

ϕT(s)Qdϕ(s) ds, (6)

satisfies

Eo(ϕ) ≥ Lo(ϕ) (7)

for all ϕ ∈ C([−τ, 0],Rn) and Lo as in Definition 1.

Proof: In order to prove the lemma, let xt be the

solution of (1) for initial condition x0 = ϕ and zero input

and consider Eo(xt). Note that, by (6), Eo(xt) can be written

as

Eo(xt) = xT(t)Qx(t) +

∫ t

t−τ

xT(s)Qdx(s) ds, (8)

with x(t+s) = xt(s), s ∈ [−τ, 0]. Then, time-differentiation

of Eo along trajectories of (1) yields

d
dt

{
Eo(xt)

}
=

[
x(t)

x(t− τ)

]T
Mo

[
x(t)

x(t− τ)

]
, (9)

with

Mo =

[
ATQ+QA+Qd QAd

AT
d Q −Qd

]
, (10)

and where the dynamics (1) is used to obtain (9) (recall that

u = 0). Employing the condition (5) in (9)–(10) leads to

d
dt

{
Eo(xt)

}
≤ −xT(t)CTCx(t) = −|y(t)|2, (11)

where y(t) = Cxt(0) is the output corresponding to the

trajectory xt. Integration of the result (11) over the interval

[0, T ] gives

Eo(xT )− Eo(x0) ≤ −
∫ T

0

|y(t)|2 dt, (12)

where it is recalled that x0 = ϕ. Moreover, due to asymptotic

stability, it holds that

lim
T→∞

Eo(xT ) = Eo(0) = 0, (13)
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such that (12) leads, for T → ∞, to

Eo(ϕ) ≥
∫ ∞

0

|y(t)|2 dt. (14)

This proves the desired result (7) by recalling the definition

of Lo in (3).

The controllability functional admits a similar characteri-

zation, as shown in the following lemma.

Lemma 2: Consider the delay-differential equation (1). If

there exist matrices P � 0 and Pd � 0 such that[
AP + PAT + Pd +BBT AdP

PAT
d −Pd

]
� 0, (15)

then the functional Ec : C([−τ, 0],Rn) → R defined as

Ec(ϕ) = ϕT(0)Rϕ(0) +

∫ 0

−τ

ϕT(s)Rdϕ(s) ds, (16)

with R = P−1 and Rd = RPdR, satisfies

Ec(ϕ) ≤ Lc(ϕ) (17)

for all ϕ ∈ Dc ⊂ C([−τ, 0],Rn) and Lc as in Definition 2.

Proof: In order to prove the lemma, the matrix R =
P−1 is defined, such that a congruence transformation of

(15) with a block-diagonal matrix blkdiag{R,R} leads to

the equivalent condition[
ATR+RA+Rd +RBBTR RAd

AT
d R −Rd

]
� 0, (18)

with Rd = RPdR. Next, application of the Schur comple-

ment shows that (18) (and, hence, (15)) is equivalent to⎡
⎣ATR+RA+Rd RAd RB

AT
d R −Rd 0

BTR 0 −I

⎤
⎦ � 0, (19)

which will form the basis for the remainder of the proof.

Consider a solution xt to (1) corresponding to an input

u ∈ L2((−∞, 0],Rn) and satisfying the conditions in (4),

i.e., limT→∞ x−T = 0 and x0 = ϕ. Since Ec(xt) can be

written as

Ec(xt) = xT(t)Rx(t) +

∫ t

t−τ

xT(s)Rdx(s) ds, (20)

with x(t + s) = xt(s), s ∈ [−τ, 0], it follows that time-

differentiation of Ec along the trajectories of (1) leads to

d
dt

{
Ec(xt)

}
=

⎡
⎣ x(t)
x(t− τ)
u(t)

⎤
⎦
T

Mc

⎡
⎣ x(t)
x(t− τ)
u(t)

⎤
⎦ . (21)

with

Mc =

⎡
⎣ATR+RA+Rd RAd RB

AT
d R −Rd 0

BTR 0 0

⎤
⎦ . (22)

The use of (19) in (21)–(22) leads to

d
dt

{
Ec(xt)

}
≤ |u(t)|2, (23)

after which integration over the interval [−T, 0] yields

Ec(x0)− Ec(x−T ) ≤
∫ 0

−T

|u(t)|2 dt. (24)

Letting T → ∞ and noting that limT→∞ Ec(x−T ) = 0, it

follows that

Ec(ϕ) ≤
∫ 0

−∞
|u(t)| dt, (25)

where the condition x0 = ϕ is used. Since the input function

u is chosen arbitrarily, the inequality (25) also holds for the

input u that achieves the minimization in (4). Consequently,

(25) implies the desired result (17), finalizing the proof.

The functional Eo in (6) provides an upper bound on the

observability functional Lo in Definition 1, whereas Ec in

(16) is a lower bound to the controllability functional Lc

in Definition 2. These bounds, rather than the observability

and controllability functionals themselves, will be used as

a basis for model reduction. Namely, it will be shown that

the structure of the bounds (6) and (16) is beneficial for the

development of a model reduction procedure that preserves

asymptotic stability and provides an a priori error bound.

Remark 2: Even though the controllability functional can

in general only be defined on a restricted domain Dc (see

Definition 2), its bound Ec in (16) can be defined for

all function segments in C([−τ, 0],Rn) (provided that (15)

holds). As the latter will be used as a basis for model

reduction, the reduced-order model will be well-defined. �
Remark 3: The functionals Eo in (6) and Ec in (16)

are similar to Lyapunov-Krasovskii functionals as often

exploited in stability analysis of time-delay systems, see [11].

In fact, if the matrices in (5) or (15) are negative definite

instead of merely negative semi-definite, they imply delay-

independent asymptotic stability of (1). �

IV. MODEL REDUCTION BY TRUNCATION

Before discussing the use of (bounds on) the observability

and controllability functionals in Definitions 1 and 2 in the

scope of model reduction, the general reduction procedure of

truncation is presented. To this end, a partitioned form of the

dynamics (1) is considered in which x(t) and the function

segments xt are partitioned as

x(t) =

[
x1(t)
x2(t)

]
, xt =

[
x1,t

x2,t

]
, (26)

with x1(t) ∈ Rk, x1,t ∈ C([−τ, 0],Rk) and k < n. The

corresponding partitioning of the system matrices yields

A =

[
A11 A12

A21 A22

]
, Ad =

[
Ad,11 Ad,12

Ad,21 Ad,22

]
, B =

[
B1

B2

]
, (27)

and C = [C1 C2 ]. Using the partitioning (26), (27), a

reduced-order approximation of (1) can be obtained by

truncation as

ξ̇(t) = A11ξ(t) +Ad,11ξ(t− τ) +B1u(t),
ŷ(t) = C1ξ(t),

(28)
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with ξ(t) ∈ Rk for each t and function segments ξt ∈
C([−τ, 0],Rk). Here, ξ(t) provides an approximation of

x1(t) in the partitioned coordinates (26).

The following property holds for the observability func-

tional of the reduced-order system (28).

Lemma 3: Let the condition (5) be satisfied for symmetric

matrices Q � 0 and Qd � 0 of the form

Q =

[
Q1 0
0 Q2

]
, Qd =

[
Qd,11 Qd,12

Qd,21 Qd,22

]
. (29)

Then, the observability functional L̂o of the reduced-order

system (28) exists and the functional Êo : C([−τ, 0],Rk) →
R given as

Êo(ϕ̂) = ϕ̂T(0)Q1ϕ̂(0) +

∫ 0

−τ

ϕ̂T(s)Qd,11ϕ̂(s) ds, (30)

satisfies Êo(ϕ̂) ≥ L̂o(ϕ̂) for all ϕ̂ ∈ C([−τ, 0],Rk).
Proof: Since the matrices Q and Qd in (29) are such

that (5) holds, it follows that
[
T 0
0 T

]T[
ATQ+QA+Qd + CTC QAd

AT
d Q −Qd

][
T 0
0 T

]
� 0

(31)

for any matrix T . After choosing T = [ Ik 0 ]T, it can be

checked by using the partitioning (27) that the left-hand side

of (31) provides an inequality of the form (5) for the reduced-

order system (28). Then, it follows from (12) in the proof of

Lemma 1 that, for all T ≥ 0,

Êo(ϕ̂) ≥
∫ T

0

∣∣ŷ(t)∣∣2 dt+ Êo(ξT ), (32)

where ξt is the solution of (28) for ξ0 = ϕ̂ and for u = 0. As

Êo(ϕ̂) is well-defined (i.e., bounded), it follows after taking

the limit for T → ∞ that L̂o exists and that the bound

Êo(ϕ̂) ≥ L̂o(ϕ̂) for all ϕ̂ ∈ C([−τ, 0],Rk).
The counterpart of Lemma 3 for the controllability func-

tional is given as follows.

Lemma 4: Let the condition (15) be satisfied for symmet-

ric matrices P � 0 and Pd � 0 of the form

P =

[
P1 0
0 P2

]
, Pd =

[
Pd,11 Pd,12

Pd,21 Pd,22

]
. (33)

Then, the functional Êc : C([−τ, 0],Rk) → R given as

Êc(ϕ̂) = ϕ̂T(0)R1ϕ̂(0) +

∫ 0

−τ

ϕ̂T(s)Rd,11ϕ̂(s) ds, (34)

with R1 = P−1
1 and Rd,11 = R1Pd,11R1 satisfies Êc(ϕ̂) ≤

L̂c(ϕ̂) for all ϕ̂ ∈ D̂c ⊂ C([−τ, 0],Rk). Here, L̂c is the

controllability functional for the reduced-order system (28)

and D̂c the domain on which it is well-defined.

Proof: The proof is similar to the first part of the proof

of Lemma 3 and is omitted for the sake of brevity.

The results of Lemmas 3 and 4 thus state that the ob-

servability and controllability functionals of a reduced-order

system obtained by truncation can be bounded by relevant

parts of the energy functionals of the original system (1)

when the matrices Q and P have a suitable block-diagonal

form, see (29) and (33). Even though these results hold for

any matrices Q and P satisfying this block-diagonal form,

a more specific diagonal form for these matrices is assumed

in the remainder of this section. This leads to the following

definition.

Definition 3: A realization (1) is said to be balanced if

there exist matrices Q � 0, Qd � 0 satisfying (5) and

matrices P � 0, Pd � 0 satisfying (15) such that

Q = P = Σ :=

⎡
⎢⎢⎢⎢⎣

σ1Im1
0 · · · 0

0 σ2Im2

. . .
...

...
. . .

. . . 0
0 · · · 0 σqImq

⎤
⎥⎥⎥⎥⎦ (35)

with σi > σi+1 > 0, i ∈ {1, . . . , q − 1} and
∑q

i=1 mi = n.

The following standard result guarantees the existence of

such balanced realization.

Lemma 5: Let there exist matrices Q � 0 and Qd � 0
such that (5) holds and matrices P � 0 and Pd � 0 such

that (15) holds. Then, there exists a change of coordinates

x(t) = Tz(t) such that the realization given by the new

coordinates is balanced, i.e., the nonsingular matrix T can

be chosen such that TTQT = T−1PT−T = Σ, with Σ as

in (35).

Proof: The existence of such matrix T follows from

standard results in linear algebra on simultaneous diagonal-

ization (e.g., [12]). This result also forms the foundation of

balancing for finite-dimensional linear systems, see [1].

When truncation is applied for asymptotically stable delay

systems in a balanced realization as in Definition 3, this

stability property is preserved. This result is stated next.

Theorem 6: Let the asymptotically stable system (1) be in

a balanced realization and consider the reduced-order delay-

differential equation (28) obtained by truncation for k such

that k =
∑r

i=1 mi for some r > 0. Then, the reduced-order

system is asymptotically stable.

Proof: This result can be proven by exploiting ideas in

the proof of stability preservation for balanced truncation of

finite-dimensional linear systems originally shown in [18],

see also [4]. Details are omitted.

Moreover, for truncation of a balanced realization, the

following error bound holds.

Theorem 7: Let the asymptotically stable system (1) be in

a balanced realization and consider the reduced-order delay-

differential equation (28) obtained by truncation for k such

that k =
∑r

i=1 mi for some r > 0. Then, for any common

input function u ∈ L2([0,∞),Rm) and initial conditions

ϕ = 0 and ϕ̂ = 0 for (1) and (28), respectively, their output

trajectories satisfy the error bound∫ T

0

|y(t)− ŷ(t)|2 dt ≤ ε2
∫ T

0

|u(t)|2 dt (36)

for all T ≥ 0 and where the error bound (gain) ε is given as

ε = 2

q∑
i=r+1

σi, (37)
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with σi as in (35).

Proof: The proof can be found in Appendix A.

The results in Theorems 6 and 7 thus suggest a model

reduction procedure in which, first, solutions to (5) and (15)

are sought. Second, the balancing transformation of Lemma 5

is employed to obtain a balanced realization (see, e.g., [1] for

an explicit procedure to compute T ) and finally, truncation

is applied to obtain a reduced-order model of the form (28).

This reduced-order model is then of the same form as (1),

is asymptotically stable and satisfies the a priori error bound

(36) which has a similar structure as the error bound for

balanced truncation of finite-dimensional linear systems.

Remark 4: An alternative approach towards balanced

truncation of delay systems is given in [13], where infinite-

dimensional generalizations of the observability and control-

lability Gramian for finite-dimensional systems are exploited.

Then, relevant finite-dimensional parts of these Gramians

are selected to compute a coordinate transformation x(t) =
Tz(t) that diagonalizes these parts. However, this approach

does not lead to reduced-order delay systems that preserve

asymptotic stability and satisfy an a priori bound on the

reduction error as in the current paper. �

V. ILLUSTRATIVE EXAMPLE

To illustrate the reduction procedure developed in Sec-

tion IV, the model of a heated rod discussed in [14] is

considered. The model is a partial differential equation of

the form

∂v

∂t
(x, t) =

∂2v

∂x2
(x, t)

+ a0(x)v(x, t) + a1(x)v(π − x, t− 1), (38)

with v(x, t) the temperature of the rod at location x ∈ [0, π]
at time t, satisfying the boundary conditions v(0, t) =
v(π, t) = 0. The functions a0 and a1 are given as a0(x) =
−2 sin(x) and a1(x) = 2 sin(x), respectively. Discretization

in space leads to an asymptotically stable delay-differential

equation of the form (1) with x(t) ∈ Rn, n = 35 after

choosing the input and output matrices as B = CT = 1√
n
1n,

where 1n ∈ Rn is a vector of all ones. Thus, the input and

output can respectively be interpreted as a uniform heating

of the road and its average (in space) temperature.

To derive the reduced-order models, solutions to (5) and

(15) are sought that minimize the trace of Q and P , respec-

tively. Using these matrices, the coordinate transformation of

Lemma 5 is computed, after which truncation to order k = 1
leads to the reduced-order model

ξ̇(t) = −2.69 ξ(t) + 1.65 ξ(t− 1)− 0.93u(t),

ŷ(t) = −0.93 ξ(t).
(39)

This model can be checked to be asymptotically stable, as

guaranteed by Theorem 6. Moreover, according to Theo-

rem 7, the error bound (36) holds with ε = 0.012.

A comparison of the frequency response functions of the

high-order and reduced-order delay-differential equations is

depicted in Figure 1, indicating a good approximation. This

is confirmed by the magnitude of the error in Figure 2, which

10−1 100 101 102 103
10−3

10−2

10−1

100

ω [rad/s]

|G
|

G

Ĝ

Fig. 1. Magnitude of the frequency response functions G and Ĝ of the
discretized model of the heated rod (38) and the reduced-order approxima-
tion (39), respectively. Here, G(s) = C(sI−A−Ade

−sτ )−1B and Ĝ is
defined similarly.
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−

Ĝ
|

Fig. 2. Magnitude of the frequency response function of the error G− Ĝ,
with G and Ĝ the transfer functions as in Figure 1. The error bound is
depicted as the dashed gray line.

also shows that the error bound is not conservative for this

example. Finally, it is noted that the scalar reduced-order

model (39) accurately captures the repeated resonances in

the frequency response function. This behavior cannot be

obtained by a finite-dimensional approximation of low-order,

indicating the importance of preserving the delay-structure in

reduction.

VI. CONCLUSIONS

A structure-preserving model reduction procedure for

delay-differential equations is presented in this paper, based

on the definition of energy functionals that characterize the

energy associated with the output and input of the model. A

balancing procedure on the basis of these energy functionals

is shown to lead to a reduced-order delay-differential equa-

tion for which asymptotic stability is preserved. In addition,

an a priori error bound is available.

Future work will focus on a delay-dependent approach,

which could potentially lead to better reduced-order models

if the value of the delay is known.

APPENDIX A. PROOF OF THEOREM 7

The proof is inspired by a construction in [3]. Following

this approach, a one-step reduction is considered first. Here,

the state components corresponding to σq are discarded by

truncation, such that k = n −mq , with mq the multiplicity

3797



of σq . In this case, the observability and controllability

functionals can be written (using a slight abuse of notation)

in partitioned form as

Eo(ϕ1, ϕ2) = ϕT
1 Q1ϕ1 + ϕT

2 Q2ϕ2

+

∫ 0

−τ

[
ϕ1(s)
ϕ2(s)

]T
Qd

[
ϕ1(s)
ϕ2(s)

]
ds (40)

and

Ec(ϕ1, ϕ2) = ϕT
1 R1ϕ1 + ϕT

2 R2ϕ2

+

∫ 0

−τ

[
ϕ1(s)
ϕ2(s)

]T
Rd

[
ϕ1(s)
ϕ2(s)

]
ds, (41)

respectively. Here,

Q1 = R−1
1 = blkdiag{σ1Im1

, . . . , σq−1Imq−1
}, (42)

Q2 = R−1
2 = σqImq

, (43)

where the relation P = R−1 is used (see Lemma 2) is

used. On the basis of the partitioned energy functionals, the

functional V is introduced as

V (ϕ1, ϕ2, ϕ̂) = Eo(ϕ1 − ϕ̂, ϕ2) + σ2
qEc(ϕ1 + ϕ̂, ϕ2), (44)

where ϕ1 ∈ C([−τ, 0],Rk), ϕ2 ∈ C([−τ, 0],Rn−k), and

ϕ̂ ∈ C([−τ, 0],Rk). In the remainder of this proof, the value

of V (x1,t, x2,t, ξt) will be evaluated, i.e., the evolution of V
along trajectories (x1,t, x2,t) of the delay-differential equa-

tion (1) and ξt of reduced-order delay-differential equation

(28). Specifically, by exploiting the characterizations of the

observability and controllability functionals in Lemmas 1

and 2 for the partitioned form (27), it can be shown that

d
dt

{
V (x1,t, x2,t, ξt)

}
≤ −

∣∣y(t)−ŷ(t)
∣∣2 + (2σq)

2|u(t)|2, (45)

along trajectories of (1) and (28). Here, the fact that a one-

step reduction is considered is crucial to obtain this result,

in particular the relation (43). Integration of (45) over the

interval [0, T ] yields

V (x1,T , x2,T , ξT )− V (x1,0, x2,0, ξ0)

≤ (2σq)
2

∫ T

0

|u(t)|2 dt−
∫ T

0

∣∣y(t)− ŷ(t)
∣∣2 dt, (46)

where it is noted that V (x1,0, x2,0, ξ0) = 0 due to the choice

of zero initial conditions and the structure of V in (44).

Moreover, V (x1,t, x2,t, ξt) ≥ 0 for all (x1,t, x2,t, ξt), which

gives the desired result (36) and (37) for k = n−mq .

To prove the result (36) and (37) for arbitrary order k < n
(according to the multiplicities mi of the parameters σi in

(35)), it is recalled that Lemmas 3 and 4 show that the energy

functionals for a reduced-order delay-differential equation

of arbitrary order are bounded by the relevant parts of the

partitioned energy functionals (40) and (41) of the high-

order system. As such, the procedure discussed above can

be repeated to obtain a reduced-order model for arbitrary k,

where the result (36) and (37) follows from application of

the triangle inequality.
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