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Abstract: Gaussian Graphical Models (GGMs) are important probabilistic graph-
ical models in Statistics. Inferring a GGM’s structure from data implies comput-
ing the inverse of the covariance matrix (i.e. the precision matrix). When the
number of variables p is larger than the sample size n, the (sample) covariance
estimator is not invertible and therefore another estimator is required. Covari-
ance estimators based on shrinkage are more stable (and invertible), however,
classical hypothesis testing for the ”shrunk” coefficients is an open challenge. In
this paper we present an exact null-density that naturally includes the shrinkage,
and allows an accurate parametric significance test that is accurate and compu-
tationally efficient.

Keywords: Gaussian Graphical Models; Shrinkage; Genetic Networks, ”small n,
large ” problem.

1 Introduction

Gaussian Graphical Models (GGMs) are important network models in
Statistics. A GGM is represented as a network where each variable is a
node, and an edge is present between a pair of nodes if their respective
partial correlation is (statistically) significant. Partial correlations measure
linear dependences between a pair of variables adjusted for all other nodes.
Inferring the matrix of pair-wise partial correlations (i.e. the GGM’s struc-
ture) demands the estimation of the covariance matrix Ĉ and its inverse,
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2 Significance Tests for Gaussian Graphical Models

therefore the importance that the covariance estimator is invertible, and
well-conditioned (i.e. numerical errors are not magnified). The sample co-
variance estimator Ĉsm with p variables and n samples is not invertible
if n� p, thus another estimator must be employed. This is a common
scenario in systems biology (e.g large number of genes with few measure-
ments), and is usually refered to as the ”small n, large p” problem, sym-
bolically n� p.

Covariance estimators based on shrinkage produce a more stable estimator
by using a (convex) linear combination of Ĉsm with a target estimator T
(e.g. a diagonal matrix). The result is a well-conditioned estimator, and its
inverse can be used to compute the ”shrunk” partial correlations. A sig-
nificance test have been developed by Schäfer, J. and Strimmer, K. (2005)
but it does not take the shinkage intensity into account. This is an open
and important challenge as the reconstruction is a multiple testing prob-

lem (testing p(p−1)
2 edges), thus an slight bias would translate into an error

repeated systematically during the inference. In this work we aim to obtain
an exact density that includes the shrinkage effects. Our empirical results
in Section 3 demonstrate that this leads to a substantial improvement over
the earlier approach.

2 Shrinkage based Gaussian Graphical Models

Partial correlations are a measure of linear dependence between two vari-
ables adjusting the effects coming from all other variables. GGMs are undi-
rected graphical models represented by a matrix of partial correlations. The
matrix entry ρij in a GGM represents the partial correlation between the
variables i and j and can be computed from the inverse C−1 of the covari-
ance matrix C,

ρij = −
C−1
ij

2

√
C−1
ii

2

√
C−1
jj

(1)

where C needs to be estimated from the data. However, when n ≤ p the
sample covariance estimator Ĉsm is ill-conditioned and cannot be used.
Instead, the shrinkage based estimator Ĉ[λ] is a linear combination of
Ĉsm with a target matrix T in the form Ĉ[λ] = λT + (1 − λ)Ĉsm, where
λ ∈ [0, 1]. The resulting estimator is well-conditioned, and is implemented
in the widely used R package GeneNet (see. Schäfer, J. and Strimmer,
K. (2005)) where λ is chosen following an optimization criteria. Moreover,
significance is tested with the density of the standard partial correlation
f(ρ, k).

In the same way the correlation matrix R (i.e. the standarized Ĉsm) can
be combined with (or shrunk towards) the identity matrix I. In this case
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the diagonal elements of R (i.e. the variances) remains equal to 1, and
the off-diagonal rij (i.e. the pair-wise correlations coefficients) are scaled
by a factor of (1− λ). Therefore, the probability density function (pdf) of
the ”shrunk” correlation r[λ] can be found via the transformation r[λ] =
(1− λ)r,

f(r[λ], k) =
[(1− λ)2 − (r[λ])2]( k−3

2 )

Beta( 1
2 ,

k−1
2 )(1− λ)(1− λ)

k−3
2

(2)

where k denotes the degrees of freedom. We now use a classical result from
Fisher (1924) to obtain the probability density of the ”shrunk” partial
correlation f(r[λ], k). Here it was proved that ρ and r have the same density
differing only in the value of k. The main idea is to study the problem in
subject space where each random variable is represented with a vector, and
probabilistic relationships can be interpreted geometrically (see Wickens,
T. D. (2014)). For the purpose of illustration, lets consider three random
variables X, Y , and Z with expectation equal to zero (i.e. E[X] = E[Y ] =
E[Z] = 0). Given n data points for each variable, the corresponding random
vectors ~x, ~y, and ~z are in an space of dimension n. The correlation between
X and Y can be writen as

r =

∑n
i=1 xiyi√∑n

i=1 x
2
i

√∑n
j=1 y

2
j

= cos(∠~x, ~y) (3)

where the last equality comes from the product ~x · ~y = ||~x||||~y||cos(∠~x, ~y)
under the Euclidean norm. The rationale behind the proof is that r is re-
lated to the angle between the vectors (see Eq 3), and that this angle is
invariant under rotations of the coordinate axes. Therefore, the rotation
can be peformed in such a way that one of the axis coincides with ~z, and
conditioning on the random variable Z is equivalent to decreasing k by
one. This procedure can be continued by rotating again, and conditioning
over a new variable. The same idea can be used for r[λ] (as it is a scaled
correlation), andf(ρ[λ], k) is the probability density of ρ[λ].

To test the null hypothesis H0 : (the ”shrunk” partial correlation is zero)
with f(ρ[λ], k) we propose the following approach: Suppose the data D
consists of p variables and sample size n.

1. For D find the optimal shrinkage λopt, and estimate ρ
[λopt]
ij (Schäfer,

J. and Strimmer, K. (2005)).

2. Estimate k under H0:

(a) Simulate data of length n from H0 (i.e. the precision matrix
is the p x p identity), and using λopt (from step 1) infer the

null-hypothetic coefficients ρ
[λopt]
0ij

.

(b) Find k̂ by maximizing the likelihood of the ρ
[λopt]
0ij

with Eq 2.
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3. Test the coefficients ρ
[λopt]
ij from step 1 with f(ρ

[λopt]
ij , k̂).

We will refer to this approach as ”Shrunk MLE” in the following section.

3 Results

In this section we provide empirical evidence that the proposed ”Shrunk
MLE” approach is significantly superior to GeneNet 1.2.13. We cross-
compare the methods on synthetic, and real gene expression data by testing
the null hypothesis H0 : (the ”shrunk” partial correlation is zero). The Pos-
itive Predictive Values (PPVs) are compared on (i) syntethic data were the
true structure is known, and (ii) on real data were we use MC (a computa-
tionally expensive approach) to generate a reliable goldstandard network.
To simulate GGMs with a fixed percentage of edges δ we used GeneNet (for
the algorithm see Schäfer, J. and Strimmer, K. (2005)). Figure 1 shows the
PPV = TP

(TP+FP ) for different samples sizes n.
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FIGURE 1. Positive predictive value. On the left : GGM simulation for
p = 100, and n ranging from 10 to 200 in steps of size 10. The simulated GGM
structure has 148 correlations (i.e. δ = 0.03). The Positive predictive values
(PPV) are computed using p-values at α = 0.05. Dots (and bars) represent the
average PPV (± 2 standard errors) over 25 repeated simulations, and MC was
performed 15 times. Three methods are displayed:GeneNet (in dashed red), MC
(green), and Shrunk MLE (thick blue). Note that the green and blue curves
are superposed.On the left : The PPV are computed using Benjamini Hochberg
adjusted p-values at α = 0.05.

The results show a close agreement between the PPV obtained by MC,
and with ”Shrunk MLE”. On the other hand, GeneNet has a lower PPV
suggesting that it learns too many False Positives (FPs) Figure 2. We also
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analyzed Escherichia Coli microarray data from Schmidt-Heck, W. et al.
(2004), consisting of stress temporal response of 102 genes in 9 time points
after IPTG (induction of the recombinant protein SOD). Figure 2 shows
a Venn diagram for the edges found by each method, here we can observe
that ”Shrunk MLE” learns nearly the same edges as MC.
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FIGURE 2. False positives and Empirical results. On the left : GGM simu-
lation for p = 100, and n ranging from 10 to 200 in steps of size 10. The simulated
GGM structure has 148 correlations (i.e. δ = 0.03). The False Positives (FPs) are
computed using p-values at α = 0.05. Dots (and bars) represent the average FPs
(± 2 standard errors) over 25 repeated simulations, and MC was performed 15
times. Three methods are displayed: GeneNet (in dashed red), MC (green), and
Shrunk MLE (thick blue). Note that the green and blue curves are superposed.
On the right : Venn diagram for the inferred edges in E. coli. Taking MC as a
gold standard GeneNet ’s sensitivity is 258/258=1, with a low PPV of 258/478
≈ 0.54. Shrunk MLE has a slightly decreased sensitivity of 238/258 ≈ 0.92, but
yields a perfect PPV of 1.

A GO enrichment analysis (http://geneontology.org/) with False Discov-
ery Rate (FDR< 0.05) shows that the connected genes belong signifi-
cantly to stress response (FDR= 2.02E−02), in contrast with GeneNet
(FDR=7.73E−02). This suggests a dillution of the GO’s significance due
higher rate of FPs. The strongest connections were lacA–lacZ, lacY– lacZ,
and lacA–lacY related to the lac operon (known to be triggered by IPTG).

4 Conclusions

Gaussian Graphical Models (GGMs) are an important tool for network
learning. Reconstructing the network demands the estimation of the co-
variance matrix, which is ill-conditioned if the sample size is smaller than
the number of variables. Covariance estimators based in shrinkage make the
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covariance matrix invertible, however, for an accurate (parametric) signifi-
canc tests the shrinkage value needs to be included, otherwise the inference
will have a systematic error (e.g. biased p-values). In this paper a new
shrunk density was introduced, and to our knowledge is the only test that
includes the regularization effects. In the ”small n, large p” scenario the
new density allows an accurate inference for any shrinkage value.
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