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A Suboptimality Approach to
Distributed H, Optimal Control

Junjie Jiao * Harry L. Trentelman * M. Kanat Camlibel *

* Bernoulli Institute for Mathematics, Computer Science and Artificial
Intelligence, University of Groningen, Groningen, 9700 AV, The
Netherlands (e-mail: {j.jiao, h.l.trentelman, m.k.camlibel} @rug.nl).

Abstract: This paper deals with the distributed Ho optimal control problem for linear
multi-agent systems. In particular, we consider a suboptimal version of the distributed s
optimal control problem. Given a linear multi-agent system with identical agent dynamics, an
associated Ho cost functional, and a desired upper bound for the cost, our aim is to design a
distributed diffusive static protocol such that the protocol achieves state synchronization while
the associated cost is smaller than the given upper bound. To that end, we first analyze the Ho
performance of linear systems and then apply the results to linear multi-agent systems. Based
on these results, two design methods are provided to compute such a suboptimal distributed
protocol. For each method, the expression for the local control gain involves a solution of a
single Riccati inequality of dimension equal to the dimension of the individual agent dynamics,
and the smallest nonzero and the largest eigenvalue of the Laplacian matrix.

© 2018, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.
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1. INTRODUCTION

The design of distributed protocols for multi-agent systems
has received extensive attention in the past decade (Olfati-
Saber and Murray (2004)). This increase in attention is
partly due to the broad range of applications of multi-
agent systems, e.g. formation control (Oh et al. (2015)),
intelligent transportation systems (Besselink et al. (2016)),
and smart grids (Dorfler et al. (2013)). One of the chal-
lenging problems in the context of multi-agent systems
is to develop optimal distributed diffusive protocols to
minimize given cost performances, while the agents of the
network reach a common goal, e.g. state synchronization.
The difficulties of designing such optimal distributed diffu-
sive protocols are due to the structural constraints on the
communication among these agents, that is, each agent
can only receive information from certain other agents.
Therefore, in general, optimal distributed control problems
are non-convex and difficult to solve.

To overcome this problem, much effort has been devoted to
the design of suboptimal distributed protocols for multi-
agent systems. In Borrelli and Keviczky (2008), the au-
thors established a design method to compute suboptimal
distributed stabilizing controllers with respect to a global
linear quadratic cost functional, which contains terms that
penalize the states and inputs of each agent and also the
relative states between each agent and its neighboring
agents. Later on, an inverse optimal control problem was
addressed in Movric and Lewis (2014). In that paper, the
authors showed that there exists a global optimal synchro-
nizing controller if the weighting matrices of the linear
quadratic cost functional are chosen to be of a certain

* The work of Junjie Jiao was supported in part by China Scholar-
ship Council (CSC).

special form. For other papers related to distributed linear
quadratic optimal control, see also Mosebach and Lunze
(2014), Nguyen (2017) and Jiao et al. (2018).

On the other hand, there has been some work on the design
of structured stabilizing controllers for large-scale systems.
In Rotkowitz and Lall (2006), the aim was to design opti-
mal decentralized controllers, subject to some constraints
on the controller structure, to minimize the closed-loop
norm of a feedback system. The authors showed that if the
constraints on the controller structure have the property
of quadratic invariance, the solution of such problems
can be computed efficiently via convex programming. In
more recent work, Fazelnia et al. (2017) studied the dis-
tributed optimal problem for linear discrete-time systems.
The authors showed that the problem can be relaxed to a
semidefinite program, and a globally optimal distributed
controller can be obtained if the semidefinite program
relaxation has a rank one solution. In Fattahi et al. (2018),
the authors derived a condition under which, given a
optimal centralized controller, there exists a suboptimal
distributed controller whose state and input trajectories
are close to those of the closed-loop system by using this
centralized controller.

All the existing work mentioned above deals with finding
suboptimal distributed protocols whose performance is
very close to being optimal, or to find distributed optimal
protocols for certain special cost functionals. In the present
paper, however, we want to find a suboptimal distributed
diffusive static protocol for linear multi-agent networks
such that the associated cost functional is smaller than
an, a priori given, desired tolerance (upper bound). We
consider a group of identical agents whose dynamics is rep-
resented by a finite dimensional linear system. In addition,
a connected, simple, undirected weighted graph is given,

2405-8963 © 2018, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.
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representing the communication between these agents. By
interconnecting these agents using a distributed diffusive
static protocol, we further introduce an Hs cost functional
that penalizes the Lo-norm of the impulse response matrix
of the network from the disturbance input to a network
output whose components are the weighted differences
between the outputs of the individual agent and their
neighbors. Our aim is to design a distributed diffusive
static protocol that achieves state synchronization and
guarantees the associated cost to be smaller than the given
upper bound.

The outline of this paper is as follows. Section 2 pro-
vides some notation and preliminaries on graph theory.
In Section 3, we formulate the suboptimal distributed
Ho control problem for linear multi-agent systems. We
then present the analysis and design of suboptimal H,
control for general linear systems in Section 4, providing
necessary results for treating the suboptimal distributed
‘Ho control problem. In Section 5, we deal with the subop-
timal distributed Hs control problem for linear multi-agent
systems. Finally, Section 6 concludes this paper.

2. PRELIMINARIES
2.1 Notation

We denote by R the field of real numbers. The linear
space of real column vectors is denoted by R™ and the
space of real matrices with dimension m x n is denoted
by R™". Let 1,, € R™ denote the all-ones vector. The
transpose of a vector x and matrix X are denoted by z"
and X7, respectively. The inverse of a square matrix X is
denoted by X~!. The identity matrix of dimension n xn is
denoted by I,,. For a given symmetric matrix P, we write
P > 0 if it is positive definite and P > 0 if it is positive
semidefinite. The trace of a square matrix A is denoted by
tr(A). A matrix is called Hurwitz if all its eigenvalues have
negative real parts. We denote by diag(dy,ds,...,d,) the
n x n diagonal matrix with di,ds,...,d, on the diagonal.
The Kronecker product of two matrices A € R™™ and
B € RP*? is denoted by A ® B and it has the properties
that (z4®B)T = AT®B" and (Al ®Bl)(A2®BQ) =A1A®
B1 By whenever the involved matrix multiplications are
legitimate.

2.2 Graph Theory

A weighted undirected graph is represented by G =
(V,E,A), where V = {1,2,...,N} is the node set, £ is
the edge set, and A = [a;;] is the adjacency matrix with
nonnegative elements. The edge set £ of G is a set of
unordered pair {7, j} of distinct nodes i and j of G, and
we have that a;; > 0 whenever there is an edge between
distinct nodes ¢ and j. In this paper, we consider simple
graphs, i.e. the graphs have no self-loops and hence a;; =0
for all 7. Given a simple weighted undirected graph G,
the degree matrix of G is the diagonal matrix denoted
by D = diag(di,do,...,dy) with d; = ¥, a;;. Subse-
quently, we define the Laplacian matrix by £ = D - A. The
Laplacian matrix £ of an undirected graph is a positive
semi-definite symmetric matrix and has real nonnegative
eigenvalues.

A weighted undirected graph is called connected if for each
pair of nodes i and j there exists a path from i to j.
Furthermore, G is connected if and only if £ has a simple
eigenvalue 0. In that case, there exists an orthogonal
matrix U such that UTLU = A = diag(0, s, ..., Ay) with
0 =X <Ay < < Ay. For a connected, simple weighted
undirected graph G, let e, eo,...,ep denote the edges of
G, we define the incidence matrix R € RV*M ag
1, ifex={i,j} and i > j,
R =[rir], where ry, = { -1, ifex = {i,j} and i < j,

0, otherwise,
fori,j=1,2,...,N,i#jand k=1,2,..., M. Correspond-
ing to the incidence matrix R, we also define the matrix
as an M x M diagonal matrix, where w; is the weight on
the edge ¢ for ¢ = 1,2,..., M. The relation between the

Laplacian matrix and the incidence matrix is captured by
L =RWRT. See also Godsil and Royle (2013).

W = diag(wy,ws, . ..

3. PROBLEM FORMULATION

In this paper, we consider a multi-agent system consisting
of N agents with identical dynamics. The interconnection
topology among the agents is assumed to be represented
by a connected, simple undirected weighted graph with
associated Laplacian matrix £. The dynamics of agent ¢ is
represented by the following continuous-time linear-time-
invariant (LTT) system

.Tl(t) = A.’L‘l(t) + Bui(t) + Edi(t)7

Zz(t) = Cl‘i(t) + Dui(t),
where x; € R, u; € R™, z; € RP and d; € R? are the state,
the coupling input, the output and the external distur-
bance input of the ith agent, respectively. The matrices A,
B, C, D and F have suitable dimensions. We assume that
the pair (A, B) is stabilizable. In this paper, we consider
the case that the agents (2) are interconnected by means
of a distributed diffusive static protocol of the form

i=1,2,...,N (2

N
ui:KZaij(mj—xi), i=172,...,N, (3)
j=1
where K € R™*" is a feedback gain to be designed.
Denote the aggregate vectors as
= (x],2y,...,xn)" e R™ w=(u],ul,... ul)" eR™Y,
z=(2],29,...,25) € RPN d=(d],d},...,dy)" e R,
We can then write system (2) in compact form as

T = (IN ®A)x+ (IN ®B)u+ (IN ®E)d,

2= (Iy @ C)z+ (In ® D)u, )
the protocol (3) is now of the form
u=(L®K)x. (5)

Foremost, we want our protocol to achieve state synchro-
nization for the overall network. This is defined as follows.

Definition 1. The protocol (5) is said to achieve state
synchronization if, whenever the disturbace input is equal
to zero, i.e. d = 0, then for all i = 1,2,..., N we have
z;i(t) —x;(t) > 0 as t > oo.

The optimal distributed Hs control problem is to minimize
a given Ho cost functional for multi-agent system (4)
over all protocols (5) that achieve state synchronization.
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Note that in the context of distributed control for multi-
agent systems, we are interested in the differences of the
state and output values of the agents in the controlled
network. Observe also that the differences of the state and
output values of communicating agents are captured by
the incidence matrix R of the underlying graph. Therefore,
we define a new output variable as
(=(W3:R ®1,)z

with ¢ = ((],¢3,...,¢5,)" € RPM | where W is the weight
matrix given by (1). Thus, the output ( reflects the
weighted disagreement between the outputs of the agents
in accordance with the weights of the edges connecting

these agents. Subsequently, we have the following in-
put/state/output model

T = (IN®A)I+ (IN ®B)u+ (IJ\]@E)d7

(=(W?R"®C)z+(W?R" & D)u.
Next, by substituting protocol (5) into equations (6), we
obtain the following equations for the controlled network

t=(IN®A+L®BK)x+ (Iy® E)d,
(=(W?*R'®C+W?R"L®DK)z.
Denote A := IN® A+L®BK,E = Iy®E,C:=WiR ®C+
W2R"L&DK. The impulse response from the disturbance

d to the output ¢ is then given by Tk(t) = CeAtE.
Subsequently, we define the associated Hs cost functional

o J(K) = fo e [T (1) T (1)) dt. (7)

Since the protocol (5) has a special form which contains
the Kronecker product of the to be designed feedback gain
K with the given Laplacian matrix £, the distributed
Ho optimal control problem is non-convex, and therefore
difficult to solve in general. Therefore, instead of trying to
solve the distributed H, optimal control problem itself, we
will address a suboptimal version of this problem, i.e., we
want to design a state synchronizing, distributed diffusive,
static protocol such that the associated cost is smaller
than an a priori given upper bound. More concretely, the
problem we want to address is the following:

(6)

Problem 1. Consider multi-agent system (4), with inter-
connection topology among the agents represented by a
connected, simple undirected weighted graph with asso-
ciated Laplacian matrix £, together with cost functional
J(K) given by (7). Let v > 0 be a given tolerance. Our
aim is to design a matrix K € R™™ such that the dis-
tributed diffusive static protocol v = (£ ® K)x achieves
state synchronization and J(K) <.

Before we address Problem 1, we will first briefly discuss
the suboptimal #Hs control problem for general linear
systems, in that way collecting the required preliminary
results to treat the actual suboptimal distributed o
control problem for multi-agent systems. This will be the
subject of the next section.

4. SUBOPTIMAL H, CONTROL

In this section, we consider the suboptimal Hs control
problem for linear systems. We will first analyze the Ho
performance of a given system with disturbance inputs.
Subsequently, we will discuss how to design suboptimal

protocols for a linear system with control inputs and
disturbance inputs.

4.1 Ho Performance Analysis with Disturbance Inputs

In this subsection, we will analyze the Ho performance
for systems with disturbance inputs. More specifically, we
consider the following linear input/state/output system

i(t) = Ax(t) + Ed(t), ®)

2(t) = Cx(t)
where x € R™ represents the state, d € R? the disturbance
input and z € RP the output. The matrices A, C' and F
have suitable dimensions. The impulse response matrix
of system (8) from the disturbance d to the output z is
T(t) = CeE. The associated Hs performance is given by

J- [0 Tt [TT()T(1)] dt 9)

which measures the performance of system (8) as the
square of the Lo-norm of its impulse response matrix. Note
that performance (9) is finite if the system is internally
stable, i.e., A is Hurwitz. Our aim is to find conditions such
that the performance (9) is smaller than a given upper
bound. For this, we have the following lemma. See also
Skelton et al. (1997) or Sato and Liu (1999).

Lemma 2. Consider system (8) with associated perfor-
mance (9). The performance is finite if A is Hurwitz. In
that case, we have
J=tr(E'YE) (10)

where Y is the unique positive semidefinite solution of

ATY +YA+C'C =0. (11)
Alternatively,
J =inf{tr (E"PE) | P>0 and A"P+PA+C"C <0}. (12)

For a proof of Lemma 2, see the proof of Theorem 4.6.2 in
Skelton et al. (1997).

The following theorem now establishes a necessary and
sufficient condition (Iwasaki et al. (1994)), such that the
system (8) is stable and, for a given upper bound 7 > 0,
the performance (9) satisfies J <.
Theorem 3. Consider system (8) with associated perfor-
mance (9). Given v > 0. Then A is Hurwitz and J < v if
and only if there exists a positive semidefinite matrix P
satisfying
ATP+PA+C"C <0,
tr (E"PE) <.

Proof. (<) Let P > 0 satisfy (13). Then ATP + PA < 0.
Note also that P > 0, which implies that A is Hurwitz. If
P >0 also satisfies (14), then it follows from Lemma 2 that

J <tr (ETPE') <.

(=) If Ais Hurwitz and J < 7, it follows again from Lemma
2 that there exists a positive semidefinite solution P to (13)
and (14) such that J < tr (ETPE) <A. o

4.2 Suboptimal Ho with Control and Disturbance Inputs

In this subsection, we will discuss the suboptimal s
control problem for linear systems with control inputs



Junjie Jiao et al. / IFAC PapersOnLine 51-23 (2018) 154-159 157

and disturbance inputs. More specifically, we consider the
linear input/state/output system
z(t) = Az(t) + Bu(t) + Ed(t),
2(t) = Cx(t) + Du(t),
where x € R™ represents the state, u € R™ the control
input, z € R? the output, and d € R? the disturbance input.
The matrices A, B, C, D and E have suitable dimensions.
We assume that the pair (A, B) is stabilizable. Using the
static state feedback

(15)

u=Kzx (16)
yields the closed-loop system
t=(A+BK)zx+ Ed, (17)

z=(C+DK)x.

We measure the performance of system (17) by considering
the square of the Lo-norm of its impulse response matrix.
Therefore, we define the associated Hs cost functional as

J(K) = fo e [T (1) T (1)) dt (18)

where Tk (t) = (C + DK )e(A*BKtE is the closed-loop im-
pulse response matrix of system (17) from the disturbance
input d to the output z. Let v > 0 be a given upper bound
for the cost J(K). We are interested in finding a static
state feedback of the form (16) such that A+BK is Hurwitz
and the associated cost is smaller than the given upper
bound 7, i.e. J(K) <.

The following theorem yields a sufficient condition for
the existence of such a static state feedback and how to
compute one.

Theorem 4. Consider system (15) with associated cost

functional (18). Let v > 0. Assume that the pair (4, B)

is stabilizable. Assume that D'C = 0 and D'D = I,,.

Suppose that there exists a positive semi-definite matrix
P satisfying

ATP+PA-PBB P+C"C <0,

tr (E'PE) <.

Let K = -B"P. Then A+ BK is Hurwitz and J(K) < 7.

Proof. Substituting K = -BTP into system (17) gives us
#=(A- BB P)z+ Ed,
z=(C-DB'P)x.

Since D'C =0 and D™D = I,,,, inequality (19) is equivalent

to

(A~ BB™P)"P+ P(A- BB'P) )
+(C-DB™P)(C-DB"P) <0

Since P > 0 is a solution of (19), it also satisfies (21), which

implies that A — BBTP is Hurwitz. Since (20) also holds,

by taking A= A-BB"P,C=C-DB'P and E = E, it

immediately follows from Theorem 3 that J(K)<~vy. O

5. DISTRIBUTED SUBOPTIMAL H, CONTROL FOR
MULTI-AGENT SYSTEMS

In the previous section, we have dealt with the suboptimal
Ho control problem for linear systems, collecting the
necessary results for treating the suboptimal distributed
Ho control problem. In the present section, we deal with
the suboptimal distributed Hs control problem for multi-
agent networks with identical linear agent dynamics.

As has already been shown in Section 3, the input/state/
output model of the multi-agent network we consider is
given by
2=IN®A+L®BK)x+ (Iy ® E)d,
(=(W?R'®C+W?R"L®DK)az.
For convenience, we also repeat here the associated Hs
cost functional

J(K) = fo e [T ()T (1) dt,

where Tk (t) = CeME is the impulse response matrix from
the disturbance input d to the output ¢ with A := Iy ® A+
L®BK,E:=Iy®F and C:=W3:R @ C+W:R L& DK.

The suboptimal distributed s control problem is to find
a distributed diffusive static protocol (5) with gain matrix
K that achieves state synchronization and such that the
associated cost (23) is smaller than a given upper bound
~v>0, ie. J(K) <. We further assume that D'C =0 and
D™D =1, i.e. we assume that the suboptimal distributed
Hs control problem is in standard form.

(22)

(23)

Next, we first apply the state transformation
z=U"®I,)x
where the orthogonal matrix U is defined in Section

2.2. After this state transformation, the equations of the
controlled network become

I=(In®A+A®BK)x+(U"®E)d,
(=(W?R'U®C+ W3R LU ® DK)z,
and our cost functional is equal to

J(K) = fo Tt [T (1) Tic (1)) dt (24)

where

Tr(t) = Coe'E, (25)
is the impulse response matrix from the disturbance input
d to the output ¢ with A, = Iy ® A+ A® BK, C, :=
W3R U®C+W?2 R LU®DK and E, := UT®E. Note that,
by applying the state transformation, only the system
model has changed while the associated cost remains the
same.

In order to proceed, we introduce the following in-
put/state/ output systems

é’i = Afz + )\ZBU,L + E(Si,

;i = \/A_ic&' + Ai\/A_iDvia

where \;,7=2,3,..., N are the nonzero eigenvalues of the
graph Laplacian £. Using in all systems (26) the identical
static state feedback

i=2,3,...,N.  (26)

vi=K¢&, 1=23,...,N (27)
yields the closed-loop systems
= (A+ \;BK)¢; + E6;, s N (28)
1=2,3,...,N.
N = (VAC + iV \iDK)E;,
We further introduce the associated cost functionals
Ji(K) = fo o [T (DT (D] dt, i=2,3,...,N, (29)
where
Tk = (WVNC + A/ AiDK)eA B g (30)

for 4 = 2,3,..., N, are the closed-loop impulse response
matrices from the disturbance §; to the output 7, for
1=2,3,...,N, respectively.
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It turns out that our original cost functional can be
expressed as the sum of the cost functionals associated
with the auxiliary systems (26). In fact, the following
theorem holds.

Theorem 5. Consider the network (22) with associated
cost (23) and the systems (28) with associated costs (29)
for i = 2,3,..., N, respectively. Then the protocol (5)
achieves state synchronization for the network (22) if and
only if the static state feedback (27) internally stabilizes
all systems (26). Moreover,

N
J(K) = gji([{). (31)

Proof. It is a standard result that the protocol (5)
achieves state synchronization for the network (22) if and
only if the static state feedback (27) internally stabilizes
all systems (26). See e.g. Li et al. (2010) or Trentelman
et al. (2013).

We now prove (31). First, note that the cost (23) for the
network (22) is equal to (24). Then, substituting (25) into
(24) gives us

HE) - /-oo o [(U ® ET)6(1N®A+A®BK)T15
0
(WER'U®C+WE:R LU ® DK)'
(W:R'U®C+W2:R LU ® DK)
cUN@ATASBI (17T o BY] dt,
which is equal to
J(K) = /(; tr [(IN ® ET)6(1N®A+A®BK)Tt
(W:R'U®C+W3R'LU ® DK)"
(W:R'U®C+W?3R LU ® DK)
eUN®ATASBI)L (1 ®E)]dt. (32)

Recall that UTLU = A = diag(0,\a,...,An), L = RWRT
and DTC = 0. Therefore, (32) is equal to

J(K) — /0 tr[(IN®ET)e(1N®A+A®BK)Tt
(A®C'C+A*® K'D'DK)
6(1N®A+A®BK)t(IN ® E)] dt

N )

z f tr I:ETe(A+)\¢BK)Tt

i=2 70

(MCTC+ N KTDTDK) e BRI B gt
N )
:Zf trl:ETe(A+>\iBK)Tt
i=2 70

(VAC + A/ A DK)T

(VAC + A/ DK) A B R] gy

N
=;Ji(K) O

Based on Theorem 5, we have transformed the problem of
suboptimal distributed Hs control for the network (22)
into suboptimal Hs control problems for N — 1 linear
systems (28) with the same feedback gain K. Next, we
want to establish conditions under which all N —1 systems

(28) are internally stable and the state feedback (27) is
suboptimal.

The following lemma yields a necessary and sufficient
condition for a given gain matrix K € R" ™ such that
all systems (28) are internally stable and Y, J;(K) < 7.
Lemma 6. Consider the closed-loop systems (28) with the
associated cost functionals (29). The static state feedback
(27) internally stabilizes all systems and YN, J;(K) < v
if and only if there exist positive semidefinite matrices
P;,i=2,3,..., N satisfying
(A+\BEK)"P; + Pi(A+\BK)

+(VNC + A/ A DE) (VAC + A/ A DK) <0, (33)
N

Y tr(ETRE) <. (34)

Proof. (<) Since (34) holds, there exist sufficiently small
€ > 0,i = 2,...,N such that ZfZQ’yi < 7 where ~; :=
tr (E"P,E) + €;. Because there exists P; such that (33)
and tr (E"P;E) < 7; hold for all 4 = 2,..., N, by taking
A=A+ )\BK and C =/\;C + \ivV\; DK, it follows from
Theorem 3 that all systems (28) are internally stable and
Ji(K) <~ for i =2,...,N. Therefore, YN, J;(K) < .

(=) Since Zf\; Ji(K) < 7, there exist sufficiently small
€;>0,i=2,..., N such that Zf\iQ vi < where v; = J;(K)+
€;. Because all systems (28) are internally stable and
Ji(K) <~; fori=2,...,N, by taking A = A+ \; BK and
C = VAC + MV/A DK, it follows from Theorem 3 that
there exist positive semi-definite matrices P; such that
(33) and tr (ETPE) < v; hold for all 4 = 2,...,N. Since
Zﬁg ~; < 7, this implies that Zf; tr (ETRE) < 7. ]

Lemma 6 establishes a necessary and sufficient condition
for a given gain matrix K to internally stabilize all closed-
loop systems (28) and to achieve Y.V, J;(K) < 7. However,
it does yet not provide a method to compute such gain ma-
trix K. To this end, the following two theorems provide two
design methods for computing such a gain matrix K and,
correspondingly, two suboptimal distributed protocols for
multi-agent system (2) together with cost functional (23).

Theorem 7. Consider multi-agent system (2) with the as-
sociated cost functional (23). Choose ¢ such that

2
O0<c 55—
)\% + )\2)\]\7 + )\?\,
Then there exists a positive semidefinite matrix P satisfy-
ing

(35)

ATP + PA+(c*\5-2c\y)PBB™P + A\yC'C <0.  (36)
Assume, moreover, that P also satisfies
g
tr (ETPE) < . 37
r(E"PE) < (37)

Let K := —¢BTP. Then protocol (5) achieves synchroniza-
tion, and the protocol is suboptimal, i.e. J(K) < 7.

Proof. Using the upper and lower bound on ¢ given by
(35), it can be verified that 23 — 2c); < ¢2A3 - 2che < 0
fori=2,3,...,N. Since also A\; < A\, one can see that the
positive semidefinite solution P of (36) also satisfies the
N -1 Riccati inequalities

ATP+PA+ (X3 -2e¢\;)PBB'P+\C"C <0 (38)
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fori=2,..., N. Equivalently, P also satisfies the Lyapunov
inequalities
(A-c\;,BB'"P)'P+ P(A-c\;BB'P)

+ X PBBTP + \;,C"C <0,
fori=2,...,N. Taking P, = P for i =2,3,...,N and K :=
—c¢BT P in inequalities (33) and (34) immediately gives us
inequalities (38) and ¥V, tr (ETPE) < . Then it follows
from Lemma 6 that all systems (28) are internally stable
and YN, J;(K) < ~. Furthermore, it follows from Theorem
5 that the protocol (5) achieves state synchronization in
the network (22) and J(K) <. |
Remark 8. Theorem 7 states that that by choosing c
satisfying (35) and P > 0 satisfying (36), the distributed
static protocol with local gain K = —cBT P is suboptimal
if P also satisfies (37). Then the question arises: how
should we choose ¢ and P such that the local gain of
the suboptimal protocol is ‘best’ in the sense that we
have tr (ETPFE) and, consequently, J(K) as small as
possible? Since smaller P leads to smaller tr (ETPE) and,
consequently, smaller J(K), we should therefore try to
find P as small as possible. In fact, one can find a positive
definite solution P = P(c,€) to (36) by solving

ATP+PA-PBR(c)*B"P+Q(e) =0
with R(c) = LI, and Q(¢) = ANC7C + €l,, where

oo
¢ is chosen as in (35) and € > 0 arbitrary. If ¢; and ¢
as in (35) satisfy ¢; < co, then we have R(c1) < R(ca),
so, clearly, P(c1,€) < P(co,¢). Similarly, if 0 < €1 < €2, we
immediately have Q(e1) < Q(e2). Again, it follows that
P(c,e1) < P(c,€3). Therefore, if we choose € > 0 very close
to0and c= oAz ) We find the ‘best’ solution to the

Riccati inequality (40) in the sense explained above.
Theorem 9. Consider the multi-agent system (2) with as-
sociated cost functional (23). Choose ¢ such that
2

- <c< —.

A2+ XAy + A% A%
Then there exists a positive semidefinite matrix P satisfy-
ing

ATP + PA+(*\Y —2cAN)PBBTP + AyCTC < 0. (40)

Assume, moreover, that P also satisfies tr (ETPE) < 5.
Let K := —¢BT P. Then protocol (5) achieves state synchro-
nization, and the protocol is suboptimal, i.e. J(K) <.

c (39)

The proof is similar to the proof of Theorem 7 and hence
is omitted here.

Remark 10. Theorem 9 states that that after choosing ¢
satisfying (39) and P > 0 satisfying (40), the distributed
static protocol with local gain K is suboptimal if P also
satisfies inequality (37). Again, the question then arises:
how should we choose ¢ and P such that this local gain
of the suboptimal protocol is ‘best’ in the sense that we
have we have tr (ET PE) and, consequently, J(K) as small
as possible? Following the idea in Remark 8, if we choose
€ > 0 very close to 0 and ¢ > 0 very close to m,
we find the ‘best’ solution to the Riccati inequality (40) in
the sense as explained in Remark 8.

6. CONCLUSION

In this paper we have studied a suboptimal distributed H,
control problem for linear multi-agent systems with con-

nected, simple undirected weighted graph. Given a multi-
agent system with identical agent dynamics, an associated
global Hsy cost functional and also a desired upper bound
for the cost, we have provided two design methods for
computing a suboptimal distributed static protocol such
that the protocol achieves state synchronization and the
associated cost is smaller than the given upper bound. For
each method, the expression for the local control gain is
provided in terms of solutions of a single Riccati inequality,
whose dimension is equal to the dimension of the individ-
ual agent dynamics, and also involves the largest and the
smallest nonzero eigenvalue of the Laplacian matrix.
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