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a b s t r a c t

In this paper we consider the distributed estimation problem for continuous-time linear time-invariant
(LTI) systems. A single linear plant is observed by a network of local observers. Each local observer in the
network has access to only part of the output of the observed system, but also receives information on
the state estimates of its neighbors. Each local observer should in this way generate an estimate of the
plant state. In this paper we study the problem of existence of a reduced order distributed observer. We
show that if the observed system is observable and the network graph is a strongly connected directed
graph, then a distributed observer exists with state space dimension equal to Nn−

∑N
i=1pi, where N is the

number of network nodes, n is the state space dimension of the observed plant, and pi is the rank of the
output matrix of the observed output received by the ith local observer. In the case of a single observer,
this result specializes to the well-known minimal order observer in classical observer design.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Recently, there has been much interest in the problem of de-
signing distributed observers for estimation of the state of a given
linear time invariant plant.Whereas the classical observer problem
is to find a single observer that receives the entire measured plant
output in order to generate this state estimate, in the distributed
version the aim is to find a given number of local observers that
can communicate according to an a priori given network graph (see
Fig. 1 for an illustration). Each of the local observers in the network
receives only part of the plant output, but also information on the
state estimates of its neighbors. Each local observer should in this
way generate an estimate of the plant state. Thus, the problem of
finding a distributed observer can be interpreted as the problem of
finding a single observer that consists of a given number of local
observers, interconnected by means of an a priori given network
graph. Since each of the local observers receives only part of the
plant output, properties like observability or detectability that
might hold for the original plant output do no longer hold for the
partial output, and hence classical observer design is not applicable
for the local observer.

Among the many contributions on the distributed observer
problem we mention [1,2] and [3]. In particular, in [3–5] a state
augmented observer was constructed to cast the distributed es-
timation problem as a problem of decentralized stabilization, us-
ing the notion of fixed modes [6]. These references only discuss
discrete-time systems. More recently, in [7], the idea of putting
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the distributed observer problem in the context of decentralized
control was applied to continuous time plants. In [2,8,9] local
Luenberger observers at each node were constructed, based on
applying the Kalman observable decomposition. There, the ob-
server reconstructs a certain portion of the state solely by using
its own measurements, and uses consensus dynamics to estimate
the unobservable portions of the state at each node. Specifically,
in [1] two observer gains were designed to achieve distributed
state estimation, one for local measurements and the other for the
information exchange. In [10], a simple LMI based approach was
proposed for the design of distributed observers.

A standard result in classical observer design states that if the
plant is observable, then an observer with arbitrary fast error
convergence exists of order equal to the order of the plant, say
n, minus the rank of the output matrix, say p, [11]. It was argued
in [12] that indeed n − p is the minimal order for state observers.
Of course, similarly one can address the issue of existence of a
reduced, or even minimal, order distributed observer. This issue
will be the topic of the present paper. We assume that our plant is
a continuous-time LTI system

ẋ = Ax

y = Cx
(1)

where x ∈ Rn is the state and y ∈ Rm is the measurement output.
We partition the output y as

y =

⎡⎢⎢⎢⎣
y1
y2
...

yN

⎤⎥⎥⎥⎦
https://doi.org/10.1016/j.sysconle.2018.02.011
0167-6911/© 2018 Elsevier B.V. All rights reserved.
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Fig. 1. Framework for distributed state estimation.

where yi ∈ Rmi and
∑N

i=1mi = m. Accordingly, we partition the
output matrix as

C =

⎡⎢⎢⎣
C1
C2
...

CN

⎤⎥⎥⎦
with Ci ∈ Rmi×n. In addition, a directed graph with N nodes is
given. Each node in the graph will carry a local observer. The local
observer at node i has only access to themeasurement yi = Cix and
to the state estimates of its neighbors, including itself. In this paper,
a standing assumption will be that the communication graph is
strongly connected. We will also assume that the pair (C, A) is
observable. For the discrete time case, it was shown in [5] that a
distributed observer of order Nn+N −1 exists. This boundwas re-
established in [7] for continuous time plants. Again for the discrete
time case, in [9] it was shown that a distributed observer exists of
order Nn. Also in [1], under certain assumptions, a dynamic order
Nnwas shown to be sufficient. More recently, in our paper [10] we
reconfirmed that for the continuous time case a dynamic order Nn
suffices.

In the present paper we will improve all sufficient dynamic
orders established up to now and as our main result show that, for
any desired error convergence rate, a distributed observer exists
of dynamic order equal to Nn −

∑N
i=1pi, where pi is the rank of

the local output matrix Ci. This result extends in a natural way the
minimal order n − p for a single, non-distributed observer, with p
the rank of the output matrix C .

2. Preliminaries and problem formulation

2.1. Preliminaries

Notation: The rank of a given matrix M is denoted by rank M . If M
has full column rankm thenM†

= (MTM)−1MT denotes itsMoore–
Penrose inverse, so M†M = Im. The identity matrix of dimension
N will be denoted by IN . The vector 1N denotes the N-dimensional
column vector comprising of all ones. For a symmetric matrix P ,
P > 0 (P < 0) means that P is positive (negative) definite. For a set
{A1, A2, . . . , AN} ofmatrices, we use diag{A1, A2, . . . , AN} to denote
the block diagonal matrix with the Ai’s along the diagonal, and
the matrix

[
AT
1 AT

2 · · · AT
N

]T is denoted by col(A1, A2, . . . , AN ).
The Kronecker product of the matrices M1 and M2 is denoted by
M1⊗M2. In this paper,Rn will denote the n-dimensional Euclidean
space. For a p × n matrix A, ker A := {x ∈ Rn

| Ax = 0} and
im A := {Ax | x ∈ Rn

} will denote the kernel and image of
A, respectively. If V is a subspace of Rn, then V⊥ will denote the
orthogonal complement of V with respect to the standard inner
product in Rn.

In this paper, a weighted directed graph is denoted by G =

(N , E,A), where N = {1, 2, . . . ,N} is a finite nonempty set of
nodes, E ⊂ N × N is an edge set of ordered pairs of nodes, and
A = [aij] ∈ RN×N denotes the adjacency matrix. The (j, i)th entry

aji is the weight associated with the edge (i, j). We have aji ̸= 0 if
and only if (i, j) ∈ E . Otherwise aji = 0. An edge (i, j) ∈ E designates
that the information flows from node i to node j. A directed path
fromnode i1 to il is a sequence of edges (ik, ik+1), k = 1, 2, . . . , l−1
in the graph. A directed graph G is strongly connected if between
any pair of distinct nodes i and j in G, there exists a directed path
from i to j, i, j ∈ N .

The Laplacian L = [lij] ∈ RN×N of G is defined as L := D − A,
where the ith diagonal entry of the diagonal matrix D is given by
di =

∑N
j=1aij. By construction, L has a zero eigenvalue with a

corresponding eigenvector 1N (i.e., L1N = 0N ), and if the graph
is strongly connected, its algebraic multiplicity is equal to one and
all the other eigenvalues lie in the open right-half complex plane.

For strongly connected graphs G, we now review the following
lemma.

Lemma1 ([13–15]). Assume G is a strongly connected directed graph.
Then there exists a unique positive row vector r =

[
r1, . . . , rN

]
such

that rL = 0 and r1N = N. Define R := diag{r1, . . . , rN}. Then
L̂ := RL + LTR is positive semi-definite, 1T

N L̂ = 0 and L̂1N = 0.
We note that RL is the Laplacian of the balanced directed graph

obtained by adjusting theweights in the original graph. Thematrix
L̂ is the Laplacian of the undirected graph obtained by taking
the union of the edges and their reversed edges in this balanced
digraph. This undirected graph is called themirror of this balanced
graph [13].

2.2. Problem formulation and main result

Consider the continuous-time LTI system (1), where x ∈ Rn

is the state and y ∈ Rm is the measurement output. As ex-
plained in the introduction we partition the output y as y =

col(y1, . . . , yN ), where yi ∈ Rmi and
∑N

i=1mi = m. Accordingly,
C = col(C1, . . . , CN ) with Ci ∈ Rmi×n. Here, the portion yi = Cix is
assumed to be the only output information that can be acquired by
node i in the given network graph G. The rank of the local output
matrix Ci will be denoted by pi.

In this paper, a standing assumption will be that the commu-
nication graph G is a strongly connected directed graph. We will
also assume that the pair (C, A) is observable. However, (Ci, A) is
not assumed to be observable or detectable.

We will design a distributed observer for the system (1) with
the given communication network G. The distributed observer will
consist of N local observers, and the local observer at node i will
have dynamics of the following form:

żi = Nizi + Liyi + γ riMi

N∑
j=1

aij(x̂j − x̂i)

x̂i = Pizi + Qiyi

(2)

where i ∈ N , zi ∈ Rn−pi is the state of the local observer,
x̂i ∈ Rn is the estimate of plant state at node i, aij is the (i, j)th
entry of the adjacency matrix A of the given network, ri is defined
as in Lemma 1, γ ∈ R is a coupling gain to be designed, Ni ∈

R(n−pi)×(n−pi), Li ∈ R(n−pi)×mi , Mi ∈ R(n−pi)×n, Pi ∈ Rn×(n−pi) and
Qi ∈ Rn×mi are gain matrices to be designed.

The objective of distributed state estimation is to design a
network of local observers (2) that cooperatively estimate the state
of the plant (1). Such network of local observers is said to achieve
omniscience asymptotically, defined as follows:

Definition 2 ([5]). A distributed observer (2) is said to achieve
omniscience asymptotically if for all initial conditions on (1) and (2)
we have

lim
t→∞

(
x̂i(t) − x(t)

)
= 0 (3)

for all i ∈ N , i.e. the state estimate maintained by each node
asymptotically converges to the true state of the plant.
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The main result of this paper is the following:

Theorem 3. Assume that (C, A) is observable and that the network
graph G is a strongly connected directed graph. Let α ≥ 0 be a desired
error convergence rate. Then there exists a distributed observer (2)
that achieves omniscience asymptotically and all error trajectories
converge to zero with convergence rate at least α. Such distributed
observer exists with state space dimension Nn−

∑N
i=1pi, where pi :=

rank Ci.

In the remainder of this paper we will prove this result by
outlining how to design a desired distributed observer.

3. Design of the distributed observer

To design a distributed observer of the form (2), we make a
full rank factorization for each local output matrix Ci. Recall that
rank Ci = pi and factorize Ci = DiFi with Di ∈ Rmi×pi full column
rank and Fi ∈ Rpi×n full row rank. Recall that D†

i = (DT
i Di)−1DT

i .
Since yi = Cix, we have

ỹi := D†
i yi = Fix, (4)

where ỹi ∈ Rpi represents a virtual local output. Denote F =

col(F1, . . . , FN ). Clearly, (F , A) is observable, but for i ∈ N , (Fi, A) is
not necessarily observable or detectable. To proceed, we introduce
orthogonal transformations that yield observability decomposi-
tions for the pairs (Fi, A). For i ∈ N , let Ti be an orthogonal matrix
such that the matrices A and Fi are transformed by the state space
transformation Ti into the form

T T
i ATi =

[Ai11 Ai12 0
Ai21 Ai22 0
Ai31 Ai32 Aiu

]
, FiTi =

[
Ei 0 0

]
(5)

where Ai11 ∈ Rpi×pi , Ai12 ∈ Rpi×(vi−pi), Ai21 ∈ R(vi−pi)×pi , Ai22 ∈

R(vi−pi)×(vi−pi), Ai31 ∈ R(n−vi)×pi , Ai32 ∈ R(n−vi)×(vi−pi), Aiu ∈

R(n−vi)×(n−vi), Ei ∈ Rpi×pi is a non-singular matrix, and n − vi is
the dimension of the unobservable subspace of the pair (Fi, A).

For convenience, denote

Aio =

[
Ai11 Ai12
Ai21 Ai22

]
, Air =

[
Ai31 Ai32

]
, Fio =

[
Ei 0

]
, (6)

where Aio ∈ Rvi×vi , Air ∈ R(n−vi)×vi , Fio ∈ Rpi×vi . Then clearly

T T
i ATi =

[
Aio 0
Air Aiu

]
, FiTi =

[
Fio 0

]
. (7)

By construction, the pair (Fio, Aio) is observable. Furthermore, it can
be checked using the Hautus test that the pair (Ai12, Ai22) is also
observable. Since Ei is nonsingular, then also the pair (EiAi12, Ai22)
is observable.

In addition, if we partition Ti =
[
Ti1 Ti2

]
, where Ti1 consists of

the first vi columns of Ti, then the unobservable subspace is given
by im Ti2 = ker OFi, where OFi = col(Fi, FiA, . . . , FiAn−1). Note that
im Ti1 = (ker OFi)⊥.

We now proceed with defining the gain matrices Pi and Qi in
the output equation of (2). For i ∈ N , define Si ∈ Rn×(n−pi) and
Ki ∈ Rn×mi by

Si :=

[
0

In−pi

]
and Ki :=

⎡⎣E−1
i
Hi
0

⎤⎦D†
i . (8)

Here, Hi ∈ R(vi−pi)×pi still needs to be defined. Now define

Tis := TiSi (9)

as the n × (n − pi) matrix consisting of the last n − pi columns of
the orthogonal matrix Ti. Next define

Pi := Tis and Qi := TiKi. (10)

To analyze and further synthesize the local observer (2), we define
the local estimation error of the ith observer as

ei := x̂i − x. (11)

Using the definitions (10) and combining (1) and (2) shows that ei
satisfies:

ėi = Piżi + Qiẏi − ẋ
= Tisżi + TiKiẏi − ẋ

= TiSi

⎛⎝Nizi + Liyi + γ riMi

N∑
j=1

aij(x̂j − x̂i)

⎞⎠ + (TiKiCi − I)Ax

= TiSi

⎛⎝NiSTi (T
T
i ei − Kiyi + T T

i x) + Liyi + γ riMi

×

N∑
j=1

aij(x̂j − x̂i)

⎞⎠ + (TiKiCi − I)Ax

= TiSiNiSTi T
T
i ei + γ riTiSiMi

N∑
j=1

aij(ej − ei)

+ Ti
(
(SiLi − SiNiSTi Ki)DiFiTi + SiNiSTi

+ (KiDiFiTi − I)T T
i ATi

)
T T
i x.

(12)

As a first step to achieve stable error dynamics it is required
that the right hand side of the differential equation (12) does not
depend on the state x. This can be achieved by choosing the local
observer gain matrices Ni and Li in such a way that

(SiLi − SiNiSTi Ki)DiFiTi + SiNiSTi + (KiDiFiTi − I)T T
i ATi = 0. (13)

It can be checked by straightforward verification that (13) is
achieved by choosing

Ni =

[
Ai22 − HiEiAi12 0

Ai32 Aiu

]
, (14)

Li =

[
Ai21 − HiEiAi11

Ai31

]
E−1
i D†

i + NiSTi Ki. (15)

Here, again we note that Hi ∈ R(vi−pi)×pi still needs to be defined.
With this choice ofNi and Li, the local error satisfies the differential
equation

ėi = TisNiT T
is ei + γ riTisMi

N∑
j=1

aij(ej − ei). (16)

Let e := col(e1, e2, . . . , eN ) be the joint vector of errors. Define

Ts := diag{T1s, . . . , TNs}, (17)

M = diag{M1, . . . ,MN}, (18)

N = diag{N1, . . . ,NN}. (19)

Clearly then, each global error trajectory satisfies the differential
equation

ė =
(
TsNT T

s − γ TsM(RL ⊗ In)
)
e, (20)

where R is as defined in Lemma 1.
Note that im Ts is an invariant subspace for the differential

equation (20). Evenmore, it can be shown that each feasible global
error trajectory e lives in the subspace im Ts. We state this as a
lemma:

Lemma 4. Assume that the gain matrices Pi, Qi, Ni and Li are given by
(10), (8), (14) and (15). Let e := col(e1, e2, . . . , eN ) be the joint vector
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of errors, with for i ∈ N the local error equal to ei = x̂i − x, where x is
a trajectory of the plant (1) and x̂i satisfies (2). Then e(t) ∈ im Ts for
all t ∈ R.

Proof. A proof of Lemma 4 is given in Appendix A. □

From Lemma 4 we infer that the distributed observer (2)
achieves omniscience asymptotically (3) if each solution e of (20)
such that e(t) ∈ im Ts for all t ∈ R converges to zero as t runs off
to infinity.

Up to now, in the to be designed local observer (2) we have
specified the gain matrices Pi, Qi, Ni and Li. However, Qi, Ni and Li
still depend on the parameter matrix Hi ∈ R(vi−pi)×pi that has to be
specified. Also the matrix Mi and coupling gain γ still need to be
specified. In order to proceed, we state the following two lemmas.
The first of these is standard:

Lemma 5 ([16]). For a strongly connected directed graph G, zero
is a simple eigenvalue of L̂ = RL + LTR introduced in Lemma 1.
Furthermore, its eigenvalues can be ordered as λ1 = 0 < λ2 ⩽
λ3 ⩽ · · · ⩽ λN . Furthermore, there exists an orthogonal matrix U =[

1
√
N
1N U2

]
, where U2 ∈ RN×(N−1), such that UT (RL + LTR)U =

diag{0, λ2, . . . , λN}.

Our second lemma was proven in [10]. In order to make this
paper self contained, we include the proof in Appendix B.

Lemma 6. Let L be the Laplacian matrix associated with the strongly
connected directed graph G. For all gi > 0, i ∈ N , there exists ϵ > 0
such that

T T ((RL + LTR) ⊗ In)T + G > ϵInN , (21)

where T = diag{T1, . . . , TN}, R is defined as in Lemma 1, G =

diag{G1, . . . ,GN}, and Gi =

[
giIvi 0
0 0n−vi

]
, i ∈ N .

The following lemma now deals with the existence of a dis-
tributed observer of the form (2) that achieves omniscience asymp-
totically with an a priori given error convergence rate. A condition
for its existence is expressed in terms of solvability of a system of
N LMI’s. Solutions to these LMI’s yield the required gain matrices.
Let ri > 0, i ∈ N , be as in Lemma 1. Let gi > 0, i ∈ N , and ϵ > 0
be such that (21) holds. Let γ ∈ R. Finally, let α ≥ 0 be a desired
error convergence rate. Recall the definitions (8) and (9) for Si and
Tis. We have the following:

Lemma 7. There exist gain matrices Ni, Li, Mi, Pi and Qi, i ∈ N , such
that the distributed observer (2) achieves omniscience asymptotically
and all solutions of the error system (20) converge to zero with con-
vergence rate at least α if there exist positive definite matrices Pie ∈

R(vi−pi)×(vi−pi),Piu ∈ R(n−vi)×(n−vi), and a matrix Wi ∈ R(vi−pi)×pi

such that[
Φi + γ giIvi−pi AT

i32Piu

PiuAi32 AT
iuPiu + PiuAiu + 2αPiu

]
− γ ϵIn−pi

< 0, ∀i ∈ N , (22)

whereΦi := PieAi22+AT
i22Pie−WiEiAi12−AT

i12E
T
i W

T
i +2αPie. In that

case, the gain matrices in the distributed observer (2) can be taken as

Ki :=

⎡⎣E−1
i
Hi
0

⎤⎦D†
i , Li :=

[
Ai21 − HiEiAi11

Ai31

]
E−1
i D†

i + NiSTi Ki (23)

Mi :=

[
P−1

ie 0
0 P−1

iu

]
T T
is , Ni :=

[
Ai22 − HiEiAi12 0

Ai32 Aiu

]
, (24)

Pi := Tis, Qi := TiKi, (25)

where Hi := P−1
ie Wi , i ∈ N .

Proof. A proof of Lemma 7 is given in Appendix C. □

Using the previous lemmas, we are now able to formulate and
prove our main result:

Theorem 8. Assume that (C, A) is observable and that G is a strongly
connected directed graph. Let α ≥ 0. Then there exists a distributed
observer (2) that achieves omniscience asymptotically while all solu-
tions of the error system converge to zero with convergence rate at
least α. This distributed observer has state space dimension equal to
Nn−

∑N
i=1pi with pi = rank Ci. Such observer is obtained as follows:

1. For each i ∈ N , make a full rank factorization Ci = DiFi where
Di ∈ Rmi×pi and Fi ∈ Rpi×n have full column rank and row rank,
respectively.

2. For each i ∈ N , choose an orthogonal matrix Ti such that

T T
i ATi =

[Ai11 Ai12 0
Ai21 Ai22 0
Ai31 Ai32 Aiu

]
, FiTi =

[
Ei 0 0

]
(26)

with the pair (
[
Ei 0

]
,

[
Ai11 Ai12
Ai21 Ai22

]
) observable and Ei non-

singular. Then (EiAi12, Ai22) is also observable.
3. Compute the positive row vector r =

[
r1, . . . , rN

]
such that

rL = 0 and r1N = N.
4. Put gi = 1, i ∈ N and take ϵ > 0 such that (21) holds.
5. Take γ > 0 sufficiently large so that for all i ∈ N

AT
iu + Aiu − (γ ϵ − 2α)In−vi +

1
γ ϵ − 2α

Ai32AT
i32 < 0. (27)

6. Choose Hi such that all eigenvalues of Ai22 − HiEiAi12 lie in the
region {s ∈ C | Re(s) < −α}.

7. For all i ∈ N , solve the Lyapunov equation

(Ai22 − HiEiAi12 + αIvi−pi )
TPie + Pie(Ai22 − HiEiAi12 + αIvi−pi )

+ (γ − 2α)Ivi−pi = 0 (28)

to obtain Pie > 0.
8. Define

Ki :=

⎡⎣E−1
i
Hi
0

⎤⎦D†
i , Si :=

[
0

In−pi

]
, Tis := TiSi, (29)

Li :=

[
Ai21 − HiEiAi11

Ai31

]
E−1
i D†

i + NiSTi Ki, (30)

Mi :=

[
P−1

ie 0
0 In−vi

]
T T
is , Ni :=

[
Ai22 − HiEiAi12 0

Ai32 Aiu

]
, (31)

Pi := Tis, Qi := TiKi. (32)

Proof. We choose gi = 1, i ∈ N . Since the pair (C, A) is observable
and the graph G is a strongly connected directed graph, ϵ > 0 can
be obtained by Lemma 6.

Putting Piu = In−vi , i ∈ N , the inequality (22) in Lemma 7
becomes[

Φi + γ Ivi−pi AT
i32

Ai32 AT
iu + Aiu + 2αIn−vi

]
− γ ϵIn < 0, ∀i ∈ N (33)

where Φi := PieAi22 + AT
i22Pie − WiEiAi12 − AT

i12E
TW T

i + 2αPie.
By substituting (28) and Wi = PieHi into (33), we have that the
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inequality (33) holds if[
−(γ ϵ − 2α)Ivi−pi AT

i32
Ai32 AT

iu + Aiu − (γ ϵ − 2α)In−vi

]
< 0, ∀i ∈ N . (34)

By using the Schur complement lemma, (34) is equivalent to

Aiu + AT
iu − (γ ϵ − 2α)In−vi +

1
γ ϵ − 2α

Ai32AT
i32 < 0, ∀i ∈ N . (35)

As stated in step 5, inequality (35) can be made to hold with
sufficiently large γ > 0.

Thus, we find that the parameters introduced in steps 4 to
7 guarantee that the inequality (22) in Lemma 7 holds. Hence,
the distributed observer (2) with gain matrices Ni, Li, Mi, Pi and
Qi achieves omniscience asymptotically with convergence rate at
least α. □

Remark 9. For any given α ≥ 0, the coupling gain γ > 0 can
indeed be taken sufficiently large to guarantee that (27) holds.
Since (EiAi12, Ai22) is observable, for any α ≥ 0 the Lyapunov
equation (28) in step 7 can be made to have a positive definite
solution by choosing the matrix Hi as in step 6.

Remark 10. The design procedure in Theorem 8 gives one possible
choice of solutions of the inequality (22) in Lemma 7, which also
means that under our standing assumptions that (C, A) is observ-
able and the graph G is strongly connected the inequality (22)
always has the required solutions. In fact, the inequalities (21)
in Lemma 6 and (22) in Lemma 7 are both LMI’s, which can be
solved numerically by using the LMI Toolbox or YALMIP inMATLAB
directly.

Remark 11. In the special case that C has full row rankm, all local
output matrices Ci have full row rank mi as well, so pi = mi for all
i ∈ N . In this case our distributed observer has order Nn − m. In
this case step 1 of our design procedure can be skipped since Fi = Ci
and Di = Imi .

Remark 12. Another special case occurs if for some i we have
vi = pi, which means that ker Ci coincides with the unobservable
subspace of (Ci, A). In this case, in the decomposition (26) the
second block column and row are void, so in particular Ai12, Ai22,
Ai32 and Ai21 do not appear. Step 5 then reduces to Aiu +AT

iu − (γ ϵ −

2α)In−pi < 0, and steps 6 and 7 can be skipped. The local observer
(2) at node i is then given by

Ni := Aiu, Li := Ai31E−1
i D†

i , Mi = T T
is , Pi = Tis,

Qi = TiKi, Ki :=

[
E−1
i
0

]
D†
i .

(36)

Remark 13. Note that the parameters in the distributed observer
(2) have been designed based on information on the given com-
munication graph and the local output matrices. However, even
without complete knowledge of the graph Laplacian one can still
proceed by choosing ϵ > 0 in step 4 sufficiently small. Then, in
steps 5 to 8, Ni, Li,Mi, Pi,Qi, Ki can be designed independently of
the global information on the graph by choosing a sufficiently large
coupling gain γ > 0.

4. Conclusions

In this paper we have studied the problem of reduced order
distributed observer design. We have shown that if the observed
plant is observable and the network graph is strongly connected,
then a distributed observer achieving omniscience existswith state
space dimension equal to Nn −

∑N
i=1pi, where N is the number of

network nodes, n is the dimension of the plant state space and

pi is the rank of the output matrix corresponding to the output
received by node i. In fact, for any desired rate of error convergence
a distributed observer of this order exists. As an intermediate result
we have cast the distributed observer design problem in terms of
feasibility of LMI’s, which is advantageous from a computational
point of view. Under our standing assumptions these LMI’s are
always solvable.

Whereas in the case of a single observer our reduced order
is known to be the minimal state space dimension for a stable
observer, it remains an open problem to determine the minimal
order over all distributed observers with a given network graph.
This is a left as a problem for future research.
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Appendix A. Proof of Lemma 4

Proof. For i ∈ N , let Tip be the n×pi matrix consisting of the first pi
columns of Ti. Then we have Ti =

[
Tip Tis

]
. Since Ti is orthogonal,

we have im Tis = ker T T
ip. Let ei be a local error trajectory. We have

T T
ipei = T T

ip(x̂i − x)
= T T

ipTiszi + T T
ipTiKiCix − T T

ipx
=

[
Ipi 0

]
KiCix − T T

ipx
= (E−1

i Fi − T T
ip)x.

(37)

By (5) we have

Fi
[
Tip Tis

]
=

[
Ei 0

]
, (38)

which implies

Fi =
[
Ei 0

] [
Tip Tis

]T
= EiT T

ip. (39)

Thus we obtain T T
ipei = 0 and hence ei(t) ∈ ker T T

ip for all t ∈ R. We
conclude that ei(t) ∈ im Tis so e(t) ∈ im Ts for all t ∈ R. □

Appendix B. Proof of Lemma 6

Proof. The inequality (21) holds if and only if the following in-
equality holds.

(UT (RL + LTR)U) ⊗ In + (UT
⊗ In)TGT T (U ⊗ In) > 0, (40)

whereU is as in Lemma 5. The inequality (40) holds if the following
inequality holds:

λ2INn − (U ⊗ In)
[
λ2In 0
0 0(N−1)n

]
(UT

⊗ In) + TGT T > 0. (41)

Since U =

[
1

√
N
1N U2

]
and UT

=

[
1

√
N
1TN

UT
2

]
, the inequality (41)

is equivalent to

λ2INn −
λ2

N
(1N ⊗ In)(1T

N ⊗ In) + TGT T > 0. (42)

By pre- and post-multiplying with T T and T , the inequality (42) is
equivalent to

λ2INn −
λ2

N
T T (1N ⊗ In)(1T

N ⊗ In)T + G > 0, (43)

that is

λ2INn + G −
λ2

N

[
T1 · · · TN

]T [
T1 · · · TN

]
> 0. (44)

By using the Schur complement lemma [17], the inequality (44) is
equivalent to
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Ψ1 · · · 0 T T

1
...

. . .
...

...

0 · · · ΨN T T
N

T1 · · · TN
N
λ2

In

⎤⎥⎥⎥⎥⎦ > 0 (45)

where Ψi :=

[
(λ2 + gi)Ivi 0

0 λ2In−vi

]
, i ∈ N . Now, partition the

orthogonal matrix Ti as Ti =
[
Ti1 Ti2

]
, with Ti1 ∈ Rn×vi and

Ti2 ∈ Rn×(n−vi), i ∈ N . Clearly, Ti1T T
i1 + Ti2T T

i2 = In. Again using
the Schur complement lemma, (45) is then equivalent to⎡⎢⎢⎢⎢⎢⎢⎣

λ2In−v1 0 · · · 0 T T
12

0 Ψ2 · · · 0 T T
2

...
...

. . .
...

...

0 0 · · · ΨN T T
N

T12 T2 · · · TN
N
λ2

In −
1

λ2 + g1
T11T T

11

⎤⎥⎥⎥⎥⎥⎥⎦ > 0. (46)

By repeatedly using the Schur complement lemma, we finally
obtain that inequality (44) holds if and only if

N
λ2

In −

N∑
i=1

1
λ2 + gi

Ti1T T
i1 −

N∑
i=1

1
λ2

Ti2T T
i2 > 0. (47)

The left-hand side of inequality (47) is equal to

N
λ2

In −

N∑
i=1

1
λ2 + gi

Ti1T T
i1 −

N∑
i=1

1
λ2

Ti2T T
i2

=
N
λ2

In −

N∑
i=1

1
λ2

Ti2T T
i2 −

N∑
i=1

1
λ2

Ti1T T
i1

+

N∑
i=1

1
λ2

Ti1T T
i1 −

N∑
i=1

1
λ2 + gi

Ti1T T
i1

=

N∑
i=1

(
1
λ2

−
1

λ2 + gi
)Ti1T T

i1

⩾

N∑
i=1

(
1
λ2

−
1

λ2 + gmin
)Ti1T T

i1

= (
N
λ2

−
N

λ2 + gmin
)
[
T11 · · · TN1

] [
T11 · · · TN1

]T
,

(48)

where gmin is the minimum value of gi, i ∈ N . Obviously, we have
( N
λ2

−
N

λ2+gmin
) > 0 since gmin > 0.

Wewill nowprove that rank
[
T11 T21 · · · TN1

]
= n, so that

it has full row rank. Indeed, for Ti1, we have

im Ti1 = (ker OFi)⊥ (49)

where OFi = col(Fi, FiA, . . . , FiAn−1) is the unobservable subspace
of (Fi, A). Hence,

(im
[
T11 T21 · · · TN1

]
)⊥ = (im T11 + im T21 + · · · im TN1)⊥

=

N⋂
i=1

(im Ti1)⊥

=

N⋂
i=1

ker OFi

= ker

⎡⎢⎣OF1
...

OFN

⎤⎥⎦
= 0,

(50)

where we have used the fact that the pair (F , A) is observable. This
implies

rank
[
T11 T21 · · · TN1

]
= n. (51)

Consequently,
[
T11 T21 · · · Tn1

]
has full row rank n, so we

obtain:

(
N
λ2

−
N

λ2 + gmin
)
[
T11 · · · TN1

] [
T11 · · · TN1

]T
> 0. (52)

We conclude that the left-hand side of (21) is positive definite, and
consequently, for any choice of gi > 0, i ∈ N , there exists a scalar
ϵ > 0 such that inequality (21) holds. □

Appendix C. Proof of Lemma 7

Proof. By taking the gain matrices (23), (24) and (25), the global
error satisfies the differential equation (20). According to Lemma 4
we also have e(t) ∈ im Ts for all t ∈ R. As a candidate Lyapunov
function for the error system we take

V (e) = eTPe (53)

where P := diag{P1, . . . ,PN} and

Pi := Ti

[Ipi 0 0
0 Pie 0
0 0 Piu

]
T T
i .

Clearly then P > 0. The time-derivative of V is

V̇ (e) = eT (PTsNT T
s + TsNTT T

s P − γPTsM(RL ⊗ In)

− γ (LTR ⊗ In)MTT T
s P)e (54)

with Ts, M and N the block diagonal versions of the Tis, Mi and
Ni as defined by (17), (18) and (19). By substituting Mi :=[
P−1

ie 0
0 P−1

iu

]
T T
is into (54), the time-derivative of V becomes

V̇ (e) = eTΛe, (55)

where we have defined

Λ := PTsNT T
s + TsNTT T

s P − γ TsT T
s (RL ⊗ In) − γ (LTR ⊗ In)TsT T

s .

On the other hand, by combining (22) with (21) in Lemma 6 it can
be verified that

diag{Q1, . . . ,QN} − T T
s γ ((RL + LTR) ⊗ In)Ts < 0, (56)

where Qi :=

[
Φi ATi32Piu

PiuAi32 PiuAiu + ATiuPiu + 2αPiu

]
, i ∈ N , and Φi as

defined in the statement of the theorem.
Recall that we have defined Hi := P−1

ie Wi. HenceWi = PieHi. By
substituting this into the expression for Φi, we can check that

Qi = T T
isPiTisNi + NT

i T
T
isPiTis + 2αT T

isPiTis
Substituting this into the inequality (56), using that T T

s Ts is the
identity matrix, we get

T T
s (PTsNT T

s + TsNTT T
s P − γ TsT T

s (RL ⊗ In)

− γ (LTR ⊗ In)TsT T
s + 2αP)Ts < 0,

so, in other words,

T T
s (Λ + 2αP)Ts < 0. (57)

By combining (55) and (57) we will now show that all global error
trajectories converge to zero with convergence rate at least α.
Indeed let e be such trajectory. By Lemma 4 we have that e can
be represented as e = Tsz for some function z. Thus we get

V̇ (e) + 2αV (e) = eTΛe + 2αeTPe
= zTT T

s (Λ + 2αP)Tsz,
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and therefore V̇ (e)(t) + 2αV (e)(t) < 0 whenever e(t) ̸= 0. Hence
the distributed observer (2) achieves omniscience asymptotically
and all solutions of the global error systemconverge to zero asymp-
totically with convergence rate at least α. □
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