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1
Introduction

“This is a story about dynamics: about change, flow, and rhythm, mostly
in things that are alive. (...)
This is a story about dynamics, but not about all kinds of dynamics. It is
mostly about processes that repeat themselves regularly. In living systems,
as in much of mankind’s energy-handling machinery, rhythmic return
through a cycle of change is a ubiquitous principle of organization. So this
book of temporal morphology is mostly about circles, in one guise after
another. The word phase is used (...) to signify position on a circle, on a
cycle of states. Phase provides us with a banner around which to rally a
welter of diverse rhythmic (temporal) or periodic (spatial) patterns that
lie close at hand all around us in the natural world. (...)
We turn now to the simplest abstractions about rhythms, cycles, and
clocks, with a few examples. Examples are merely mentioned here, pend-
ing their fuller description in later chapters, where the context is riper."

- Arthur T. Winfree, The Geometry of Biological Time

Indeed, as emphasized in the beginning of the seminal book “The Geometry of
Biological Time” [169], rhythms as ubiquitous principles of the real world as well
as their abstractions as dynamical processes that evolve on a cycle of states are
of great importance. In this regard, this thesis is devoted to the study of rhythms,
so-called “oscillators”. In particular, it deals with modeling, analysis, and control of
biological oscillators. This thesis is divided into two parts, where Part I is concerned
with the application of control theory to endocrinology, and Part II is devoted to
the application of dynamical systems to microbiology.
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2 1. Introduction

This chapter starts with the research context in Section 1.1, followed by Section
1.2 to briefly introduce the problems that are studied in Parts I and II. Contributions
and outline of the thesis are presented in Sections 1.3 and 1.4, respectively.

1.1 Research context

RECENT advances in technologies which significantly influence our lives are
widely accelerating the pace of discovery in medicine and biology. However,

such developments highly depend on an interdisciplinary approach that involves
several other branches of science, such as mathematics, physics, chemistry, and in
particular, dynamical systems and control theory. This interdisciplinary approach
has led to not only a better understanding and more comprehensive analysis of the
individual biological components but also the connections and the regulatory pro-
cesses among them. This approach is known as “systems biology” where dynamical
systems and control theory play crucial roles [1].

Oscillators are ubiquitous in different fields of science, such as biology [12, 44,
168], chemistry [28, 45, 46], neuroscience [65, 66, 74], and engineering [134,
135, 152]. Such periodic fluctuations occur with a variety of underlying mech-
anisms [47], and take place at all levels of biological organization over a wide
range of periods ranging from milliseconds (e.g., neurons) to seconds (e.g., cardiac
cells), minutes (e.g., oscillatory enzymes), hours and days (e.g., hormones), weeks
and even years (e.g., epidemiological processes and predator-prey interactions
in ecology) [47, 113, 117]. The main role of sustained oscillations is to control
major physiological functions, while their dysfunction is related to a variety of
physiological disorders [47].

In biological and biochemical oscillators, several concepts such as dynamics,
stability, instability, interactions, signaling, regulation, tracking, robustness, identi-
fication, and sensitivity analysis are of great importance, and have counterparts
in dynamical systems and control theory [123]. Therefore, tools from systems
and control theory can be useful to gain better understanding of the dynamics
and complex mechanisms underlying biological oscillators. Indeed, dynamical
systems and control theory have been connected to biological systems since the
19th century as presented in the seminal work of the celebrated physiologist Claude
Bernard on the milieu interieur1 in 1859 [6], who noticed that the constancy of the
internal environment is crucial for the survival and perpetuation of warm-blooded
animals [38]. In 1929, Walter Cannon [9] expanded upon Claude Bernard’s concept
of homeostasis, which is a process that needs coordinated control over endocrine,
behavioral and autonomic nervous system responses to the environment [38]. Next,
through the development of cybernetics, Norbert Wiener connected homeostasis to

1“the internal environment”.
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more rigorous formalisms in feedback control in 1948 [166]. Then Fred Grondis et
al., in their influential paper [59] in 1954, studied human physiology where, using
electric circuit analogs, they investigated the response of the respiratory system
to CO2 inhalation as a feedback regulator [72]. Subsequent works on physiolog-
ical and living systems have followed by, e.g., Grodins [58] in 1963, Bayliss [5],
Kalmus [78], Milhorn [108] in 1966, and so on2.

In order to gain a better understanding of the functioning and dynamics of
biological systems, only identifying and characterizing the individual components of
a system is not sufficient. In addition, it is necessary to understand the interactions
and regulatory processes among such components. To this end, mathematical
models can yield insights into how biological systems act as “networks” in which
individual components communicate with one another [39]. Owing to the fact that
biological systems are very complex and incompletely understood [114], devising
a mathematical model that describes all features of such systems is a challenging
task. Therefore, to gain deeper insights into the complexity of biological systems
through mathematical tools, a modeling approach is chosen, in which only the most
essential components and interactions among them are taken into account [105].

Although in the modeling approach, mathematical models are not complete
due to simplifying some details of biological systems, what they have in common is
that they are “fully” explicit about the structure, and inclusion or exclusion of the
assumptions in the model, while experimental systems typically do not have such
characteristics. A mathematical model which is correctly built based on underlying
biology allows us to investigate whether the structure and assumptions of the model
can explain the observed, or desired, results. Moreover, by in silico3 experimenta-
tion, such a model helps us to investigate some aspects of the underlying biological
system that are unethical (e.g., knock out or modify a gene in human), expensive
(e.g., change the expression level of different combination of genes), difficult (e.g.,
severely reduce nutrient input), or impractical to do in vitro4 or in vivo5. Further,
mathematical models can complement experiments: on one hand, experiments can
identify parameter values, functions and interactions that are crucial for establish-
ing the topology and kinetics of a model; on the other hand, mathematical models
can suggest new experiments and reveal some hidden aspects of the underlying
biological system that have never been observed experimentally [47, 114].

2Here we have referred to some works focused on physiological and living systems. Of course, there
are some other works connecting systems and control theory to biological systems; for instance, the
interested reader is referred to [168] and references therein.

3“performed on computer or via computer simulation”.
4“within the glass”.
5“within the living”.
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1.2 Applications

In this thesis, tools from dynamical systems and control theory are used to study
several oscillatory processes. In general, it is divided into two parts, where Part I is
concerned with the application of control theory to endocrinology, and Part II is
devoted to the application of dynamical systems to microbiology. In this regard, the
following subsections give a brief background on the problems that are investigated
in Parts I and II.

1.2.1 Part I: Application of control theory to endocrinology

Endocrine axes

Hormones are chemical blood-borne substances produced by glands. The endocrine
system is the collection of glands which secrete their products (hormones) into the
blood directly. The operation of endocrine glands is triggered and controlled by
the hypothalamus and the pituitary gland6, both of which are located at the base
of the brain, see Fig. 1.1. The most important function of the hypothalamus is
to link the nervous system to the other endocrine glands via the pituitary gland.
The hypothalamus, as well as the other neuroendocrine neural systems that are
connected to it, plays a crucial role in regulating the homeostatic functions. The
role of the pituitary gland is to control the endocrine glands, although its weight is
just 0.5 grams in human [38].

Growth, blood pressure, reproduction, metabolism, stress, and feeding and
drinking are some of the bodily functions that are controlled by the hypothalamus-
pituitary (HP) “neurohormonal” axis [38, 133]. The most essential feedback and
feedforward control mechanisms underlying the HP axes are as follows [133]. First,
neural interactions in the hypothalamus secrete releasing hormones. Next, releasing
hormones stimulate release of tropic hormones produced by the pituitary gland,
which, in turn, induces a “target” gland/organ to release effector hormones. Lastly,
the target gland/organ exerts negative feedback signals on the production of both
releasing and tropic hormones, see Fig. 1.1. The four-tiered neuroendocrine sys-
tems are (i) the hypothalamic-pituitary-gonadal (HPG) axis, (ii) the hypothalamic-
pituitary-adrenal (HPA) axis, (iii) the hypothalamic-pituitary-somatotropic7 (HPS)
axis, and the hypothalamic-pituitary-thyroid (HPT) axis.

Pulsatility of endocrine axes

In the neuroendocrine axes, hormones are secreted directly into the blood either in
a continuous or pulsatile (burst-like or episodic) manner. The latter, recognized in

6Also known as hypophysis.
7Also known as growth hormone.
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Hypothalamus

releasing hormones

Pituitary gland

tropic hormones

TARGET gland/organ

effector hormones

hypothalamus

pituitary

Figure 1.1: Structure of the hypothalamus-pituitary neurohormonal axis; feedfor-
ward and feedback control mechanisms are illustrated by ↓ and a, respectively.
(The right part of the figure is adapted from hormone.org)

the second half of the 20th century [29], is a fundamental property of the majority
of hormone secretion patterns [157]. Pulsatility is the physiological way to increase
hormone concentrations rapidly and send distinct signaling information to target
cells [155]. It is believed that pulsatile signaling offers greater control, permits
hormone concentrations to change rapidly, and is more energy efficient [164].

Owing to the fact that the hypothalamus is located in the base of the brain
(see Fig. 1.1), its hormone secretion into the pituitary gland is pulsatile. Thus,
it seems that the endocrine control mechanisms of the HP axes are hybrid, i.e., a
mixture of continuous and intermittent signal exchange [157], and hence their
corresponding mathematical models can be analyzed by tools and techniques
developed for impulsive dynamical systems, see e.g. [41, 54, 62, 96].

Disorders of endocrine axes

Disorders of the HP axes are hypersecretion (hormone excess), hyposecretion
(hormone deficiency), or tumors of the endocrine glands [30, 120]. For instance,
disorders of the HPA axis are related to a number of psychiatric and metabolic
diseases [171, 172]. In particular, adrenal deficiency is a disorder that might be due
to impairment of the adrenal glands, the pituitary gland, or the hypothalamus [30];
Addison’s disease is an example of such a disorder. Some of the diseases that can
be caused by adrenal deficiency are, e.g., unexpected dehydration and weight loss
in adults, hypoglycemia, and poor weight gain [147]. Another disorder of the HPA
axis is adrenal excess; Cushing’s syndrome, in which the cortisol level in blood is
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high, is an example of such a disorder that may result in, e.g., muscle weakness,
weight gain, fatigue, heart disease, and diabetes [120].

Disorders of the HP axes can be treated by tablets, injections or surgery. In the
current medication protocols, the dosage (timing and amount) is not optimal and
may cause other disorders. Therefore, it is of great importance to have a model in
order to predict the dose-response, and also an optimal approach to treat hormonal
disorders in order to minimize the side-effects of the medication [30]. All these
motivate the development of mathematical models which describe the complex
behavior of endocrine axes.

Mathematical modeling

The existence of many stimulatory (feedforward) and inhibitory (feedback) cou-
plings between hormones motivates the study of interactions between glands as a
dynamical system. This indicates that tools from systems and control theory may
be useful for modeling, analysis, and control of the endocrine system.

Owing to the complexity of the underlying biological structure, obtaining a
“global” mathematical model, describing the endocrine system in detail, is a chal-
lenge. However, in order to have a sensible and tractable mathematical model [79],
usually HP axes that are responsible for different physiological functions are stud-
ied.

The main objective of Part I of this thesis is to develop mathematical models to
provide deeper insights into the functioning and dynamics of the endocrine axes. A
detailed literature review on the mathematical models that have been postulated
to describe such axes is given in the introductions of Chapters 3, 4, and 5.

1.2.2 Part II: Application of dynamical systems to microbiology

Part II of this thesis establishes an approach to analyzing a class of oscillators. This
part clearly shows how mathematical models complement experimental systems.

Biochemical oscillations often occur in several contexts including signaling,
development, metabolism, and regulation of important physiological cell func-
tions [115]. Part II studies a biochemical oscillator model that describes the
developmental cycle of myxobacteria. Myxobacteria are multicellular organisms
that are common in the topsoil [77], and characterized by social behavior and a
complex developmental cycle [24]. The history of studying such bacteria goes back
to the late 19th century when Ronald Thaxter recognized them as bacteria for the
first time in 1892 [149]. For a complete review about the social and developmental
biology of myxobacteria, the interested reader is referred to [24, 112, 159].

The developmental cycle of myxobacteria, which is illustrated in Fig. 1.2, is
described as follows [77]. During vegetative growth, i.e. when food is ample,
myxobacteria constitute small swarms by a mechanism called “gliding” [73]. In



1

1.2. Applications 7

Figure 1.2: Schematic diagram of the developmental cycle of myxobacteria. (This
figure is adapted by permission from Springer Customer Service Centre GmbH:
Springer Nature, Nature Reviews Microbiology, D. Kaiser [77], Copyright 2003.)

contrast, under starvation circumstances, they aggregate and initiate a complex
developmental cycle during which small swarms are transformed into a multi-
cellular single body, known as “fruiting body”, whose role is to produce spores
for the next generation of bacteria [77]. During the aforementioned transition,
myxobacteria pass through a developmental stage called the “ripple phase” [73, 77],
characterized by complex patterns of waves that propagate within the whole colony.

Two genetically distinct molecular motors are concentrated at the cell poles
of myxobacteria, allowing them to glide on surfaces; these two motors are called
Adventurous (A-motility) and Social (S-motility) motors. The role of the former is
to push the cells forward, while the role of the latter is to pull them together. So in
order for a cell to reverse its direction, it has to alternatively activate its A-motility
(push) and S-motility (pull) motors at opposite cell poles [73]. As a result, by
forward and backward motion of myxobacteria, complex spatial wave patterns are
created. In particular, wave patterns are produced by the coordination of motion of
individual cells through a direct end-to-end contact signal, so-called the “C-signal”.
During the ripple phase of development, the C-signaling induces reversals, while
suppressing them during the aggregation stage of development. Observations
from experiments led to the proposal of a biochemical oscillator model in [73],
which acts as a “clock” that controls reversals. This model, known as the Frzilator
(or Frz model), will be further described in Chapter 6 from both biological and
mathematical perspectives.

In [73], it is claimed that the Frz model has stable and robust oscillations
over a wide range of parameters; however, such a range has not been explicitly
given. Moreover, our observation from simulations shows that, for a range of
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parameter values, solutions of the Frz converge to a unique limit cycle8. Further,
from numerical simulations, we have observed that there are several “time scales”
along the unique limit cycle which are related to the small parameters of the system.
A complete analysis of such a model may provide a better understanding of the
biochemical clock. To this end, Part II of this thesis is devoted to giving a detailed
and rigorous analysis of all such claims and observations.

In order to analyze the Frz model, we use various tools from dynamical systems,
such as regular perturbation theory, geometric singular perturbation theory, slow-
fast systems, Fenichel theory, and blow-up method, which are briefly introduced in
Chapter 2.

1.3 Contributions

We start with the main results in Chapter 3 where we present a minimal model of
cortisol’s diurnal patterns. In general, the contributions of this chapter are related
to modeling and control, respectively. For the modeling, we develop a second-order
impulsive differential equation model using the stochastic model presented in [7].
Unlike the stochastic model [7], in which the pulsatile input in the adrenal glands is
assumed to be doubly stochastic with amplitudes in Gaussian distribution and inter-
arrival times in gamma distribution, in the model presented in Chapter 3 the input
is assumed to be an “abstraction” of hormone pulses, i.e., we explicitly assume that
the system is impulsive. For the control, through an analytical approach, we design
an impulsive controller to identify the number, timing, and amplitude of secretory
events, while the blood cortisol levels are confined within a specific circadian range.
Moreover, by presenting an algorithm and employing it into various examples, we
show that the achieved cortisol levels lead to the circadian and ultradian rhythms
which are in line with the known physiology of cortisol secretion. The main source
of the material presented in this chapter is [141].

Chapter 4 develops a third-order ordinary differential equation model to de-
scribe the HP axes. As the Goodwin’s model [52] is a “prototypical biological
oscillator”, and Goodwin-like models are still broadly used in endocrine regulation
modeling, we first extend the Goodwin’s model by introducing an additional non-
linear feedback, whose special case has been studied in [4] to describe the HPA axis.
In contrast to the model investigated in [4], we do not restrict nonlinearities of our
model, which are used to describe the two negative feedbacks, to be identical and
the Hill-type [51]; this is an important extension since the actual chemical kinetics
of hormone secretions are not entirely known. The model presented in Chapter 4
is new in the sense that, to the best of the author’s knowledge, its general form has
never been studied in the literature.

8A limit cycle is an isolated closed trajectory.
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Another contribution of Chapter 4 is the mathematical analysis of the model,
establishing the relation between its “local” behavior at the equilibrium point
and “global” behavior, namely, the convergence of solutions to periodic orbits.
Such an analysis is available only for cyclic Goodwin-like models, and endocrine
regulation systems with multiple feedback loops have been studied only by standard
local methods, such as linearization, and Hopf bifurcation theorem. In Chapter 4,
the existence of periodic solutions is proven by Hopf bifurcation theory whose
mathematically rigorous application is non-trivial, since a one-parameter family
of systems has to be constructed. In addition, the convergence of solutions to
periodic orbits is proven by the results of [101], while such results are not directly
applicable to the extended Goodwin’s model since their fundamental condition, i.e.
“sign-symmetry” coupling among components, is violated. We show that in the case
where the additional feedback satisfies a slope condition, a special transformation
exists that removes this asymmetry, allowing thus to apply the results of [101].
To the best of the author’s knowledge, for a system whose couplings among its
components are asymmetric, no global results have been reported in the literature.
The results presented in this chapter are published in [139, 145].

Chapter 5 develops a third-order impulsive differential equation for endocrine
regulation. In particular, it extends the impulsive Goodwin’s oscillator [15] by
introducing an additional affine feedback. Although the introduction of such a
feedback results in an affine system between two consecutive pulses and allows us
to extend the theory developed in [15] for non-cyclic endocrine systems with two
feedback loops, due to the fact that the affine system is governed by a non-Metzler
matrix, some solutions may become negative at some time (i.e., the positive orthant
is not an invariant set) and hence are not biologically feasible.

In Chapter 5, we prove the existence, uniqueness, and positivity of a type of
periodic solution, called 1-cycle, having only one pulse in its smallest period. Our
approach is based on a special transformation of variables under which the extended
system is transformed into a system whose linear part is governed by a Metzler
matrix. After establishing the existence, uniqueness and positivity of a 1-cycle
solution for the transformed system, we demonstrate that, under some conditions,
this solution is mapped to a positive and unique 1-cycle solution of the original
system. The main source of the material presented in this chapter is [144]. A
special case of the model, in which the additional feedback is described by a linear
function, is studied in [140] from a different approach.

Part II of this thesis (i.e., Chapters 6 and 7) is concerned with the analysis
of a biochemical oscillator model (the Frz model), describing the social-behavior
transition phase of myxobacteria. It presents a rigorous and complete proof of
claims made in [73], and of our observations from numerical simulations. In
general, Part II provides two types of results, namely, modeling and analysis. The
contributions of each chapter are as follows.
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Chapter 6 develops a tool based on bifurcation analysis for parameter-robustness
analysis for a class of oscillators, and in particular, studies the Frz model. Generally,
our studies start from modeling to local analysis, followed by global analysis. For
modeling, as the reactions in the Frz model possess the property of “zero-order
ultrasensitivity” [73], we first identify some small parameters of the model, and
then unify them by a single parameter ε. Identification of suitable parameters
that can be unified is a crucial step in modeling, because there may exist other
parameters (which do exist in the Frz model) that are small as well, but they cannot
be unified with the other parameters, due to some biological reasons.

Owing to the fact that the Frz model with the unified parameter ε has a unique
and hyperbolic equilibrium for the case ε = 0, using regular perturbation theory,
we show that the uniqueness and hyperbolicity of the equilibrium can be preserved
in certain parameter regimes, given explicitly. Next, we prove that the system has
oscillatory behavior in such regimes, and then the equilibrium switches from being
unstable to stable. In addition, we provide global results, meaning that (almost)
all solutions converge to a finite number of periodic solutions, one of which is
asymptotically stable. Lastly, we show that the reported convergence result is robust
in the sense that any smooth, sufficiently small, and not necessarily symmetric
change in the parameters, unified by ε, will lead to the same qualitative behavior
of the solutions. The results of this chapter are published in [142].

Chapter 7 studies the Frz system from a completely different approach, namely,
geometric singular perturbation theory. Our observations from numerical simulations
show that (almost) all solutions of the system converge to a unique limit cycle, and
more importantly, the system is a “relaxation” oscillator, meaning that there are
multiple time scales along the orbit of the oscillator. Nevertheless, the Frz system
is not in the standard form (i.e., without a global separation into slow and fast
variables) of the multiple-time-scale dynamical systems, and hence poses several
mathematical challenges.

The main contribution of Chapter 7 is to prove that, within certain parameter
regimes, there exists a strongly attracting periodic orbit for the Frz system. In
addition, the detailed description of the structure of such a periodic orbit is given.
The methodology used to prove the result consists first on an appropriate rescaling
of the original model, which leads to a slow-fast (or two time-scales) system. By
taking the advantage of the two time-scales of the rescaled system, a geometric
analysis through techniques of multiple-time-scale dynamical systems is developed.
From an analytical point of view, the main difficulty of this analysis is the detailed
description of a transition along two non-hyperbolic lines, where the blow-up method
is used. The principal source of the material presented in this chapter is [143].
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1.3.1 Related publications

The material presented in this thesis is in the most part based on the following
papers.

Conference papers

• H. Taghvafard, A.V. Proskurnikov, and M. Cao. Stability properties of the
Goodwin-Smith oscillator model with additional feedback. IFAC-PapersOnLine,
49(14):131–136, 2016.

• H. Taghvafard, A.V. Proskurnikov, and M. Cao. An impulsive model of en-
docrine regulation with two negative feedback loops. IFAC-PapersOnLine,
50(1):14717–14722, 2017.

Journal papers

• H. Taghvafard, H. Jardón-Kojakhmetov, and M. Cao. Parameter-robustness
analysis for a biochemical oscillator model describing the social-behaviour
transition phase of myxobacteria. Proceedings of the Royal Society A – Mathe-
matical, Physical and Engineering Sciences, 474(2209):20170499, 2018.

• H. Taghvafard, A.V. Proskurnikov, and M. Cao. Local and global analysis of
endocrine regulation as a non-cyclic feedback system. Automatica, 91:190–
196, 2018.

• H. Taghvafard, M. Cao, Y. Kawano, and R.T. Faghih. Design of intermittent
control for cortisol secretion under time-varying demand and holding cost
constraints. Submitted, 2018.

• H. Taghvafard, H. Jardón-Kojakhmetov, P. Szmolyan, and M. Cao. Geometric
analysis of oscillations in the Frzilator. In preparation, 2018.

• H. Taghvafard, A. Medvedev, A.V. Proskurnikov, and M. Cao. Impulsive model
of endocrine regulation with a local continuous feedback. In preparation,
2018.

1.4 Outline of the thesis

The outline of the reminder of this book is as follows. Chapter 2 reviews some
concepts and tools that are used in the following chapters. In particular, it starts
with some concepts and basic definitions from dynamical systems theory, followed
by regular and singular perturbation, bifurcation theory, slow-fast system, Fenichel
theory, and lastly blow-up method.
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Chapter 3 first develops a mathematical model describing the pulsatile release
of cortisol. Next, it proposes a method and then an algorithm for calculating the
timing and amplitude of secretory events. This chapter proceeds with the results,
discussions, and conclusions.

Chapter 4 first extends the Goodwin’s model by introducing an additional
nonlinear feedback. Then, conditions for local stability analysis, existence of
periodic solutions, and global stability of solutions are given. This chapter is
followed by proofs of the results, numerical simulations, and lastly, concluding
remarks.

Chapter 5 first extends the impulsive Goodwin’s model by introducing an
additional affine feedback. It proceeds with the main result as well as the approach
by which the main result is proven. Concluding remarks close this chapter.

Chapter 6 first describes the Frz system in more details, from both biological and
mathematical perspective. Next, local stability analysis is presented, followed by
Hopf bifurcation analysis. Then it continues with convergence analysis of solutions,
robustness of the bifurcation as well as concluding remarks.

Chapter 7 first gives a preliminary analysis on the Frz system, followed by the
slow-fast analysis of an auxiliary system, which is equivalent to the Frz system.
Next, the blow-up analysis of two non-hyperbolic lines is presented. This chapter
proceeds with giving an explicit range of an independent parameter of the system
in which the main result is valid.

Chapter 8 summarizes what has been accomplished in this thesis. In addition,
some potential directions for future research are suggested.



2
Preliminaries

This chapter reviews some concepts and tools that are used in the following
chapters. Section 2.1 recalls some basic definitions from the dynamical systems
theory. Section 2.2 continues to briefly introduce bifurcation theory, followed by
regular and singular perturbation theory in Section 2.3. Slow-fast systems and
Fenichel theory are presented in Sections 2.4 and 2.5, respectively. Finally, blow-up
method is introduced in Section 2.6 through a simple example. The material
presented in this chapter is based on [10, 53, 76, 86, 92].

2.1 Basic definitions

LET U ⊆ Rn and V ⊆ Rk (for n, k ∈ N) be open subsets, and f : U × V → Rn

be a smooth function. Here the term “smooth” means that the function f is
continuously differentiable (i.e., f ∈ C∞). An Ordinary Differential Equation (ODE)
is an equation of the form

ẋ = f(x, λ), (2.1)

where “dot” denotes differentiation with respect to t (i.e., ˙ = d
dt), x is a vector of

the state variables, and λ is a vector of parameters. In particular, when we are
concerned with the components of a vector differential equation, we say that (2.1)
is a system of differential equations. Moreover, if we are interested in changes with
respect to parameters, we call (2.1) a family of differential equations.

As ODEs are used to describe the evolution of a state variable for a dynamical
process, we are interested in determining the future values of the state variable
from its initial value. Then the mathematical model corresponding to such a
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dynamical process is given by

ẋ = f(x, λ),

x(t0) = x0,

where the second equation is called an initial condition.
When λ ∈ Rk is fixed, it is more convenient to represent (2.1) as follows

ẋ = f(x), x ∈ Rn. (2.2)

We say that the vector field f generates a flow φt(·) : U → Rn, where φt(x) = φ(t, x)

is a smooth function defined for all x ∈ U and t ∈ I where I is an open subset of R,
and φ satisfies (2.2) in the sense that

dφ(t, x)

dt

∣∣∣
t=τ

= f(φ(τ, x)), ∀x ∈ U, τ ∈ I. (2.3)

Systems of the form (2.2), in which the vector field does not contain the time
explicitly, are called autonomous.

Given an initial condition x(t0) = x0, we look for a solution φ(t, x0) such that
φ(t0, x0) = x0. In this case, φ(·, x0) : I → Rn defines a solution of the differential
equation (2.2) through the point x0. Although the word “trajectory” is also used to
refer to solutions of the differential equations, here we define a term that refers to
the image of a solution in Rn. So we define the orbit of the solution φ through the
point x0 to be

O(x0) := {φ ∈ Rn |φ = φ(t, x0), t ∈ I}. (2.4)

A geometric picture of all the orbits is called its phase portrait.
Equation (2.2) may have the following special types of orbits:

1. Equilibrium point1: if there exists a point x0 ∈ Rn such that f(x0) = 0, then
x0 is called an equilibrium point. Further, if the Jacobian matrix Dx(f)

∣∣
x=x0

has all its eigenvalues off the imaginary axis, then we say that x0 is hyperbolic;
otherwise, is non-hyperbolic. A hyperbolic equilibrium point x0 is called saddle
if the Jacobian matrix Dx(f)

∣∣
x=x0

has at least one eigenvalue with positive
real part and one eigenvalue with negative real part.

2. Periodic orbit: if equation (2.2) has a closed orbit and t 7→ φ(t, x0) is a
solution with the initial value x0 on this orbit, then there exists T > 0 such
that φ(T, x0) = φ(t0, x0). In such a case, the solution is called T -periodic; i.e.,
φ(t+T, x0) = φ(t, x0) for all t ∈ R. Such closed orbits are also called periodic
orbits. The smallest T > 0 that satisfies φ(t+ T, x0) = φ(t, x0) for all t ∈ R is
called the period of the periodic orbit through x0.

1This point is also called a steady state, or a critical point.
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Although equilibria and periodic orbits correspond to very special solutions of
(2.2), they are the most important orbits in applications, and hence their stability
is of great importance. In this regard, we first define the stability of an equilibrium.

Remark 2.1. Throughout this thesis, the Euclidean norm of x ∈ Rn is denoted by
‖x‖.

Definition 2.2. [10, Definiton 1.38] An equilibrium point x0 of the differential
equation (2.2) is stable (in the sense of Lyapunov) if for each ε > 0, there exists a
number δ > 0 such that ‖φ(t, x)− x0‖ < ε for all t > 0 whenever ‖x− x0‖ < δ.

Definition 2.2 only defines the stability of an equilibrium point, which is a
special solution. In the following, we extend this definition and define the stability
of any arbitrary solution of (2.2).

Definition 2.3. [10, Definiton 1.39] Suppose that x0 is in the domain of definition
of the differential equation (2.2). The solution t 7→ φ(t, x0) of (2.2) is called
stable (in the sense of Lyapunov) if for each ε > 0, there exists δ > 0 such that
‖φ(t, x)− φ(t, x0)‖ < ε for all t > 0 whenever ‖x− x0‖ < δ.

A solution which is not stable is called unstable.

Definition 2.4. [10, Definiton 1.40] A solution t 7→ φ(t, x0) of (2.2) is called asymp-
totically stable if it is stable and there is a constant a > 0 such that limt→∞ ‖φ(t, x)−
φ(t, x0)‖ = 0 whenever ‖x− x0‖ < a.

So far, we have defined the concept of stability for solutions for a given initial
condition. The notion of stability for periodic orbits is different, which is given as
follows.

Definition 2.5. [10, Definiton 1.41] A periodic orbit Γ of the differential equation
(2.2) is orbitally stable if for each open set V ⊆ Rn that contains Γ, there is an open
set W ⊆ V such that every solution, starting at a point in W at t = 0, stays in V for
all t > 0. The periodic orbit is called orbitally asymptotically stable if , in addition,
there is a subset X ⊆W such that every solution starting in X is asymptotic to Γ

as t→∞.

Dealing with mathematical models, it is of great interest to know the long-
term behavior of solutions of a dynamical system. In this regard, we present the
following definition, which precisely describes the limiting behavior of an arbitrary
orbit.

Definition 2.6. [10, Definiton 1.165] Suppsoe that φ(t, ·) is a flow on Rn and
p ∈ Rn. A point x in Rn is called an omega limit point (ω-limit point) of the
orbit through p if there is a sequence of numbers t1 6 t2 6 t3 6 · · · such that
limi→∞ ti = ∞ and limi→∞ φ(ti, p) = x. The collection of all such omega limit
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points is denoted by ω(p) and called the omega limit set (ω-limit set) of p. Similarly,
the α-limit set α(p) is defined to be the set of all limits limi→∞ φ(ti, p) = x where
t1 > t2 > t3 > · · · and limi→∞ ti = −∞

We are now ready to define the concept of limit cycle, which is widely used in
this thesis.

Definition 2.7. [10, Definiton 1.178] A limit cycle Γ is a periodic orbit that is either
the ω-limit set or the α-limit set of some point that is in the phase space but not in
Γ.

Besides limit cycles, a dynamical system may have other types of orbits, such
as homoclinic and heteroclinic orbits. To define such orbits, first let us define a
saddle connection to be an orbit whose α- and ω-limit sets are hyperbolic saddle
points [10].

Definition 2.8. [10] A saddle connection is called a homoclinic orbit if its α- and ω-
limit sets coincide. On the other hand, the saddle connection is called a heteroclinic
orbit if its α-limit set is disjoint form its ω-limit set.

2.2 Bifurcation theory

Dynamical processes that are described by ODEs can have several parameters, and
a small change in a parameter may lead to a significant change on the solutions of
the ODEs. As mentioned in the previous section, equilibria and periodic orbits are
the most important orbits in applications. So it is of great interest to know how
equilibria and periodic orbits can be continued with respect to the variation of a
parameter, and also how qualitative changes in the behavior of solutions can be
predicted with respect to such a parameter variation. The answer to such questions
is given by bifurcation theory.

Let us consider a family of ODEs of the form

ẋ = f(x, λ), (2.5)

where x ∈ Rn is the state variable, and λ ∈ Rk is the parameter. Bifurcation theory
deals with the behavior of solutions of (2.5) under variations of the parameter λ.

Assume that λ0 is a particular value of λ. Then for values of λ near λ0, the
system (2.5) is called an unfolding of

ẋ = f(x, λ0). (2.6)

In a region in the state space, if the phase portraits of (2.5) are qualitatively the
same as those of (2.6) when ‖λ− λ0‖ is sufficiently small, then (2.6) is structurally



2

2.3. Regular versus singular perturbation 17

stable. Values of λ0 for which (2.6) is not structurally stable are called bifurcation
values [53].

The simplest solutions to (2.5) are the equilibria, which are the solutions to the
equation

f(x, λ) = 0. (2.7)

Let us consider (2.5) with λ ∈ R, and assume that f(x0, λ0) = 0. The eigenvalues
of the Jacobian matrix Dx(f)

∣∣
(x0,λ0)

can be one of the followings [53]:

• A simple zero eigenvalue; this case is called a fold point, where a change in
the stability of the solutions occurs under parameter perturbations.

• A conjugate pair of pure imaginary eigenvalues, i.e., ±iβ where β > 0; this
case is called a Hopf point, where the change in the stability leads to the
emergence of another type of solution, namely, periodic orbits.

A non-trivial application of Hopf bifurcation is presented in Chapters 4, 6, and 7.

2.3 Regular versus singular perturbation

Most of ODEs describing dynamical processes cannot be solved exactly, due to their
complexity. Nevertheless, it may be the case that a small parameter, namely ε, can
be identified such that the solution is available (for instance, it is linear or exactly
solvable) for ε = 0. Then, it is of great interest to know how the behavior of such
a solution will change for non-zero but small variation of the parameter ε. The
answer to his question is given by perturbation theory.

Let us consider a family of ODEs of the form

ẋ = f(x, ε), (2.8)

where the state variable x ∈ Rn, ε > 0 is a small parameter, and f is a continuous
function in a domain D ⊆ Rn+1. Setting ε = 0 in (2.8) defines the unperturbed
system

ẋ = f(x, 0). (2.9)

Let xε(t) and x0(t) denote, respectively, solutions of (2.8) and (2.9) with initial
conditions xε(t0) = x0(t0) = x0 when t ∈ [t0, T̄ ] and (x0, ε) ∈ D. As f is continuous
in the domain D, then for a sufficiently small ε > 0, the solution xε(t) when
t ∈ [t0, T̄ ] can be represented as

xε(t) = x0(t) +R0(t, ε), (2.10)

where R0(t, ε)→ 0 as ε→ 0 uniformly with respect to t where t ∈ [t0, T̄ ].
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In the case when f is continuously differentiable k > 1 times with respect to
both x and ε (i.e. f ∈ Ck(D)), for a sufficiently small ε > 0, the solution xε(t) can
be represented as

xε(t) = x0(t) + εx1(t) + ε2x2(t) + · · ·+ εk−1xk−1(t) +Rk(t, ε), (2.11)

where Rk(t, ε)→ 0 as ε→ 0 uniformly with respect to t where t ∈ [t0, T̄ ]. Further,
if f ∈ C∞(D), then the solution xε(t) can be represented as

xε(t) = x0(t) +

∞∑
k=1

εkxk(t), (2.12)

which converges uniformly with respect to t where t ∈ [t0, T̄ ].

From (2.10), (2.11), and (2.12), it is clear that xε(t) → x0(t) as ε → 0. Such
problems in which the solution of the general problem (2.8) converges to the solu-
tion of the unperturbed problem (2.9), as the parameter approaches the limit value
(i.e., ε→ 0), are called regular perturbation problems. In contrast, those problems
in which the solutions of the unperturbed problem are different in character from
the limit of the general problem are called singular perturbation problems. In fact,
the structure of the asymptotic expansions of the singular perturbation problems is
both complicated and unexpected, and may have expansion terms such as (ln ε)−k,
εk(ln ε)`, or even εk(ln | ln ε|)−` where k, ` ∈ N [119]. The existence of such terms
in an asymptotic expansion does not allow us to analyze its corresponding system
via regular perturbation theory, and hence tools beyond such a theory are required.

To overcome such issues, geometric methods from dynamical systems theory,
namely, blow-up method [22] is useful. Blow-up is a complicated rescaling of the
time which allows us to analyze the dynamics near a singularity. In Chapter 7 of this
thesis, concepts from singular perturbation theory based on the blow-up method
are used to analyze a biochemical oscillator model, which evolves on different time
scales, i.e., the dynamics of some variables are faster than the dynamics of other
variables. In this regard, slow-fast systems are introduced in the following section.

2.4 Slow-fast systems

Some dynamical processes in nature can be modeled by differential equations of
the form

εẋ = f(x, y, ε),

ẏ = g(x, y, ε),
(2.13)
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where ˙ = d
dt , (x, y) ∈ Rm × Rn for m,n ∈ N, functions f and g are smooth in all

three arguments (x, y, ε), and ε > 0 is a small parameter (i.e., 0 < ε� 1). Setting
τ = t

ε , system (2.14) is represented by

x′ = f(x, y, ε),

y′ = εg(x, y, ε),
(2.14)

where ′ = d
dτ . As long as ε 6= 0, the time scale given by t is said to be slow, whereas

that for τ is fast. Therefore, we call (2.13) the slow system, and (2.14) the fast
system. A slow-fast system is in the standard form if the separation into slow and
fast variables (i.e., in the form of either (2.13) or (2.14)) is given a priori, while is
in the non-standard form if such a separation is not given.

For ε > 0, systems (2.13) and (2.14) are equivalent in the sense that they have
the same phase portrait, while they have different speed of propagation along their
orbits. Further, they have distinguished limits as ε→ 0.

To study slow and fast processes separately but simultaneously, we study the
dynamics of (2.13) and (2.14) as ε→ 0. Setting ε = 0 in (2.13), we obtain

0 = f(x, y, 0),

ẏ = g(x, y, 0),
(2.15)

which is called the reduced problem. Now by setting ε = 0 in (2.14), we obtain

x′ = f(x, y, 0),

y′ = 0,
(2.16)

which is called the layer problem. As observed in (2.16), the variable x will change
with respect to τ , while y will remain constant.

Note that (2.15) is not only an ODE, but an ODE with the algebraic constraint
f(x, y, 0) = 0. Therefore (2.15) is a Differential-Algebraic Equation (DAE). The set

S := {(x, y) ∈ Rm+n | f(x, y, 0) = 0}, (2.17)

is called the critical manifold or the critical set. In contrast to (2.15), in the analysis
of the layer problem (2.16) we study the dynamics of the fast variable x, while y is
constant. Note that the critical manifold S is the set of the equilibria of the layer
problem (2.16), and hence is related to the fast dynamics as well.

If f(x, y, 0) = 0, then the flow is trivial for (2.16). However, the flow of (2.15)
is non-trivial on the set S, but is not defined outside S. The main goal of the
Geometric Singular Perturbation Theory (GSPT) is to realize both these aspects (i.e.,
slow and fast) simultaneously. This contradictory goal will be done within the
phase space of (2.13) (or, equivalently, (2.14)) for ε non-zero but small [76].
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The following reasons explain why GSPT is a powerful tool for analyzing high-
dimensional systems [76]:

1. In many applications, quantities change on different time scales, and hence
are modeled in the from of (2.13) (or, equivalently, (2.14)).

2. Equations (2.14) can be reduced to the lower-dimensional systems (2.15)
and (2.16).

An important property that a critical manifold may posses is normal hyperbolic-
ity, which is defined as follows.

Definition 2.9. [92, Definition 3.1.1] A subset S0 ⊂ S is called normally hyperbolic
if the m×m matrix (Dxf)(p, 0) of the first partial derivatives with respect to the
fast variable has no eigenvalues with zero real part for all p ∈ S0.

The type of equilibria for the fast subsystem that lies in S0 determines whether
S0 is stable or unstable. In this regard, we have the following definition.

Definition 2.10. [92, Definition 3.1.3] A normally hyperbolic subset S0 ⊂ S is
called attracting if all eigenvalues of (Dxf)(p, 0) have negative real parts for p ∈ S0;
similarly, S0 is called repelling if all eigenvalues have positive real parts. If S0 is
normally hyperbolic and neither attracting not repelling, it is of the saddle type.

Remark 2.11. In a neighborhood of a point in the critical manifold S whose Jacobian
is non-singular, using implicit function theorem, the equation f(x, y, 0) = 0 can
be solved for x = h0(y), and hence the reduced problem (2.15) is described by
ẏ = g(h0(y), y, 0).

As mentioned, the critical manifold S, which is a manifold of equilibria of the
layer problem (2.16), may have normally hyperbolic and non-hyperbolic points, re-
spectively. In order to analyze the system at such points, we use Fenichel theory for
the former, while blow-up method for the latter. In this regard, a brief introduction
to these tools are given in the following sections.

2.5 Fenichel theory

In the seminal paper [37], Fenichel showed that normally hyperbolic points of
the critical manifold S perturb smoothly to locally invariant slow manifolds, for
sufficiently small ε, see Fig. 2.1. As Fenichel theory plays a crucial role in our
analysis in Chapter 7, this section is devoted to such a theory, before which we
recall the following definitions.
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Wu(Sε)

O(ε)

Figure 2.1: Perturbation of a normally hyperbolic submanifold S0 to a slow manifold
Sε by the Fenichel’s theorem.

Definition 2.12. [92] The Hausdorff distance between two nonempty sets U, V ⊂
Rm+n is defined by

dH(U, V ) := max

{
sup
u∈U

inf
v∈V
‖u− v‖, sup

v∈V
inf
u∈U
‖u− v‖

}
.

Definition 2.13. Let f, g : R \ {0} → R be real functions. We say that f = O(g) as
x→ 0 if there exist constants C, r > 0 such that

|f(x)| 6 C|g(x)|, 0 < |x| < r.

We are now ready to present the Fenichel’s theorem.

Theorem 2.14. [92, Theorem 3.1.4](Fenichel’s theorem) Assume that S0 is a com-
pact normally hyperbolic submanifold of the critical manifold S, and that f, g ∈ Cr

(r <∞). Then for ε > 0 sufficiently small, the following statements hold:

(F1) There exists a locally invariant manifold Sε diffeomorphic to S0. Local invariance
means that trajectories can enter or leave Sε only through its boundaries.

(F2) Sε has the Hausdorff distance O(ε) as ε→ 0 from S0.

(F3) The flow on Sε converges to the slow flow as ε→ 0.

(F4) Sε is Cr-smooth.

(F5) Sε is normally hyperbolic and has the same stability properties with respect to
the fast variables as S0 (attracting, repelling, or of saddle type).
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(F6) Sε is usually not unique. In regions that remain at the fixed distance from ∂Sε,
all manifolds satisfying items (F1)-(F5) lie at a Hausdorff distanceO(exp(−K/ε))
from each other for some K > 0, K = O(1).

Note that all asymptotic notation refers to ε→ 0. The same conclusions as for S0 hold
locally for its stable and unstable manifolds:

W s
loc(S0) =

⋃
p∈S0

W s
loc(p), W u

loc(S0) =
⋃
p∈S0

W u
loc(p),

where we view points p ∈ S0 as equilibria of the fast subsystem. These manifolds also
persist for ε > 0 sufficiently small: there exist local stable and unstable manifolds
W s

loc(Sε) and W u
loc(Sε), respectively for which conclusions (F1)-(F6) hold if we replace

Sε and S0 by W s
loc(Sε) and W s

loc(S0) (or similarly by W u
loc(Sε) and W u

loc(S0)).

Definition 2.15. [92, Definiton 3.1.5] A manifold Sε, as obtained in the conclusion
of Theorem 2.14, is called a slow manifold.

2.6 Blow-up method

As mentioned in the previous section, Fenichel theory is solely applicable to hyper-
bolic points of the critical manifold S, while for the fold points and non-hyperbolic
points of S such a theory fails. Therefore, more advanced tools and techniques are
required to analyze the dynamics at these points. One of such techniques is the
blow-up method, introduced in the seminal work by Dumortier and Roussarie [22].
Using the blow-up method, singularities (i.e., fold and non-hyperbolic points) at
which slow and fast directions intersect can be transformed into partially hyperbolic
problems. This geometric method has been successfully applied to many problems,
see e.g. [23, 86, 88, 92, 109, 137], and can be regarded as a complement of
Fenichel theory for singular points.

To introduce and clearly show the blow-up technique in multiple-time-scale
dynamics, we consider a concrete low-dimensional example. In this regard, let us
consider the planar singularly perturbed system

x′ = f(x, y, ε),

y′ = εg(x, y, ε),
(2.18)

where (x, y) ∈ R2 and

f(0, 0, 0) = 0, fx(0, 0, 0) = 0. (2.19)
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yx x̄

ε

ȳ

ε̄

Figure 2.2: Blow-up of a point to a sphere.

Now, we add a trivial equation ε′ = 0 to (2.18), which results in the system

x′ = f(x, y, ε),

y′ = εg(x, y, ε),

ε′ = 0.

(2.20)

As is clear from (2.19), the linearization of (2.20) at (0, 0, 0) has triple zero
eigenvalues; in other words, (0, 0, 0) is a degenerate equilibrium for (2.20). To
overcome such a degeneracy, we use the blow-up technique by which the degenerate
equilibrium is blown-up to a sphere (see Fig. 2.2) by a suitably weighted spherical
coordinates transformation, which is defined by the mapping

Φ : S2 × [0, r0]→ R3,

(x̄, ȳ, ε̄) 7−→ (x, y, ε),

such that
x = rαx̄, y = rβ ȳ, ε = rγ ε̄, (2.21)

where S2 := {(x̄, ȳ, ε̄) | x̄2 + ȳ2 + ε̄2 = 1}, r0 > 0, and the suitable weights
(α, β, γ) ∈ Z3. Denoting X as the vector field of (2.20), the map Φ induces a
blown-up vector field, namely X̄, such that the diagram

B0

XX̄

Φ

Φ∗

R3

TB0 TR3
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x̄

K3

ȳ

K2

K1

ε̄

S2 × [0, r0]

Figure 2.3: Coordinate charts for blow-up method.

commutes, where B0 := S2 × [0, r0], and TB0 denotes the tangent bundle2 of
B0. Owing to the fact that a degenerate equilibrium is blown-up to a sphere, the
blown-up vector field X̄ vanishes on the sphere. To overcome such a problem, a
suitable power of the radial variable r is divided out such that the flow on the
sphere is not degenerate anymore and allows us to analyze the blown-up vector
field on the sphere.

The blown-up vector field is analyzed in local charts. The idea for finding such
charts is that in the transformation (2.21), one blown-up variable on S2 is set to be
equal to ±1, while keeping the others unchanged. In doing so, the whole sphere is
covered by several planar charts, which are perpendicular to the axes, see Fig. 2.3.
Among all charts, the most important one, so-called the central chart, corresponds
to the case where ε̄ = 1 in (2.21). In fact, the central chart is an ε-rescaling of the
original variables x and y, since setting ε̄ = 1 in (2.21) implies that r = ε−γ . In the
central chart, the variable r acts as a parameter since ε′ = 0 implies that r′ = 0,
while in the other charts this variable is dynamic. The additional charts are useful
for the analysis of the blown-up dynamics on the unbounded domains of the central
chart.

In this section, we have briefly presented how a singular point is blown-up
to a sphere; for a more complete and detailed analysis, the interested reader is
refereed to [90, 93]. A non-trivial application of the blow-up method is presented
in Chapter 7, where a non-hyperbolic line is blown-up to a cylinder.

2The tangent bundle of B0 is the union of all tangent spaces of B0.
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3
Design of intermittent control for cortisol
secretion

In this chapter we take the release of stress hormone cortisol as a part of an
intermittent control feedback system as opposed to a continuous one. By modeling
cortisol secretion as an impulsive system, we design an impulsive controller for
adjusting cortisol levels while maintaining the blood cortisol levels within levels that
satisfy circadian demand and cost constraints. Following an analytical approach,
both the timing and amplitude of the control are identified. We use various
examples to illustrate that the proposed approach achieves impulsive control and
that the obtained blood cortisol levels show the circadian rhythm and the ultradian
rhythm that are consistent with the known physiology of cortisol secretion.

This chapter starts with an introduction, followed by Section 3.2 where we
develop a mathematical model, and propose an algorithm. The results are given in
Section 3.3. Lastly, discussions and concluding remarks are given in Sections 3.4
and 3.5, respectively.

3.1 Introduction

HORMONES are signaling substances that regulate many vital bodily functions,
such as growth, stress, and metabolism. In the endocrine system, glands

communicate with remote target cells through a combination of continuous and
intermittent (pulsatile) signal exchanges [157]. Continuous signaling permits
hormone concentrations to vary slowly, while pulsatile signaling allows them
to have instantaneous adjustment [157]. In fact, pulsatility is a physiological
mechanism through which hormone concentrations can increase rapidly and send
distinct signaling information to target cells [155]. Compared with continuous
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signaling, pulsatile signaling is more energy efficient, permits more rapid changes in
hormone concentrations, and offers greater control flexibility [164]. On one hand,
it is widely known that several hormones, such as gonadal steroid, growth, insulin
and cortisol, are released in a pulsatile manner [15, 124, 153, 155, 156, 163];
on the other hand, pulsatile signaling is significantly different from continuous
signaling [132]. Therefore, it is crucial to understand the physiology underlying
the pulsatile hormone release [34].

The hypothalamic-pituitary-adrenal (HPA) axis is one of the most important en-
docrine systems, which controls intermittent release of cortisol. Cortisol is a steroid
hormone that is mainly responsible for regulating metabolism and the body’s reac-
tion to stress and inflammation [7]. The HPA axis includes several direct influences
and feedback interactions among the hypothalamus, the pituitary gland, and the
adrenal glands. It is known that the mechanisms of the HPA axis are governed not
only by a circadian rhythm, but also by an ultradian pattern of pulsatile release
of cortisol [7, 32, 34, 157, 163, 164]. The pulsatile release of cortisol from the
adrenal glands is controlled by the pulsatile release of adrenocorticotropic hormone
(ACTH) from the anterior pituitary, which is induced by the corticotropin-releasing
hormone (CRH), produced in the hypothalamus [7]. Cortisol in turn exerts nega-
tive feedback effect on the release of CRH and ACTH, produced respectively in the
hypothalamus and the pituitary gland [7, 82]. Dysregulation of cortisol pulsatility
is related to a number of psychiatric and metabolic diseases [171, 172]; however,
due to ethical reasons, direct measurement of endocrine glands (e.g., CRH) is
impossible in healthy humans [157]. Therefore, it is crucial to understand the
sophisticated control mechanisms, which involves (i) determining the number,
timing, and amplitude of cortisol pulses to better understand the physiology, effects
of drugs, and other interventions [31, 33]; (ii) designing intermittent controllers to
optimally control cortisol levels in disorders linked to cortisol pulsatility [31, 34].

Due to the fact that the hypothalamus, the pituitary gland, and the adrenal
glands are interacting in the HPA axis, in order to investigate pathological conditions
related to cortisol, and design optimal treatment strategies, one may build a
mathematical model based on the physiology underlying the HPA axis, and then
develop signal processing and control algorithms for diagnostic and treatment
purposes. Besides the interactions among the three hormones in the HPA axis, a
complete mathematical model of the diurnal cortisol variation should also include
the effects of the exogenous factors such as stress, meals, and sleep [7, 98, 130].
However, in order to have a tractable mathematical model [154], an alternative
approach is to define a minimal model based on the known physiology of the HPA
axis which captures only known essential characteristics of the observed diurnal
patterns [7].

Although the three hormones in the HPA axis are interacting, it is believed [165]
that the pulsatile secretion of CRH is not the main factor to control the pulsatile
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ultradian patterns. Instead the oscillatory behavior exists at a sub-hypothalamic
level, i.e., the pituitary-adrenal system. It has been further observed [165] that the
pituitary-adrenal system can generate pulsatile oscillatory patterns of both ACTH
and cortisol levels with a physiological ultradian frequency even in presence of
constant CRH levels. Moreover, studies in sheep indicate that surgical disconnection
of the hypothalamus from the pituitary still maintains the pulsatile patterns of
cortisol [163]. Therefore, it seems that the pulsatile release of cortisol is controlled
by the dynamics in the anterior pituitary. This motivates us to study the control
mechanisms of the pulsatile cortisol release in the pituitary-adrenal system.

Although mathematically, recovering the number, timing and amplitude of hor-
mone pulses can lead to an ill-posed problem mainly due to existence of multiple
solutions [31, 32], by using the characteristic of the sparsity of hormone pulses and
taking into account more constraints, several methods have been presented to esti-
mate such quantities [32, 33, 75, 83, 157, 160, 162]. In some recent work [31, 34],
an optimization approach based on a deterministic model has been proposed to
design impulsive inputs (i.e. determine the timing, amplitude, and number of
secretory events) to achieve pulsatile dynamics in the pituitary-adrenal system
in presence of circadian amplitude constraints on the cortisol levels. However,
since this optimization problem is solved by the `1-norm minimization algorithm
presented in [8, 36], it can lead to finding suboptimal solutions. In this work,
we present a parsimonious mathematical model describing the pulsatile cortisol
release in the pituitary-adrenal system. We postulate that there exists an “impulsive”
controller in the anterior pituitary which allows the state of the system to have
instantaneous changes, and controls the cortisol secretion and the ultradian rhythm
of the pulses. In addition, we propose an analytical approach to design an inter-
mittent controller (i.e. calculate the number, timing, and amplitude of impulsive
control input) in presence of circadian demand and holding cost constraints on the
blood cortisol level, which are assumed to be two-harmonic time-varying circadian
functions with periods of 12 and 24 hours [34]. We illustrate several examples to
show the efficiency and accuracy of our methods. One direct application of our
intermittent control design is determining the timing and dosage of hydrocortisone
(i.e. synthetic cortisol) injections in Addisonian patients given desired circadian
demand and holding cost constraints on the blood cortisol levels and the patients’
metabolic rate.

3.2 Methods

We propose an impulsive differential equation model using the stochastic differen-
tial equation model of diurnal cortisol patterns presented in [7], which is based on
the first-order kinetics for cortisol synthesis in the adrenal glands, cortisol infusion
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to the blood, and cortisol clearance by the liver [7, 30, 32, 34]. In the stochastic
model presented in [7], the “pulsatile" input in the adrenal glands is supposed
to be doubly stochastic with amplitudes in Gaussian and inter-arrival times in
gamma distributions respectively. However, in the model presented here, the input
is considered to be an “abstraction” of hormone pulses which results in cortisol
secretion. We make the following physiologically plausible assumptions for the
proposed model:

1. Cortisol levels can be described by the first-order kinetics for cortisol synthesis
in the adrenal glands, cortisol infusion to the blood, and cortisol clearance by
the liver [7].

2. There is a time-varying circadian holding function H(t) on the cortisol level
which is the highest cortisol level that the body should produce in order to
have a normal cortisol profile [34].

3. There is a time-varying cortisol demand D(t) that should be satisfied through-
out the day, which is a function of the circadian rhythm [34].

4. The input u(t) is non-negative since it is a hormone secretory event.

In view of these assumptions, we propose the following model to control the
secretion of cortisol:

dx1(t)

dt
= −λx1(t) + u(t),

dx2(t)

dt
= λx1(t)− γx2(t),

(3.1)

where
D(t) 6 x2(t) 6 H(t), (3.2)

and

u(t) =

∞∑
k=1

ukδ(t− tk). (3.3)

In equations (3.1), x1(t) is the concentration of cortisol in the adrenal glands, and
x2(t) is the serum cortisol concentration at time t. Following [7, 32], we denote
λ > 0 as the infusion constant governing the rate at which cortisol enters the blood
from the adrenal gland, and γ > 0 as the clearance parameter describing the rate at
which cortisol is cleared from the blood by the liver. In equation (3.3), δ(t) denotes
the Dirac delta-function, and uk represents the amount of the hormone’s input at
time tk, which is known as the secretory (firing) time. In other words, uk is zero if
a hormone pulse is not fired at time tk.



3

3.2. Methods 31

tk−1 t̃k−1 tk t̃k tk+1

H(t)

D(t)

x2(t)

t

Figure 3.1: Schematic representation of the trajectory x2(t) for the time interval
(tk−1, tk+1].

In view of the known physiology of de novo cortisol synthesis, i.e., no cortisol
is stored in the adrenal gland, we assume that the initial condition of the cortisol
level in the adrenal gland is zero, i.e. x1(t0) = 0 [7, 75].

Equations (3.1) and (3.3) can be represented equivalently as follows:

dx(t)

dt
= Ax(t), t 6= tk,

x(t+k ) = x(t−k ) +Buk, t = tk,

(3.4)

where tk+1 > tk(∀k > 0), and

x(t) =

[
x1(t)

x2(t)

]
, A =

[
−λ 0

λ −γ

]
, B =

[
1

0

]
.

The notations x(t−k ) and x(t+k ) in (3.4) denote, respectively, the left- and right-hand
sided limits of x(t) at time tk.

Mathematically, equations (3.4) are treated as follows. At time tk, a pulse is
fired, corresponding to the concentration of cortisol in the adrenal gland, which
is described by the jump of its concentration, i.e. x1(t+k ) = x1(t−k ) + uk, while it
does not affect the serum cortisol concentration, i.e. x2(t+k ) = x2(t−k ). In this work,
x1(t) is considered to be left-continuous, i.e., x1(t−k ) = x1(tk).

In view of system (3.1)-(3.3), our goal hereafter is to present an algorithm for
the computation of

(a) the secretory time tk at which x2(tk) = D(tk), and

(b) the input uk at the secretory time tk such that x2(t) reaches the upper bound
H(t) from D(tk),
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when k > 0 (see Fig. 3.1). The objective (a) gives time tk at which x2(t) reaches
the lower bound D(t) from the upper bound H(t). This time needs to be calculated
in order to know when the next secretory event should occur. The objective (b)
gives the amount of the input uk so that after some time, x2(t) reaches the upper
bound H(t) from the lower bound D(t). More precisely, when the input uk is
implemented into system (3.1) at time tk, there exists t̃k > tk (k > 0) such that
x2(t̃k) = H(t̃k), see Fig. 3.1.

Remark 3.1. As D(t) and H(t) are, respectively, the lower and upper bounds on
the cortisol level, we are only interested in secretion times tk and inputs uk such
that x2(t) remains within these bounds (see Fig. 3.1).

Remark 3.2. We do not restrict the state x2(t) to start from the upper bound H(t)

at time t0. In other words, we choose a random number, namely x0
2, within the

upper and lower bounds as the initial condition of x2(t) at time t0, i.e., D(t0) <

x0
2 6 H(t0).

In the rest of this section, we present a method on how to calculate tk and uk
analytically. To this end, let us assume that x2(t) is at the upper bound at time
t̃k−1 (k > 1), see Fig. 3.1. For the case k = 1, we set t̃0 = t0. Our approach for the
computation of tk and uk are as follows:

(a) Calculation of tk : At time t̃k−1 we have x2(t̃k−1) = H(t̃k−1). The goal is to
calculate tk such that x2(tk) = D(tk) where tk > t̃k−1 (k > 0), see Fig. 3.1. From
(3.4) we know that between two consecutive pulses, equations (3.1) and (3.3) are
described by the linear system

dx(t)

dt
= Ax(t), tk−1 < t < tk,

whose solution is given by

x(t) = eA(t−tk−1)x(t+k−1), tk−1 < t < tk. (3.5)

Owing to the fact that t̃k−1 > tk−1 (k > 1), using (3.5) with the initial time t̃k−1,
the trajectory x2(t) when t ∈ [t̃k−1, tk) is given by

xL2 (t) :=
λ

λ− γ

(
e−γ(t−t̃k−1) − e−λ(t−t̃k−1)

)
x1(t̃k−1) + e−γ(t−t̃k−1)x2(t̃k−1), (3.6)

where x1(t̃k−1) and x2(t̃k−1) are computed by (3.5). Since our goal is to calculate
tk such that xL2 (tk) = D(tk), solving

xL2 (t)−D(t) = 0, (3.7)

with respect to t gives tk.
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Remark 3.3. Due to the fact that matrix A is Hurwitz, there exists at least one
solution to (3.7) when t > t̃k−1.

Remark 3.4. In order to guarantee that xL2 (t) does not cross the lower bound D(t),
we only consider the minimum root of (3.7) which is greater than t̃k−1.

In view of Remarks 3.3 and 3.4, the secretory time tk exists and is calculated by

tk = min{t∗ |xL2 (t∗)−D(t∗) = 0, t∗ > t̃k−1}. (3.8)

Once tk is computed in (3.8), we can plot the dynamics on the interval [t̃k−1, tk] by
(3.5).

(b) Calculation of uk : At time tk, the trajectory x2(t) is at the lower bound, i.e.,
x2(tk) = D(tk), see Fig. 3.1. Our goal is to calculate uk such that x2(t) reaches
exactly the upper bound H(t) at time t̃k > tk (k > 0), while does not crossing it,
see Fig. 3.1.

From (3.4), the trajectory x2(t) when t ∈ [tk, t̃k] is given by

xJ2 (t;uk) :=
λ

λ− γ

(
e−γ(t−tk) − e−λ(t−tk)

)
(x1(tk) + uk) + e−γ(t−tk)x2(tk). (3.9)

By implementing the input uk at time tk, the trajectory xJ2 (t;uk) has to reach the
upper bound H(t) at time t̃k (i.e., x2(t̃k) = H(t̃k)), and it should not cross it. The
former implies that xJ2 (t̃k;uk) = H(t̃k), and the latter implies that xJ2 (t;uk) has to
be tangent to H(t) at t̃k. So solving the system of equationsx

J
2 (t;uk)−H(t) = 0,
d

dt

(
xJ2 (t;uk)−H(t)

)
= 0,

t > tk, (3.10)

with respect to t and uk gives the time t̃k and the input uk.

Remark 3.5. For both λ > γ and λ < γ, xJ2 (t;uk) is always strictly increasing with
respect to uk. Therefore, the existence of at least one pair (t̃k, uk) for (3.10) is
ensured.

Remark 3.6. System of equations (3.10) may have more than one pair of solutions.
We hypothesize that the controller u(t) in the anterior pituitary minimizes the
number of secretory events [34]. Moreover, we are interested in inputs uk such
that the trajectory x2(t) does not cross the upper bound H(t) (see Remark 3.1).
Therefore, in the case when (3.10) has multiple pairs of solutions, we select the
pair (t̃k, uk) among which t̃k is the greatest whose corresponding input uk keeps
the trajectory x2(t) within the bounds.

Once (t̃k, uk) are computed by (3.10), one can obtain the dynamics on the
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interval [tk, t̃k] by the following equations:[
x1(t)

x2(t)

]
= eA(t−tk)

[
x1(tk) + uk
x2(tk)

]
, tk 6 t 6 t̃k. (3.11)

Now we are ready to present our algorithm to calculate the number N , timing
tk and the amplitude uk (k > 0) on the time interval [t0, tf ], where tf is our desired
final time.

Algorithm 1: Calculating the number, timing and amplitude of the secretory
events.

Input :λ, γ, t0, tf , x0
2, D(t), H(t)

x1(t0) := 0
x2(t0) := x0

2

t̃0 := t0
k := 1
N := 0
repeat

Calculate tk from (3.8)
Calculate x(tk) from (3.5)
Calculate (t̃k, uk) from (3.10) in view of Remark 3.6
Calculate x(t̃k) from (3.11)
N := k
k := k + 1

until t̃k < tf ;
Output :N , tk, uk, t̃k

Assume that we have run Algorithm 1 for N iterations to compute tk, uk and t̃k
(k = 1, 2, ..., N) on the time interval [t0, tf ]. By having such information, we can
obtain x1(t) and x2(t) on [t0, tf ] from the following equation

x(t) = eA(t−tk) (x(tk) +Buk) , t ∈ (tk, tk+1], k = 1, 2, ..., N. (3.12)

3.3 Results

In this section, we present three examples to show the efficiency and accuracy of
both the model and algorithm presented in Section 3.2. In the first and second
examples, which correspond to healthy subjects, the obtained secretory times and
the cortisol level are in agreement with physiologically plausible profiles in healthy
human data. In the third example, although the number of pulses is not within a
physiologically plausible range reported for healthy subjects [7, 156], the cortisol
level is still within the desired bounds.
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Example λ (min−1) γ (min−1)

1, 2 0.0585 0.0122
3 0.1248 0.0061

Table 3.1: Model Parameters for Examples 1-3 [34]

For our examples, we use the parameters λ and γ, given in Table 3.1, which
respectively represent the infusion rate of cortisol into the circulation from the
adrenal glands, and the clearance rate of cortisol by the liver. In addition, we use
the lower and upper bounds given, respectively, in Tables 3.2 and 3.3.

Example D(t)
( ug

dl

)
1 3.2478− 0.7813 sin( 2πt

1440 )− 2.8144 cos( 2πt
1440 )

−0.2927 sin( 2πt
720 ) + 1.3063 cos( 2πt

720 )

2, 3 5.5065 + 1.5544 sin( 2πt
1440 )− 4.3112 cos( 2πt

1440 )
−1.6355 sin( 2πt

720 )− 0.9565 cos( 2πt
720 )

Table 3.2: Lower Bounds on the Cortisol Level for Examples 1-3 [34]

Example H(t)
( ug

dl

)
1 5.3782 + 0.3939 sin( 2πt

1440 )− 3.5550 cos( 2πt
1440 )

−0.5492 sin( 2πt
720 ) + 1.0148 cos( 2πt

720 )

2, 3 8.6051 + 3.0306 sin( 2πt
1440 )− 5.0931 cos( 2πt

1440 )

−1.8151 sin( 2πt
720 )− 1.6570 cos( 2πt

720 )

Table 3.3: Upper Bounds on the Cortisol Level for Examples 1-3 [34]

3.3.1 Example 1

Using Algorithm 1 with the parameters given in Table 3.1, and the lower and upper
bounds given respectively in Tables 3.2 and 3.3 for Example 1, we have calculated
the timing and the amplitude of secretory events, and hence using (3.12) we have
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(a)

(b)

(c)

(d)

Figure 3.2: Obtained cortisol level and control inputs for Example 1. We have
used the parameters, and the lower and upper bounds, respectively, given in
Tables 3.1- 3.3 for Example 1. The initial conditions are (x1(0), x2(0)) = (0, H(0)),
and all panels (a)-(d) are plotted over 48 h. Panel (a) displays 16 impulses over
24 h which control cortisol to remain within upper and lower bounds. In panel
(b), solid curves display the state x1(t), while the dashed lines show the jumps
in this state. Panel (c) shows the optimal cortisol profile (black curve), restricted
by the lower bound (red curve) and the upper bound (green curve). Panel (d)
illustrates the optimal cortisol profile obtained by recording the cortisol level every
10 min, and adding a zero Gaussian measurement error with a standard deviation
of σ = 0.45 to each simulated data point.
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plotted the intermittent input/control in panel (a), x1(t) in panel (b), x2(t) in panel
(c), and the noisy observed x2(t) in panel (d) of Fig. 3.2. In this example, the initial
conditions are (x1(0), x2(0)) = (0, H(0)), i.e., x2(t) starts from the upper bound
H(t). This figure shows that the state x2(t) and the calculated control inputs are
optimal in the sense that x2(t) starts at the upper bound and decreases until it
reaches the lower bound at which point the obtained input implements a jump into
the system and hence x2(t) reaches exactly the upper bound, and this process is
repeated until x2(t) reaches our desired final time.

As illustrated in panel (a), there are 16 pulses over the 24-hour period which is
within the physiologically plausible range of 15-22 pulses [7, 156]. Furthermore,
our observation from panel (a) is that the amplitudes are lower and less frequent
during the night than the day. Panel (b) clearly shows pulsatility of the state x1

along with its jumps.
It is widely known that in healthy humans, the cortisol level has regular periodic

time-varying patterns which consists of pulsatile release of secretory events with
different timings and amplitudes in a regular circadian rhythm. As is observed in
panel (c), the cortisol level is pretty low during the night, while it increases around
5 AM and reaches its higher amplitude around 12 PM. Afterwards, it decreases
slowly until the midnight. This example indicates that the mathematical model
(3.1)-(3.3) can describe the pulsatile cortisol secretion that have physiologically
plausible profiles similar to those observed in healthy human data.

Similar to measurement noise and sampling interval of cortisol data in human
subjects [32], we have recorded the cortisol level every 10 minutes, added a zero
mean Gaussian measurement error with a standard deviation of σ = 0.45 to each
simulated data point, and hence plotted panel (d) in Fig. 3.2 which resembles
cortisol human data presented in [32].

3.3.2 Example 2

In this example, we use the same parameters λ and γ as those in Example 1, while
the lower and upper bounds are different, see Tables 3.1-3.3. Using (3.12) and
Algorithm 1 with the initial conditions (x1(0), x2(0)) = (0, 1), in Fig. 3.3 we have
plotted the intermittent input/control, x1(t), x2(t), and the noisy observed x2(t)

in panels (a), (b), (c), and (d), respectively. This figure demonstrates that the
obtained cortisol level and the inputs are again optimal during the whole 48 h. In
this example, the initial condition x2(0) = 1 shows that Algorithm 1 can produce
optimal solutions even if the state x2(t) is not initiated from the upper bound H(t).

Panel (a) illustrates that 16 pulses are fired over 24 h, which is within the
physiologically range of 15 - 22 pulses [7, 156]. The impulses are low at night,
while they are higher and more frequent between 4 AM to 12 PM. Panel (b) displays
pulsatility of the state x1 along with its jumps.
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(a)

(b)

(c)

(d)

Figure 3.3: Obtained cortisol level and control inputs for Example 2. We have
used the parameters, and the lower and upper bounds, respectively, given in
Tables 3.1- 3.3 for Example 2. The initial conditions are (x1(0), x2(0)) = (0, 1), and
all panels (a)-(d) are plotted over 48 h. Panel (a) displays 16 impulses over 24 h
which control cortisol to remain within upper and lower bounds. In panel (b), solid
curves display the state x1(t), while the dashed lines show the jumps in this state.
Panel (c) shows the optimal cortisol profile (black curve), restricted by the lower
bound (red curve) and the upper bound (green curve). Panel (d) illustrates the
optimal cortisol profile obtained by recording the cortisol level every 10 min, and
adding a zero Gaussian measurement error with a standard deviation of σ = 0.45
to each simulated data point.
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The cortisol level increases from midnight to 9 AM, while it decays gradually
from 9 AM to midnight such that it reaches its lowest level at midnight. This
example again shows that both the model and approach presented in Section 3.2
can describe the pulsatile cortisol secretion that have physiologically plausible
profiles similar to those observed in healthy human data.

Similar to measurement noise and sampling interval of cortisol data in human
subjects [32], we have recorded the cortisol level ever 10 minutes, added a zero
mean Gaussian measurement error with a standard deviation of σ = 0.45 to each
simulated data point, and then plotted panel (d) which resembles cortisol human
data presented in [32].

3.3.3 Example 3

In this example, we use the same upper and lower bounds as those in Example
2, while using different parameters γ and λ which, respectively, result in higher
infusion rate of cortisol, and lower clearance rate of cortisol, see Tables 3.1-3.3.
Using Algorithm 1 and equation (3.12) with the initial conditions (x1(0), x2(0)) =

(0, 1.5) we have plotted panels (a), (b), (c), and (d) in Fig. 3.4 for 48 h.

Panel (a) shows that 12 pulses are fired over 24 h. Panel (b) illustrates pulsatility
of x1(t) along with its jumps. Panel (c) shows that the cortisol level is low at
midnight. Then it increases gradually until it reaches its higher value around 9 AM.
Afterwards, it decreases slowly such that it obtains its lowest value at midnight.
Observations from panel (c) demonstrate that the cortisol level and the inputs are
optimal over 48 h. Comparing panels (c) of Fig. 3.3 and Fig. 3.4, one concludes
that the impulses in panel (c) of Fig. 3.3 have higher amplitudes and are more
frequent than the corresponding ones in panel (c) of Fig. 3.4.

Although in this example the cortisol level and the obtained impulses are
optimal, the number of pulses are not within the physiologically range of 15-22
pulses, reported for healthy subjects [7, 156]; this may indicate a case of cortisol
deficiency. Compared to Example 2, the peak values of the cortisol levels have
been changed in Example 3, and on average have lower values, which could
indicate a case of cortisol deficiency. We have recorded the cortisol level ever
10 minutes, added a zero mean Gaussian measurement error with a standard
deviation of σ = 0.45 to each simulated data point, and hence plotted panel (d)
which resembles cortisol human data presented in [32]. Panel (d) of Fig. 3.4 shows
that the number of pulses has decreased compared to the corresponding one in Fig.
3.3, which was expected as cortisol has a lower clearance rate in Example 3.
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(a)

(b)

(c)

(d)

Figure 3.4: Obtained cortisol level and control inputs for Example 3. We have
used the parameters, and the lower and upper bounds, respectively, given in
Tables 3.1- 3.3 for Example 3. The initial conditions are (x1(0), x2(0)) = (0, 1.5),
and all panels (a)-(d) are plotted over 48 h. Panel (a) displays 12 impulses over
24 h which control cortisol to remain within upper and lower bounds. In panel
(b), solid curves display the state x1(t), while the dashed lines show the jumps
in this state. Panel (c) shows the optimal cortisol profile (black curve), restricted
by the lower bound (red curve) and the upper bound (green curve). Panel (d)
illustrates the optimal cortisol profile obtained by recording the cortisol level every
10 min, and adding a zero Gaussian measurement error with a standard deviation
of σ = 0.45 to each simulated data point.
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3.4 Discussion

Many dynamical processes, such as pharmacokinetics systems, optimal control
problems in economics, biological phenomena involving thresholds, and bursting
rhythm models in medicine and biology, are characterized by the fact that they expe-
rience a rapid change in their states at certain moments of time. In such processes,
there exist short-term perturbations whose duration with respect to the duration of
the entire evolution is negligible [96]. Therefore, one can mathematically formulate
such perturbations in the form of impulses.

It is widely known that several hormones such as cortisol, insulin, growth,
and testosterone are released in pulses. Moreover, changes in the pulsatility of
such hormones are related to, e.g., obesity, aging, and metabolic and psychiatric
diseases [116, 154, 171, 172]. Therefore, understanding the pulsatile secretion
mechanisms and the modeling underlying such systems are of great interest.

Motivated by the applications of analyzing pulsatile release of hormones, our
goal in this work has been to study the impulsive control mechanisms underlying
the HPA axis. In this regard, we have proposed a minimal model which describes
the pituitary-adrenal system whose interactions are as follows: cortisol is released
in pulses in response to the pulses of ACTH, while in return, exerts a negative
feedback on the release of ACTH. More precisely, we model the pituitary-adrenal
system based on the first-order kinetics for cortisol infusion and clearance, and
explicitly assume that the system is impulsive, due to the pulses in ACTH. We
have assumed that the circadian rhythms on the cortisol level are two-harmonic
time-varying functions with periods of 12 and 24 h, which are the most important
periods in the cortisol release. Although various deterministic and stochastic models
have been postulated to describe the pituitary-adrenal system [7, 32, 34, 97], in
this work we have presented an analytical approach for calculating the number,
timing, and amplitude of the secretory events in presence of circadian demand and
holding cost constraints.

Illustrated by various examples, we have shown that the proposed model and
approach yield the optimal solution in the sense that the cortisol level, started
at the upper bound, decreases until it reaches the lower bound at which point
the obtained inputs exert jumps into the system and as a result, the cortisol level
arrives exactly at the upper bound again; this process is repeated for the desired
time. Furthermore, the achieved number, timing, and amplitude of the recovered
secretory events are physiologically plausible, and the obtained cortisol levels are
in agreement with the circadian rhythm which has been observed in healthy human
data, i.e., there are 15-22 pulses with varying amplitudes in a regular circadian
rhythm; the cortisol profile gets its lowest amplitude between 8 PM and 2 AM,
while increases throughout the late night, reaches its maximum between 8 AM
and 10 AM, and afterwards declines throughout the course of the day into the
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evening [7]. We emphasize that for all the three examples presented in Section 3.3,
our approach gives the optimal solution, even for Example 3 in which the number
of pulses is not within a physiologically plausible range of 15-22 pulses, reported
for healthy subjects [7, 156].

In order to validate the model by experiments, one can first calculate the
infusion and clearance rates from a rat model, and also obtain the upper and
lower bounds on cortisol levels from a healthy rat. Second, by making the adrenal
glands of the rat malfunctional, the rat can become Addisonian such that it cannot
secret cortisol anymore. Lastly, by designing an intermittent controller using the
algorithm provided in this study, one can obtain a time-varying cortisol level which
remains within the upper and lower bounds that had been found when the rat was
healthy [34].

Now, we compare our model and results with those in [34]: (i) The main
difference between the model presented in this chapter and the one in [34] is that
in the latter, the model is continuous, i.e., without explicitly assuming the system is
impulsive, the goal was to obtain impulse control. However, in the former, based
on the physiology underlying the HPA axis, we have explicitly assumed that the
nature of the system is impulsive, and the goal has been to design a controller for
calculating the number, timing, and amplitude of the secretory events. (ii) The
optimization formulation in [34] is mainly an `0-norm problem; however, since
such problems are NP-hard, an alternative approach (considering `1-norm as a
relaxation of the `0-norm) was used to solve the problem. Next, using the iterative
algorithm proposed in [8], the `1-norm optimization problem was solved to find
the optimal solution. The iterative algorithm in [8, 34] does not always find the
optimal solution and can lead to finding suboptimal solutions. In this study, we
have presented an analytical approach to find the secretory events, by which the
solution is always optimal. For instance, in Example 2, cortisol level, obtained
by our algorithm, gives optimal solutions over 24 h, while the corresponding one
presented in [34] gives optimal solutions for the first 20 h and suboptimal solutions
for the last 4 h. Moreover, comparing Example 3 with the corresponding one
in [34], one observes that the obtained cortisol level and inputs are optimal over
the whole 24 h, while the corresponding one in [34] gives optimal cortisol level
over the first 19 h, while suboptimal for the last 5 h.

Although we have presented a simple impulsive model to describe the pulsatile
cortisol release in the pituitary-adrenal system, there are some other scenarios
under which the system can obtain the impulse control. We have assumed that the
infusion and clearance rates are constant. However, these parameters can change
after every jump, and hence the problem can be formulated as a switched system,
i.e., matrix A in (3.4) is not fixed anymore and might vary after every jumps.
Instantaneous changes in one or both of the infusion and clearance rates may lead
to impulse control [34]. First, assume that the clearance rate is fixed, while the
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infusion rate of cortisol starts from a constant level at wake, and decreases suddenly
to a new constant level. In order to compensate such a degradation, a large level
of cortisol should be produced in a short time such that the desired cortisol level
can be obtained [34]. Second, let us consider the case when the infusion rate
is fixed, while the clearance rate of cortisol starts from a constant level at wake,
and increases instantaneously to another constant level; then, in a short time, a
large level of cortisol should be produced such that the desired cortisol level can be
achieved [34]. Lastly, assume that both the clearance and infusion rates start from
a constant level and change abruptly to different levels periodically. As a result, the
overall effect on cortisol is that it gets infused to the blood more slowly, or gets
cleared from the blood faster [34]. In such a case, as long as there is no upper
bound on control variable, the impulse control can be obtained. For an example
with a time-varying rate which obtains the impulse control, the interested reader
is refereed to [125], where the “maximum principle” is used to find the optimal
solution. Another possibility for obtaining the impulse control for neurohormone
systems is to explicitly assume that the system is impulsive, and the timing and
amplitude of the secretory events are functions of the states; such a mathematical
model for testosterone regulation is presented in [15].

In this work, as a prototype, we have focused on the HPA axis, and proposed a
physiological plausible model for cortisol secretion in the pituitary-adrenal system.
However, as the control mechanism of the pulsatile feedback in cortisol is similar
to the other neuroendocrine hormones such as gonadal hormone, growth hormone,
insulin hormone and thyroid hormone [82, 105], a similar approach can be used to
study the pulsatile release of such hormones. As pulsatile secretion is considerably
different form basal (continuous) secretion, and some hormonal disorders are
associated with hormone pulsatility, one can obtain insight into some hormonal
disorders and pathological neuroendocrine states through mathematical models.
For instance, one of the disorders which is caused by the adrenal deficiency is
Addison’s disease. A patient suffering from this disease takes cortisone one or twice
a day in order to control their cortisol deficiency which does not seem optimal,
because there are 15-22 secretory events in a healthy subject over 24 h. Using the
methods presented in this study, it is possible to personalize the medications and
use an impulsive controller to control the the cortisol levels optimally.

3.5 Concluding remarks

This chapter has developed a second-oder impulsive differential equation model
to describe the pulsatile release of cortisol secretion in presence of circadian
demand and holding cost constraints on the blood cortisol level. By proposing an
analytical approach, the number, timing, and amplitude of the impulsive control
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are calculated. This type of bio-inspired intermittent controllers has the great
potential to be employed for designing non-continuous controllers in treating
different disorders using biofeedback and brain-machine interface design.

The model presented in this chapter describes a subsystem of the HPA axis, i.e.,
the pituitary-adrenal system. A third-order ordinary differential equation model
that generally describes the oscillatory behavior of the HP axes is studied in the
next chapter.



4
Endocrine regulation as a non-cyclic
feedback system

To understand the sophisticated control mechanisms of the human’s endocrine
system is a challenging task that is a crucial step towards precise medical treatment
of many dysfunctions and diseases. Although mathematical models describing the
endocrine system as a whole are still elusive, recently some substantial progress
has been made in analyzing theoretically its subsystems (or axes) that regulate the
production of specific hormones. Secretion of many vital hormones, responsible
for growth, reproduction and metabolism, is orchestrated by feedback mechanisms
that are similar in structure to the model of simple genetic oscillators, proposed
first by B.C. Goodwin [52]. Unlike the celebrated Goodwin’s model, the endocrine
regulation mechanisms are in fact known to have non-cyclic structures and involve
multiple feedbacks; a Goodwin-type model thus represents only a part of such a
complicated mechanism.

This chapter studies a non-cyclic feedback system of hormonal regulation,
obtained from the classical Goodwin’s oscillator by introducing an additional
negative feedback. It starts with an introduction, followed by Section 7.2 that
introduces the model in question, whose local stability properties are examined in
Section 4.3. Section 4.4 presents the main results, which are concerned with global
properties of the system. Section 4.5 illustrates the model in question by numerical
simulations. Proofs of the results and concluding remarks are given in Sections 4.6
and 4.7, respectively.
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Hypothalamus

Pituitary

releasing hormone (R)

TARGET gland/organ

tropic hormone (L)

effector hormone (T )

F1

F3

F2

Figure 4.1: Structure of a hypothalamic-pituitary axis [133]; feedforward and
feedback control mechanisms are illustrated respectively by ↓ and a.

4.1 Introduction

HORMONES are signaling molecules that are secreted by glands and involved
in many vital bodily functions. Sophisticated mechanisms of interactions

between glands and hormones couple them into the endocrine system, whose
mathematical modeling remains a challenging problem. At the same time, visible
progress has been made in modeling some of its subsystems (axes), which are
responsible for the secretion of specific hormones. Many processes in the body,
including growth, metabolism, reproduction and stress resistance, are controlled by
the hypothalamic-pituitary (HP) neurohormonal axes. In the seminal work [133]
the feedback and feedforward control mechanisms, lying in the heart of the HP
axes functioning, have been revealed; the first mathematical models had been
proposed even earlier, see e.g. [17, 122] and references therein. Regulatory centers
in the hypothalamus release special neurohormones, called releasing hormones or
releasing factors [133]. Each of these hormones stimulates the secretion of the
corresponding tropic hormone by the pituitary gland, which, in turn, stimulates
some “target” gland/organ to release the effector hormone (Fig. 4.1). Besides its
direct signaling functions, the effector hormone inhibits the production of the
corresponding releasing and tropic hormones. These negative feedback loops
maintain the concentrations of all three hormones within certain limits.

Understanding of endocrine regulation mechanisms may add insight into the
possibilities of efficient diagnosing and treatment of endocrine dysfunctions and
diseases caused by them, such as reproductive failures and prostate cancer [29],
obesity and aging [154], disorders of the central nervous system [4], and effects
on the cardiovascular system [120]. All these motivate the development of mathe-
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Hypothalamus

Pituitary

Gonadotropin-Releasing Hormone (GnRH)

Testes

Luteinizing Hormone (LH)

Testosterone (Te)

Figure 4.2: The cyclic structure of testosterone regulation [15, 128]; feedforward
and feedback control mechanisms are illustrated by ↓ and a, respectively.

matical models, portraying the complex behavior of endocrine axes.
As many other biochemical systems, the states of the endocrine systems do not

convergence to stable equilibria: the blood levels of hormones oscillate, exhibiting
both circadian (24-hour) and ultradian (short-period) oscillations [81, 161]. This
oscillatory behavior resembles the dynamics of the celebrated Goodwin’s model
with three variables [52], considered as a “prototypical biological oscillator” [51].
Originally proposed for a genetic intracellular oscillator [52], Goodwin-like models
have been extensively used to describe the dynamics of HP axes, in particular,
the regulation of thyroid [17] and testosterone [128] hormones. For Goodwin’s
oscillator and more general cyclic feedback systems, profound mathematical results
have been established, ensuring the existence of periodic orbits [64, 67] in the case
where the (only) system’s equilibrium is unstable. For the classical model from [52]
such an instability appears to be a restrictive condition; for example, the feedback
is described by the conventional Hill function [51] with the corresponding Hill
constant being required to be greater than 8 [128, 150]. This restriction can be
substantially relaxed (yet not completely discarded [26]), taking into account the
delays in hormone transporting [18, 129]. Other factors leading to oscillations are
pulsatile secretion of neurohormones [15, 16, 80] and stochastic noises [80, 81].

Although relatively well studied, Goodwin-type models are restrictive in assum-
ing the presence of only one negative feedback loop from the effector hormone to
the hypothalamus (F1 in Fig. 4.1). This is illustrated by the models of testosterone
regulation in males, examined in [15, 18, 128, 129] and illustrated in Fig. 4.2. At
the same time, the complete mechanism of an HP axis involves multiple feedback
loops [133]; the effector hormones inhibit the secretion of both releasing and
tropic hormones, closing thus the long negative feedback loops (see F1, F2 in
Fig. 4.1). Besides them, the short feedback loop (F3) may also exist, whose effect,
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however, is ignored by most of the existing mathematical models of endocrine
regulation [3, 4, 55, 80, 99, 131, 161]. Being much weaker than the long feedbacks
and “most vulnerable” [133] among the three types of feedback mechanisms, the
short feedback loops still lack experimental studies that can validate their ubiquity
and reveal their role in endocrine regulation [133].

Mathematical models, taking the existence of multiple feedback loops into
account, have been recently proposed for the testosterone regulation in males [55,
99, 146] and cortisol regulation [4, 131, 161]. Similar models with multiple
feedback loops have been reported to describe the dynamics of some metabolic
pathways [43, 126]. Unlike the classical Goodwin’s oscillators, these models
do not have the cyclic structure, which makes the relevant results, ensuring the
existence or absence of periodic solutions [27, 64, 67, 68, 150], inapplicable; the
mathematical analysis is limited to examination of local stability of equilibrium
points and the bifurcation analysis via Andronov-Hopf techniques, ensuring the
existence of periodic orbits only for some values of the system’s parameters.

In this chapter, we examine a model of hormonal regulation with two negative
feedbacks, which has been originally proposed in [4] to describe the mechanism
of cortisol regulation in the hypothalamus-pituitary-adrenal (HPA) axis; our simu-
lations (Section 4.5) shows that it can also be applied to testosterone regulation
modeling. The model is similar in structure to the classical Goodwin’s oscillator, but
involves two nonlinearities, standing for respectively the negative feedbacks from
the effector hormone to the releasing and tropic hormones (F1, F2 in Fig. 4.1). Un-
like the original model in [4], we do not restrict these nonlinearities to be identical
or Hill functions. To keep the analysis concise, in this work we neglect the transport
delays, discontinuities, describing the pulsatile secretion of neurohormones, and
the effects of stochastic noises. For the model in question, we develop the “global”
theory, showing that its properties, in spite of the non-cyclic structure, are similar
to those of the Goodwin’s oscillator. In particular, under some assumptions, the
local instability of the equilibrium implies the existence of periodic orbits, and
furthermore, the convergence of almost all solutions to such an orbit. The latter
statement, observed in simulations, have not been proved even for the classical
Goodwin’s model.

4.2 Goodwin’s model and its extension

We start with the conventional Goodwin’s model [52], describing a self-regulating
system of three chemicals, whose concentrations are denoted by R, L, and T , and
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evolve in accordance with the following equations

Ṙ = −b1R+ f(T ),

L̇ = g1R− b2L, (4.1)

Ṫ = g2L− b3T.

The model (4.1) was originally used by B.C. Goodwin for modeling oscillations in
a single self-repressing gene [52]. Our notation follows [128], where Goodwin’s
oscillator was proposed for modeling of the gonadal axis in male (Fig. 4.2) and
R,L, and T stood, respectively, for the blood levels of the gonadotropin-releasing
hormone (GnRH), luteinizing hormone (LH), and testosterone (Te).

The constants bi > 0 (where i = 1, 2, 3) stand for the clearing rates of the
corresponding chemicals, whereas the constants g1, g2 > 0 and the decreasing
function f : [0;∞)→ (0;∞) determine their production rates. Often f(T ) stands
for the nonlinear Hill function [51]

f(T ) =
K

1 + βTn
, (4.2)

where K,β, n > 0 are constants. The releasing factor (R) drives the production
of the tropic hormone (L), which in turn stimulates the secretion of the effector
hormone (T ); the positive constants g1, g2 stand for the corresponding feedforward
control gains. The effector hormone inhibits the production of the releasing factor:
as f is a decreasing function, an increase in T reduces the production rate Ṙ, and
vice versa. The nonlinearity f(T ) characterizes thus the negative feedback loop.

In this chapter, we consider a generalization of Goodwin’s oscillator (4.1),
including two negative feedbacks

Ṙ = −b1R+ f1(T ),

L̇ = g1R− b2L+ f2(T ), (4.3)

Ṫ = g2L− b3T.

A special case of (4.3), where f1, f2 stand for the Hill nonlinearities with the
same Hill constants n, yet different gains K1,K2, has been proposed in [4] to
describe the dynamics of the HPA axis: R,L, T stand, respectively, for the levels of
corticotropin-releasing hormone (CRH), adrenocorticotropic hormone (ACTH) and
cortisol. The nonlinearities f1, f2 describe, respectively, the negative feedbacks F1,
F2 in Fig. 4.1; the effect of short negative feedback (F3) is neglected. Unlike [4], in
this work we do not consider the effects of transport delays; at the same time, we
substantially relax the assumptions imposed in [4] on f1 and f2. These nonlinear
maps are not necessarily identical or Hill functions. As discussed in the work [161],
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dealing with a similar model of cortisol regulation, the natural assumptions on
these functions are their non-negativity (which prevents the solutions from leaving
the domain where R,L, T ≥ 0). Moreover, it is natural to assume that f1(T ) > 0

since “the feedbacks must not shut down hormone production completely” [161].
Similar to Goodwin’s model, two feedbacks are inhibitory, which implies that f1

and f2 are non-increasing. We thus adopt the following assumption.

Assumption 4.1. The functions f1 : [0;∞)→ (0;∞) and f2 : [0;∞)→ [0;∞) are
continuously differentiable and non-increasing, i.e. f ′1(T ), f ′2(T ) ≤ 0 for any T ≥ 0.
The parameters b1, b2, b3, g1, g2 > 0 are constant.

Notice that we allow that f2(T ) ≡ 0; all of the results, obtained below, are
thus applicable to the classical Goodwin’s oscillator (4.1). However, we are mainly
interested in the case where f2 6≡ 0, which leads to the non-cyclic structure of the
system and makes it impossible to use mathematical tools developed for cyclic
systems, such as criteria for global stability and the existence of periodic solutions
existence [64, 67, 68, 150]. Unlike the existing works on multi-feedback models of
hormonal regulation [4, 55, 99, 131, 146, 161], our examination of the model (4.3)
is not limited to establishing only local stability criteria and bifurcation analysis. In
this chapter, we are interested in the interplay between local and global properties,
revealed for the classical Goodwin’s oscillator, namely, the existence of oscillatory
solutions, provided that the (only) equilibrium of the system is unstable.

4.3 Equilibria and local stability properties

As R,L, and T stand for the chemical concentrations, one is interested in the
solutions, starting in the positive octant R(0), L(0), T (0) ≥ 0; this requires, due to
Assumption 4.1, that R(t), L(t), T (t) > 0 for any t > 0. Since fi(T ) ≤ fi(0), for all
T > 0, every solution is bounded. In particular, all the solutions are prolongable
up to ∞. Similar to (4.1), the extended model has a unique equilibrium in the
positive octant, found as follows.

Lemma 4.2. System (4.3) has the unique equilibrium point E0 := (R0, L0, T 0) in
the positive octant. Here T 0 is the only positive solution to the nonlinear equation

b1b2b3
g1g2

T 0 −
(
f1(T 0) +

b1
g1
f2(T 0)

)
= 0, (4.4)

and the remaining coordinates are as follows

R0 =
1

b1
f1(T 0), L0 =

(
b3
g2

)
T 0. (4.5)
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Lemma 4.2 will be proven in Section 4.6. The local stability condition of the
equilibrium E0 is immediate from the Routh-Hurwitz criterion. Linearizing the
system (4.3) at E0, one obtains the system

ż1 = −b1z1 + f ′1(T 0)z3,

ż2 = g1z1 − b2z2 + f ′2(T 0)z3,

ż3 = g2z2 − b3z3,

(4.6)

which, in the matrix form, is rewritten as ż = Az where

z =

z1

z2

z3

 , A =

−b1 0 f ′1(T 0)

g1 −b2 f ′2(T 0)

0 g2 −b3

 . (4.7)

The steady state is stable when all the roots of the characteristic equation of
matrix A have negative real parts, and is (strictly) unstable when at least one root
has a positive real part. In the following lemma, which will be proven in Section
4.6, we present the local stability properties of the equilibrium E0. In this regard,
let us denote

Θ0 := a3 − a1a2 + g2

[
(b2 + b3)f ′2(T 0)− g1f

′
1(T 0)

]
, (4.8)

where

a1 := b1 + b2 + b3, a2 := b1b2 + b1b3 + b2b3, a3 := b1b2b3. (4.9)

Lemma 4.3. In both cases of Θ0 < 0 and Θ0 > 0, the equilibrium E0 is hyperbolic.
If Θ0 = 0, then the two eigenvalues are complex-conjugated imaginary numbers.

In general, biochemical systems may have locally stable equilibria, whose ex-
istence does not exclude the possibility of periodic rhythms. At the same time,
for Goodwin’s oscillator (4.1) the well-known “secant condition” [150], being
necessary and sufficient for local stability of the equilibrium, is in fact very close to
the sufficient conditions of global stability [2]. In spite of some gap between the
conditions of local and global stability, for Goodwin’s models the equilibrium’s insta-
bility is considered as the requirement of the biological feasibility; it is known, for
instance, that Goodwin’s oscillators and more general cyclic systems with unstable
equilibria have periodic orbits [64, 67]. After the publication of the seminal Good-
win’s paper [52], it was noticed [57, 128, 150] that for the Hill nonlinearity (4.2)
the equilibrium can be unstable (for some choice of the parameters bi, gi) if and
only if n > 8. The following theorem extends the latter result to the generalized
system (4.3) and arbitrary decreasing functions f1(T ), f2(T ). We introduce an
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auxiliary function

M(T ) := −Tf ′1(T )/f1(T ) > 0, ∀T > 0. (4.10)

Theorem 4.4. Let the functions f1, f2 satisfy Assumption 4.1. Then the following
statements hold:

1. if M(T ) < 8 ∀T > 0 then Θ0 < 0 for any choice of bi, gi > 0: the equilibrium
of (4.3) is stable;

2. if M(T ) ≤ 8 ∀T > 0 then Θ0 ≤ 0 for any bi, gi > 0; the inequality is strict if
f2(T ) > 0 for any T > 0;

3. if M(T ) > 8 for some T > 0 then there exist parameters bi, gi such that the
equilibrium is unstable (Θ0 > 0) and, furthermore, the system has at least one
non-constant periodic solution.

Theorem 4.4 will be proven in Section 4.6; for the usual Goodwin-Smith
model (4.1), it has been established in [128]. The existence of periodic solutions
in statement 3 of Theorem 4.4 is based on the Hopf bifurcation theorem [118].
However, the proof substantially differs from most of the existing results on the
Hopf bifurcation analysis in delayed biological oscillators [55, 70, 136], proving
the bifurcations at the “critical” delay values, under which the equilibrium loses
its stability. To construct a one-parameter family of systems (4.3), satisfying the
conditions of the Hopf bifurcation theorem, is not a trivial task (unlike the delayed
case, where the delay is a natural parameter). One of such parameterizations has
been proposed in [128] for the model (4.1); however, the complete and rigorous
proof of the Hopf bifurcation existence has remained elusive.

Remark 4.5. While the necessary condition for instability is independent of the
function f2(·), the set of parameters bi, gi, for which the equilibrium is unstable,
depends on it.

Remark 4.6. Theorem 4.4 does not imply that a periodic solution exists, whenever
the equilibrium in unstable. The corresponding strong result holds for the Goodwin-
Smith model (4.1) and more general cyclic systems [64, 67]; in Section 4.4 we
extend this result to a broad class of systems (4.3), where the nonlinearity f2(T )

satisfies a special slope restriction, whose relaxation remains a non-trivial open
problem. At the same time, as discussed in Section 4.4, the equilibrium’s instability
implies oscillatory behavior of the system (4.3) in a weaker sense.

Remark 4.7. Although the conditions ensuring the equilibrium’s global attractivity
in the positive octant are close to the local stability [2], the existence of (non-
constant) periodic solutions in the case where M(T ) ≤ 8 seems to be an open
problem even for the Goodwin’s model (4.1). Furthermore, the Hopf bifurcation



4

4.4. Oscillatory properties of solutions 53

analysis in Section 4.6 shows that in the case where M(T ) > 8, there always exists
a set of parameters bi and gi, for which a periodic orbit coexists with the locally
stable equilibrium.

Applying Theorem 4.4 to the case where f1(T ) is the Hill function (4.2), one
has

M(T ) = −Tf
′
1(T )

f1(T )
= n

βTn

1 + βTn

and the condition M(T ) > 8 reduces to the well-known condition n > 8. One
arrives at the following.

Corollary 4.8. Suppose that f1(T ) is the Hill function (4.2), and f2 satisfies Assump-
tion 4.1. Then the equilibrium of (4.3) is stable whenever n ≤ 8. If n > 8, then for
some choice of bi, gi > 0 the system has the unstable equilibrium, and at least one
periodic solution.

It should be noticed that although the Hill functions (4.2) with exponents
n > 4 are often considered to be non-realistic, Goodwin’s models with n > 8

adequately describe some metabolic reactions (see [51] and references therein).
More important, Goodwin-type oscillators with large Hill exponents n naturally
arise from model reduction procedures [51], approximating a long chain of chemical
reactions by a lower-dimensional system.

4.4 Oscillatory properties of solutions

As one can notice, Theorem 4.4 does not establish any properties of system (4.3)
with some specific parameters bi, gi. As discussed in Remark 4.6, it does not
answer a natural question whether the equilibrium’s instability Θ0 > 0 implies any
oscillatory properties of the system. In the case of the classical Goodwin-Smith
system (4.1) (f2 ≡ 0), it is widely known that the local instability implies the
existence of at least one periodic trajectory. A general result from [64] establishes
this for a general cyclic system (with a sufficiently smooth right-hand side). The
cyclic structure of the system and the equilibrium’s instability imply the existence of
an invariant toroidal domain [64], and closed orbits in it correspond to fixed points
of the Poincaré map. This result, however, is not applicable to system (4.3). Another
approach, used in [67, 68, 85] to examine oscillations in gene-protein regulatory
circuits, employs elegant results by Mallet-Paret [101, 103], extending the Poincaré-
Bendixson theory to Goodwin-type systems. As discussed in Subsect. 4.4.2, these
results can be applied to system (4.3) only if some additional restriction holds.

At the same time, when Θ0 > 0, one is able to prove an oscillatory property
of the solutions, which was introduced by V.A. Yakubovich [151, 170] and states
that the solution is bounded, yet does not converge to an equilibrium. In the next
subsection it is shown that, in fact, almost all solutions are oscillatory in this sense.
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4.4.1 Yakubovich-oscillatory solutions

Following [117], we introduce the following definition.

Lemma 4.9. A scalar bounded function % : [0;∞) → R is called Yakubovich-
oscillatory, or Y -oscillation, if lim inf

t→∞
%(t) < lim sup

t→∞
%(t). A vector-valued function

x : [0;∞) → Rm is called Y-oscillation if at least one of its elements xi(·) is Y -
oscillation.

In other words, Y -oscillation is a bounded function, having no limit as t→∞.
Our next result shows that system (4.3) with an unstable equilibrium has Y -
oscillations; moreover, almost every solution is Y -oscillation.

Lemma 4.10. Suppose that system (4.3) has an unstable equilibrium (Θ0 > 0).
Then for any initial condition (R(0), L(0), T (0)), except for the points from some set
of zero Lebesgue measure, the corresponding solution (R(t), L(t), T (t)) is Yakubovich-
oscillatory as t→∞.

Obviously, any periodic solution is Yakubovich-oscillatory, and the same holds
for solutions converging to periodic orbits. In general, a dynamical system can
have other Y -oscillations, e.g. showing “strange” (chaotic) behavior. It is known,
however, that solutions of the conventional Goodwin-Smith model (4.1) and many
other cyclic feedback systems [67, 68, 85] in fact exhibit a very regular behavior,
similar to that of planar (two-dimensional) systems. The corresponding elegant
result has been established in the papers by Mallet-Paret [101, 103]. A natural
question, addressed in the next subsection, is the applicability of the Mallet-Paret’s
theory to the extended Goodwin-Smith model (4.3).

4.4.2 The structure of ω-limit set

The well-known Poincaré-Bendixson theory for planar autonomous (time-invariant)
systems states that the ω-limit set of a bounded solution can be a closed orbit, an
equilibrium point, or union of several equilibria and heteroclinic orbits, converging
to them (it is possible that ω-limit set is a union of an equilibrium and homoclinic
orbit, converging to it). Although this result is not applicable to the systems
of order three or higher, it remains valid for cyclic systems [103], including the
classical Goodwin’s oscillator (4.1) and similar models [67, 68]. In the more
recent papers [25, 101, 102] the Poincaré-Bendixson theory has been extended to
tridiagonal systems (the result from [101] is applicable to even more general case
of the delayed tridiagonal system). For the reader’s convenience, we formulate the
corresponding result below.

Consider the dynamical system of order N + 1, where N ≥ 2, described by the
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equations
ẋ0 = h0(x0, x1)

ẋi = hi(xi−1, xi, xi+1), i = 1, . . . , N − 1

ẋN = hN (xN−1, xN , x0),

(4.11)

Here the functions h0(ξ, ζ) and hi(η, ξ, ζ), (i = 1, . . . , N), are C1-smooth. It is
assumed that all of them are strictly monotone in ζ; the functions hi(η, ξ, ζ) for
i = 1, . . . , N are also non-strictly monotone in η. That is, the ith chemical (where
i = 1, . . . , N) influences the production rate of the (i − 1)th one, positively or
negatively, and the 0th chemical influences the production of the N th one. At the
same time, chemical i (where i = 0, . . . , N − 1) may influence the production of
chemical (i + 1); however, such an influence is not necessary: it is allowed that
∂hi+1

∂xi
≡ 0. The central assumption is that if the “adjacent” components influence

each other, then the corresponding influences are equally signed (being either both
stimulatory or inhibitory)

∂hi+1

∂xi

∂hi
∂xi+1

≥ 0, ∀i = 0, . . . , N − 1. (4.12)

Applying a simple change of variables, one may assume, without loss of general-
ity [101, 102] that

∂hi(η, ξ, ζ)

∂η
≥ 0, δi

∂hi(η, ξ, ζ)

∂ζ
> 0, (4.13)

where

δi =

{
1, i < N,

±1, i = N.

In this work, we are interested in tridiagonal systems (4.11) with a single equilib-
rium, for which the result of [101, Theorem 2.1] reduces1 to the following simpler
lemma.

Lemma 4.11. [68] Let the C1-smooth nonlinearities hi in (4.11) satisfy the con-
ditions (4.12) and the system has only one equilibrium. Then the ω-limit set of any
bounded solution can have one of the following structural types: (a) closed orbit;
(b) union of the equilibrium point and a homoclinic orbit; (c) the equilibrium point
(singleton).

Note that the “sign-symmetry” assumption (4.12) plays an essential role in
Lemma 4.11. However, this assumption is violated in system (4.3): recall that the

1Formally, the paper [101] deals with delay systems, explicitly assuming that the delay is non-zero.
The results are, however, valid for tridiagonal systems (4.11) without delays; as mentioned in [101,
p. 442], the corresponding result (under some additional restrictions) has been established in [25].
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effector hormone’s (T ) production is driven by the tropic hormone (L) and, at
the same time, inhibits the secretion of L (Fig. 4.1). So Lemma 4.11 cannot be
directly applied to system (4.3). To overcome this problem, we show that there
exists a one-to-one mapping (R,L, T )→ (x0, x1, x2) which transforms system (4.3)
into the “canonical” form (4.13) with N = 3 and δN = −1. The corresponding
extension is our main result.

Theorem 4.12. Suppose that Assumption 4.1 holds and

sup
T≥0
|f ′2(T )| 6 (b3 − b2)2

4g2
. (4.14)

Then any solution of (4.3) has the ω-limit set of one of the three types, listed in
Lemma 4.11. If the equilibrium is unstable, then almost any solution converges to
either a periodic orbit or a homoclinic orbit.

It should be noticed that (4.14) automatically holds for the classical Goodwin’s
oscillator (4.1) (and, more generally, when f2 is constant). Furthermore, if the
equilibrium is unstable, the system (4.1) has in fact no homoclinic orbits [67]. This
leads to the following corollary.

Corollary 4.13. If the system (4.1) has an unstable equilibrium, then it also has a
(non-trivial) periodic orbit. Moreover, almost any solution converges to such an orbit.

Whereas the first statement of Corollary 4.13 has been established for a very
broad class of cyclic systems [64] and in fact does not rely on Mallet-Paret’s theory,
the second statement, confirmed numerical simulations, has not yet been proven
mathematically. For the general system (4.3), the inequality (4.14) restricts the
slope of the nonlinear function f2(·). Our numerical simulations in Section 4.5
show that this condition is only sufficient, and the solutions’ convergence to the
periodic orbit may take place even if it is violated.

4.5 Numerical simulation

In this section, we give a numerical simulation, which allows to compare the
behaviors of systems (4.1) and (4.3). The model parameters b1 = 0.1 min−1,
b2 = 0.015 min−1, b3 = 0.023 min−1, g1 = 5 min−1 and g2 = 0.01 min−1 are
chosen to comply with the existing experimental data reported in [11, 18], dealing
with testosterone regulation (Fig 4.2).

The functions f1(T ), f2(T ) were chosen of the Hill-type as follows:

f1(T ) =
K1

1 + β1Tn
, f2(T ) =

K2

1 + β2Tm
. (4.15)
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Figure 4.3: Red and blue plots show numerical simulations of systems (4.1)
and (4.3), respectively, with the same initial conditions and parameter values.

As discussed in [51, 161], Hill’s kinetics naturally arises in many biochemical and
pharmacological systems. Following [18], the parameters of f1 are considered
to be K1 = β1 = n = 20. To show the effect of the additional feedback f2 on
the oscillations of hormones, its parameters are chosen to be K2 = m = 20 and
β2 = 10. A straightforward calculation shows that the equilibria of systems (4.1)
and (4.3) are respectively given by

EGS = (0.0098, 3.2529, 1.4143), ENew = (0.0094, 3.2589, 1.4169),

Moreover, the quantity Θ0, defined in (4.8), for systems (4.1) and (4.3) is given by

ΘGS
0 = 1.5207× 10−4, ΘNew

0 = 1.1590× 10−4,

confirming the instability of equilibria. Both systems (4.1) and (4.3) are plotted
in Fig. 4.3 for a time period of 24 hours with the same parameters and initial
conditions

R(0) = 1 pg/ml, L(0) = 6 ng/ml, T (0) = 2 ng/ml.
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Although nonlinearity f2 considered in the example does not satisfy condition (4.14),
system (4.3) still has oscillatory behavior for parameters bi and gi considered above.

As is seen in Fig. 4.3, after some time, both amplitude and period of the
oscillations of R,L, and T in system (4.3) become less than the corresponding
ones in system (4.1). The amplitudes of oscillation for systems (4.1) and (4.3),
calculated numerically, are respectively given by

AGS ≈ (52.00 pg/ml, 3.64 ng/ml, 0.58 ng/ml),

ANew ≈ (41.75 pg/ml, 3.04 ng/ml, 0.46 ng/ml).

Furthermore, the periods of oscillation for systems (4.1) and (4.3) are given by
PGS ≈ 1.870 and PNew ≈ 1.755. So the feedback f2(·) influences both the
amplitude and period of oscillations.

4.6 Proof of the results

We start with the proof of Lemma 4.2, which gives the existence and uniqueness of
the equilibrium of system (4.3).
Proof of Lemma 4.2. By definition, the point E0 = (R0, L0, T 0) is an equilibrium
of system (4.3) if and only if

−b1R0 + f1(T 0) = 0,

g1R
0 − b2L0 + f2(T 0) = 0,

g2L
0 − b3T 0 = 0.

Thus, the point E0 is an equilibrium if and only if (4.4) and (4.5) hold. In view of
Assumption 4.1, since f1(·) and f2(·) are positive and decreasing, the equation (4.4)
has the only positive solution T 0, and hence E0 is unique.

We now prove Lemma 4.3, presenting the local stability properties of the
equilibrium.
Proof of Lemma 4.3. A straightforward computation shows that the characteristic
polynomial corresponding to matrix A, defined in (4.7), is

P (λ) = λ3 + a1λ
2 + (a2 − g2f

′
2(T 0))λ+ a3 − g2

(
g1f
′
1(T 0) + b1f

′
2(T 0)

)
. (4.16)

As f1(·) and f2(·) are decreasing, the coefficients of P (λ) are positive; it has a real
negative root, and the two remaining roots are complex-conjugated.

Based on the Routh-Hurwitz criterion, the steady state is stable if and only if

det

[
1 a2 − g2f

′
2(T 0)

a1 a3 − g2

(
g1f
′
1(T 0) + b1f

′
2(T 0)

)] = Θ0,
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is negative, and unstable if and only if it is positive.

We now show that if Θ0 = 0, then the two eigenvalues are complex-conjugated
imaginary numbers. To this end, without loss of generality, assume that λ1, λ2, λ3

are roots of P (λ) where λ1 ∈ R, λ2 = α + iβ and λ3 = α − iβ. According to the
Vieta’s formulas, the following relations among such zeros hold:

λ1 + λ2 + λ3 = −a1,

λ1λ2 + λ2λ3 + λ1λ3 = a2 − g2f
′
2(T ),

λ1λ2λ3 = −a3 + g2 (g1f
′
1(T ) + b1f

′
2(T )) .

(4.17)

Now, in view of (4.17), one can rewrite (4.8) as follows

Θ0 = a3 − g2(b1f
′
2(T ) + g1f

′
1(T ))− a1 (a2 − g2f

′
2(T ))

= −λ1λ2λ3 + (λ1 + 2α)(a2 − g2f
′
2(T ))

= −λ1(λ2λ3 − (a2 − g2f
′
2(T ))) + 2α(a2 − g2f

′
2(T ))

= (a1 + 2α)(λ2λ3 − (a2 − g2f
′
2(T ))) + 2α(a2 − g2f

′
2(T )))

= (a1 + 2α)[2α(a1 + 2α) + 2α(a2 − g2f
′
2(T ))

= 2α
(
(a1 + 2α)2 + a2 − g2f

′
2(T )

)
.

Thus,
Θ0 = 2α

(
(a1 + 2α)2 + a2 − g2f

′
2(T )

)
. (4.18)

Owing to the fact that
(
(a1 + 2α)2 + a2 − g2f

′
2(T )

)
> 0, the condition Θ0 = 0

implies that α = 0, and hence λ2 and λ3 are complex-conjugated imaginary
numbers.

We now turn to prove Theorem 4.4, extending the proofs from [57] and [128].
The proof employs the widely known McLaurin’s inequality [63] for the case of
three variables

1

3
(b1 + b2 + b3) >

(
1

3
(b1b2 + b1b3 + b2b3)

) 1
2

> (b1b2b3)
1
3 ,

which holds for any b1, b2, b3 > 0; both inequalities are strict unless b1 = b2 = b3. It
implies, in particular, that

(b1 + b2 + b3)(b1b2 + b1b3 + b2b3)

b1b2b3
≥ 9. (4.19)

Another result, used in the proof, is the Hopf bifurcation theorem [118]. This
theorem deals with a one-parameter family of dynamical systems

ẋ = F (x, µ), µ ∈ (−ε; ε). (4.20)



4

60 4. Endocrine regulation as a non-cyclic feedback system

It is assumed that for µ = 0, the system has an equilibrium at x0, for which
F (x, µ) is C1-smooth in the vicinity of (x0, 0), and the Jacobian matrix DxF (x0, 0)

has a pair of simple imaginary eigenvalues ±iω0 (where ω0 6= 0) and all other
eigenvalues have non-zero real parts; in particular, DxF (x0, 0) is invertible. The
implicit function theorem implies that for µ ≈ 0 there exists an equilibrium point
x(µ) of system (4.20) (that is, F (x(µ), µ)), such that x(0) = x0. The corresponding
Jacobian DxF (x(µ), µ) has a pair of complex-conjugated eigenvalues α(µ)± iω(µ),
smooth for µ ≈ 0; here α(0) = 0 and ω(0) = ω0. The Hopf bifurcation theorem is
as follows [118, Theorem 2.3].

Theorem 4.14. If α′(0) 6= 0, the dynamical system (4.20) undergoes the Hopf
bifurcation at µ = 0, that is, there exist ε0 > 0 such that for any µ ∈ (−ε0, ε0) \ {0}
system (4.20) has a non-trivial periodic solution.

Proof of Theorem 4.4. Assuming that (R0, L0, T 0) is an equilibrium of (4.3) for
some choice bi, gi > 0 and applying (4.4), one obtains

g2 =
b1b2b3T

0

g1f1(T 0) + b1f2(T 0)
. (4.21)

Substituting (4.21) into (4.8) and dividing by (b1b2b3), the inequality (4.19) and
Assumption 4.1 imply that

Θ0

b1b2b3
=

T 0(b2 + b3)f ′2(T 0)

g1f1(T 0) + b1f2(T 0)︸ ︷︷ ︸
≤0

+
g1(−T 0f ′1(T 0))

g1f1(T 0) + b1f2(T 0)︸ ︷︷ ︸
≤M(T 0)

− (b1 + b2 + b3)(b1b2 + b1b3 + b2b3)

b1b2b3
+ 1 ≤M(T 0)− 8.

(4.22)

The inequality (4.22) is strict unless b1 = b2 = b3 and f2(T 0) = f ′2(T 0) = 0,
implying thus statements 1 and 2.

We are now going to prove statement 3. Supposing that M(T 0) > 8 for some
T 0 > 0, let R0 = 1

b1
f1(T 0) and L0 = b3

g2
T 0. It can be easily noticed from (4.4)

that any system (4.3), whose parameters satisfy the condition (4.21), has the
equilibrium at (R0, L0, T 0). We are now going to design a one-parameter family
of the systems (4.3) with this equilibrium, switching from stability to instability
through a Hopf bifurcation. To do this, we fix b1 = b2 = b3 = b (where b > 0 is
chosen arbitrarily) and determine g2 from (4.21), leaving the parameter g1 > 0

free. It can be easily noticed from (4.22) that Θ0 = Θ0(g1) is a smooth and strict
increasing function of g1, lim

g1→0
Θ0(g1) < 0 and lim

g1→∞
Θ0(g1) = M(T 0)−8 > 0. Thus

for sufficiently large g1 > 0 the system has unstable equilibrium point. Furthermore,
for ε > 0 sufficiently small, the image of Θ0(·) contains the interval (−ε; ε);
therefore, one can define the smooth inverse function g1 = g1(µ) in such a way
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that Θ0(g1(µ)) = µ for any µ = (−ε; ε).
We now claim that the one-parameter family of systems (4.3) with b1 = b2 =

b3 = b > 0, g1 = g1(µ) and g2 = g2(µ) determined by (4.21) satisfies the conditions
of Hopf bifurcation theorem (Theorem 4.14). By definition, the Routh-Hurwitz dis-
criminant (4.8), corresponding to a specific µ, equals Θ0(g1(µ)) = µ; by Lemma 4.3
the system with µ = 0 has a pair of pure imaginary eigenvalues. Considering the
extension of these eigenvalues α(µ)± iω(µ) for µ ≈ 0, it is shown (see (4.18)) that

2α(µ)
[
(a1 + 2α(µ))2 + (a2 − g2(µ)f ′2(T 0))

]
= µ, (4.23)

(here ai are defined by (4.9)). Differentiating (4.23) at µ = 0 and recalling that
α(0) = 0, one arrives at

α′(0) =
1

2 [a2
1 + (a2 − g2(0)f ′2(T 0)]

> 0.

Therefore, for µ ∈ (0; ε0) (where ε0 > 0) system (4.3) with the aforementioned
type has an unstable equilibrium at (R0, L0, T 0), and at least one periodic solution.
Notice, however, that for µ ∈ (−ε0; 0) the system also has a periodic solution in
spite of the equilibrium’s local stability (see Remark 4.7).
Proof of Lemma 4.10. This Lemma is immediate from [117, Theorem 1] since
system (4.3) (a) has the only equilibrium; (b) if Θ0 > 0 then this equilibrium is
hyperbolic (there are no imaginary eigenvalues); (c) all solutions are uniformly
ultimately bounded, that is, C > 0 exists such that

lim sup
t→∞

(|R(t)|+ |L(t)|+ |T (t)|) ≤ C, ∀R(0), L(0), T (0) > 0.

The properties (a) and (b) follow from Lemma 4.3; to prove (c), it suffices to notice
that (4.3) is decomposable as

Ẋ(t) = ĀX(t) + F (X(t)), X(t) = (R(t), L(t), T (t))>,

where Ā is a Hurwitz matrix and F (·) is bounded.
Proof of Theorem 4.12. The restriction (4.14) entails the existence of a one-to-one
linear change of variables (R,L, T ) 7→ (x0, x1, x2), transforming (4.3) into the
general system (4.11), satisfying (4.13) with δN = −1, N = 2. Indeed, let

x0 := T, x1 := L+ aT, x2 := R, (4.24)

where a ∈ R is a parameter to be specified later. First, let us consider the first
equation of (4.3), i.e., Ṙ = −b1R+ f1(T ). In view of (4.24), we have

ẋ2 = −b1x2 + f1(x0).
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Denoting h2(x1, x2, x0) := −b1x2 + f1(x0), we have achieved the third equation of
(4.11) with N = 2, satisfying the conditions (4.13), i.e.,

∂h2(x1, x2, x0)

∂x1
= 0 > 0,

∂h2(x1, x2, x0)

∂x0
= δ2

∂f

∂x0
> 0, δ2 = −1.

Now, let us consider the third equation of (4.3), i.e., Ṫ = g2L − b3T . As x0 = T

and x1 = L+ aT , one has

ẋ0 = g2(x1 − ax0)− b3x0. (4.25)

Denoting h0(x0, x1) := g2x1 − (g2a+ b3)x0, we have obtained the first equation of
(4.11) satisfying the conditions (4.13), i.e.,

∂h0(x0, x1)

∂x2
= 0 > 0,

∂h0(x0, x1)

∂x1
= g2 > 0.

Finally, let us consider the third equation of (4.3), i.e., L̇ = g1R − b2L + f2(T ).
Equations (4.24) imply that L = x1 − ax0, and hence

L̇ = ẋ1 − aẋ0. (4.26)

As L̇ = g1R− b2L+ f2(T ), in view of (4.24) and (4.26), one has

ẋ1 − aẋ0 = g1x2 − b2(x1 − ax0) + f2(x0), (4.27)

or, equivalently,

ẋ1 =
(
a(b2 − b3)− g2a

2
)
x0 + (ag2 − b2)x1 + g1x2 + f2(x0). (4.28)

Denoting

h1(x0, x1, x2) :=
(
a(b2 − b3)− g2a

2
)
x0 + (ag2 − b2)x1 + g1x2 + f2(x0),

and owing to the fact that g1, g2 > 0, the conditions (4.13) hold provided that

∂h1

∂x0
≥ a(b2 − b3)− g2a

2 − sup |f ′2(T )| ≥ 0,

which always can be provided under the assumption (4.14) by choosing appropriate
a ∈ R. Theorem 4.12 now follows from Lemmas 4.10 and 4.11: if the equilibrium
is unstable, then almost all solutions do not converge.
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4.7 Concluding remarks

In this chapter, a mathematical model for endocrine regulation has been examined.
The model extends the conventional Goodwin’s model by introducing an additional
negative feedback. We have studied the local properties of the extended model and
their relations to global properties, showing that the (locally) unstable equilibrium
implies that almost all solutions oscillate and (under some conditions) converge
to periodic orbits. The results are based on the general criterion of oscillation
existence [151] and the Mallet-Paret’s theory [101]; they can be extended to many
other models, e.g. the model from [161].

In this chapter, the pulsatility of the feedback from effector hormones (T ) to
releasing hormones (R) is not taken into account. This issue is treated in next
chapter, while the feedback from effector hormones (T ) to tropic hormones (L) is
assumed to be an affine function.





5
Impulsive model of endocrine regulation
with a local continuous feedback

This chapter develops an impulsive model of endocrine regulation. In particular, it
extends the impulsive Goodwin’s model [15] by introducing an additional affine
feedback. This local continuous feedback allows us to apply the theory, developed
in [15], to our model to prove that, under some conditions on the parameters of
the affine feedback, the extended model has a positive and unique 1-cycle solution.

This chapter starts with an introduction, followed by Section 5.2 where the
model in question is introduced. The main result is presented in Section 5.3. It
proceeds with Section 5.4 where we first present our approach for the proof of
the main result, and then give the proofs of the results. This chapter ends with
concluding remarks in Section 5.5.

5.1 Introduction

Hormones are products of glands, playing essential roles in vital bodily functions
such as metabolism, reproduction and growth. This motivates the study of interac-
tions between glands, consisting of many stimulatory (feedforward) and inhibitory
(feedback) signals. The operation of endocrine glands is orchestrated by the brain,
in particular, the hypothalamus and the pituitary gland. The former produces
bursts of so-called release hormones that communicate control information to the
glands through pulse amplitude and frequency. Thus the neuroendocrine control
loop incorporating the hypothalamus and the involved endocrine glands is in fact
hybrid, i.e., combining continuous and discrete dynamics. Due to the complexity
of the resulting system, presenting a somewhat complete mathematical model of
the endocrine system is a challenging problem. To obtain a tractable mathematical
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Hypothalamus

Pituitary

Testes

GnRH

LH

Te

Figure 5.1: Structure of the hypothalamic-pituitary-gonadal axis with two negative
feedbacks; feedforward and feedback control mechanisms are shown, respectively,
by ↓ and a.

model [80], such a complex system is usually decoupled into subsystems (or axes),
capturing only known essential characteristics and interactions [129].

One of the most mathematically studied endocrine subsystems, the GnRH-
LH-Te axis, regulates the production of testosterone (Te) in the male, where the
Gonadotropin-Releasing Hormone (GnRH) and the Luteinizing Hormone (LH) play
crucial roles. GnRH, produced in the hypothalamus, stimulates the pituitary gland
that responds by the secretion of LH that, in its turn, stimulates the production
of Te in the testes. This cascade of stimulations from GnRH to Te is then closed
by two negative feedback loops from Te to both GnRH and LH, i.e., Te inhibits
the secretion of GnRH and LH directly [80, 154], see Fig. 5.1. Although this
chapter deals with a model for testosterone regulation, the construct serves as a
“benchmark” in mathematical modeling of endocrine regulation, because much
of the structure is widely applicable to some other neuroendocrine regulatory
circuits (see e.g. [100, 121, 161]), controlled by the brain regulatory centers
(hypothalamus) and the pituitary gland [82, 133].

Several mathematical models have been postulated to describe the regulation
of testosterone in the male. One of the relatively simple models, suggested by
Smith [128], is a direct application on the Goodwin’s oscillator [52], introduced
in Chapter 4. This model describes the cascade of stimulations from GnRH to Te
controlled by a negative feedback from Te to GnRH, while the feedback from Te to
LH is neglected. As the feedback from Te to GnRH is parametrized by a Hill function
nonlinearity [51] in the Goodwin’s oscillator, the periodic solutions exist only for
the Hill functions of order greater than 8. Although oscillatory solutions arise in
the Goodwin’s model with delays for Hill functions of smaller than 8 [18, 128], the
domain of feasible parameters is still quite small.
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In fact, it is known that the feedback mechanism from Te to GnRH is not
continuous but pulsatile (burst-like or episodic), see e.g. [80, 82, 89, 155] and
the references therein. Pulsatility is the physiological mechanism to increase
rapidly hormone concentrations and transport distinct signal information to the
selected target tissues [155]. In [15], pulsatility of the feedback from Te to GnRH
in the Goodwin’s model has been described by amplitude and frequency pulse
modulation [42]. The pulse-modulated model for testosterone regulation studied in
[15] has been more recently validated on experimental data [104, 105]. Note that
the structure and function of the pulsatile feedback mechanism from testosterone to
GnRH is similar to the function of some other releasing hormones such as cortisol,
growth, adrenal, and parathyroid hormones [105].

Despite its utility, the cyclic structure of the minimal model of the GnRH-LH-Te
axis in [15] is a simplification since only the negative feedback from Te to GnRH is
considered. A more complete model of the axis involves two more feedback loops
[133], one long negative feedback from Te to LH, and one short negative feedback
from LH to GnRH. The latter, which is very short in comparison with the other two
feedbacks, is the most vulnerable one, and is not firmly established [133]. However,
the former was reported in literature and strongly supported by experiments, see
[80, 82, 154, 158] and the references therein. Several mathematical models with
multiple feedbacks have been studied in literature, while most of them employ
continuous dynamics [4, 55, 139, 146, 161]. Exceptions are the most complete
stochastic models presented in [80, 82], while a rigorous analysis of these models
is still lacking.

In spite of the existence of multiple feedback loops for neuroendocrine regula-
tory circuits [4, 80, 82, 133, 155, 161], there is no consensus on the mathematical
description of the respective feedback controls. In this chapter, an affine function is
introduced into the previously developed mathematical model in [15] to describe
the feedback from Te to LH. Although one possibility is to describe such a feed-
back by a Hill function, several reasons [40] justify why this feedback may not
be parametrized by a Hill nonlinearity. First, from any set of the experimental or
simulated data, the feedback is commonly not observed in its full domain of defini-
tion, that may challenge the involved numerical methods. Second, as identification
methods basically deal with systems whose dynamics depend linearly on unknown
parameters, we can use the advantage of an affine function than a nonlinear Hill
function. Lastly, by implementing an affine function into the mathematical model
developed in [15], we can preserve the important property of the model studied
in [15], i.e., representing the extended mathematical model in the Lure’s form
with the pulsatile feedback from Te to GnRH. In view of such an affine function,
we introduce two unknown parameters into the previously developed model [15],
making it possible to suggest an identification procedure analogous to the one
presented in [104, 105]. Although by introducing an affine feedback into the model
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studied in [15] the dynamics between two consecutive pulses is linear, it poses the
problem of solution feasibility since some solutions may escape from the positive
octant and hence lose biological interpretation.

Owing to the fact that endocrine regulation processes exhibit self-sustained
oscillations, in this chapter we are primarily interested in periodic solutions. Dealing
with testosterone regulation, as discussed in [15], clinical experiments reveal that
such solutions are usually featured by the existence of one or two pulses over one
period (called respectively 1-cycle and 2-cycle). For the cyclic model presented
in [15], the existence and uniqueness of 1-cycle solutions along with their local
stability are discussed. In this work, we extend such results to a system with an
additional feedback. Note that the positivity of 1-cycle solutions of the cyclic model
[15] is automatically held, while it is not true for the extended system. So another
contribution of this chapter is to give conditions under which the positivity of
1-cycle solutions of the extended system is guaranteed. We start with the extended
model in the next section.

5.2 Extended mathematical model

Consider the following model of endocrine regulation

Ṙ = −b1R+ f(T ),

L̇ = g1R− b2L− kT + µ,

Ṫ = g2L− b3T,
(5.1)

where R,L and T stand for the concentrations of three hormones interacting
in a closed loop. In testosterone regulation, these variables represent serum
concentrations of GnRH, LH and Te, respectively. The constants bi > 0 (i = 1, 2, 3)

are the clearing rates of the corresponding hormones, while the constants k, gi > 0

(i = 1, 2) and the decreasing function f(·) > 0 represent the secretion rates of the
corresponding hormones. Unlike the classical Goodwin-Smith model [52, 128], the
model (5.1) involves an additional negative feedback loop from T to L, described by
the affine function “−kT + µ" where µ ∈ R; the cyclic model in [128] corresponds
to the case when k = µ = 0.

In the model (5.1), the nonlinear function f(T ) describes the negative feedback
from T to R. To capture the pulsatility of the neural feedback, following [15],
we replace the nonlinear function f(T ) by a pulse modulation mechanism [42].
Implementing such a pulsatile feedback and rewriting system (5.1) in a vector
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form, we obtain the system

ẋ = Ax+Bξ(t) +D,

y = Cx,
(5.2)

where

x =

RL
T

 , A =

−b1 0 0

g1 −b2 −k
0 g2 −b3

 ,
B =

1

0

0

 , C> =

0

0

1

 , D =

0

µ

0

 ,
(5.3)

and

ξ(t) =

∞∑
n=0

λnδ(t− tn). (5.4)

Here δ(t) is the Dirac delta-function, and T and R are the modulating and the
modulated signals, respectively. In testosterone regulation, the function ξ(t) is
determined by the times tn at which GnRH pulses are fired with the weights λn.

Suppose that the firing times tn and the weights λn are given by

tn+1 = tn + τn, τn = Φ(y(tn)), λn = Ψ(y(tn)),

t0 = 0, y(0−) = y(0),
(5.5)

where Φ(·) and Ψ(·) stand, respectively, for the frequency and amplitude modula-
tion characteristics [42]. Hereafter y(t−n ) and y(t+n ) denote, respectively, the left-
and right-side limits of y(t) at time tn. Due to the fact that an increase in the
concentration of Te results in sparser pulses of GnRH of lower amplitude [154], we
assume that Φ(y) and Ψ(y) are respectively, non-decreasing and non-increasing for
y > 0; these functions are also positive and uniformly bounded, that is,

Φ : [0,∞) −→ [Φ1,Φ2], Ψ : [0,∞) −→ [Ψ1,Ψ2], (5.6)

where Φi,Ψi > 0 are some constants.
Mathematically, the continuous part of system (5.2) is treated as follows. A

pulse, corresponding to the release of GnRH, is fired at time tn and corresponds
to a jump of the hormone concentration R(t+n ) = R(t−n ) + λn while it does not
immediately affect the two remaining concentrations L(t−n ) = L(t+n ) and T (t−n ) =

T (t+n ). Equivalently, in the vector form, we have

x(t+n ) = x(t−n ) + λnB. (5.7)
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Here, the jump weight λn and the interval between two consecutive firing times
τn depend on the output y(tn), i.e. the concentration T . Between the consecutive
instants tn and tn+1, the dynamics of (5.2) are described by the affine system

ẋ = Ax+D, tn < t < tn+1. (5.8)

It is emphasized that the closed-loop dynamics of (5.2)-(5.5) are hybrid and the
state vector of the model comprises both the continuous states in x(t) and the
discrete state tn.

As the elements of x(t) stand for hormonal concentrations, only non-negative
and bounded solutions of closed-loop system (5.2) are meaningful. For k = 0 [15],
the solution starting in the positive orthant remains there as the matrix A is
Metzler1, and thus neither the linear dynamics in (5.8) nor the jumps in (5.7)
result in solutions outside the positive orthant. This, however, does not hold when
k > 0 since the matrix A is not Metzler anymore, and when the second element
of vector D, i.e. µ, is negative. The very presence of the vector D makes the
continuous part of the model non-autonomous because the component µ enters the
regulation loop as an exogenous signal. The state vector x(t), obeying (5.8), may
escape from the positive orthant between two consecutive pulses. Boundedness of
the solutions to (5.2) follows due to the fact that the matrix A is Hurwitz stable,
and the functions Φ(y) and Ψ(y) are bounded.

The matter of positivity arises due to the nature of the mathematical tools
selected to capture the system dynamics. In fact, the process of synthesis and
clearing of hormone molecules is essentially discrete and the number of molecules
in blood is countable. When the last molecule clears out and no more new ones
are synthesized, the number of molecules stays at zero. Yet, when hormone
concentrations are chosen as the state variables of the model, the discrete nature
of the process is lost in the description by differential equations. Thus, special
attention has to be paid to the model structure in order to maintain positivity of
the solutions.

Owing to the fact that hormones’ concentrations fluctuate periodically, in this
chapter we show that, under some conditions, the closed-loop system (5.2) has
positive periodic solutions with only one discontinuity point tn over the smallest
period, so-called “1-cycle" solutions [173].

5.3 Main result

By definition, we call a solution τ -periodic, where τ > 0, if x(t) = x(t+ τ) for any
t > 0. System (5.2) may have one or more pulses in its smallest period; however,

1Matrix A = (aij) is called Metzler if all its off-diagonal components are nonnegative, i.e.,
aij > 0, i 6= j.
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according to (5.5) and (5.6), the number of pulses are finite, because the time
between two consecutive pulses is not less than Φ1 > 0 and hence Zeno behavior is
not possible. A periodic solution of (5.2) is called m-cycle if exactly m pulses are
fired over the smallest period [173].

As demonstrated in [15], system (5.2) with k = µ = 0 has a unique 1-cycle
solution. By using an efficient numerical procedures, such a solution can be found
and tested for local stability. Although (i) when k > 0, matrix A is not Metzler
anymore, and (ii) when µ < 0, some solutions of the affine system (5.8) may
become negative at some time t > 0, we show that the existence, uniqueness, and
positivity of 1-cycle solutions remain valid if the parameter k satisfies the conditions

k < k∗ :=
(b3 − b2)2

4g2
, k 6= k0 :=

(b3 − b1)(b1 − b2)

g2
, (5.9)

and the parameter µ remains within some bounds (see Theorem 5.2 for explicit
bounds).

Before stating the main results, we introduce some notations as follows:

α :=
b2 + b3

2
, β :=

√
(b3 − b2)2 − 4kg2

2
, (5.10)

η1 := b1, η2 := α+ β, η3 := α− β, ζj := Π3
i=1
i6=j

1

(ηj − ηi)
, (5.11)

ρ0 :=
(b2 − b3)− 2β

2g2
, (5.12)

V1 :=
Ψ1

eb1Φ2 − 1
, U1 :=

Ψ2

1− e−b1Φ1
, (5.13)

γ := b2 −
V1 + U1

U1 − V1
b3. (5.14)

Remark 5.1. The quantity k0, defined in (5.9), is positive when either b1 ∈ (b3, b2)

or b1 ∈ (b2, b3), while is negative for the other cases. The assumption k 6= k0

in (5.9) ensures that ηj 6= ηi (i, j = 1, 2, 3, i 6= j) and hence ζj are well-defined
when b1 ∈ (b3, b2) or b1 ∈ (b2, b3). Further, owing to the fact that all the involved
hormones have different clearing rates [154], we have bi 6= bj (i 6= j), and hence
k0 6= 0.

Theorem 5.2. In view of (5.9), assume that one of the following conditions holds:

1. b3 > b2 and µ > −g1V1, or

2. b2 > b3, µ > g1
b3

(γ − 2β) and one of the following holds:

(a) γ 6 0, or
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(b) γ > 0, and k < (b3−b2)2−γ2

4g2
.

Then system (5.2) has a positive and unique 1-cycle solution with the initial condition
x0 = (R0, L0 − ρ0T 0, T 0) where T 0 is calculated from the system of transcendental
equations

T 0 =
µg2

η2η3
+ λ0g1g2

3∑
j=1

ζj
eηjτ0 − 1

, λ0 = Ψ(T 0), τ0 = Φ(T 0), (5.15)

and

R0 =
λ0

eη1τ0 − 1
, L0 =

µ

η2
+

λ0g1

(η1 − η2)

(
1

eη2τ0 − 1
− 1

eη1τ0 − 1

)
. (5.16)

5.4 Methods

This section is devoted to the proof of Theorem 5.2. Our approach, presented in
Subsections 5.4.1 – 5.4.3, is as follows. Under the conditions given in Theorem 5.2,
(i) in Subsection 5.4.1 we use a one-to-one linear change of variables to transform
system (5.2) to a system whose linear part is Metzler; (ii) in Subsection 5.4.2, we
prove that the transformed system has a unique and positive 1-cycle solution; (iii)
in Subsection 5.4.3, we show that any positive 1-cycle solution of (5.2) is such a
solution of the transformed system and vice versa. The proof of Theorem 5.2 is
presented in Subsection 5.4.4. We start with the linear transformation of (5.2) in
the following subsection.

5.4.1 Transformation of the system

The goal of this subsection is to use a one-to-one linear change of variables to
transform system (5.2) to a system whose linear part is Metzler. To this end, we
propose the linear mapping

M : (R, L, T ) 7−→ (z1, z2, z3),

z1 := R, z2 := L+ ρT, z3 := T, ρ ∈ R,
(5.17)

where the parameter ρ will be determined later. In view of the mapping M ,
system (5.2) is transformed to the equations

ż1 = −b1z1 + ξ(t),

ż2 = g1z1 − (b2 − ρg2)z2 + g3z3 + µ,

ż3 = g2z2 − (b3 + ρg2)z3,

(5.18)
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where the parameters b1, b2, b3, g1, g2 and µ are the same as those given in (5.3),
and

g3 := −g2ρ
2 + (b2 − b3)ρ− k, ρ ∈ R. (5.19)

As g1, g2 > 0, one possibility for the linear part of (5.18) to be Metzler is to find
conditions under which g3 = 0. Considering g3 as a quadratic function of ρ, a
sufficient condition to have g3 = 0 is that k < k∗ = (b3−b2)2

4g2
, which is one of the

assumptions in (5.9). In view of k < k∗, the quantity ρ0, defined in (5.12), is a
zero of (5.19). Thus, k < k∗ and ρ = ρ0 implies that g3 = 0, and hence the linear
part of (5.18) is Metzler.

Although k < k∗ and ρ = ρ0 imply that g3 = 0 and hence the linear part of
system (5.18) is Metzler, in the case that µ < 0, yet some of its solutions may escape
from the positive orthant even if they start from there, i.e., the positive orthant is
not an invariant set. Once it occurs, the output of the system may become negative,
and hence the functions Φ(·) and Ψ(·) are not well-defined for y < 0, see (5.5) and
(5.6). In this regard, we expand Φ(·) and Ψ(·) on (−∞,∞) as follows

Φ̃(y) =

{
Φ(y) y > 0,

Φ1 y < 0,
Ψ̃(y) =

{
Ψ(y) y > 0,

Ψ2 y < 0,
(5.20)

where Φ1 and Ψ2 are, respectively, the lower and upper bounds of functions Φ(·)
and Ψ(·), introduced in (5.6).

Remark 5.3. The extended functions Φ̃(·) and Ψ̃(·) are non-decreasing and non-
increasing, respectively, and for any y ∈ R, they are within the bounds, given in
(5.6). Further, Φ̃(y) = Φ(y) and Ψ̃(y) = Ψ(y), for any y > 0.

It is verified that b2−g2ρ
0 = η2 and b3 +g2ρ

0 = η3, where η2 and η3 are defined
in (5.11). In view of k < k∗ and ρ = ρ0, the equations (5.18) lead to the system{

ż = Ãz +Bξ̃(t) +D,

ỹ = Cz,
(5.21)

where

z =

z1

z2

z3

 , Ã =

−η1 0 0

g1 −η2 0

0 g2 −η3

 , (5.22)

B,C,D are the same as those introduced in (5.3), and ξ̃(t) is denoted by

ξ̃(t) =

∞∑
n=0

λ̃nδ(t− tn), (5.23)
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where
tn+1 − tn = τ̃n, τ̃n = Φ̃(ỹ(tn)), λ̃n = Ψ̃(ỹ(tn)). (5.24)

Between the consecutive instants tn and tn+1, system (5.21) is represented by the
affine system

ż = Ãz +D, tn < t < tn+1, (5.25)

with
z(t+n ) = z(t−n ) + λ̃nB. (5.26)

Remark 5.4. The inequalities α > β > 0 and b1 > 0 implies that the eigenvalues of
Ã are negative, and hence it is Hurwitz stable. On the other hand, functions Φ̃(·)
and Ψ̃(·) are bounded. Therefore solutions of (5.21) are bounded.

As mentioned, some solutions of system (5.21) may become negative at some
time when µ < 0. So our goal in the rest of this subsection is to find conditions on
µ such that periodic solutions of (5.21) remain positive. Since such solutions stay
between the asymptotic bounds of (5.21) for any t > 0, it suffices to find conditions
on µ such that the lower asymptotic bounds of (5.21) are non-negative. In the
following proposition, such asymptotic bounds are given.

Proposition 5.5. Solutions of system (5.21) have the asymptotic bounds

Vi 6 lim inf
t→∞

zi(t) 6 lim sup
t→∞

zi(t) 6 Ui, i = 1, 2, 3,

where V1 and U1 are defined in (5.13), and

V2 :=
g1V1 + µ

η2
, U2 :=

g1U1 + µ

η2
,

V3 :=
(g1V1 + µ)g2

η2η3
, U3 :=

(g1U1 + µ)g2

η2η3
.

(5.27)

Moreover, the asymptotic bounds are non-negative if µ > −g1V1.

5.4.2 Periodic solutions

In this subsection, we study periodic solutions of system (5.21). More precisely, we
show that system (5.21) has a unique and positive 1-cycle solution, i.e., there exist
λ̃0, τ̃0, ỹ

0 > 0 such that tn+1 − tn = τ̃0, ỹ(t−n ) = ỹ0 and λ̃n = λ̃0, for any n > 0. To
this end, let us denote zn := z(t−n ) where z(t) is a solution of (5.21). Then one
from (5.24), (5.25) and (5.26) obtains

zn+1 = eÃ(tn+1−tn)[zn + λ̃nB] +

∫ tn+1

tn

eÃ(tn+1−s)Dds. (5.28)
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In view of tn+1 − tn = τ̃n, we denote

E(τ̃n) :=

∫ tn+1

tn

eÃ(tn+1−s)Dds.

Then from (5.28) we have

zn+1 = eÃ(tn+1−tn)[zn + λ̃nB] + E(τ̃n)

= eÃτn [zn + λ̃nB] + E(τ̃n)

= eÃΦ̃(Czn)[zn + Ψ̃(Czn)B] + E(Φ̃(Czn)).

So the states zn are described by the discrete map

zn+1 = P (zn), ∀n > 0, (5.29)

where
P (z) := eÃΦ̃(Cz)[z + Ψ̃(Cz)B] + E(Φ̃(Cz)). (5.30)

As we mentioned above, for a 1-cycle solution we have tn+1 − tn = τ̃0 > 0 with the
jump λ̃n = λ̃0 > 0 for all n > 0. So 1-cycle, starting at z0 := z(0−), corresponds to
a fixed point of P (z). Indeed, z1 = z0 and thus

P (z0) = z0. (5.31)

On the other hand, suppose that (5.31) has a solution z0. Denoting τ̃0, t1, λ̃0

from (5.24) with n = 0 and defining the function z(t) on (t0; t1), the initial

condition z(t+0 ) = z0 + λ̃0B and the affine system (5.25) imply that z(t−1 )
(5.29)

=

P (z0) = z0. Denoting t2 := t1 + τ̃0 and z(t+1 ) = z0 + λ̃0B, one can extend the
function z(t) to (t1; t2) and shows that z(t−2 ) = z0, and so on; so one may formally
construct a τ̃0-periodic 1-cycle. The following theorem gives sufficient conditions for
the existence, uniqueness and also positivity of a 1-cycle solution of system (5.21)
along with its parameters (i.e. τ̃0, λ̃0 and ỹ0).

Theorem 5.6. In view of assumptions (5.9), the equation (5.31) has a unique
solution z0, and this solution corresponds to a unique 1-cycle solution of (5.21); if
µ > −g1V1, then the solution is positive. Furthermore, the point z0 can be calculated
from the system of equations

ỹ0 = CQ(ỹ0), (5.32)

z0 = Q(ỹ0), (5.33)
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where
Q(ỹ0) := (e−ÃΦ̃(ỹ0) − I)−1

[
Ψ̃(ỹ0)B + e−ÃΦ̃(ỹ0)E(Φ̃(ỹ0))

]
.

5.4.3 One-to-one correspondence between 1-cycle solutions

Under the conditions given in Theorem 5.6, system (5.21) has a unique and positive
1-cycle solution. However, we are interested in positive 1-cycle solutions of (5.2).
So the goal of this subsection is to map back the 1-cycle solution of (5.21) to the
corresponding one of (5.2) so that its positivity is preserved. In view of the mapping
M , defined in (5.17), the inverse mapping is defined by

M−1 : (z1, z2, z3) 7−→ (R, L, T ),

R = z1, L = z2 − ρz3, T = z3, ρ ∈ R.
(5.34)

Note that in order to map back the 1-cycle solution of (5.21) to the corresponding
one of (5.2), we set ρ = ρ0 in (5.34). Now we show that, under some conditions,
there exists a one-to-one correspondence between positive 1-cycle solutions of (5.2)
and (5.21), i.e., any positive 1-cycle solution of (5.2) is such a solution of (5.21)
and vice versa. Note that the sign of ρ0, which plays a crucial role in the positivity
of solutions in both mapping M and M−1, depends on the sign of (b3 − b2). So we
have the following lemmas.

Lemma 5.7. If b3 > b2, µ > −g1V1 and assumptions (5.9) hold, then any positive
1-cycle solution of (5.2) corresponds to such a solution of (5.21) and vice versa.

Lemma 5.8. If b2 > b3 and assumptions (5.9) hold, then any positive 1-cycle solution
of (5.2) corresponds to such a solution of (5.21) and vice versa, provided that one of
the following conditions is satisfied:

1. γ 6 0, or

2. γ > 0 and k < (b3−b2)2−γ2

4g2
,

where γ is defined in (5.14).

5.4.4 Proof of the results

Proof of Proposition 5.5. We rewrite ż = Ãz + Bξ̃(t) + D, defined in (5.21), as
follows:

ż1 = −η1z1 + ξ̃(t),

ż2 = g1z1 − η2z2 + µ,

ż3 = g2z2 − η3z3.
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The asymptotic bounds of z1 are [15]

V1 =
Ψ1

eη1Φ2 − 1
6 lim inf

t→∞
z1(t) 6 lim sup

t→∞
z1(t) 6

Ψ2

1− e−η1Φ1
= U1. (5.35)

Given the initial condition z2(0), the solution to ż2 = g1z1 − η2z2 + µ is

z2(t) = e−η2tz2(0) +

∫ t

0

e−η2(t−s)(g1z1(s) + µ)ds. (5.36)

In order to calculate the asymptotic bounds of (5.36), it suffices to find the asymp-
totic bounds of its integral part as limt→∞ e−η2tz2(0) = 0. To this end, in view of
(5.35), one obtains

lim sup
t→∞

z2(t) = lim sup
t→∞

∫ t

0

e−η2(t−s)(g1z1(s) + µ)ds

6 (g1U1 + µ) lim sup
t→∞

∫ t

0

e−η2(t−s)ds

= (g1U1 + µ) lim sup
t→∞

1

η2
(1− e−η2t)

=
g1U1 + µ

η2
= U2.

Analogously, it is proven that lim inft→∞ z2(t) > g1V1+µ
η2

= V2, and z3 has the
asymptotic bounds, given in (5.27). Positivity of the asymptotic bounds (5.27) is
immediate if µ > −g1V1.

Proof of Theorem 5.6. We present the proof in 3 steps. In Step 1 we show that
the equation (5.31) is equivalent to (5.32) and (5.33), followed by Step 2 to prove
that there exists a unique solution to the nonlinear equation (5.32). In Step 3 we
show that the 1-cycle solution is positive if µ > −g1V1.

Step 1. To prove that the equation (5.31) is equivalent to the equations (5.32)
and (5.33), first let us assume that z0 is a solution to (5.31). Denoting ỹ0 = Cz0,
the pair ỹ0, z0 is a solution to (5.32) and (5.33). On the other hand, if ỹ0 and z0

solve (5.32) and (5.33), respectively, then a straightforward calculation shows that
ỹ0 = Cz0. Substituting ỹ0 into (5.33), one obtains P (z0) = z0. So the existence of
a fixed point for (5.31) is equivalent to find a solution to (5.32).

Step 2. The goal of this step is to find a unique solution to (5.32). To this end,
we show that the right-hand side of (5.32) is bounded and non-increasing in the
positive quadrant. We rewrite the function CQ(ỹ0) as follows

CQ(ỹ0) = Ψ̃(ỹ0)F (Φ̃(ỹ0)) +G(Φ̃(ỹ0)), (5.37)
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where

F (ỹ) := C(e−ỹÃ − I)−1B, G(ỹ) := C(e−ỹÃ − I)−1e−ỹÃE(ỹ).

As Ψ̃ is non-increasing and Φ̃ is non-decreasing, both being uniformly positive
and bounded, it suffices to prove that both F (ỹ) and G(ỹ) are non-increasing and
positive as ỹ > 0. A straightforward calculation shows that G(ỹ) =

µg2

η2η3
, which is

either a positive or a negative constant, according to µ.

Following [15, Theorem 1], we prove that F (ỹ) is positive, non-increasing, and
limỹ→∞ F (ỹ) = 0. It can be readily seen that

F ′(ỹ) = g1g2

3∑
j=1

(−ζj)ψỹ(ηj), ψỹ(η) :=
ηeηỹ

(eηỹ − 1)2
, (5.38)

where ηj and ζj are defined in (5.11). As ζj = Π3
i=1
i 6=j

1
(ηj−ηi) , the sign of ζj depends

on the sign of (ηi − ηj) for i 6= j. The equations (5.11) imply that

η1 − η2 = b1 − α− β, η1 − η3 = b1 − α+ β, η2 − η3 = 2β. (5.39)

It is clear from (5.39) that the signs of η1 − η2 and η1 − η3 can change with respect
to the variation of parameter b1. Thus, three cases including (i) b1 > α + β,
(ii) α − β < b1 < α + β, and (iii) b1 < α − β may occur. Note that since k 6= k0,
one concludes that b1 /∈ {α− β, α+ β}. In the following, only the proof of case (i)

is given. The proof of other cases follow the same line of reasoning as case (i), and
are omitted for brevity.

Let us assume that b1 > α+ β. It follows from (5.39) that ζ1, ζ3 > 0 and ζ2 < 0.
Then F ′(ỹ) 6 0 if the inequality

−ζ2ψỹ(η2) 6 ζ1ψỹ(η1) + ζ3ψỹ(η3), (5.40)

holds. Owing to the fact that ζ1 + ζ2 + ζ3 = 0, and denoting θ := − ζ1ζ2 , one

concludes that 0 < θ < 1 and (1− θ) = − ζ3ζ2 . Moreover, it can be readily seen that
η2 = θη1 + (1− θ)η3. So the inequality (5.40) can be rewritten as

ψỹ(θη1 + (1− θ)η3) 6 θψỹ(η1) + (1− θ)ψỹ(η3). (5.41)

It is verified that for any ỹ > 0, the second derivative of ψỹ(η) with respect to η
is positive and hence ψỹ(η) is a convex function with respect to η for any ỹ > 0.
Therefore, the inequality (5.41) holds and hence F ′(ỹ) 6 0.

Now we show that F (ỹ) > 0 for any ỹ > 0. The function F (ỹ) can be written as
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follows:

F (ỹ) = C(e−ỹÃ − I)−1B = C(I − eỹÃ)−1eỹÃB.

Due to the fact that matrix Ã is Hurwitz, one concludes that limỹ→∞ F (ỹ) = 0. As
F is positive and non-increasing for any y > 0 and limy→∞ F (y) = 0, the unique
solution ỹ0 which is computed via the transcendental equations

ỹ0 =
µg2

η2η3
+ λ̃0g1g2

3∑
j=1

ζj
eηj τ̃0 − 1

, λ̃0 = Ψ̃(ỹ0), τ̃0 = Φ̃(ỹ0), (5.42)

solves (5.32), that is CQ(ỹ0) = ỹ0.

After calculating ỹ0, λ̃0 and τ̃0 from the equations (5.42), one can calculate the
fixed point z0 from (5.33). The third element of z0 is ỹ0, which is calculated from
equations (5.42), and its first and second elements are

z0
1 =

λ̃0

eη1τ̃0 − 1
, z0

2 =
µ

η2
+

λ̃0g1

(η1 − η2)

[
1

eη2τ̃0 − 1
− 1

eη1τ̃0 − 1

]
. (5.43)

Step 3. In this step we show that the entire 1-cycle, generated from z0, is
positive if µ > −g1V1. On one hand, every periodic solution of system (5.21)
remains between its asymptotic bounds. On the other hand, in view of µ > −g1V1,
Proposition 5.5 ensures that the asymptotic bounds of system (5.21) are positive.
Therefore, the entire 1-cycle is positive for any t > 0. This completes the proof of
Theorem 5.6.

Proof of Lemma 5.7. From b3 > b2 and assumptions (5.9), one concludes that ρ0 <

0. First assume that z =
[
z1 z2 z3

]>
> 0 is a 1-cycle solution of system (5.21).

As ρ0 < 0, the corresponding solution under mapping M−1 with ρ = ρ0, given by

x =
[
R L T

]> (5.34)
=

[
z1 z2 − ρ0z3 z3

]>
,

is positive.

Now assume that x =
[
R L T

]>
> 0 is a 1-cycle solution of system (5.2).

The corresponding one under mapping M with ρ = ρ0 is given by

z =
[
z1 z2 z3

]> (5.17)
=

[
R L+ ρ0T T

]>
.

Although ρ0 < 0, we claim that z2 = L + ρ0T is positive. On one hand, z(t) is a
periodic solution of (5.21). On the other hand, Proposition 5.5 with µ > −g1V1

implies that zi (i = 1, 2, 3) has positive asymptotic bounds. Therefore, z > 0 as it
must remain between its asymptotic bounds.
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Proof of Lemma 5.8. Assumptions (5.9) and b2 > b3 imply that ρ0 > 0. First let us
assume that x =

[
R L T

]>
> 0 is a 1-cycle solution of (5.2). The corresponding

one under mapping M with ρ = ρ0 is

z =
[
z1 z2 z3

]> (5.17)
=

[
R L+ ρ0T T

]>
,

which is positive.

Now assume that z =
[
z1 z2 z3

]>
> 0 is a 1-cycle solution of system (5.21).

Then the corresponding solution under mapping M−1 with ρ = ρ0 is

x =
[
R L T

]> (5.34)
=

[
z1 z2 − ρ0z3 z3

]>
.

As ρ0 > 0, the positivity of L = z2 − ρ0z3 is not ensured, and hence some periodic
solutions of system (5.21) may be potentially mapped to infeasible solutions of
system (5.2).

We know that the 1-cycle solution z(t) of (5.21) stays between its asymptotic
bounds for any t > 0. As ρ0 > 0, the minimum value of L = z2 − ρ0z3 occurs when
z2 is in its lower asymptotic bound (i.e., V2), and z3 is in its upper asymptotic bound
(i.e., U3). So if V2 − ρ0U3 > 0, then L > 0. Substituting V2 and U3 from (5.27)
result in

V2 − ρ0U3 =
(g1V1 + µ)η3 − (g1U1 + µ)ρ0g2

η2η3

=
g1(η3V1 − ρ0g2U1) + µb3

η2η3
,

which is positive if and only if

µ >
g1

b3
Ξ, Ξ := ρ0g2U1 − η3V1.

It can be readily seen that ρ0 → 0 and η3 → b3 as k → 0. Therefore, g1b3 Ξ→ −g1V1

as k → 0, and hence the parameter µ can be chosen to be negative for a sufficiently
small k > 0.

It is verified that Ξ < 0 if and only if

γ < 2β, (5.44)

where γ is defined in (5.14). If γ 6 0, then the inequality (5.44) automatically
holds and the periodic solution z(t) is positive when µ > g1

b3
Ξ = g1

b3
(γ − 2β) and

k < (b3−b2)2

4g2
. However if γ > 0, one from (5.44) concludes that if k < (b3−b2)2−γ2

4g2
,

then the periodic solution z(t) is positive when µ > g1
b3

Ξ. Therefore, under the
conditions given in Lemma 5.8, the periodic solution z(t) is positive, and hence
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there exists a one-to-one correspondence between 1-cycle solutions of systems (5.2)
and (5.21).

Now we use Theorem 5.6 and Lemmas 5.7 and 5.8 to prove Theorem 5.2.
Proof of Theorem 5.2. Assume that conditions (5.9) hold. Then under mapping
M with ρ = ρ0 defined in (5.12), system (5.2) is transformed to system (5.21), as
described in Section 5.4.1. In view of Theorem 5.6, there exists a unique 1-cycle
solution z(t) to (5.21).

Now we turn to prove that, under the conditions given in Theorem 5.2, z(t) is
mapped to a positive solution x(t) of (5.2). First let us assume that b3 > b2. In
view of µ > −g1V1, any 1-cycle solution of (5.21) is positive, and there exists a
one-to-one correspondence between periodic solutions of systems (5.2) and (5.21).
Therefore, under mapping M−1 with ρ = ρ0, the unique and positive 1-cycle
solution z(t) of (5.21) is mapped to a unique and positive 1-cycle solution x(t)

of (5.2) with the initial point x0 = (z0
1 , z

0
2 − ρ0ỹ0, ỹ0) where z0

1 , z
0
2 are computed

by solving the equation (5.33), and ỹ0 is calculated by solving the transcendental
equations (5.42).

Now assume that b2 > b3. The condition µ > −g1V1 implies that any 1-
cycle solution of system (5.21) is positive. On the other hand, from Lemma 5.8,
both statements 1 and 2 of Theorem 5.2 ensure that there exists a one-to-one
correspondence between periodic solutions of (5.2) and (5.21). Therefore, the
mapping M−1 with ρ = ρ0 maps the unique and positive 1-cycle solution z(t)

of (5.21) to a unique and positive 1-cycle solution x(t) of (5.2) with the initial
point x0 = (z0

1 , z
0
2 − ρ0ỹ0, ỹ0) where z0

1 , z
0
2 are given in (5.43), and ỹ0 is obtained

by solving (5.42). In view of Remark 5.3, the statements of Theorem 5.2 are
immediate.

5.5 Concluding remarks

We have studied a pulse-modulated model of endocrine regulation, which is derived
from the impulsive Goodwin’s oscillator [15]. In this model, the feedback from Te
to GnRH is described by pulse-amplitude-frequency modulation, while the feedback
from Te to LH is described by an affine function.

Introduction of an affine feedback into the impulsive Goodwin’s model allows
us to use the theory developed in [15] for our non-cyclic endocrine system and
investigate 1-cycle solutions of the system. Moreover, it allows us to suggest
an identification procedure similar to [104, 105], because the affine feedback
introduces two uncertain parameters, compared to the model in [15].

Although the dynamics of the extended system, similar to the one in [15],
is linear between consecutive pulses, it is not, however, governed by a Metzler
matrix, allowing thus some solutions to leave the positive orthant. Nevertheless,
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we have proven that, for the extended system, the results of [15] (i.e. the existence,
uniqueness and positivity of 1-cycle solutions) are still valid , under some conditions
on the parameters of the affine feedback.



Part II

Application of Dynamical
Systems to Microbiology





6
Parameter-robustness analysis from
regular-perturbation perspective

We develop a tool based on bifurcation analysis for parameter-robustness analysis
for a class of oscillators, and in particular, examine a biochemical oscillator model
that describes the transition phase between social behaviors of myxobacteria. We
provide a detailed analysis of such an oscillator and show that there exists some
interval in parameter space where the behavior of the system is robust, i.e., the
system behaves similarly for all parameter values. In more mathematical terms, we
show the existence and convergence of trajectories to a limit cycle, and provide
estimates of the parameter regimes under which such a behavior occurs. Further,
we show that the reported convergence result is robust, in the sense that any small
change in the parameters leads to the same qualitative behavior of the solution.

This chapter starts with an introduction, followed by the system description in
Section 6.2. Local analysis and Hopf bifurcation analysis are presented in Sections
6.3 and 6.4, respectively. Global analysis, and the robustness of bifurcation with
respect to parameter changes are carried out in Sections 6.5 and 6.6, respectively.
This chapter ends with concluding remarks in Section 6.7.

6.1 Introduction

OSCILLATORS as theoretical models capture various oscillating behaviors in dy-
namical processes that have been studied in engineering [152], biology [168],

neuroscience [65], medicine [52], biochemistry [45, 46], and other scientific fields.
In this chapter, we investigate a biochemical oscillator that describes the behavior of
myxobacteria during their development of a multicellular structure [73]. Myxobac-
teria are a particular group of soil bacteria that have two dogmatically different



6

86 6. Parameter-robustness analysis from regular-perturbation perspective

types of social behavior: when food is abundant they live fairly isolated forming
swarms, but when food is scarce, they aggregate into a multicellular organism.
In the transition between the two types of behaviors, spatial wave patterns are
produced, which is generally believed to be regulated by a certain “clock” that
controls the direction of myxobacteria’s motion. This clock has been suggested
in [73] in the form of a biochemical oscillator model.

This oscillator is described by a three-dimensional ordinary differential equation,
which will be further described in Section 6.2. From observations based on numeri-
cal simulations, it has been argued that the model is robust [73]. In particular, it has
been argued that the overall behavior of the oscillator remains the same upon small
variation of parameters. Correspondingly, the main contribution of this chapter
is to formalize the above claims by means of rigorous mathematical bifurcation
analysis. More precisely, we prove that there exists an open set of parameter values,
under which the model is robust, and more importantly, we provide an estimate of
such an interval. Furthermore, we show that for almost all initial conditions, and a
certain range of parameter values, the trajectories converge to a finite number of
periodic solutions, at least one of which is asymptotically stable. With these results
we rule out the existence of chaotic and homoclinic solutions for the identified
parameter interval. We emphasize that the methods and techniques used in this
chapter are not confined to the analysis of the particular myxobacteria model, but
rather applicable to a wide range of systems having oscillatory behavior.

6.2 System description

We study a mathematical model that describes several important properties of
myxobacteria during development [73]. This model, known as the Frz system, is
based on a negative feedback loop. The Frz system includes a methyltransferase
(FrzF), the cytoplasmic methyl-accepting protein (FrzCD), and a protein kinase
(FrzE). When two cells of myxobacteria collide with each by direct end-to-end
contacts, a C-signal is produced. After the C-signal transmission, a protein called
FruA is phosphorylated. The signal from phosphorylated FruA (FruA-P) activates
the Frz proteins as follows [73]:

• the methyltransferase FrzF (FrzF∗) is activated by the protein FruA-P;

• in response to FrzF∗, the protein FrzCD is methylated (FrzCD-M);

• the phosphorylation of FrzE (FrzE-P) is activated by the methylated form of
FrzCD;

• FrzF∗ is inhibited by the phosphorylated form of FrzE.
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C-signal
P

FruA

FrzF∗

FrzF

FrzCD

FrzCD

Me

FrzE

FrzE P

Figure 6.1: Essential components of the Frz system

A schematic representation of the Frz system is shown in Figure 6.1. For a more
detailed explanation of the model and its biological background, see [73]. Denote
f, c and e as the fraction of activated FrzF, methylated FrzCD, and phosphorylated
FrzE, respectively. These fractions are given by [73]

f :=
[FrzF∗]

[FrzF∗] + [FrzF]
, c :=

[FrzCD-M]
[FrzCD] + [FrzCD-M]

, e :=
[FrzE-P]

[FrzE] + [FrzE-P]
.

The interaction between the Frz proteins is modeled by Michaelis-Menten kinetics,
and hence leads to the dynamical system

df

dt
= ka(1− f)− kdfe,

dc

dt
= km(1− c)f − kdmc,

de

dt
= kp(1− e)c− kdpe,

(6.1)

where

ka :=
kmax

a

Ka + (1− f)
, kd :=

kmax
d

Kd + f
,

km :=
kmax

m

Km + (1− c)
, kdm :=

kmax
dm

Kdm + c
,

kp :=
kmax

p

Kp + (1− e)
, kdp :=

kmax
dp

Kdp + e
.

(6.2)

The presence of variable e on the right-hand side in the first equation of (6.1)
indicates the negative feedback exerted on the accumulation of the active form
of FrzF by FrzE-P [73]. In (6.2), k∗ and K∗ denote, respectively, the maximum
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effective rates and the Michaelis-Menten constants for each of the components
involved in the Frz system.

In [73], the choices of the parameter values are as follows. First, the C-signal,
denoted by kmax

a , is assumed to be constant. Next, the following parameter values
are given

kmax
d = 1 min−1, kmax

a = 0.08 min−1,

kmax
m = kmax

p = 4 min−1, kmax
dm = kmax

dp = 2 min−1,

and

Ka = 10−2, Kd = Km = Kdm = Kp = Kdp = 5× 10−3. (6.3)

It is observed numerically in [73] that under these parameter values, system
(6.1) exhibits oscillatory behavior. Note that the reaction possesses the property
of “zero-order ultrasensitivity”[73], meaning that the Michaelis-Menten constants
(6.3) have to be small [48]. Since Ka,Kd,Km,Kdm,Kp and Kdp are dimensionless
Michaelis-Menten constants, we propose to set

ε := Ka = 2Kd = 2Km = 2Kdm = 2Kp = 2Kdp.

We remark, however, that although kmax
a is small as well, its unit is “min−1” which

cannot be unified with the Michaelis-Menten constants.
Substituting (6.2) in (6.1), and taking care of the previous considerations, we

obtain the following dynamical system

ḟ =
0.08(1− f)

ε+ (1− f)
− 2fe

ε+ 2f
,

ċ =
8(1− c)f
ε+ 2(1− c)

− 4c

ε+ 2c
,

ė =
8(1− e)c
ε+ 2(1− e)

− 4e

ε+ 2e
.

(6.4)

For the sake of brevity, we denote system (6.4) by

ẋ = G(x, ε), (6.5)

where

x :=
[
f, c, e

]>
, G(x, ε) :=

[
G1(x, ε), G2(x, ε), G3(x, ε)

]>
,

and G1(x, ε), G2(x, ε), and G3(x, ε) are the right-hand sides of ḟ , ċ, and ė, respec-
tively.
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Figure 6.2: The unit cube C, the wallsWj , and the lines `j , j = 1, 2, 3.

Remark 6.1. From a biochemical point of view, the variables f, c, e of system (6.4)
stand for fractions of activated protein concentrations. Therefore, their values are
restricted to [0, 1]. Thus, from now on, we confine our analysis to the unit cube
(see Figure 6.2), defined by

C :=
{
x ∈ R3 |x ∈ [0, 1]× [0, 1]× [0, 1]

}
.

Our numerical simulations (see Figure 6.3) show that system (6.4) has the
following characteristics:

• the trajectories are contained in the unit cube C provided that they start
within,

• for the particular value ε̄ = 0.01 used in [73], and in general, for a sufficiently
small perturbation of ε̄, the solutions are periodic,

• the solutions converge to a limit cycle.

Due to the fact that these three properties are highly interesting, because of their
biological implications for understanding the developmental stage of maxobacteria,
it is of great importance to provide rigorous mathematical analysis in addition to
the simulation results reported so far. More precisely, since the Michaelis-Menten
constants have not been experimentally identified [73], it is crucial to be able to
predict the range of parameters under which the model produces the anticipated
oscillatory behavior for which it has been designed. Towards this goal, we start our
analysis of (6.4) by investigating its local properties in the next section.
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e

c

f

Figure 6.3: Trajectories of (6.4) for ε = 0.01 with three different initial conditions.

6.3 Local analysis

Some of the arguments that we use in this chapter are of a “regular perturbation”
nature. Therefore, before providing any details, we show that the local properties
around a unique equilibrium point of the vector field ẋ = G(x, ε) can be regarded as
a regular perturbation problem of ẋ = G(x, 0) for “sufficiently small” ε > 0. More
specifically, we show that ẋ = G(x, 0) is structurally stable near its equilibrium
point.

Hereafter, the interior and the boundary of a set S ⊂ Rn are respectively
denoted by S̊ and ∂S. We denote the boundary of the cube C by ∂C :=

⋃6
i=1Wi

where (see Figure 6.2)

W1 := {x ∈ C | f = 1} , W2 := {x ∈ C | c = 1} ,
W3 := {x ∈ C | e = 1} , W4 := {x ∈ C | f = 0} ,
W5 := {x ∈ C | c = 0} , W6 := {x ∈ C | e = 0} .

(6.6)

The following lemma shows that for any ε > 0, the equation G(x, ε) = 0 does
not have any solution on the boundary of C.

Lemma 6.2. For any ε > 0, the boundary of the cube C does not contain any equilibria
of system (6.4).

Proof. Let us show only one case on the wallW1 = {x ∈ C | f = 1}, which exem-
plifies the situation for the rest of the walls. Restricted toW1, system ẋ = G(x, ε)
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reads as

ḟ = − 2e

ε+ 2
(6.7a)

ċ =
8(1− c)

ε+ 2(1− c)
− 4c

ε+ 2c
(6.7b)

ė =
8(1− e)c
ε+ 2(1− e)

− 4e

ε+ 2e
. (6.7c)

If (1, c∗, e∗) is an equilibrium point of (6.7) then, from (6.7a) we have that neces-
sarily e∗ = 0. In turn, the latter implies in (6.7c) that c∗ = 0. However, (6.7b) does
not vanish at (1, 0, 0). Therefore, (1, 0, 0) is not an equilibrium. The claim is proven
by following similar arguments on the rest of the walls defined in (6.6).

It follows from Lemma 6.2 that if ẋ = G(x, ε) has an equilibrium point for ε > 0,
then it is necessarily located in the interior of C. Another property of the cube C is
that it is forward invariant under the flow generated by (6.4). Before proving this
statement, we give the definition of a forward invariant set.

Definition 6.3. Let F be a smooth vector field on Rn, and denote by φ(t, z) :

R × Rn → Rn the flow generated by F . We say that a set S ⊂ Rn is forward
invariant if s ∈ S implies φ(t, s) ∈ S for all t > t0 ∈ R.

Lemma 6.4. For ε > 0, the cube C is forward invariant under the flow generated
by (6.4). Moreover, every trajectory with the initial condition in the boundary of C
evolves towards the interior of C in forward time.

Proof. To prove that the cube C is forward invariant, we need to check the sign of
the vector field G(x, ε) defined by (6.4) restricted to the wallsWi given in (6.6). It
can be readily seen that

ḟ |W1
= − 2e

ε+ 2
6 0, ċ|W2

= − 4

ε+ 2
< 0, ė|W3

= − 4

ε+ 2
< 0,

ḟ |W4 =
0.08

ε+ 1
> 0, ċ|W5 =

8f

ε+ 2
> 0, ė|W6 =

8c

ε+ 2
> 0.

(6.8)

From (6.8) it follows that trajectories of (6.4) cannot leave the cube C, which
implies that C is forward invariant under the flow generated by G(x, ε). Next, to
show our second claim, note that there are three lines (see Figure 6.2) where the
derivatives in (6.8) may vanish, namely,

`1 := {x ∈ C |x = (f, 0, 0)} ,
`2 := {x ∈ C |x = (1, c, 0)} ,
`3 := {x ∈ C |x = (0, 0, e)} .
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Let φ(t, x) : [t0,∞) × C → C denote the forward-flow generated by (6.4).
So far, we have shown that for all initial conditions φ(t0, x0) = x0 ∈ Ω, where
Ω := ∂C\(`1 ∪ `2 ∪ `3), the trajectory φ(t, x0) ∈ C̊ for all t > t0. Then, we need to
check the behavior of the trajectories with those initial conditions on the lines `1,
`2, and `3. So we proceed as follows. The vector field restricted to a line, say `1, is
given by

ḟ =
0.08(1− f)

ε+ 1− f

ċ =
8f

ε+ 2

ė = 0.

(6.9)

From (6.9) we observe that ė = 0, and ċ > 0 for f ∈ (0, 1). These two facts imply
that (6.9) is transversal to the line `1|f∈(0,1). Thus, we conclude that a trajectory
with an initial condition in `1|f∈(0,1) leaves such a line, and hence reaches Ω. Next,
consider a trajectory with an initial condition in `1|f=0. In view of (6.9) one has
that ḟ > 0 and hence the trajectory is tangent to `1. This implies that the trajectory
reaches the line `1|f∈(0,1), which we have discussed above. Similar arguments
follow for the lines `2 and `3. This completes the proof.

We now turn to the analysis of the equilibria of (6.4) inside the cube C, i.e.,
when x ∈ C̊. For the case ε = 0, the following lemma is given, whose proof follows
from straightforward and standard computations.

Lemma 6.5. Consider the vector field ẋ = G(x, ε) defined by (6.4) with ε = 0. Then
the following properties hold:

1. Let x ∈ C̊. Then, the linear algebraic equation G(x, 0) = 0 has the unique
solution x0 = (0.5, 0.5, 0.08).

2. The equilibrium point x0 is hyperbolic, that is, the Jacobian DxG(x, 0)|x=x0 has
eigenvalues with nonzero real parts. Moreover, such eigenvalues satisfy λ0

1 < 0

and λ0
2,3 = α0 ± iβ0, where α0, β0 > 0.

Now, assume that x(ε) =
(
fε, cε, eε

)
is an equilibrium point of (6.4) such that

x(0) = x0, where x0 is the equilibrium point of ẋ = G(x, 0) when x ∈ C̊. Linearizing
(6.4) at x(ε) results in ẋ = DxG(x(ε), ε)x where DxG(x(ε), ε), which denotes the
Jacobian matrix calculated at x(ε), is given by

DxG(x(ε), ε) :=

ηε1 0 θε1
θε2 ηε2 0

0 θε3 ηε3

 , (6.10)
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where

ηε1 :=
∂G1

∂f

∣∣∣
x=x(ε)

= − 2εeε

(ε+ 2fε)2
− 0.08ε

(ε+ 1− fε)2
,

ηε2 :=
∂G2

∂c

∣∣∣
x=x(ε)

= − 4ε

(ε+ 2cε)2
− 8εfε

(ε+ 2(1− cε))2
,

ηε3 :=
∂G3

∂e

∣∣∣
x=x(ε)

= − 4ε

(ε+ 2eε)2
− 8εcε

(ε+ 2(1− eε))2
,

(6.11)

θε1 :=
∂G1

∂e

∣∣∣
x=x(ε)

=
−2fε

ε+ 2fε
,

θε2 :=
∂G2

∂f

∣∣∣
x=x(ε)

=
8(1− cε)

ε+ 2(1− cε)
,

θε3 :=
∂G3

∂c

∣∣∣
x=x(ε)

=
8(1− eε)

ε+ 2(1− eε)
.

(6.12)

Remark 6.6. In order to compute the equilibrium point x(ε) of (6.4) when ε > 0,
one needs to solve simultaneously the equations Gi(x, ε) = 0, i = 1, 2, 3, which
results in

0.04(1− f)(ε+ 2f)− (ε+ 1− f)fe = 0, (6.13a)

2(1− c)(ε+ 2c)f − (ε+ 2(1− c))c = 0, (6.13b)

2(1− e)(ε+ 2e)c− (ε+ 2(1− e))e = 0, (6.13c)

each of which is a polynomial of degree 3. If, for example, we solve e from (6.13a)
and substitute it in (6.13c), the obtained equation can then be solved for c. This
solution in turn is substituted in (6.13b), leading to a 9th-degree polynomial of
f with ε-dependent coefficients. Since it is not easy (or might be impossible) to
analytically find the roots of this 9th-degree polynomial when ε> 0, we use regular
perturbation arguments to study (6.4).

From Lemma 6.5 we know that the equilibrium point of ẋ = G(x, 0), when
x ∈ C̊, is unique and hyperbolic. The following lemma shows that all the local
properties of x0 persist under sufficiently small perturbations of ε. That is ẋ =

G(x, 0) is structurally stable around x0, see [95, Theorem 2.2].

Lemma 6.7. The vector field ẋ = G(x, ε) defined by (6.4) has the following proper-
ties:

1. The Jacobian DxG(x, ε) is a smooth function of ε for all x ∈ C̊.

2. For sufficiently small ε > 0, the equilibrium x0 perturbs to the unique equilib-
rium x(ε) = x0 +O(ε), which has the same local stability properties as x0.
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Proof. The nonzero entries of the Jacobian DxG(x, ε), defined in (6.10), can be
rewritten as an additive combination of terms of the form

Q(x, ε) :=
A(x, ε)

B(x, ε) + C(x)
, (6.14)

where A(x, ε), B(x, ε) and C(x) are polynomials satisfying: i) B(x, ε) + C(x) > 0

for all x ∈ C and ε > 0, ii) B(x, 0) = 0, iii) C(x) > 0 for all x ∈ C̊, and iv) C(x) = 0

if x ∈ ∂C, that is, C(x) vanishes only in the boundary of C. Thus, to show the first
property holds, it suffices to show that (6.14) is a smooth function of ε in C̊. It is
clear that the only point where the k-th derivatives of Q(x, ε) with respect to ε, i.e.
Dk
εQ(x, ε), k = 0, 1, . . ., are undefined is whenever B(x, ε) + C(x) = 0. From the

above properties B(x, ε) + C(x) may vanish only when ε = 0. Thus, to ensure that
Dk
εQ(x, ε) is well-defined for ε > 0, we just need x ∈ C̊. Next, the first part of the

second property follows from Lemma 6.5, and the implicit function theorem. For
the stability properties of x(ε), it follows from the fact that the eigenvalues of a
matrix, depending smoothly on a parameter, vary continuously with respect to such
a parameter [95].

The characteristic polynomial corresponding to the Jacobian matrixDxG(x(ε), ε),
defined in (6.10), is given by

P (λ, ε) = λ3 + kε1λ
2 + kε2λ+ kε3,

where

kε1 := −(ηε1 + ηε2 + ηε3),

kε2 := ηε1η
ε
2 + ηε1η

ε
3 + ηε2η

ε
3,

kε3 := −(ηε1η
ε
2η
ε
3 + θε1θ

ε
2θ
ε
3).

(6.15)

Remark 6.8. For any ε > 0, it follows from Lemmas 6.4 and 6.7, and equations
(6.11) and (6.12) that ηεi < 0 (i = 1, 2, 3), θε1 < 0, and θε2, θ

ε
3 > 0. Hence, kεi > 0.

The equilibrium x(ε) is stable when all roots of P (λ, ε) have negative real parts,
and unstable if at least one of the roots has a positive real part. Applying the
Routh-Hurwitz criterion and denoting

Γ(ε) := kε1k
ε
2 − kε3, (6.16)

the following proposition is given for the stability of x(ε).

Proposition 6.9. For any ε > 0, the equilibrium point x(ε) is stable if Γ(ε) > 0, and
is unstable if Γ(ε) < 0.



6

6.4. Hopf bifurcation analysis 95

Proof. According to the Routh-Hurwitz criterion, the equilibrium point x(ε) is stable
if kε1, k

ε
3,Γ(ε) > 0, and it is unstable if at least one of these conditions is violated.

We know from Remark 6.8 that kε1, k
ε
3 > 0. So, the only quantity that can change

the stability of the equilibrium point is Γ(ε). Thus, based on the Routh-Hurwitz
criterion, the equilibrium point is stable if Γ(ε) is positive, and it is unstable if it is
negative.

Remark 6.10. From Remark 6.8 we know that the coefficients of the characteristic
polynomial P (λ, ε) are positive (kεi > 0) when ε > 0. Therefore, due to the fact
that det(DxG(x(ε), ε)) < 0, one of its roots is negative and the other two are either
real of the same sign or complex-conjugated. However, we know from Lemma
6.7 that the eigenvalues of DxG(x0, 0) satisfy λ0

1 < 0 and λ0
2,3 = α0 ± iβ0, where

α0, β0 > 0. Moreover, from the structural stability of ẋ = G(x, 0) we know that
for sufficiently small ε > 0, the eigenvalues of DxG(x(ε), ε) satisfy λ1(ε) < 0 and
λ2,3(ε) = α(ε) ± iβ(ε) with α(ε), β(ε) > 0, where λi(0) = λ0

i , α(0) = α0, and
β(0) = β0.

What we have studied so far are the local stability properties of the equilibrium
point of (6.4) and the forward invariance of C. However, since we are investigating
a biochemical oscillator model, one of the most important questions is about
the existence of periodic solutions. In particular, it is necessary to describe the
relationship between the parameter ε and the existence of and the convergence
to such solutions. Furthermore, from Remark 6.10 we know that the equilibrium
point x(ε) has a pair of associated complex-conjugated eigenvalues. This motivates
the further analysis via Hopf bifurcation theory, presented in the following section.

6.4 Hopf bifurcation analysis

In this section we give sufficient conditions for the existence of periodic solutions
of (6.4). In principle, the existence of such solutions depends on the parameter
ε. We know from Remark 6.10 that λ1(ε) < 0 and λ2,3(ε) = α(ε) ± iβ(ε), with
α(ε), β(ε) > 0, for sufficiently small ε > 0. Therefore, upon variation of ε, the
eigenvalues λ2,3(ε) may cross transversally the imaginary axis. This would allow us
to apply the Hopf bifurcation theorem to prove the existence of periodic solutions.
The first step is then to further study the behavior of α(ε).

Lemma 6.11. For any ε > 0, the real part of λ2,3(ε) satisfies the equation

Γ(ε) = −2α(ε)[(kε1 + 2α(ε))2 + kε2], (6.17)

where Γ(ε) is defined in (6.16).
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Proof. Since P (λ, ε) is a cubic function with respect to λ, we may assume without
loss of generality that its zeros are λ1(ε) ∈ R and λ2,3(ε) = α(ε)± iβ(ε). Based on
the Vieta’s formulas, the following relations among such zeros hold:

λε1 + λε2 + λε3 = −kε1,
λε1λ

ε
2 + λε1λ

ε
3 + λε2λ

ε
3 = kε2,

λε1λ
ε
2λ
ε
3 = −kε3,

(6.18)

where kεi are defined in (6.15). Then

Γ(ε) = kε1k
ε
2 − kε3

= −(λε1 + λε2 + λε3)kε2 + λε1λ
ε
2λ
ε
3

= −λε1(kε2 − λε2λε3)− (λε2 + λε3)kε2

= −λε1[2α(ε)λε1]− 2α(ε)kε2

= −2α(ε)[(λε1)2 + kε2]

= −2α(ε)[(kε1 + 2α(ε))2 + kε2].

From Lemma 6.11 and the fact that kε2 > 0 (Remark 6.8) we have sign(Γ(ε)) =

− sign(α(ε)) for any ε > 0. So, one concludes that if there exists ε0 such that
Γ(ε0) = 0, then the real part of the eigenvalues is zero at ε0, i.e. α(ε0) = 0.
Therefore ε0 is the bifurcation point at which the equilibrium point switches from
being instable to stable. This change of stability is an important factor towards
showing the existence of periodic solutions by means of the Hopf bifurcation
theorem [118].

Theorem 6.12 (Hopf bifurcation theorem). Assume that system ż = F (z, µ), with
(z, µ) ∈ Rn × R, has the equilibrium point (z(µ0), µ0) where the vector field F is
sufficiently smooth on a sufficiently large open set containing (z(µ0), µ0). Assume that
the following properties hold:

1. The Jacobian DzF
∣∣
(z(µ0),µ0)

has a simple pair of pure imaginary eigenvalues

λ(µ0) and λ(µ0), and the real parts of the other eigenvalues are not zero,

2.
d

dµ
(Reλ(µ))

∣∣
µ=µ0 6= 0.

Then the dynamics ż = F (z, µ) undergo a Hopf bifurcation at (z(µ0), µ0), that is, in
a sufficiently small neighborhood of (z(µ0), µ0), a family of periodic solutions exists.

The following lemma demonstrates the existence of periodic solutions for (6.4)
with ε > 0.
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Figure 6.4: The curve Γ with respect to ε, and the zoom-in of Γ near the bifurcation
value ε = ε0.

Lemma 6.13. For system (6.4) parametrized by ε > 0, there exists ε0 > 0 such that
the dynamics ẋ = G(x, ε) undergo a Hopf bifurcation at (x(ε0), ε0).

Proof. Recall from Remark 6.10 that for sufficiently small ε > 0, we have λ1(ε) < 0,
and the other two eigenvalues are in the form of λ2,3(ε) = α(ε) + iβ(ε). On one
hand, it follows from Lemma 6.7 that Γ(ε) is a smooth function of ε. On the
other hand, Γ(0) < 0 and Γ(1) > 0 (which is computed numerically from Remark
6.6). Therefore, there exists 0 < ε0 < 1 such that Γ(ε0) = 0, which means that
the eigenvalues λ2,3(ε) cross the imaginary axis. In Figure 6.4 we observe that
Γ′(ε0) > 0. Due to the latter fact, there exists a neighborhood N = (ε0 − δ, ε0 + δ),
with δ > 0, such that Γ′(ε) > 0 for all ε ∈ N . In view of Lemma 6.11, one concludes
that α(ε0) = 0. Therefore, DxG(x(ε0), ε0) has a pair of pure imaginary eigenvalues
±iβ(ε0), and the other eigenvalue is negative (i.e. λ1(ε0) < 0, Remark 6.10),
satisfying assumption 1 of Theorem 6.12.

In addition, the differentiation of (6.17) with respect to ε gives

Γ′(ε) = −2

(
α′(ε)

[
(kε1 + 2α(ε))2 + kε2

]
+ α(ε)

d

dε

[
(kε1 + 2α(ε))2 + kε2

])
. (6.19)

Now, due to the fact that α(ε0) = 0, evaluating (6.19) at ε = ε0 results in

Γ′(ε0) = −2α′(ε0)
[
(kε

0

1 )2 + kε
0

2

]
, (6.20)
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and hence

α′(ε0) =
Γ′(ε0)

−2
[
(kε

0

1 )2 + kε
0

2

] . (6.21)

Note that from Remark 6.8 we know that kε
0

1 , k
ε0

2 > 0, and hence (6.21) is well-
defined. Recalling Γ′(ε0) > 0, one concludes that α′(ε0) < 0, and hence the second
assumption of Theorem 6.12 is satisfied. Therefore, the dynamics ẋ = G(x, ε)

undergo a Hopf bifurcation at (x(ε0), ε0).

From Lemma 6.13 we know that system (6.4) undergoes a Hopf bifurcation at
(x(ε0), ε0). The numerical continuation software MATCONT [21] is used to track
such a bifurcation. The value of the bifurcation parameter, computed by MATCONT,
is ε0 ' 0.05517665. The equilibrium point corresponding to ε0 is

x(ε0) = (0.48668602, 0.37822906, 0.07633009).

The bifurcation diagrams of f , c, and e with respect to ε, and their zoom-ins
around the Hopf bifurcation point “H” are presented in Figures 6.5(a), 6.5(b)
and 6.5(c), respectively. In Figure 6.5, the black curves depict the position of the
equilibrium point x(ε); the dashed black curve corresponds to the case when x(ε)

is unstable, while the solid one represents the case when x(ε) is stable. On the
other hand, the red and blue curves correspond to periodic solutions; the solid
blue curve indicates that the periodic solution is stable, while the dashed red one
shows that the periodic solution is unstable. For each fixed ε, these curves provide
the maximum and the minimum values of each variable along the corresponding
periodic solution. Moreover, in Figures 6.5(a), 6.5(b) and 6.5(c) in the zoom-ins
around the Hopf bifurcation point “H”, we observe that for a range of ε started
from ε0, both stable and unstable periodic solutions exist simultaneously.

In this section we have shown the existence of periodic solutions in (6.4) for
ε ∈ (0, ε0). However, the presented results do not consider the stability of the
periodic solutions. Furthermore, the number of periodic solutions is still unknown.
These issues are treated in next section.

6.5 Global behavior of solutions

The local analysis performed in the previous section does not fully capture the
behavior of the solutions of (6.4). For example, we cannot conclude directly from
the previous results whether the trajectories are oscillatory or they evolve in some
unexpected way, e.g. chaotically. In this section, we show that when the equilibrium
point x(ε) of (6.4) is unstable, almost all trajectories converge to periodic solutions,
ruling out chaotic behavior and the existence of homoclinic solutions. To this end,
we study the structure of the ω-limit set of (6.4).
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Figure 6.5: In the left-side of Figures (a), (b), and (c), the bifurcation diagrams of
f, c and e with respect to ε is given, whose zoom-ins around the Hopf bifurcation
point, denoted by “H”, are given on the right-side. The black curve depicts the
position of the unique equilibrium point x(ε); the dashed (resp. solid) section of
this curve represents the interval within which x(ε) is unstable (resp. stable). The
solid blue and the dashed red curves describe the amplitude of oscillation for each
of the variables. The solid blue curve corresponds to a stable periodic solution,
while the dashed red curve indicates an unstable one.
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In general, an ω-limit set can be empty. However, if a solution is bounded, then
its ω-limit set is nonempty, closed and connected [167]. In the context of system
(6.4), the ω-limit set of a trajectory with an initial condition in C is non-empty due
to the forward invariance of C (see Lemma 6.4).

For planar autonomous dynamical systems, the structure of the ω-limit set of
solutions is given by the celebrated Poincaré-Bendixson theorem. This theorem
states that the ω-limit set of a bounded solution is either (i) an equilibrium point,
(ii) a closed trajectory, or (iii) the union of equilibria and the trajectories connecting
them [60]. The latter are referred to as heteroclinic solutions when they connect
distinct points, and homoclinic solutions when they connect a point to itself. Al-
though the Poincaré-Bendixson theorem is not applicable to systems of dimensions
higher than 2, it holds for monotone cyclic feedback systems [103]. For the reader’s
convenience, we formulate the results of [103] on the positively invariant domain
Rn+ := [0,∞)n with bounded solutions as follows.

Consider a system of the form

ẏi = hi(yi−1, yi), i = 1, 2, ..., n, (6.22)

where y0 is interpreted as yn, and the nonlinearity h = (h1, h2, ..., hn) is assumed to
be C1-smooth on Rn+. Systems of the form (6.22) are called cyclic. The fundamental
assumption on (6.22) is that the variable yi−1 influences hi monotonically. So, it is
assumed that for some δj ∈ {−1, 1}, the conditions

δi
∂hi(yi−1, yi)

∂yi−1
> 0, i = 1, 2, ..., n, (6.23)

hold, meaning that the functions hi are strictly monotone in yi−1. Moreover, δi
describes whether the role of yi−1 is to reduce (δi = −1) the growth of yi, or to
augment (δi = 1) it. The product

∆ :=

n∏
i=1

δi (6.24)

describes whether the entire system has positive feedback (∆ = 1) or negative
feedback (∆ = −1). A cyclic system (6.22) that satisfies conditions (6.23) is called
a monotone cyclic feedback system, and it is shown in [103] that they have the
Poincaré-Bendixson properties. We recall this important result in Theorem 6.16.
Before that, we give the following definitions.

Definition 6.14. The distance between two sets S1, S2 ⊂ Rn is denoted and
defined by

d(S1, S2) := inf{‖s1 − s2‖ : s1 ∈ S1, s2 ∈ S2}, (6.25)
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where ‖ · ‖ is an arbitrary norm in Rn.

Definition 6.15. [127] Let F be a smooth vector field on Rn and denote by
φ(t, z) : R× Rn → Rn the flow generated by F .

• A setK ⊂ Rn is said to attract a setM ⊂ Rn, ifK 6= ∅ and d(K,φ(t,M))→ 0

as t→∞. We also say that M is attracted by K.

• A set K is called an attractor of M , if K is invariant and attracts M . In this
situation, we also say that M has the attractor K. The set K is called a
compact attractor of M if, in addition, K is compact.

Next, for brevity, we recall the relevant results of Theorems 4.1 and 4.3 of [103]
as follows.

Theorem 6.16. Let the cyclic system (6.22) satisfy conditions (6.23) in Rn+. Then
the following statements hold.

1. Assume that Rn+ is forward invariant for (6.22), and that it contains a unique
equilibrium point y∗. Then the structure of the ω-limit set of any bounded
solution of the system is either

(a) the equilibrium point y∗,

(b) a nonconstant periodic solution, or

(c) the equilibrium point y∗ together with a collection of solutions homoclinic
to y∗. This case does not occur if

∆ det(−Dyh(y∗)) < 0, (6.26)

where Dyh(y∗) denotes the Jacobian matrix of system (6.22) at y∗.

2. Suppose that (6.22) satisfies ∆ = −1, and possesses a compact attractor
K ⊂ R̊n+. Assume that K contains a unique equilibrium point y∗, and that
Dyh(y∗) satisfies (6.26) and has at least two eigenvalues with positive real
parts. Then (6.22) has at least one, but no more than a finite number of non-
trivial periodic solutions. Moreover, at least one of such solutions is orbitally
asymptotically stable.

Remark 6.17. [103] In Theorem 6.16, Rn+ can be replaced by any other forward
invariant closed convex domain Ω containing a single equilibrium point.

The following theorem describes the global behavior of solutions of system
(6.4).
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Theorem 6.18. For sufficiently small ε > 0, and for almost all initial conditions
x0 ∈ C, the trajectories φ(t, x0) of (6.4) converge to a finite number of non constant
periodic solutions. Moreover, at least one of such solutions is orbitally asymptotically
stable.

Proof. First of all, to show that (6.4) is cyclic, note that it can be written as

ḟ = Gε1(e, f),

ċ = Gε2(f, c),

ė = Gε3(c, e),

(6.27)

where Gε1(e, f), Gε2(f, c), and Gε3(c, e) denote the right-hand sides of ḟ , ċ, and
ė, respectively, presented in (6.4). Thus, system (6.4) is cyclic for any ε. Next,
recalling Remark 6.8, we have that ∂G

ε
1

∂e < 0, ∂G
ε
2

∂f > 0, and ∂Gε
3

∂c > 0, which implies
that, according to (6.23) and (6.24), δ1 = −1, δ2 = δ3 = 1 and hence ∆ = −1.
This means that (6.4) is a monotone cyclic negative feedback system. In view
of det (DxG(x(ε), ε)) < 0 (Remark 6.10), we conclude that (6.4) satisfies (6.26).
Therefore, from statement 1 of Theorem 6.16, the ω-limit set of any trajectory
of (6.4) with the initial condition x0 ∈ C is either an equilibrium point or a non-
constant periodic solutions. Then, recall from our local analysis results in Lemma
6.7 that for sufficiently small ε > 0, the equilibrium point x(ε) is associated with
a 1-dimensional stable and a 2-dimensional unstable manifolds. This means that
the only trajectories that converge to the equilibrium point x(ε) are those with the
initial conditions along the stable manifold, while all the other trajectories, due
to the above arguments, converge to some non-constant periodic solution. Note
that the set of initial conditions contained in the stable manifold is negligible1 with
respect to all other initial conditions in C.

Next, due to the fact that the cube C is forward invariant for any ε > 0 (Lemma
6.4), system (6.4) possesses a compact attractor K ⊂ C̊ [103]. Moreover, for
sufficiently small ε > 0 and from Lemmas 6.5 and 6.7, we know that the equilibrium
point x(ε) is unique, the Jacobian matrix DxG(x(ε), ε) has two eigenvalues with
positive real parts, and ∆ det (−DxG(x(ε), ε)) < 0. Therefore, system (6.4) satisfies
all the assumptions of the statement 2 of Theorem 6.16, and hence (6.4) has a
finite number of non-constant periodic solutions, at least one of which is orbitally
asymptotically stable.

Remark 6.19. From the bifurcation analysis performed in Section 6.4, it is clear
that by “for sufficiently small ε > 0” in Theorem 6.18 we mean ε ∈ (0, ε0).

1A subset of Euclidean space is called negligible if its Lebesgue measure is zero.



6

6.6. On the robustness of bifurcation with respect to parameter changes 103

6.6 On the robustness of bifurcation with respect to
parameter changes

This section is devoted to investigate how robust our bifurcation analysis and
qualitative results are under small but not necessarily symmetric changes in the
parameters of system (6.4). Note that our bifurcation analysis is based only on
the scalar parameter ε, because, as discussed in Section 6.2, we have unified all
the Michaelis-Menten constants by ε, i.e., Ka = 2Kd = 2Km = 2Kdm = 2Kp =

2Kdp = ε. Now, we are interested in understanding how the conclusion of the
bifurcation analysis may change if there is a small “asymmetry" in parameter values.
In other words, we want to know how system (6.4) behaves if the perturbation of
the parameters is no longer restricted to the scalar parameter ε, but depends on a
6-dimensional parameter vector according to the Michaelis-Menten constants.

Claim 6.20. The bifurcation analysis result for G(x, ε) = 0, given by (6.5), is robust
in the sense that any (smooth, sufficiently small, and not necessarily symmetric)
change in the parameters will lead to the same qualitative behavior of the solutions as
that already described in this chapter.

To provide a formal proof of Claim 6.20 (see Proposition 6.26 below) we
follow [50]. To avoid making this section inconveniently long, we adopt the same
terminology and notation as in [50] and recall just the essential definitions and
results. For more details on the concepts being used below, and a brief introduction
to algebraic geometry and singularity theory, the interested reader is referred
to [50] and [49] respectively.

LetG be a (germ of a) function in n+1 variables near 0, that isG : (Rn×R, 0)→
(Rm, 0).

Definition 6.21. [50, Definition 2.1a] An `-parameter unfolding of G is a C∞ map
F : (Rn×R×R`, 0)→ (Rm, 0) such that F (x, λ, 0) = G(x, λ) for all (x, λ) ∈ Rn×R.

Definition 6.22. [50, Definition 2.1c] F is a universal unfolding of G if every
unfolding of G factors through F .

In some sense, a bifurcation problem defined by F = 0 contains all the qual-
itative behavior present in G = 0. Moreover, any other unfolding of G does not
contain new information or behavior already given by F . Thus, the goal is, given a
bifurcation problem G = 0, to know if a universal unfolding F exists, and if it does,
to compute it.

In order to address the aforementioned issue, let us first introduce some no-
tations: we denote an `-parameter unfolding of G by Fα with some fixed α ∈ R`.
We denote by En+1 the ring of germs of (smooth) functions in n-variables and
1-parameter (x, λ) ∈ Rn × R, and regard Emn+1, the space of m-tuples, as a module
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over En+1 with component-wise multiplication. Moreover, we denote by En+1

{
∂G
∂x

}
the submodule of Emn+1 generated by ∂G/∂x1, ∂G/∂x2, ..., ∂G/∂xn over the ring
En+1, the ideal 〈G〉 = 〈G1, G2, ..., Gm〉 in En+1 generated by the m components of
G, and Eλ

{
∂G
∂λ

}
:=
{
φ(λ)∂G∂λ |φ ∈ Eλ

}
, where φ ∈ Eλ stands for φ ∈ En+1 when φ

is just a function of λ and does not depend on x.

Remark 6.23. Recall from Lemma 6.13 that the bifurcation point of (6.5) is
(x(ε0), ε0). Therefore, for the particular bifurcation problem given by (6.5), the
ring of germs En+1 is defined around x(ε0) and λ = ε− ε0 with n = 3, m = 3.

Definition 6.24. [50, Definition 2.3]

(i) Let T̃G = 〈G〉m + En+1

{
∂G
∂x

}
and let TG = T̃G+ Eλ

{
∂G
∂λ

}
.

(ii) G has finite codimension if dim
(
Emn+1/T̃G

)
<∞.

(iii) The codimension of G equals dim
(
Emn+1/TG

)
and is denoted by codim G.

Now, we are ready to present the main result of [50].

Theorem 6.25. [50, Theorem 2.4] Suppose G has finite codimension, and let Fα
be an `-parameter unfolding of G. Fα is a universal unfolding of G if and only if
TG plus the `-vectors ∂F/∂α1|α=0, · · · , ∂F/∂α`|α=0 together span Emn+1 (over the
reals). The minimum number of unfolding parameters in any universal unfolding is
the codimension of G.

In words, Theorem 6.25 states that given a bifurcation problem G of a certain
codimension, say p, we need to add p parameters to the idealized problem G = 0

to obtain a robust bifurcation problem Fα = 0. Then, any smooth perturbation
whatsoever of the idealized problem G = 0 will give a qualitative behavior already
presented for Fα = 0.

Now we turn to check whether the bifurcation problem G given in (6.5) is
robust.

Proposition 6.26. The bifurcation problem G in (6.5) has codimension zero, i.e.
codimG = 0.

Proof. First of all, note that up to relabeling of the variables (f, c, e), the equations
Gi(x, ε) = 0, i = 1, 2, 3, are all equivalent, where Gi(x, ε) are the right-hand sides
of (6.4). Thus, without loss of generality, we can study, for instance, a bifurcation
problem defined by F = 0, where F (f, c, e, ε) : R3 × R→ R is given by

F (f, c, e, ε) = κ1ε+ κ2f + κ3εf + κ4c
2 + κ5feε+ κ6fc+ κ7f

2e, (6.28)

which is the numerator of G1(x, ε) where κj (j = 1, 2, ..., 7) are non-zero real
constants, and we set m = 1.
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Due to the dimension order 0 6 dim (En+1/TF ) 6 dim
(
En+1/T̃F

)
, it suffices

to show that dim
(
En+1/T̃F

)
= 0. The quotient space dim

(
En+1/T̃F

)
, its base,

and its dimension are computable by hand. However, to simplify such tasks we
have used the software “SINGULAR" [56] with which we can automate the necessary
computations. By doing so we obtain

dim
(
En+1/T̃F

)
= 0. (6.29)

Due to the dimension order 0 6 dim (En+1/TF ) 6 dim
(
En+1/T̃F

)
, we con-

clude that dim (En+1/TG1) = dim (En+1/TF ) = 0. As mentioned above, the
same claim holds for G2 and G3, that is dim (En+1/TG2) = dim (En+1/TG3) = 0.
Thus, from the definition of Emn+1 it follows that dim

(
E3
n+1/TG

)
= 0. Therefore

codimG = 0.

Remark 6.27. The proof of claim 6.20 follows from Theorem 6.26 and Proposition
6.25. As a consequence, the convergence result presented in Theorem 6.18 is
robust, in the sense that any small change in the parameters leads to the same
qualitative behavior of the solutions.

6.7 Concluding remarks

In this chapter, we have developed a tool based on bifurcation analysis for parameter-
robustness analysis for a class of oscillators, and in particular, examined the Frz
model. Our studies have started from the local behavior of the biochemical os-
cillator and concluded with a global description. First of all, we have identified
some parameters of the model, and hence unified them using a single ε. Next, we
have developed local analysis through which we have found a unique hyperbolic
equilibrium point associated with the oscillator. Since such a point is hyperbolic,
it turns out that the system is structurally stable in a small neighborhood of it,
motivating us to further investigate the robustness of the system. However, up to
this stage, oscillatory behavior cannot yet be explained. So we have used Hopf bi-
furcation theory to give sufficient conditions for the existence of periodic solutions.
From bifurcation analysis we have been able to provide numerical estimates of
the range of parameter under which periodic solutions exist. However, the results
from the Hopf bifurcation analysis do not provide information on the cardinality of
and convergence to periodic solutions. In this regards, we have performed global
analysis to show that the number of possible limiting periodic solutions is finite
and that trajectories converge to at least one of such solutions. At the end, we
have shown that the bifurcation results are robust in the sense that any smooth,
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sufficiently small, and not necessarily symmetric change in the parameters will lead
to the same qualitative behavior of the solutions as the one that has been already
described. All these results have led us to conclude that the biochemical oscillator
proposed in [73] is indeed robust under sufficiently small C1-perturbations of the
parameter.

Theorem 6.18 proves the convergence of (almost) all trajectories to a finite
number of periodic solutions. However, our observation from simulations shows
that (almost) all trajectories actually converge to a unique limit cycle. In addition,
from our numerical simulations, it appears that there are several “time scales” along
the unique limit cycle, which are related to the small parameter ε. A thorough
analysis of such time scales and their influences on the dynamics may provide a
better understanding of their role in the biochemical clock. However, these issues
cannot be analyzed by tools used in this chapter, and hence we need more advanced
techniques to present a rigorous analysis of such issues. The subject of next chapter
is to prove that the exists a strongly attracting limit cycle, and investigate the time
scales along such a limit cycle.



7
Relaxation oscillations in a slow-fast system
beyond the standard form

This chapter deals with the Frz system, studied in the previous chapter, from a
different perspective. More precisely, in this chapter we use geometric singular
perturbation theory and the blow-up method to prove the existence of a strongly
attracting limit cycle. This limit cycle corresponds to a relaxation oscillation of
an auxiliary system, whose singular perturbation nature originates from the small
Michaelis-Menten constants of the Frz system, and has the same orbit as the original
model. In addition, we give a detailed description of the structure of this limit
cycle, and the time scales along it.

This chapter starts with an introduction, followed by Section 7.2 where a
preliminary analysis on the system is presented. Section 7.3 gives the slow-fast
analysis of the auxiliary system, followed by Section 7.4 where blow-up analysis
of two non-hyperbolic lines is presented. The range of an independent parameter
of the system in which the main result is valid as well as concluding remarks are
given in Sections 7.5 and 7.6.

7.1 Introduction

OSCILLATORS are ubiquitous in different fields of science [12, 28, 44, 152, 168],
and in particular, are of great importance in biological systems [46, 113].

One of the most important types of periodic fluctuations are relaxation oscilla-
tions [91, 92, 110, 138], which are characterized by repeated switching of slow
and fast motions (i.e., multiple-time-scale dynamics). Relaxation oscillations in-
volve a large class of nonlinear dynamical systems, and occur in biology, chemistry,
mechanics, and engineering, see e.g., [74, 111, 148, 152]. Particularly, relaxation
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oscillators describe some important biological phenomena, such as population
cycles of predator-prey type [69], gene regulatory process [106], neuronal activ-
ity [74], and heartbeat [152].

Mathematical models have been useful to gain deeper insights into the complex
mechanisms of oscillatory multiple-time-scale processes. Some of these phenomena
have been modeled by the slow-fast systems of the form (2.13) (or equivalently
(2.14)), which are in the standard form, i.e., the slow and fast variables are explicitly
given. However, some others (see e.g., [20, 61, 71, 86, 87, 88]) are in the non-
standard form, in which separation into slow and fast variables are not given a
priori.

Our observations from numerical simulations show that (almost) all solutions of
the Frz system, studied in Chapter 6, converge to a unique limit cycle, and further,
this cycle has multiple time scales; in other words, the Frz system is a relaxation
oscillator. Note that as the system is not in the standard form of slow-fast systems,
the slow and fast variables are hidden, posing some mathematical challenges. In
this chapter, using geometric singular perturbation theory and the blow-up method,
we prove that, within certain parameter regimes, there exists a strongly attracting
periodic orbit for the Frz system; moreover, we give the detailed description of the
structure of such a periodic orbit, and the time scales along it.

7.2 Preliminary analysis

In this section we provide a preliminary analysis on the Frz system. In Subsection
7.2.1, we describe the behavior of the solutions for the parameters given in [73].
In Subsection 7.2.2, we present a two-parameter bifurcation analysis where we
clarify the nature and the role of two distinct parameters of the system.

7.2.1 Basic properties and sustained oscillations

Let us recall the Frz system with the unified parameters that we studied in the
previous chapter, i.e.,

df

dτ
=

γ(1− f)

ε+ (1− f)
− 2fe

ε+ 2f
,

dc

dτ
=

8(1− c)f
ε+ 2(1− c)

− 4c

ε+ 2c
, (7.1)

de

dτ
=

8(1− e)c
ε+ 2(1− e)

− 4e

ε+ 2e
,

where γ is the C-signal, which is produced when a cell collides with other cells. In
Chapter 6, we have assumed that γ = 0.08, as reported in [73] (see system (6.4)).
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Figure 7.1: Numerically computed attracting limit cycle of system (7.1) for ε = 10−3

and γ = 0.08 with three different initial conditions.

Figures 7.1 and 7.2 show, respectively, a numerically computed attracting limit
cycle of system (7.1) and the corresponding time evolution for ε = 10−3 and
γ = 0.08. Provided ε� 1, the following switching behavior occurs (see Fig. 7.2).
Initially, all protein ratios f, c and e are close to zero. Under the dynamics (7.1),
the variable f increases (due to the action of the C-signal), while c and e stay
close to zero. Once the variable f passes the activation threshold f∗ := 0.5, the
variable c increases rapidly. Next, as soon as the variable c passes the threshold
c∗ := 0.5, the variable e is activated and hence increases rapidly until it reaches its
maximum value, i.e., e = 1. Due to the fact that there is a negative feedback from
e to f , the increase in e results in the degradation of variable f . Once f reaches
the threshold f∗, variable c decreases, and once c reaches the threshold c∗, the
variable e decreases vary fast. As a result, the variables f and c reach their lowest
values (i.e. very close to zero), while the variable e reaches the threshold e∗ := γ.
As soon as the variable e drops below the threshold e∗, the variable f is activated
and increases. This behavior is repeated in a periodic manner, and hence a limit
cycle is formed (see Figure 7.1).

Remark 7.1. We have plotted Figures 7.1 and 7.2 for γ = 0.08, reported in [73].
Later we show that the parameter γ = 0.08 can be relaxed to some extent such that
the corresponding limit cycle has the same qualitative behavior; see Remark 7.3
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Figure 7.2: Numerically computed time evolution of system (7.1) for ε = 10−3 and
γ = 0.08.

and Section 7.5.

Remark 7.2. Owing to the fact that f, c and e represent fractions of protein concen-
trations, their values are restricted to [0, 1]. Thus, we restrict our analysis to the
unit cube

C :=
{

(f, c, e) ∈ R3 | f ∈ [0, 1], c ∈ [0, 1], e ∈ [0, 1]
}
.

In Chapter 6, we have presented a parameter-robustness analysis for system
(7.1) with respect to the parameter ε and for fixed γ = 0.08. More precisely, using
bifurcation analysis, we have shown that the system is robust under the variation
of ε for ε ∈ (0, ε∗) with ε∗ := 0.05517665. In this chapter, we analytically prove
the existence of a strongly attracting limit cycle which explains the numerically
computed periodic orbit in Fig. 7.1, for sufficiently small ε > 0. Similar mechanisms,
leading to an attracting limit cycle, occur in the Goldbeter minimal model [45],
which has been studied in [88].

7.2.2 Two-parameter bifurcation analysis

This subsection is devoted to the two-parameter bifurcation analysis of (7.1).
In particular, we analyze the behavior of system (7.1) under the variation of
parameters (ε, γ). To this end, we rewrite (7.1) in the form of

dx

dτ
= G(x; ε, γ), (7.2)

where x =
[
f c e

]>
, and G(x; ε, γ) denotes the right-hand side of (7.1). We

have used the numerical continuation software MATCONT [21] to compute the
two-parameter bifurcation diagram of (7.2) with respect to (ε, γ), presented in
Fig. 7.3; in this figure, the vertical and horizontal axes show the variations of ε
and γ, respectively. The blue curve indicates that for any 0 < γ < 1 and any ε



7

7.2. Preliminary analysis 111

ε

γ

Unstable
(oscillatory motion)

Stable Stable
(steady state)

Figure 7.3: Two-parameter bifurcation analysis of (7.1) with respect to (ε, γ).

below the curve, the system has unstable equilibria and hence exhibits oscillatory
behavior. For those values of ε which are above the blue curve, the equilibrium
point is stable, and hence the system is not oscillatory anymore. In fact, the blue
curve is the curve of Hopf bifurcations where the equilibria of the system switches
from being stable to unstable: with fixed 0 < γ < 1, as ε passes through the curve
from above to below, a limit cycle is generated.

As illustrated in Fig. 7.3, there are two points, denoted by “GH”, which are
generalized Hopf (or Bautin) Bifurcation points. At these points, the equilibria
of (7.2) have a pair of pure imaginary eigenvalues at which the first Lyapunov
exponent coefficient of the Hopf bifurcation vanishes [95]. Computed by MATCONT,
the values of (ε, γ) at “GH” points are as follows:

(ε1, γ1) = (0.060907128, 0.086423772), (ε2, γ2) = (0.043172692, 0.949470320).

In Fig. 7.3, the red curves are the curves of limit points (or saddle-node bifurcation)
of cycles. For parameter values (ε, γ) between the blue and red curves, at least two
limit cycles exist simultaneously, i.e., for γ ∈ (0, γ1) and γ ∈ (γ2, 1) with a suitable
0 < ε� 1, at least one stable and one unstable limit cycle coexist.

Remark 7.3. As mentioned in Chapter 6, due to the property of “zero-order ultra-
sensitivity”, the Michaelis-Menten constants, unified by ε, have to be small. Our
observation from numerical simulations shows that, for sufficiently small ε, system
(7.1) has similar mechanisms when γ belongs to certain bounds which are close
to 0 and 1. In this regard, we emphasize that although the position of the limit
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Figure 7.4: Numerically computed attracting limit cycle of system (7.1) for ε = 10−3

and γ = 0.9.

cycle changes when γ is close to 1 (see, e.g., Fig. 7.4), the geometric analysis of the
corresponding dynamics is the same as the case that γ is close to 0, for sufficiently
small ε, see Section 7.5.

Remark 7.4. In system (7.1), we have unified all the Michaelis-Menten constants
of the original Frz system, reported in [73], by the parameter ε. Although γ has
similar size as the Michaelis-Menten constants, we have not unified it with them.
One reason is that the unit of γ is “min−1”, while the Michaelis-Menten constants
are unitless. The other reason is that the simultaneous limit (ε, γ)→ (0, 0) is very
singular because a certain point (0, 0, γ), playing crucial role in our analysis (see
Section 7.4), approaches (0, 0, 0) which is the intersection of three critical manifolds
f = 0, c = 0, and e = 0. It would be interesting to study this limit further, which
could explain the coalescence of the Hopf curve and the saddle-node curve at (0, 0),
see Fig. 7.3; Similar remark holds as (ε, γ)→ (0, 1).

7.3 Geometric singular perturbation analysis

Our goal is to understand the dynamics of (7.1) in the limit ε→ 0. However, as is
seen in (7.1), when the variables f, c and e are very close to the boundary of C, the
limiting behavior is different from the case that they are away from the boundary.
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To resolve this problem, one possibility is to consider an auxiliary system which is
smoothly equivalent to (7.1). To this end, let us define

Hε(f, c, e) := Hε
1(f)Hε

2(c)Hε
3(e),

where

Hε
1(f) := (ε+ 1− f)(ε+ 2f),

Hε
2(c) := (ε+ 2− 2c)(ε+ 2c),

Hε
3(e) := (ε+ 2− 2e)(ε+ 2e).

(7.3)

Note that Hε(f, c, e) > 0 for any ε > 0 and any (f, c, e) ∈ C. Therefore, we
can reparametrize the time of system (7.1) by multiplying both sides of (7.1) in
Hε(f, c, e), which leads to the dynamical system

df

dτ
=

(
γ(1− f)

ε+ (1− f)
− 2fe

ε+ 2f

)
Hε(f, c, e),

dc

dτ
=

(
8(1− c)f
ε+ 2(1− c)

− 4c

ε+ 2c

)
Hε(f, c, e), (7.4)

de

dτ
=

(
8(1− e)c
ε+ 2(1− e)

− 4e

ε+ 2e

)
Hε(f, c, e),

where, for simplicity, we recycle τ to denote the reparametrized time. One can
rewrite (7.4) as follows

Xε :



df

dτ
= [γ(1− f)(ε+ 2f)− 2fe(ε+ 1− f)]Hε

2(c)Hε
3(e),

dc

dτ
= [8(1− c)f(ε+ 2c)− 4c(ε+ 2− 2c)]Hε

1(f)Hε
3(e),

de

dτ
= [8(1− e)c(ε+ 2e)− 4e(ε+ 2− 2e)]Hε

1(f)Hε
2(c).

(7.5)

The vector field (7.5) is smoothly equivalent to (7.1) for ε > 0 [13], which from
now on is the object of study. The main reason to rewrite system (7.1) into the
form of system (7.5) is that the latter is a singularly perturbed ODE which allows
us to analyze the system using geometric methods. Moreover, note that in contrast
to (7.1), system (7.5) is in a polynomial form, which is another advantage of (7.5).
The goal of this section is to give the detailed analysis of the slow-fast structure of
the auxiliary system (7.5). We start our analysis in the following subsection with
the layer problem of (7.5).
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7.3.1 Layer problem and critical manifold

Setting ε = 0 in (7.5) results in the layer problem

df

dτ
= (γ − e)H0(f, c, e),

dc

dτ
= 2 (2f − 1)H0(f, c, e),

de

dτ
= 2(2c− 1)H0(f, c, e),

(7.6)

where
H0(f, c, e) := 32fce(1− f)(1− c)(1− e).

Apart form the isolated equilibrium point P := (0.5, 0.5, γ) which is inside the cube
C, the boundary of C, consisting of six planes, is the equilibria set of the layer
problem (7.6). We denote each plane of equilibria by Si (i = 1, 2, ..., 6) as follows:

S1 := {(f, c, e) ∈ C | f = 0} , S2 := {(f, c, e) ∈ C | c = 0} ,
S3 := {(f, c, e) ∈ C | e = 0} , S4 := {(f, c, e) ∈ C | f = 1} ,
S5 := {(f, c, e) ∈ C | c = 1} , S6 := {(f, c, e) ∈ C | e = 1} .

(7.7)

Thus, S :=
⋃6
i=1 S

i is the critical manifold. The stability of system (7.5) changes
at lines `f ∈ S1, `f ∈ S4 (given by f = f∗), `c ∈ S2, `c ∈ S5 (given by c = c∗),
and `e ∈ S3, `e ∈ S6 (given by e = e∗). Moreover, the 12 edges of the unit cube,
where the 6 planes Si intersect, are non-hyperbolic lines as well. However, for our
analysis, only the lines `1 = S1 ∩ S2 and `2 = S2 ∩ S3 are crucial (see Figure 7.5).

The stability of points in S is summarized in the following lemma.

Lemma 7.5. The critical manifold S of the layer problem (7.6) has the following
properties:

• S1 is attracting for e > e∗ and repelling for e < e∗.

• S2 is attracting for f < f∗ and repelling for f > f∗.

• S3 is attracting for c < c∗ and repelling for c > c∗.

• S4 is attracting for e < e∗ and repelling for e > e∗.

• S5 is attracting for f > f∗ and repelling for f < f∗.

• S6 is attracting for c > c∗ and repelling for c < c∗.

• The equilibrium P = (0.5, 0.5, γ) is a saddle-focus point.
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S1
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S6

f
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`f
`e

`c

`f

`c

`e

`1

`2

f∗
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Figure 7.5: The critical manifold S =
⋃6
i=1 S

i, non-hyperbolic lines `f , `c, `e, `f , `c,
`e in red, all 12 non-hyperbolic edges in blue, and in particular, two non-hyperbolic
edges `1 and `2.

• The lines `f ∈ S1, `c ∈ S2, `e ∈ S3, `f ∈ S4, `c ∈ S5, `e ∈ S6, all 12 edges of
the unit cube, and in particular, the edges `1 = S1 ∩ S2 and `2 = S2 ∩ S3 are
non-hyperbolic.

Proof. The eigenvalues of the linearization of system (7.6) at points, e.g., in the
plane S1 are given by

λ1 = λ2 = 0, λ3 = −32ce(c− 1)(e− 1)(e− γ).

It is clear that λ3 is zero at the boundary of S1, and also along the line le given
by e = e∗. Therefore, S1 is attracting for e > e∗ and it is repelling for e < e∗. The
proof of the other cases is given analogously, and is omitted for brevity.

We denote the interior of the cube C by C̊. Note that when (f, c, e) ∈ C̊, the layer
problem (7.6) can be divided by the positive term H0(f, c, e) = 32fce(1− f)(1−
c)(1− e). Therefore away from the critical manifold S, all the variables evolve on
the fast time scale τ and the orbits of the layer problem (7.6) are identical to the



7

116 7. Relaxation oscillations in a slow-fast system beyond the standard form

orbits of the linear system

df

dτ
= γ − e,

dc

dτ
= 2(2f − 1),

de

dτ
= 2(2c− 1).

(7.8)

Remark 7.6. For (f, c, e) ∈ C̊, system (7.8) is the limit of system (7.1) as ε→ 0.

7.3.2 Reduced problem, slow manifolds, and slow dynamics

From Subsection 7.3.1, we know that S is the critical manifold. Any compact subset
of S that does not contain any non-hyperbolic point is normally hyperbolic, and
hence Fenichel theory [37] is applicable. Fenichel theory implies that the normally
hyperbolic parts of C perturb to slow manifolds, which lie within a distance of order
O(ε) of the critical manifold S. In the following, we compute the slow manifolds
and analyze the reduced flows in the planes, S1, S2, S3, and S6 which are essential
for our analysis.

Lemma 7.7. For sufficiently small δ > 0, there exist ε0 > 0 and a smooth function
h1
ε(c, e) defined on I1

a = [δ, 1− δ]× [γ + δ, 1− δ] such that the manifold

S1
a,ε =

{
(f, c, e) ∈ C | f = h1

ε(c, e), (c, e) ∈ I1
a

}
, (7.9)

is a locally invariant attracting manifold of (7.5) for ε ∈ (0, ε0]. The function h1
ε(c, e)

has the expansion
h1
ε(c, e) =

γ

2(e− γ)
ε+O(ε2). (7.10)

Proof. As the set I1
a is hyperbolic, Fenichel theory implies that there exists a suf-

ficiently small ε0 > 0 such that the function h1
ε(c, e) has the expansion h1

ε(c, e) =

η(c, e)ε+O(ε2) for all ε ∈ (0, ε0]. Due to invariance, we can substitute h1
ε(c, e) into

the equation of df
dτ in (7.5) and identify coefficients of ε. After doing so, we obtain

η(c, e) =
γ

2(e− γ)
. (7.11)

Note that (7.11) reflects the fact that the manifold S1
a,ε is not well-defined when

e = γ. Thus, the invariant manifold S1
a,ε is given as stated in the lemma, which

completes the proof.

For the sake of brevity, we summarize our analysis in the planes S2, S3, and S6

in the following lemmas, whose proofs follow the same line of reasoning as the one
of Lemma 7.7.
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Lemma 7.8. For sufficiently small δ > 0, there exist ε0 > 0 and a smooth function
h2
ε(f, e) defined on I2

a =
[
δ, 1

2 − δ
]
× [δ, 1− δ] such that the manifold

S2
a,ε =

{
(f, c, e) ∈ C | c = h2

ε(f, e), (f, e) ∈ I2
a

}
, (7.12)

is a locally invariant attracting manifold of (7.5) for ε ∈ (0, ε0]. The function h2
ε(f, e)

has the expansion

h2
ε(f, e) =

f

1− 2f
ε+O(ε2). (7.13)

Lemma 7.9. For sufficiently small δ > 0, there exist ε0 > 0 and a smooth function
h3
ε(f, c) defined on I3

a = [δ, 1− δ]×
[
δ, 1

2 − δ
]

such that the manifold

S3
a,ε =

{
(f, c, e) ∈ C | e = h3

ε(f, c), (f, c) ∈ I3
a

}
, (7.14)

is a locally invariant attracting manifold of (7.5) for ε ∈ (0, ε0]. The function h3
ε(f, c)

has the expansion
h3
ε(f, c) =

c

1− 2c
ε+O(ε2) (7.15)

Lemma 7.10. For sufficiently small δ > 0, there exist ε0 > 0 and a smooth function
h6
ε(f, c) defined on I6

a = [δ, 1− δ]×
[

1
2 + δ, 1− δ

]
such that the manifold

S6
a,ε =

{
(f, c, e) ∈ C | e = 1 + h6

ε(f, c), (f, c) ∈ I6
a

}
, (7.16)

is a locally invariant attracting manifold of (7.5) for ε ∈ (0, ε0]. The function h6
ε(f, c)

has the expansion

h6
ε(f, c) =

1

2(1− 2c)
ε+O(ε2), (7.17)

Remark 7.11. Similar results can be obtained for the “repelling” parts Sir,ε, i =

1, 2, ..., 6. However, these are not needed in our analysis.

Remark 7.12. The expansions of the functions hiε(·, ·), i = 1, 2, 3, 6, also explain
why it is necessary to restrict the domain of definition of the slow manifolds to Iia
to exclude their singularities.

We now turn to the analysis of the reduced flows in the planes S1, S2, S3, and S6

which respectively means the planes f = 0, c = 0, e = 0 and e = 1. We know that
system (7.5) has the fast time scale τ . By substituting the functions hiε, i = 1, 2, 3, 6,

into (7.5), transforming the fast time variable to the slow one by t = ετ , and setting
ε = 0, the equations governing the slow dynamics on the critical manifold Sia are
computed. In the following, we give the analysis in the plane S1.

After substituting h1
ε into system (7.5), the dynamics of the reduced system in
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S1, i.e. in the plane f = 0, is governed by

c′ =
−32ce2(c− 1)(e− 1)

e− γ
ε+O(ε2),

e′ =
32ce2(c− 1)(e− 1)(2c− 1)

e− γ
ε+O(ε2),

(7.18)

where “prime” denotes the differentiation with respect to τ . Now by dividing out a
factor of ε, which corresponds to switching from the fast time variable to the slow
one, we have

ċ =
−32ce2(c− 1)(e− 1)

e− γ
+O(ε),

ė =
32ce2(c− 1)(e− 1)(2c− 1)

e− γ
+O(ε),

(7.19)

where “dot” represents differentiation with respect to t = ετ . Now, by setting ε = 0

in (7.19), the reduced flow on S1
a is given by

ċ =
−32ce2(c− 1)(e− 1)

e− γ
,

ė =
32ce2(c− 1)(e− 1)(2c− 1)

e− γ
.

(7.20)

As is clear, the vector field (7.20) is singular at the line `e, given by e = e∗. In
other words, the flow (7.20) is not defined on the line `e. The lines c = 0, e = 0,
c = 1, and e = 1, shown in Figure 7.6, are lines of equilibria. The line c = 0 is
attracting for e > e∗ and repelling for e < e∗, while the line c = 1 is attracting for
e < e∗ and repelling for e > e∗.

By dividing out the factor 32ce2(c−1)(e−1)
e−γ in (7.20), the orbits of the reduced

flow can be derived from the desingularized system

ċ = −1,

ė = 2c− 1,
(7.21)

which can be integrated explicitly.

Remark 7.13. For e > e∗, systems (7.20) and (7.21) have qualitatively the same
dynamics when c, e ∈ (0, 1). In particular, the vector field (7.21) is C∞-equivalent
but not C∞-conjugate to the vector field (7.20). For the case that e < e∗, the
direction of the vector field (7.20) is not preserved in the vector field (7.21).
However, for our analysis, it suffices to study the flow of system (7.20) when
e > e∗.
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c
0 c2 c1 1

e

e∗
`e

0

1

Figure 7.6: Flow of the slow vector field on S1
a, the non-hyperbolic line `e in red,

and sections c1, c2 in cyan.

From system (7.21), the following lemma is immediate.

Lemma 7.14. For e > e∗, the reduced flow (7.20) on S1, and hence the slow flow
(7.19) on S1

a,ε map section c = c1 to c = c2, when 0 < c2 < c1 <
1
2 ; this map is

well-defined with the derivatives close to one, see Fig. 7.6.

In order to obtain the equations governing the slow flow on S2
a,ε, S

3
a,ε and S6

a,ε,
a similar analysis can be done by substituting the functions h2

ε, h
3
ε and h6

ε into (7.5)
and dividing out a factor of ε, which corresponds to switching to the slow time
scale t = ετ . Next, by setting ε = 0 one obtains the reduced flow on the critical
manifolds S2

a, S
3
a and S6

a. For the sake of brevity, we summarize the slow flows on
S2, S3 and S6 in Lemmas 7.15, 7.18 and 7.20, which are crucial for our analysis.

Lemma 7.15. The reduced flow along S2
a, defined as X2

a = limε→0
1
εXε|S2

a
, is given

by

ḟ =
16ef(e− 1)(f − 1)(e− γ)

2f − 1
,

ė =
32ef(e− 1)(f − 1)

2f − 1
.

(7.22)

The phase portrait of (7.22) is shown in Fig. 7.7.

The vector field (7.22) is singular at the line f = f∗. This line is repelling for
e ∈ (γ, 1) while attracting for e ∈ (0, γ), see Figure 7.7. The blue lines f = 0, e = 0,
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1 0
0

1

f
f∗

`f

γ

e

Figure 7.7: Flow of the slow vector field (7.22) on S2
a, and the non-hyperbolic line

`f in red.

f = 1, and e = 1 are lines of equilibria. The line f = 1 is attracting for e ∈ (γ, 1)

while repelling for e ∈ (0, γ). However, the line f = 0 is attracting for e > γ but
repelling for e < γ. The line e = 0 is attracting for f < f∗, while repelling for
f > f∗. Nevertheless, the line e = 1 is repelling for f < f∗ but attracting for
f > f∗, see Fig. 7.7. By dividing out the factor −16ef(e−1)(f−1)

2f−1 in (7.22), the orbits
of the reduced flow is derived from the desingularized system

ḟ = γ − e,
ė = −2.

(7.23)

We directly have the following lemma from system (7.23).

Lemma 7.16. For f < f∗ and e < e∗, the reduced flow (7.22) on S2
a and the

corresponding slow flow on S2
a,ε are contracting in variable e, i.e., the induced map

between sections f = f1 and f = f2 with 0 < f1 < f2 < f∗ contracts the variable e,
see Fig. 7.8.

Remark 7.17. As is observed in Fig. 7.8, the variable f is tangent to the line f = 0

at e = e∗ in both vector fields (7.22) and (7.23). Moreover, the line f = 0 is
repelling for e < γ. The point e = γ in S2

a plays a crucial role in our analysis, see
Section 7.4.
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e

0
0f

γ

f1f2

Figure 7.8: Slow flow of vector field (7.23) on S2
a around e = e∗ as well as the

sections f1, f2 in cyan close to zero.

Lemma 7.18. The slow flow along S3
a, defined as X3

a = limε→0
1
εXε|S3

a
, is given by

ḟ =
−16γcf(c− 1)(f − 1)

2c− 1
,

ċ =
32cf(c− 1)(f − 1)(1− 2f)

2c− 1
.

(7.24)

The phase portrait of (7.24) is shown in Fig. 7.9.

The vector field (7.24) is singular at the line c = c∗. By dividing out the factor
−16cf(c−1)(f−1)

2c−1 in (7.24), the orbits of the reduced flow can be derived from the
desingularized system

ḟ = γ,

ċ = 2(2f − 1).
(7.25)

The following lemma is immediate from system (7.25).

Lemma 7.19. For c < c∗, the reduced flow (7.24) on S3
a has the following properties:

1. For f > f∗ the reduced flow is directed towards the line c = c∗, and the solutions
of the reduced flow on this part reaches the line c = c∗ in finite time.

2. For f > f∗ the reduced flow (7.24) on S3
a and the corresponding slow flow on

S3
a,ε are contracting in f , i.e., the induced map between sections c = c1 and
c = c2 with 0 < c1 < c2 < c∗ contracts the variable f , (see Fig. 7.9).
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f∗0 1
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c∗
`c

c2

c1
0

1
c

Figure 7.9: Flow of the slow vector field (7.24) on S3
a, the non-hyperbolic line `c in

red, and sections c1, c2 in cyan.

The same procedure applies to the critical manifold S6
a, summarized in the

following lemma.

Lemma 7.20. The slow flow along S6
a, defined as X6

a = limε→0
1
εXε|S6

a
is given as

ḟ =
32(γ − 1)fc2(c− 1)(f − 1)

2c− 1
,

ċ =
64fc2(c− 1)(f − 1)(2f − 1)

2c− 1
.

(7.26)

The phase portrait of (7.26) is shown in Fig. 7.10.

By dividing out the factor 32fc2(c−1)(f−1)
2c−1 in (7.26), the orbits of the reduced

flow is derived from the desingularized system

ḟ = γ − 1,

ċ = 2(2f − 1).
(7.27)

From system (7.27), we obtain the following lemma.

Lemma 7.21. For c > c∗, the reduced flow (7.26) on S6
a has the following properties:

1. For f < f∗, the reduced flow is directed towards the line c = c∗, and the
solutions of the reduced flow on this part reaches the line c = c∗ in finite time.
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Figure 7.10: Flow of the slow vector field (7.26) on S6
a, the non-hyperbolic line `c

in red, and the sections c1, c2 in cyan.

2. For f < f∗, the reduced flow (7.26) on S6
a and the corresponding slow flow on

S6
a,ε are contracting in f , i.e., the induced map between sections c = c1 and
c = c2 with c∗ < c2 < c1 < 1 contracts the variable f , (see Fig. 7.10).

Remark 7.22. For each of systems (7.22), (7.24), (7.26), and their corresponding
desingularized system, a remark similar to Remark 7.13 holds, which is omitted for
brevity.

7.3.3 Singular cycle

In this subsection, we present the overall behavior of the singular cycle, which is a
closed curve consisting of alternating segments of the orbits of the layer problem,
and the critical manifold S. By the information that we have so far from the critical
manifold and the layer problem, we cannot, however, “fully” describe the singular
cycle close to the non-hyperbolic lines `1 and `2. A full description of the singular
cycle for those parts that cannot be derived from the critical manifold and the layer
problem is presented in Section 7.4 by the blow-up method.

The construction of the singular cycle Γ0 starts at the point pf := (0.5, 0, 0), see

Fig. 7.11. This point is connected to the point p1 :=
(

1+
√
γ

2 , 0.5, 0
)
∈ `c through

the orbit ω1 of the reduced flow (7.25). Starting at p1, the layer problem (7.8)
intersects the attracting part of the plane S6

a in a point, denoted by p2. This point,
through the orbit ω3 of the reduced flow (7.27), is connected to a point, denoted
by qe ∈ `c. Starting at qe, through the layer problem (7.8), the orbit ω4 intersects
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Figure 7.11: Schematic diagram of the singular cycle Γ0.

the plane S1
a at a point, denoted by qe. The orbit ω5 of the reduced flow (7.18)

connects qe to a point, denoted by pe ∈ `1, which is the intersection of S1
a and S2

a;
pe is connected to the point pe := (0, 0, γ) by a segment on the line `1, denoted by
ω6. The orbit ω7 of the reduced flow (7.23) connects pe to the point pf := (γ

2

4 , 0, 0);
Finally, pf is connected to pf by a segment on the line `2, denoted by ω8. Hence,
the singular cycle Γ0 ∈ R3 of system (7.5) for ε = 0 is defined as follows (see Fig.
7.11):

Γ0 := ω1 ∪ ω2 ∪ ω3 ∪ ω4 ∪ ω5 ∪ ω6 ∪ ω7 ∪ ω8. (7.28)

Remark 7.23. All the orbits ωj (j = 1, 2, ..., 8) are known analytically.

Owing to the fact that the layer problem is linear, all the points that connect ωj
to ωj+1 are explicitly known. For the particular quantity γ = 0.08, we have

pf = (0.5, 0, 0), pe = (0, 0, 0.08), pf = (0.0016, 0, 0),

p1 ≈ (0.6414, 0.5, 0), p2 ≈ (0.3638, 0.8485, 1), qe ≈ (0.0771, 0.5, 1),

pe ≈ (0, 0, 0.7487), qe ≈ (0, 0.3438, 0.9743).

Remark 7.24. There is a very slow drift from pe to pf , which is subtle in numerical
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simulations, see Fig. 7.1. However, in order to clearly show the orbit ω7, this part
in Fig. 7.11 is illustrated larger.

Remark 7.25. At the singular level, there is no visible flow on the segments ω6 and
ω8. The blow-up analysis, carried out in Section 7.4, will reveal a hidden flow for
such segments.

7.3.4 Main result

In view of the singular cycle Γ0, introduced in the previous subsection, we are now
ready to present the main result.

Theorem 7.26. Assume that Γ0 is the singular cycle described in Subsection 7.3.3.
Then, for sufficiently small ε > 0, there exists a strongly attracting periodic orbit Γε of
the auxiliary system (7.5), and hence of the equivalent system (7.1), which tends to
the singular cycle Γ0 as ε→ 0.

To prove Theorem 7.26, we need to define the following sections

Σ1 := {(f, c, e) ∈ C | (f, e) ∈ R1, c = δ1},
Σ2 := {(f, c, e) ∈ C | (c, e) ∈ R2, f = δ2},
Σ3 := {(f, c, e) ∈ C | (f, e) ∈ R3, c = δ3},

(7.29)

where Rj (j = 1, 2, 3) are suitable small rectangles, and δj are chosen sufficiently
small. Note that Σ1 is transversal to ω5, Σ2 is transversal to ω7, and Σ3 is transversal
to ω1, see Fig. 7.11.

In view of the sections Σj , introduced in (7.29), we define the following
Poincaré maps for the flow of the system (7.5):

π1 : Σ1 → Σ2,

π2 : Σ2 → Σ3,

π3 : Σ3 → Σ1.

(7.30)

The map π1 describes the passage from Σ1 to Σ2 along the non-hyperbolic line
`1, the map π2 describes the passage from Σ2 to Σ3 along the non-hyperbolic line
`2, and the map π3 describes the passage from Σ3 to Σ1; the map π3 consists of
slow flow along S3

a,ε, followed by the fast dynamics from a neighborhood of p1 to a
neighborhood of p2, followed by the slow flow along S6

a,ε to a neighborhood of qe.
Through the fast dynamics, this neighborhood is mapped to a neighborhood of qe,
followed by the slow flow along S1

a,ε to Σ1.
We summarize the properties of the above maps in the following lemmas.
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Lemma 7.27. If the section Σ1 is chosen sufficiently small, there exists ε0 > 0 such
that the map

π1 : Σ1 → Σ2, (f, e) 7→ (πc1(f, e, ε), πe1(f, e, ε)), (7.31)

is well-defined for ε ∈ [0, ε0] and smooth for ε ∈ (0, ε0]. The map π1 is a strong
contraction with contraction rate exp(−K/ε) for some K > 0. The image of Σ1 is
a two-dimensional domain of exponentially small size, which converges to the point
q2 := Σ2 ∩ ω7 as ε→ 0.

Lemma 7.28. If the section Σ2 is chosen sufficiently small, there exists ε0 > 0 such
that the map

π2 : Σ2 → Σ3, (c, e) 7→ (πf2 (c, e, ε), πe2(c, e, ε)), (7.32)

is well-defined for ε ∈ [0, ε0] and smooth for ε ∈ (0, ε0]. The map π2 is a strong
contraction with contraction rate exp(−K/ε) for some K > 0. The image of Σ2 is
a two-dimensional domain of exponentially small size, which converges to the point
q3 := Σ3 ∩ ω1 as ε→ 0.

The proofs of Lemmas 7.27 and 7.28 are based on the blow-up analysis of the
non-hyperbolic lines `1 and `2, respectively, which are presented in Subsections
7.4.1 and 7.4.2.

Remark 7.29. The points on the line `c when 0.5 < f < 1, and on the line `c

when 0 < f < 0.5 are jump points, i.e., the trajectory switches from the slow
dynamics to the fast dynamics. It is shown [138] that this behavior is very similar
to the behavior of standard slow-fast systems with two slow variables and one fast
variable near a generic “fold” line, studied in [138] based on the blow-up method.
The critical manifolds S3 and S6 of system (7.5) can be viewed as a standard folded
critical manifold, which has been straightened out by a suitable diffeomorphism.
This leads to the curved fibers of the layer problem (7.6). Therefore, we can use
the results of [138] to understand the behavior of (7.5) close to the non-hyperbolic
lines `c and `c.

The following lemma describes the map from the section Σ3 to the section Σ1,
defined in (7.30).

Lemma 7.30. If the section Σ3 is chosen sufficiently small, there exists ε0 > 0 such
that the map

π3 : Σ3 → Σ1, (f, e) 7→ (πf3 (f, e, ε), πe3(f, e, ε)), (7.33)

is well-defined for ε ∈ [0, ε0] and smooth for ε ∈ (0, ε0]. The image of Σ3 is an
exponentially thin strip lying exponentially close to S1

a,ε ∩ Σ1, i.e., its width in the
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f -direction is O(exp(−K/ε)) for some K > 0. Moreover, π3(Σ3) converges to a
segment of Sa1 ∩ Σ1 as ε→ 0.

Proof. The basic idea of the proof is based on the map that has been already
described in Fig. (7.11) for ε = 0, denoted by π0

3 , and then treat π3 as an ε-
perturbation of π0

3 . If the section Σ3 is chosen sufficiently small, then the trajectories
starting in Σ3 can be described by the slow flow along the manifold S3

a,ε combined
with the exponential contraction towards the slow manifold until they reach a
neighborhood of the jump points on the line `c. Applying [138, Theorem 1]
close to the jump pints, the trajectories switch from the slow dynamics to the fast
dynamics, and hence pass the non-hyperbolic line `c; this transition is well-defined
for ε ∈ [0, ε1], and smooth for ε ∈ (0, ε1] for some ε1 > 0. Note that [138, Theorem
1] guarantees that the contraction of the solutions in the e-direction persists during
the passage through the fold-line `c, as is at most algebraically expanding. After
that, the solutions follow the fast dynamics ω2 until they reach a neighborhood
of the point p2, see Fig. 7.11. Next, the solutions follow the slow flow along
the manifold S6

a,ε combined with the exponential contraction towards the slow
manifold until they reach a neighborhood of the point qe. Again applying [138,
Theorem 1] close to the jump points, the solutions which are very close to the
non-hyperbolic line `c switch from the slow dynamics to the fast dynamics, and
hence pass the non-hyperbolic line `c, where the corresponding transitions are
well-defined for ε ∈ [0, ε2], and smooth for ε ∈ (0, ε2] for some ε2 > 0, and then
follow the fast dynamics (ω4) until they reach a neighborhood of the point qe.
Finally, the solutions follow the slow flow along the manifold S1

a,ε combined with
the exponential contraction towards the slow manifold until they reach the section
Σ1.

Theorem 1 in [138] implies that the map π3 is at most algebraically expanding
in the e-direction, provided that the section Σ3 is chosen sufficiently small. On the
other hand, the slow manifold S1

a,ε is exponentially contracting in the f -direction
(Fenichel theory). Therefore, the image of Σ3 is a thin strip lying exponentially
close to S1

a,ε ∩ Σ1. Hence, the statements of the lemma follow.

Now we are ready to give the proof of the main result.
Proof of Theorem 7.26. Let us define the map π : Σ3 → Σ3 as a combination of the
maps πj (j = 1, 2, 3), described in Lemmas 7.27, 7.28 and 7.30. More precisely, we
define

π := π2 ◦ π1 ◦ π3 : Σ3 → Σ3.

If the section Σ3 is chosen sufficiently small, Lemma 7.30 implies that there exists
ε3 > 0 such that the map π3 is well-defined for ε ∈ [0, ε3] and smooth for ε ∈ (0, ε3],
and the image of Σ3 is a thin strip lying exponentially close to S1

a,ε ∩ Σ1, i.e.,
π3(Σ3) is exponentially contracting with rate exp(−K3/ε), for some K3 > 0, in the
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f -direction while it is bounded in the e-direction.
Next, if the entry section Σ1 is chosen such that Σ1 ⊃ π3(Σ3), Lemma 7.27

implies that there exists ε1 > 0 such that the map π1 is well-defined for any
ε ∈ [0, ε1] and smooth for ε ∈ (0, ε1], and π1 is an exponential contraction with rate
exp(−K1/ε) for some K1 > 0. Finally, if the entry section Σ2 is chosen such that
Σ2 ⊃ π1(Σ1), Lemma 7.28 implies that there exists ε2 > 0 such that the map π2

is well-defined for any ε ∈ [0, ε2] and smooth for any ε ∈ (0, ε2], and further, π2

is an exponential contraction with rate exp(−K2/ε), for some K2 > 0, such that
Σ3 ⊃ π2(Σ2).

Denoting ε0 := min{ε1, ε2, ε3} and K := min{K1,K2,K3}, the map π : Σ3 →
Σ3 is well-defined for any ε ∈ [0, ε0], and smooth for any ε ∈ (0, ε0]. Further,
based on the contracting properties of the maps πi, i = 1, 2, 3, we conclude that
π(Σ3) ⊂ Σ3 is contraction with rate exp(−K/ε). The Banach fixed-point theorem
implies the existence of a unique fixed point for the map π, corresponding to the
attracting periodic orbit of the system (7.5). Moreover, due to the last assertion of
Lemmas 7.27, 7.28 and 7.30, the periodic orbit Γε tends to the singular cycle Γ0 as
ε→ 0. This completes the proof.

7.4 Blow-up analysis

The slow-fast analysis that we have done in Section 7.3 does not explain the
dynamics of system (7.5) close to the non-hyperbolic lines `1 and `2. As the
segments ω6 and ω8 lie on these lines (see Fig. 7.11), we need a detailed analysis
close to the non-hyperbolic lines `1 and `2, which is carried out in this section via
the blow-up method [61, 90, 92]. To apply this, we extend system (7.5) by adding
ε as a trivial dynamic variable and obtain

df

dτ
= [γ(1− f)(ε+ 2f)− 2fe(ε+ 1− f)]Hε

2(c)Hε
3(e),

dc

dτ
= [8(1− c)f(ε+ 2c)− 4c(ε+ 2− 2c)]Hε

1(f)Hε
3(e),

de

dτ
= [8(1− e)c(ε+ 2e)− 4e(ε+ 2− 2e)]Hε

1(f)Hε
2(c),

dε

dτ
= 0,

(7.34)

where Hε
1(f), Hε

2(c) and Hε
3(e) are defined in (7.3). Note that for the extended

system (7.34), the lines `1 × {0} and `2 × {0} are sets of equilibria. Owing to
the fact that the linearization of (7.34) around these lines has quadruple zero
eigenvalues, system (7.34) is very degenerate close to `1 × {0} and `2 × {0}. To
resolve these degeneracies, we use the blow-up method, given in next subsections.
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7.4.1 Blow-up of the non-hyperbolic line `1 × {0}
The blow-up of the non-hyperbolic line `1 × {0} is presented in this subsection. To
this end, we transform the non-hyperbolic line of steady states `1 × {0} by

f = rf̄ , c = rc̄, ε = rε̄, e = ē, (7.35)

where f̄2 + c̄2 + ε̄2 = 1 and r > 0. Note that since (f, c, e) ∈ C, we may further
assume that f̄ , c̄ > 0 and ē ∈ [0, 1]. Since all weights are equal to 1 in (7.35), this
is a homogeneous blow-up. For fixed ē, each point (0, 0, ē) is blown-up to a sphere
S2, and the line `1 × {0} is blown-up to a cylinder S2 × [0, 1], see Fig. 7.12.

For the analysis of system (7.34) close to the line `1 × {0}, we define three
charts K1,K2 and K3 by setting c̄ = 1, ε̄ = 1, and f̄ = 1 in (7.35), respectively:

K1 : f = r1f1, c = r1, ε = r1ε1, e = e1, (7.36)

K2 : f = r2f2, c = r2c2, ε = r2, e = e2, (7.37)

K3 : f = r3, c = r3c3, ε = r3ε3, e = e3, (7.38)

The changes of coordinates from charts K1 to K2, and K2 to K3 in the blown-up
space are given in the following lemma, which can be derived from (7.36), (7.37),
and (7.38).

Lemma 7.31. The changes of coordinates from K1 to K2, and from K2 to K3 are
given by

κ12 : f2 =
f1

ε1
, c2 =

1

ε1
, ε2 = r1ε1, e2 = e1, ε1 > 0, (7.39)

κ23 : r3 = r2f2, c3 =
c2
f2
, ε3 =

1

f2
, e3 = e2, f2 > 0. (7.40)

The goal of this subsection is to construct the transition map π1 : Σ1 → Σ2,
defined in (7.30), and prove Lemma 7.27. Before going into the details, let us
briefly describe our approach. We describe the transition map π1 : Σ1 → Σ2 via an
equivalent one in the blown-up space. In particular, we define

π1 := Φ ◦ π̄1 ◦ Φ−1, (7.41)

where
π̄1 := Π3 ◦ κ23 ◦Π2 ◦ κ12 ◦Π1, (7.42)

and Φ : S2 × [0, 1]× [0, r0)→ R4 is the cylindrical blow-up defined by (7.35), the
maps Πi are local transitions induced by the blown-up vector fields which are
detailed below, and κ12 and κ23 denote the changes of coordinates, given in Lemma
7.31. π̄1 is the transition map in the blown-up space and due to the fact that Φ is
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f
f̄

c c̄

ēe

Σ1 Σ̄1
`1

Σ2

Σ̄2

γ
p̄e

p̄e

S̄1
aS1

a

S̄2
aS2

a

Figure 7.12: The left figure shows the dynamics close to the non-hyperbolic line `1.
The right figure shows the corresponding dynamics in the blown-up space.

a diffeomorphism, it is equivalent to π1. A schematic of the problem at hand is
shown in Figure 7.12.

The left picture in Fig. 7.12 shows the critically manifolds S1
a and S2

a, and the
corresponding flows in blue. The non-hyperbolic line `1 is shown in orange. For
e > γ, the reduced flows on both critically manifolds approach the line `1. At the
point on the line `1 with e = γ, a transition from S1

a to S2
a is possible, as indicated

in the figure. The right picture in Fig. 7.12 schematically shows the configuration in
the blown-up space. The cylinder, corresponding to r = 0, is shown in orange. The
part of the phase space corresponding to ε̄ = 0 and r > 0 are shown outside of the
the cylinder. Here we recover the critically manifolds, and the reduced flows in S̄1

a

and S̄2
a. In the blown-up space, the manifolds S1

a and S2
a are separated and hence

gained hyperbolicity, i.e. attractive, as indicated in cylinder. All these assertions
will be proven in this section.

Roughly speaking, in chart K1 we continue the attracting slow manifold S̄1
a

onto the cylinder. Chart K2 is used to track the flow across the cylinder. The exit
of the flow from the cylinder and its transition to S̄2

a is studied in chart K3, see
Figs. 7.12 and 7.19. The detailed analysis of the maps Πi introduced in (7.42), is
given in the forthcoming subsections.
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Analysis in chart K1

After substituting (7.36) into (7.34), and dividing out all the equations by the
common factor r1, the equations governing the dynamics in chart K1 are given by

f ′1 = −4f1Γ1G11 + [γ(1− r1f1)(ε1 + 2f1)− 2f1e1(r1ε1 + 1− r1f1)]G12,

r′1 = 4r1Γ1G11,

e′1 = 4r1[2r1(1− e1)(r1ε1 + 2e1)− e1(r1ε1 + 2− 2e1)]G13,

ε′1 = −4ε1[2r1f1(1− r1)(ε1 + 2)− (r1ε1 + 2− 2r1)]G11,

(7.43)

where we denote

Γ1 := [2r1f1(1− r1)(ε1 + 2)− (r1ε1 + 2− 2r1)],

G11 := (r1ε1 + 1− r1f1)(r1ε1 + 2− 2e1)(ε+ 2f1)(r1ε1 + 2e1),

G12 := (r1ε1 + 2− 2r1)(r1ε1 + 2− 2e1)(ε1 + 2)(r1ε1 + 2e1),

G13 := (r1ε1 + 1− r1f1)(r1ε1 + 2− 2r1)(ε1 + 2f1)(ε1 + 2).

From (7.43) it is clear that the planes r1 = 0 and ε1 = 0 are invariant. Hence, we
consider the following cases:

1. r1 = ε1 = 0: in this case, the dynamics (7.43) is simplified to

e′1 = 0,

f ′1 = 32f1e1(1− e1)[2f1 + γ − e1].
(7.44)

For fixed e, the equilibria of system (7.44) are the attracting point pa1 =

(f1, r1, e1, ε1) = (0, 0, e1, 0), and the repelling point pr1 = (f1, r1, e1, ε1) =

( e1−γ2 , 0, e1, 0). Note that the two hyperbolic points pa1 and pr1 intersect at the
non-hyperbolic point (f1, r1, e1, ε1) = (0, 0, γ, 0), see Fig. 7.13.

2. ε1 = 0 and r1 > 0: in this case, the dynamics (7.43) is represented by

f ′1 = 32f1e1(1− e1)(1− r1)(1− r1f1)[(γ − e1)− 2f1(2r1f1 − 1)],

r′1 = 64r1f1e1(1− e1)(1− r1)(1− r1f1)[2r1f1 − 1],

e′1 = 64r1f1e1(1− e1)(1− r1)(1− r1f1)[2r1 − 1].

(7.45)

From (7.45), one concludes that the plane f1 = 0 is the plane of equilibria;
this plane when e > γ is denoted by S1

a,1, see Fig. 7.13. The non-zero
eigenvalue along S1

a,1 is λ = 32e1(1− e1)(1− r1)(γ − e1), implying that for
0 6 r1 < 1 and e1 > γ, the plane S1

a,1 is attracting. The intersection of the
e1-axis with S1

a,1 is denoted by `e1 . System (7.45) has also another curve
of equilibria, which is defined by r1 = 0 and f1 = e1−γ

2 , denoted by Mr
1,
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r1

pa1
pr1

S1
a,1

1

γ

f1

e1

`e1

Mr
1

Figure 7.13: Dynamics of system (7.43) in the invariant plane ε1 = 0.

see Fig. 7.13. This curve of equilibria is of saddle-type with the eigenvalues
λ = ±32e1(e1−1)(e1−γ). Note that here we have recovered the information
of case 1 (i.e., r1 = ε1 = 0).

3. r1 = 0 and ε1 > 0: in this case, the dynamics (7.43) is represented by

e′1 = 0,

f ′1 = 8e1(1− e1)[(ε1 + 2)(γ(ε1 + 2f1)− 2f1e1) + 4f1(ε1 + 2f1)],

ε′1 = 32e1ε1(1− e1)(ε1 + 2f1).

(7.46)

By setting ε1 = 0, we again recover the line `e1 , and the curve Mr
1. The

Jacobian matrix at any point in `e1 has two eigenvalues: one is zero and the
other one is λ = 32e1(1− e1)(γ − e1), implying that the line `e1 is attracting
when e > γ, see Fig. 7.14. The existence of two zero eigenvalues in this case
implies that there exists a two-dimensional center manifold, namely, Ca,1.

Remark 7.32. In chart K1, the most important role is played by the two-
dimensional center manifold Ca,1, see Lemma 7.34. In fact, this is the contin-
uation of the critical manifold S1

a,1.

We summarize the analysis performed in this subsection in the following lemmas.

Lemma 7.33. System (7.43) has the following manifolds of equilibria:

1. The plane S1
1,a which includes the line `e1 , and
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1
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1

Figure 7.14: Dynamics of system (7.43) in the invariant plane r1 = 0.

2. Mr
1 =

{
(f1, r1, e1, ε1) | f1 = e1−γ

2 , r1 = 0, e1 ∈ [γ, 1], ε1 = 0
}

.

Lemma 7.34. The following properties hold for system (7.43):

1. The linearization of (7.43) along S1
1,ε has three zero eigenvalues, and the

nonzero eigenvalue λ = 32e1(1− e1)(1− r1)(γ − e1), which for r1 = 0 corre-
sponds to the flow in the invariant plane (f1, e1).

2. There exists a three-dimensional center manifold Wc
a,1 of the line `e1 which

contains the plane of equilibria S1
a,1 and the two-dimensional center manifold

Ca,1. The manifoldWc
a,1 is attracting, and in the set D1, defined by

D1 := {(f1, r1, e1, ε1) | 0 6 r1 6 δ1, , e1 ∈ I1, 0 6 ε1 6 α1} ,

is given by the graph
f1 = ha,1(r1, e1, ε1),

where I1 is a suitable interval, and α1, δ1 > 0 are sufficiently small. For the
particular point pa,1 ∈ `e1 where e0 ∈ I1, the function ha,1(r1, e

0, ε1) has the
expansion

ha,1(r1, e
0, ε1) =

γ

2(e0 − γ)
ε1 +O(ε2

1). (7.47)

3. There exists K > 0 such that the orbits that are near the center manifoldWc
a,1

are attracted toWc
a,1 by an exponential rate of order O(exp(−Kt1)).

Proof. A straightforward calculation shows the first claim. Owing to the fact that the
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linearization of (7.43) along S1
1,ε has three zero eigenvalues, there exists [14, 60]

an attracting three-dimensional center manifoldWc
a,1 at the point pa,1. To derive

equation (7.47), we first expand f1 to the first oder of variables r1, e1 and ε1, and
then plug it into (7.43). By comparing the coefficients of r1, e1 and ε1, equation
(7.47) is obtained. The last claim is proven by the center manifold theory [14, 60]
applied at the point pa,1.

Remark 7.35. The attracting center manifold Wc
a,1 recovers parts of the slow

manifold S1
a,ε away form the line `1×{0}, and extends it into anO(ε) neighborhood

of it. The slow manifold S1
a,ε is obtained as a section ε = constant ofWc

a,1. In chart
K1, this center manifold is given by the graph (7.47).

Note that our goal in chart K1 is to understand the dynamics (7.43) close to
the center manifoldWc

a,1, which corresponds to a sufficiently small neighborhood
of the slow manifold S1

a,1. Assuming that δ1, α1, β1 > 0 are small constants, we
define the sections

∆in
1 := {(f1, r1, e1, ε1) | (f1, r1, e1, ε1) ∈ D1, r1 = δ1} ,

∆out
1 := {(f1, r1, e1, ε1) | (f1, r1, e1, ε1) ∈ D1, ε1 = α1} ,
Rin1 := {(f1, r1, e1, ε1) | (f1, r1, e1, ε1) ∈ D1, r1 = δ1, |f1| 6 β1} .

(7.48)

Note that by the way we have defined ∆in
1 , we in fact have ∆in

1 = Σ̄1 := Φ−1(Σ1 ×
{[0, ρ1]}) for some ρ1 > 0, see Fig. 7.12. Furthermore, the constants δ1, α1, β1 are
chosen such that Rin1 ⊂ ∆in

1 , and the intersection of the center manifoldWc
a,1 with

∆in
1 lies in Rin1 , i.e.,Wc

a,1 ∩∆in
1 ⊂ Rin1 .

Let us denote Π1 as the transition map from ∆in
1 to ∆out

1 , induced by the flow
of (7.43). In order to construct the map Π1, we reduce system (7.43) to the center
manifoldWc

a,1 and analyze the system based on the the dynamics onWc
a,1. To this

end, by substituting (7.47) into (7.43) and rescaling time, the flow of the center
manifold is given by

r′1 = −r1,

e′1 = −1

2
[O(r1) +O(r1ε1)],

ε′1 = ε1,

(7.49)

where the derivative is with respect to the new time scale, namely, t1. Now let
us consider a solution of (7.49), namely, (r1(t1), e1(t1), ε1(t1)) which satisfies the
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following conditions:

r1(0) = δ1, r1(T out) = rout1 ,

e1(0) = ein1 , e1(T out) = eout1 ,

ε1(0) = εin1 , ε1(T out) = α1.

(7.50)

From equation ε′1 = ε1 with the boundary conditions ε1(0) = εin1 and ε1(T out) = α1,
we can calculate the time that (r1(t1), e1(t1), ε1(t1)) needs to travel from ∆in

1 to
∆out

1 , which is given by
T out = ln

α1

εin1
. (7.51)

As e′1 = − 1
2 [O(r1)+O(r1ε1)] with e1(T in) = ein1 , we can estimate the time evolution

of e1(t1), which is given by

e1(t1) =
rin1
2

[
exp(−t1)− 1− t1εin1

]
+ ein1 , 0 6 t1 6 T out. (7.52)

Hence, in view of (7.51), one has

e1(T out) = eout1 :=
rin1
2

[
εin1
α1
− 1− εin1 ln

α1

εin1

]
+ ein1 . (7.53)

We summarize the analysis performed in chart K1 in the following theorem.

Theorem 7.36. For system (7.43) with sufficiently small δ1, α1, β1 and Rin1 ⊂ ∆in
1 ,

the transition map Π1 : Rin1 → ∆out
1 is well-defined and has the following properties:

1. Π1(Rin1 ) ⊂ ∆out
1 is a three-dimensional wedge-like region in ∆out

1 .

2. The transition map Π1 is given by

Π1


f1

δ1
e1

ε1

 =


ha,1( δ1α1

ε1, e
out
1 , α1) + Ψ(δ1, e1, ε1)

δ1
α1
ε1

eout1

α1

 ,

where eout1 is given in (7.53), Ψ(·) is an exponentially small function, and ha,1(·)
is of order O(ε1), due to (7.47).

We now turn to the analysis in chart K2.
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Analysis in chart K2

After substituting (7.37) into (7.34), and dividing out all the equations by the
common factor r2, the equations governing the dynamics in chart K2 are given by

f ′2 = 8e2 [γ(1 + 2f2)− 2f2e2] (1− e2)(1 + 2c2) +O(ε),

c′2 = −32c2e2(1− e2)(1 + 2f2) +O(ε),

e′2 = −16εe2(1− 2e2)(1 + 2f2)(1 + 2c2) +O(ε2),

ε′ = 0.

(7.54)

Due to the fact that r2 = ε in chart K2, we have presented (7.54) in terms of ε.
Note that since r′2 = ε′ = 0, system (7.54) is a family of three-dimensional vector
fields which are parametrized by ε. Moreover, system (7.54) is a slow-fast system in
the standard form, i.e., e2 is the slow variable, and f2 and c2 are the fast variables.
As the differentiation “prime” in (7.54) is with respect to the fast time variable,
namely τ2, by transforming it to the slow time variable we have t2 = ετ2, and hence

εḟ2 = 8e2 [γ(1 + 2f2)− 2f2e2] (1− e2)(1 + 2c2) +O(ε),

εċ2 = −32c2e2(1− e2)(1 + 2f2) +O(ε),

ė2 = −16e2(1− 2e2)(1 + 2f2)(1 + 2c2) +O(ε),

(7.55)

where the “dot” is with respect to t2. Now by setting ε = 0 in (7.54) we obtain the
corresponding layer problem

f ′2 = 8e2 [γ(1 + 2f2)− 2f2e2] (1− e2)(1 + 2c2),

c′2 = −32c2e2(1− e2)(1 + 2f2),

e′2 = 0,

(7.56)

which has the associated critical manifold c2 = 0 and f2 = γ
2(e2−γ) , denoted by

N0
2 , see Fig. 7.15. The Jacobian matrix corresponding to (7.56) along N0

2 has the
eigenvalues

λ21 = −16e2(1− e2)(e2 − γ), λ22 =
32e2

2(e2 − 1)

(e2 − γ)
. (7.57)

As is clear form (7.57), the critical manifold restricted to e2 ∈ (γ, 1) is normally
hyperbolic, and specially, is fully attracting since both of the eigenvalues are
negative. As e2 approaches γ from above, f2 develops a singularity along N0

2 . Thus,
the behavior of N0

2 as e→ γ has to be studied in chart K3. Using Fenichel theory
and the dynamics in chart K2 for ε = 0, one is able to describe the dynamics
for 0 < ε � 1 in this chart, i.e., there exists a slow manifold Nε

2 which is the
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γ

c2

e2

N0
2

f2

Figure 7.15: Fully attracting critical manifold N0
2 in purple, and the slow and fast

dynamics in chart K2.

ε-perturbation of N0
2 . We summarize the properties of the critical manifold of chart

K2 in the following lemma.

Lemma 7.37. The critical manifold

N0
2 =

{
(f2, c2, e2) | f2 =

γ

2(e2 − γ)
, c2 = 0, e2 ∈ I0

2

}
, (7.58)

is fully attracting, where I0
2 is a compact subset of the interval (γ, 1). In addition,

there exists ε0 > 0 such that for any ε ∈ (0, ε0), there exists a smooth locally invariant
attracting one-dimensional slow manifold Nε

2 , which is O(ε)-close to N0
2 , with the

slow flow
ė2 = −4e2(ε+ 2− 2e2)(ε+ 1− εf2)(ε+ 2)(1 + 2f2). (7.59)

Note that e2 is decreasing along Nε
2 , see Fig. 7.15. Now, we construct the

transition map Π2. For this, let us define the sections

∆in
2 :=

{
(f2, c2, e2, ε) | f2 ∈ [0, β2], c2 =

1

α1
, e2 ∈ I2, ε ∈ [0, α2]

}
,

∆out
2 :=

{
(f2, c2, e2, ε) | f2 = β2, c2 ∈ [0,

1

α1
], e2 ∈ I2, ε ∈ [0, α2]

}
.

where β2 = β1

α1
, α2 = δ1α1 with small δ1, and I2 is a suitable interval. Note that
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∆in
2 = κ12(∆out

1 ). Let us define the transition map from ∆in
2 to ∆out

2 as follows:

Π2 : ∆in
2 → ∆out

2 ,

(
f in2 ,

1

α1
, ein2 , ε

)
7→
(
β2, c

out
2 , eout2 , ε

)
. (7.60)

Remark 7.38. In the limit ε = 0, the map Π2 is defined by first projecting (f2, e2) ∈
∆in

2 onto N0
2 along the stable foliation, and then by following the slow flow (7.59).

We summarize the analysis performed in chart K2 in the following lemma.

Lemma 7.39. For small α1 > 0, there exists a sufficiently small α2 > 0 such that the
transition map Π2, defined in (7.60), is well-defined. Moreover, for ε = constant, Π2

is contracting with the contraction rate exp(−K/ε) for some K > 0.

Proof. The transition map Π2 : ∆in
2 → ∆out

2 is described by Fenichel theory, i.e., all
orbits starting from ∆in

2 are attracted by the slow manifold Nε
2 , with a contraction

rate exp(−K/ε) for some K > 0, and after some time they reach the section
∆out

2 .

Remark 7.40. The slow manifold Nε
2 corresponds to the perturbation of N0

2 when
ε = constant. The family of all such manifolds is denoted by N2.

Analysis in chart K3

Solutions in chart K2 which reach the section ∆out
2 must be continued in chart K3.

For this reason, we continue our analysis in chart K3. After substituting (7.38) into
(7.34), and dividing out all the equations by the common factor r3, we obtain

r′3 = r3Γ3G31,

c′3 = −c3Γ3G31 + [8r3(1− r3c3)(ε3 + 2c3)− 4c3(r3ε3 + 2− 2r3c3)]G32,

e′3 = r3 [8r3c3(1− e3)(r3ε3 + 2e3)− 4e3(r3ε3 + 2− 2e3)]G33,

ε′3 = −ε3Γ3G31,

(7.61)

where we denote

Γ3 := [γ(1− r3)(ε3 + 2)− 2e3(r3ε3 + 1− r3)] ,

G31 := (r3ε3 + 2− 2r3c3)(ε3 + 2c3)(r3ε3 + 2− 2e3)(r3ε3 + 2e3),

G32 := (r3ε3 + 1− r3)(ε3 + 2)(r3ε3 + 2− 2e3)(r3ε3 + 2e3),

G33 := (r3ε3 + 1− r3)(ε3 + 2)(r3ε3 + 2− 2r3c3)(ε3 + 2c3).

System (7.61) has three invariant subspaces, namely, r3 = 0, ε3 = 0 and their
intersection. Recall that by definition e = e3 and hence e3 ∈ [0, 1].
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Figure 7.16: Dynamics of system (7.61) in the invariant plane ε3 = 0.

1. r3 = ε3 = 0: in this case the dynamics is given by

c′3 = −32c3e3(1− e3)[2 + c3(γ − e3)],

e′3 = 0.
(7.62)

For e3 > γ, the equilibria of the system are pa3 = (r3, c3, e3, ε3) = (0, 0, e3, 0)

and pr3 = (r3, c3, e3, ε3) = (0, 2
e3−γ , e3, 0). Note that the point pa3 is attracting

for the flow in the plane (c3, e3), while the point pr3 is repelling.

Remark 7.41. When e3 → γ, the point pr3 →∞ and is not visible any more in
the chart K3, see Fig. 7.16.

2. ε3 = 0 and r3 > 0: in the invariant plane ε3 = 0, the dynamics is governed
by

r′3 = r3c3 [γ − e3]V (r3, c3, e3),

c′3 = c3 [(4r3 − 2)− c3(γ − e3)]V (r3, c3, e3),

e′3 = 2r3c3 [(2r3c3 − 1)]V (r3, c3, e3),

(7.63)

where V (r3, c3, e3) := 32e3(1 − r3)(1 − e3)(1 − r3c3). Recall that c = r3c3,
and hence V (r3, c3, e3) > 0. The equilibria of the system are the plane c3 = 0,
denoted by S2

3 , and the curve of equilibria given by c3 = 2
e3−γ , denoted by

Mr
3. The change of stability at the points in S2

3 occurs at r3 = 0.5, i.e., for
r3 < 0.5 these points are attracting, while for r3 > 0.5 are repelling. We
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denote the attracting part of S2
3 by S2

a,3. The e3-axis, which we denote by `e3 ,
is a boundary of S2

a,3, which is a line of equilibria, see Fig. 7.16.

3. r3 = 0 and ε3 > 0: In the invariant plane r3 = 0, system (7.61) is represented
by

e′3 = 0,

c′3 = −8c3e3(1− e3) [(γ(ε3 + 2)− 2e3)(ε3 + 2c3) + 4(ε3 + 2)] ,

ε′3 = −8ε3e3(1− e3) [γ(ε3 + 2)− 2e3] (ε3 + 2c3).

(7.64)

The equilibria of the system are the planes c3 = 0, and the line ε3 = 2(e3−γ)
γ ,

denoted by N0
3 . The Jacobian of (7.64) along the curve N0

3 has the eigenval-
ues

λ31 = −64e3(c3 + 1)(1− e3), λ32 = −8γε3e3(1− e3)(ε3 + 2c3), (7.65)

and hence N0
3 is fully attracting. In fact, N0

3 is exactly the critical manifold
N0

2 that we found in chart K2. In other words, N0
3 is the image of N0

2 under
the transformation κ23, defined in (7.40).

Remark 7.42. The attracting manifold N0
2 which is unbounded in chart K2,

is now bounded in chart K3. So the behavior of the critical manifold that is
not visible in chart K2 when e → γ, is now visible in chart K3. For e3 = γ,
the critical manifold N0

3 intersects the line `e3 at the non-hyperbolic point
qe3 = (e3, c3, ε3) = (γ, 0, 0).

We summarize the analysis of the invariant planes, performed in this subsection,
in the following Lemma.

Lemma 7.43. The following properties hold for system (7.61):

1. The equilibria are the plane S2
a,3 which intersects the line `e3 , and the following

two one-dimensional manifolds

Mr
3 =

{
(r3, c3, e3, ε3) | r3 = ε3 = 0, e3 ∈ (γ, 1), c3 =

2

e3 − γ

}
,

N0
3 =

{
(r3, c3, e3, ε3) | r3 = c3 = 0, e3 ∈ [γ, 1), ε3 =

2(e3 − γ)

γ

}
.

2. For e3 > γ, the equilibria of system (7.61) along N0
3 have

(a) a two-dimensional stable manifold corresponding to the negative eigenval-
ues given in (7.65).
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Figure 7.17: Dynamics of system (7.61) in the invariant plane r3 = 0. The slow
manifold N0

3 in purple, the exit point qe3 in black, and the line `e3 of equilibria in
blue.

(b) a two-dimensional center manifold corresponding to a double zero eigen-
value.

3. The linearization of the system in S2
3 has a triple zero eigenvalue, and the

eigenvalue λ = 64e3(e3 − 1)(r3 − 1)(r3 − 0.5) changes its stability at r3 = 0.5.

4. The linearization of system (7.61) at the steady states in the line `e3 has a stable
eigenvalue λ = 64e3(e3 − 1), and a triple zero eigenvalue. In addition, there
exists a three-dimensional center manifold Wc

a,ε at the point (r3, c3, e3, ε3) =

(0, 0, e3, 0) ∈ `e3 . In chart K3 close to the point e3 = γ, the center manifold
Wc
a,ε is given by the graph

c3 = r3ε3(1 +O(r3ε3)). (7.66)

Proof. The proof follows the same line of reasoning as the one of Lemma 7.34, and
are omitted for brevity.

The main goal in chart K3 is to analyze the behavior of the solutions of (7.61)
close to the exit point qe3 ∈ `e3 . Our analysis in chart K2 implies that there exists
the family of attracting slow manifolds N2. This in chart K3 is denoted by N3

which is the image of N2 under the transformation κ23, i.e. N3 = κ23(N2). In order
to know how N3 is continued close to the point qe3 , we restrict the dynamics to the
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sets

Din
3 := {(r3, c3, e3, ε3) | r3 ∈ [0, α3], e3 ∈ (γ, 1], ε3 ∈ [0, β3]} ,

Dout
3 := {(r3, c3, e3, ε3) | r3 ∈ [0, α3], e3 ∈ [0, γ), ε3 ∈ [0, β3]} ,

where α3 = α2β2 and β3 = 1
β2

, due to the transformation κ23, defined in (7.40).
Now we define the sections as follows

∆in
3 := {(r3, c3, e3, ε3) ∈ Din

3 | ε3 = β3},
∆out

3 := {(r3, c3, e3, ε3) ∈ Dout
3 | r3 = α3}.

Let us denote Π3 as the transition map from ∆in
3 to ∆out

3 , induced by the flow of
(7.61). In order to construct the map Π3, we reduce system (7.61) to its center
manifold, namely, Wc

a,3 and analyze the system based on the the dynamics on
Wc
a,3. This is done by substituting (7.66) into system (7.61), and rescaling time by

dividing out the common factor[
r3ε3 + 22r2

3ε3(1 +O(r3ε3)
]

[ε3 + 2r3ε3(1 +O(r3ε3)] . (7.67)

In doing so, the flow of the center manifold is represented by

r′3 = r3G34,

e′3 = r3(r3ε3 + 1− r3)(ε3 + 2)G35,

ε′3 = −ε3G34,

(7.68)

where we denote

G34 := [γ(1− r3)(ε3 + 2)− 2e3(r3ε3 + 1− r3)] (r3ε3 + 2− 2e3)(r3ε3 + 2e3),

G35 :=
[
8r2

3ε3(1 +O(r3ε3))(1− e3)(r3ε3 + 2e3)− 4e3(r3ε3 + 2− 2e3)
]
.

As is clear from (7.68), the planes r3 = 0 and ε3 = 0 are invariant. Setting r3 = 0

in (7.68), one obtains

e′3 = 0,

ε′3 = −4ε3e3(1− e3)[γ(ε3 + 2)− 2e3].
(7.69)

The equilibria of (7.68) are again the line `e3 and the manifold N0
3 . The Jacobian

of (7.69) along the line `e3 has the eigenvalue λ = 8e3(1− e3)(e3 − γ), implying
that `e3 is repelling for e3 > γ, while attracting for e3 < γ. Further, the manifold
N0

3 is attracting for the flow in the plane r3 = 0. The eigenvalue at the point
(r3, e3, ε3) = (0, γ, 0) ∈ `e3 is zero and hence this point is degenerate, see Fig. 7.18.
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Figure 7.18: Dynamics of system (7.68); the attracting critical manifold N0
3 in

purple, and the nilpotent point qe3 in black.

Setting ε3 = 0 in system (7.68) results in

r′3 = 8r3e3(1− e3)(1− r3)[γ − e3],

e′3 = −16r3e3(1− e3)(1− r3).
(7.70)

In the plane ε3 = 0, the line `e3 is attracting for e3 > γ while repelling for e3 < γ.

Remark 7.44. The dynamics in the invariant plane ε = 0 corresponds to the reduced
flow on S2

a in the original system.

Summarizing the analysis, we have the following lemma.

Lemma 7.45. The following properties hold for system (7.68):

1. The curve N0
3 has a one-dimensional stable manifold, and a two-dimensional

center manifold away from the point qe3 .

2. The linearization of (7.68) at the points in `e3 is given by8e3(e3 − 1)(e3 − γ) 0 0

16e3(e3 − 1) 0 0

0 0 −8e3(e3 − 1)(e3 − γ)

 ,

3. The point qe3 is nilpotent.

As we already mentioned, our goal in chart K3 is to describe system (7.61)
close to the line `e3 , and especially at the point qe3 . To this end, we have defined
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the map Π3 : ∆in
3 → ∆out

3 where ∆in
3 is transversal to N0

3 when e > γ, while ∆out
3

is transversal to the slow manifold in the plane ε3 = 0 when e < γ. Lemma 7.45
implies that the point qe3 is nilpotent. Thus, in order to describe the transition map
Π3 we need to blow-up the point qe3 . For such a point, a similar analysis has been
carried out in [86], in view of which we have the following lemma.

Lemma 7.46. Assume that R̂3 ⊂ ∆in
3 is a small rectangle centered at the intersection

point N0
3 ∩∆in

3 . For sufficiently small α3, the transition map Π3 : R̂3 → ∆out
3 induced

by the flow of (7.68) is well-defined and satisfies the following properties:

1. The continuation ofN3 by the flow intersects the section ∆out
3 in a curve, denoted

by σout3 .

2. Restricted to the lines r3 = constant in R̂3, the map is contracting with the rate
exp(−K/r3) for some K > 0.

3. The image Π3(R̂3) is an exponentially thin wedge-like containing the curve σout3 .

The map Π3 describes the transition from ∆in
3 to ∆out

3 . If we set α3 = δ2 (recall
the definition of Σ2 from (7.29)) we actually have ∆out

3 = Σ̄2 := Φ−1(Σ2×{[0, ρ2]})
for some ρ2 > 0, see Fig. 7.12.

Properties of the blow-up of the non-hyperbolic line `1 × {0} and proof of
Lemma 7.27

In the above subsections, we have presented the detailed analysis of the blow-
up of the non-hyperbolic line `1 × {0} in charts K1,K2 and K3, which has been
summarized in Fig. 7.19. A summary of the analysis, carried out in such charts, are
as follows.

First of all, the critical manifolds S1
a (i.e., f = 0) and S2

a (i.e., c = 0) intersect in
the non-hyperbolic line `1, which is replaced by the orange cylinder, see Figs. 7.12
and 7.19. Note that in Fig. 7.19, the orbits ω̄5 and ω̄7 in the blown-up space
correspond, respectively, to the orbits ω5 and ω7 in the original space. The point at
which ω̄5 reaches the cylinder is denoted by q̄e, and the point at which ω̄7 starts
is denoted by q̄e. Starting from the section Σ̄1, the trajectory follows the orbit ω̄5

on f̄ = 0 until it reaches the point q̄e. Our analysis in chart K1 (Lemma 7.34)
shows that there exists a three-dimensional attracting center manifold which is the
continuation of the family of orbits (indexed by ε) of the attracting slow manifold
S1
a,ε. This allows us to connect the family of solutions in S1

a,ε into the attracting
critical manifold Nε

2 in chart K2 which is inside the cylinder (see the thick orange
manifold from q̄e to N̄ 0 in Fig. 7.19). Our analysis in chart K2 (Lemma 7.58)
shows that the slow manifold Nε

2 is normally hyperbolic and stable. Therefore,
the family S1

a,ε is exponentially attracted by the slow manifold Nε
2 . Next, our

analysis in chart K3 (Lemma 7.45, and Fig. 7.18) shows that the unbounded critical
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Figure 7.19: Geometry of the blown-up space and the singular cycle close to the
non-hyperbolic line `1×{0}, which is blown-up to the orange cylinder. The reduced
flows in S̄1

a and S̄1
a are illustrated in blue. The thick orange manifold inside the

cylinder corresponds to the three-dimensional center manifold in chart K1. The
attracting one-dimensional critical manifold in chart K2 is shown in purple.

manifold Nε
2 (see Figs. 7.15, 7.18) limits at the point qe3 , which is exactly the

point q̄e in Fig. 7.19. Moreover, we have proven that the point qe3 is degenerate,
i.e., the linearization of the dynamics at qe3 has a nonzero (stable) eigenvalue
and a triple zero eigenvalue (Lemma 7.45), which allows us to construct a three-
dimensional center manifold at the point qe3 . Now, by following the family Nε

2

along such a center manifold, we conclude (Lemma 7.46) that the continuation
of Nε

2 for a sufficiently small ε > 0 intersects the section Σ̄2 in a point, namely,
(α3, c3(ε3), e3(ε3), ε3) ∈ Σ̄2, for some ε3 ∈ [0, β3], which is exponentially close to
the slow manifold S2

a,ε. Note that the point (α3, c3(ε3), e3(ε3), ε3) converges to
the point q2 := Σ2 ∩ ω7 as ε3 → 0. All these analyses in charts K1,K2, and K3

demonstrate that the transition map π̄1 : Σ̄1 → Σ̄2 is well-defined for ε ∈ [0, ε0]

and is smooth for ε ∈ (0, ε0], for some ε0 > 0.
We are now ready to prove Lemma 7.27.
Proof of Lemma 7.27. The proof is carried out by constructing the transition
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map π1 : Σ1 → Σ2 for ε > 0 as

π1 = Φ ◦ π̄1 ◦ Φ−1, (7.71)

where Φ is given by (7.35), Φ−1 is the corresponding blown-up transformation,
and π̄1 : Σ̄1 → Σ̄2 is a transition map which can equivalently be regarded as

π̄1(Σ̄1) = Π3 ◦ κ23 ◦Π2 ◦ κ12 ◦Π1(Σ̄1) ⊂ Σ̄2 (7.72)

The proof is based on the corresponding transition map π̄1 : Σ̄1 → Σ̄2 in
the blown-up space and interpreting the result for fixed ε ∈ [0, ε0], for some
ε0 > 0. Recall that the transition π̄1 : Σ̄1 → Σ̄2 is equivalent to the transition
map π1 : Σ1 → Σ2 in the sense that it has the same properties. Furthermore, via
the matching maps κij defined in Lemma 7.31, we have appropriately identified
the relevant sections in each of the charts, allowing us to follow the flow of the
blown-up vector field along the three charts.

As summarized above, the transition map π̄1 : Σ̄1 → Σ̄2 is well-defined for
ε ∈ [0, ε0] and is smooth for ε ∈ (0, ε0], for some ε0 > 0. It remains to prove that π̄1

is a contraction. First of all note that in chart K1, the map Π1 is described by an
attracting three-dimensional center manifold, which is contracting in the direction
of f1. Next, the map Π2 is a strong contraction in both directions of (f2, c2), as
shown in Fig. 7.15; this is due to the existence of a fully attracting one-dimensional
slow manifold. This continuation persists (Lemma 7.46) during the passage near
the point qe3 in chart K3 until it reaches the section Σ̄2. As the contraction persists
from Σ̄1 to Σ̄2, one concludes that the map π̄1 is a contraction. This completes the
proof.

7.4.2 Blow-up of the non-hyperbolic line `2 × {0}

In this subsection, for the sake of brevity, we summarize the blow-up of the non-
hyperbolic line `2 × {0}, which is similar to the blow-up of the non-hyperbolic line
`1 × {0}, and give a sketch of the proof of Lemma 7.28. To this end, we transform
the non-hyperbolic line of steady states `2 × {0} by

f = f̃ , c = rc̃, ε = rε̃, e = rẽ, (7.73)
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Figure 7.20: Geometry of the blown-up space and the singular cycle close to the
non-hyperbolic line `2×{0}, which is blown-up to the orange cylinder. The reduced
flows in S̄2

a and S̄3
a are shown in blue. The thick orange manifold inside the cylinder

corresponds to the three-dimensional center manifold in chart K̃1. The attracting
one-dimensional critical manifold in chart K̃2 is illustrated in purple.

where c̃2 + ẽ2 + ε̃2 = 1, f̄ ∈ [0, 1], and r > 0. Moreover, we define three charts
K̃1, K̃2 and K̃3 as follows:

K̃1 : f = f̃1, c = r̃1c̃1, ε = r̃1ε̃1, e = r̃1,

K̃2 : f = f̃2, c = r̃2c̃2, ε = r̃2, e = r̃2ẽ2,

K̃3 : f = f̃3, c = r̃3, ε = r̃3ε̃3, e = r̃3ẽ3.

Recall that the goal of Lemma 7.28 is to describe the map π2 : Σ2 → Σ3 in the
original space. In this subsection, we present a sketch of the proof of Lemma 7.28
by constructing the corresponding map π̄2 : Σ̄2 → Σ̄3 in the blown-up space. We
have summarized the analysis of the blow-up of the non-hyperbolic line `2 × {0} in
Fig. 7.20.
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First of all, note that the non-hyperbolic line `2, which is the intersection of
the critical manifolds S2

a (i.e., c = 0) and S3
a (i.e., e = 0), has been blown-up to

the orange cylinder. We have illustrated the slow flows in the planes c = 0 and
e = 0 in blue. The orbits ω̄7 and ω̄1 which are in the blown-up space correspond,
respectively, to the orbits ω7 and ω1 in the original space, compare Figs. 7.20 and
7.11. As is shown in Fig. 7.20, the intersection of the cylinder with ω̄7 and ω̄1 is
denoted by p̃f and p̃f , respectively.

An analysis in chart K̃1 proves that there exists a three-dimensional attracting
center manifold at the point p̃f , which is the continuation of the family of the
attracting slow manifold S2

a,ε. In view of such a center manifold, the family of
the slow manifold S2

a,ε enters the chart K̃2. In chart K̃2 it is proven that there
exists a one-dimensional slow manifold Ñ 0, which fully attracts the interior of the
cylinder. An analysis in chart K̃3 shows that the critical manifold Ñ 0 limits at the
point p̃f , see Fig. 7.20. It is proven that p̃f is a degenerate point, and hence, we
can construct a three-dimensional attracting center manifold. Thus, Ñ 0 follows
this center manifold and then intersects the section Σ3 in a point (f(ε), δ3, e(ε)),
for some ε, δ3 > 0 (see section Σ3, defined in (7.29)), which is exponentially close
to the slow manifold S3

a,ε and converges to the point q3 := Σ3 ∩ ω1 as ε → 0.
This proves that the transition map π̄2 : Σ̄2 → Σ̄3 and hence π2 : Σ2 → Σ3 are
well-defined for ε ∈ [0, ε0] and smooth for ε ∈ (0, ε0], for some ε0 > 0. The proof of
contraction of the transition map π2 follows the same line of reasoning as that of
the map π1.

7.5 Range of parameter γ in Theorem 7.26

Although in our simulations in Figs. 7.1 and 7.2 we have fixed the parameter
γ = 0.08, and based on this parameter value we have constructed the singular cycle
Γ0, illustrated in Fig. 7.11, in this section we show that the behavior of the singular
cycle Γ0 will remain qualitatively the same in a neighborhood of γ = 0.08, and
hence Theorem 7.26 holds for these values as well.

As is shown in Fig. 7.11, ω2 and ω4 are described by the layer problem (7.8),
whose behavior highly depends on the parameter γ. If the layer problem starts from
a point in S3

a ∩ `e, namely pγ := (fγ ,
1
2 , 0) ∈ `e when 1

2 < fγ < 1, the parameter
γ can influence the fast dynamics to arrive at a point either in S1

a, S2
a, S3

a, S4
a,

S5
a or S6

a. Moreover, if the layer problem starts from a point in S6
a ∩ `e, namely

pγ := (fγ , 1
2 , 1) ∈ `e when 0 < fγ < 1

2 , the parameter γ can influence the fast
dynamics to arrive at a point either in S1

a or S2
a. In this section, our aim is to find a

certain range for γ such that the qualitative behavior of the fast dynamics remains
the same as ω2 and ω4, shown in Fig. 7.11, i.e., the fast dynamics moves directly
from pγ to a point in S6

a, and from pγ to a point in S1
a, while does not intersect with
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the other planes.
In view of equations (7.25), it is shown that the slow flow, started from the point

pf = ( 1
2 , 0, 0), arrives at the point p1 = (

1+
√
γ

2 , 1
2 , 0). In order to find a certain range

for γ, as the layer problem (7.8) is linear, we can find the closed form of solutions.
In view of the boundary conditions in S3

a and S6
a, we get a system of transcendental

equations, whose solution is a point at which ω2 intersects with S6
a. However, due to

the fact that it is impossible to solve such a system of equations analytically, we have
used numerical methods to calculate the solution of the transcendental equations.
Computed numerically, for any γ ∈ R1 ≈ (0.0561, 0.1177), the qualitative behavior
of the fast dynamics is the same as ω2, illustrated in Fig. 7.11. Moreover, for any
γ ∈ R1, the qualitative behavior of the fast dynamics is the same as ω4 as well,
illustrated in Fig. 7.11. All these imply that Theorem 7.26 is valid for all γ ∈ R1.
Analogously, one can find a range for the case that γ is close to 1, see Remark 7.3.

7.6 Conclusions

Numerical simulations show that the Frz system, introduced in [73], has oscillatory
behavior in certain parameter regimes, and in particular, when Michaelis-Menten
constants of the system are sufficiently small. After unifying such constants by a
parameter ε, we have analyzed the dynamics of this biochemical oscillator in the
limit of ε, and analytically proven that for sufficiently small ε, there exists a strongly
attracting limit cycle.

Our approach has been based on the geometric singular perturbation analysis
and the blow-up method. Geometric singular perturbation theory and geometric
desingularization by several blow-ups allow us to fully understand the structure of
the limit cycle of the Frz as well as the time scales along it, for sufficiently small
ε. From the multiple-time-scale nature of the problem, it turns out that the Frz
system is indeed a relaxation oscillator, although a global separation into slow and
fast variables is not explicitly given in the model. We emphasize that the approach
and tools presented in this chapter, i.e. geometric singular perturbation theory and
the blow-up method, are not limited to the analysis of system (7.1); these tools can
be applied to similar systems, such as [94] whose parameters have the property of
zero-order ultrasensitivity.





8
Conclusions and future research

The thesis has been concerned with modeling, analysis, and control of biological
oscillators. Chapter 1 has presented a brief background on the problems that have
been studied in this book. Chapter 2 has reviewed some concepts and tools, used in
next chapters. The main results have been presented in Chapters 3 - 7. The present
chapter reflects on such results, and points out some potential directions for future
research.

8.1 Conclusions

GENERALLY, the main aim of this thesis has been to show that mathematical
models along with tools from dynamical systems and control theory are useful

for investigating a large number of topics in biological sciences. A mathematical
model, which is built based on the underlying biology, is a nice platform for in
silico experimentation. In addition, such a model can help us to better understand
the regulatory processes between one biological component and another one, and
also how variation in one component affects the variation in another. Further, it
can reveal some aspects of the corresponding biological system that might not be
observable experimentally.

Part I of this thesis has been devoted to modeling, analysis, and control of
endocrine systems, and Part II has been allocated to the mathematical analysis
of a biochemical oscillator model. Here we summarize the results, presented in
Chapters 3 - 7.



8

152 8. Conclusions and future research

8.1.1 Conclusions of Part I

Chapters 3, 4, and 5 have studied three mathematical models of endocrine regula-
tion. Although such second- and third-order models cannot “fully” describe the real
process of endocrine regulation, these models are still insightful for understanding
the basic control mechanisms underlying endocrine regulation; such models can
be used in biomedical engineering, e.g., to develop optimal therapies of endocrine
dysfunctions. Conclusions of each chapter are given as follows.

In Chapter 3, we have developed a second-order impulsive differential equation
model of cortisol’s diurnal patterns by taking the release of cortisol as a part of
an impulsive control feedback system. Further, by maintaining the blood cortisol
levels within a specific circadian range, we have established an analytical approach
along with an algorithm to identify the number, timing, and amplitude of secretory
events. Employing our approach to various examples, we have shown that the
obtained cortisol levels are in line with the known physiology of cortisol secretion.

Inspired by the intermittent controller proposed in Chapter 3, one can design
such controllers to improve the battery life of the brain implant in brain-machine
interface design, and reduce the number of surgeries required for changing the
battery of the implant controller [34]. In addition, this type of bio-inspired pulse
controller can potentially be used to control major depression, addiction, and
post-traumatic stress disorder. We emphasize that the potential applications of
the intermittent controllers go beyond the neuroendocrine and mental disorders
presented here, and potentially can be used for some other disorders which arise in
neuroscience.

In Chapter 4, we have studied a new model of endocrine regulation, derived
from the classical Goodwin’s oscillator yet has an additional nonlinear negative
feedback. In this model, the two feedback loops can be described by different
nonlinearities, i.e., they are not restricted to be Hill functions. In contrast to the
existing works that are mainly confined to numerical analysis or presenting local
stability properties and Hopf bifurcation analysis, we have established both local
and global properties of the proposed model such as the oscillatory behavior of
almost all its solutions. It should be noticed that the potential applications of the
model introduced in Chapter 4 are not limited to endocrine regulation; similar
models with multiple feedback loops have been reported to describe the dynamics
of some metabolic pathways [43, 107, 126].

In Chapter 5, we have extended the recently proposed impulsive Goodwin’s
model by introducing an additional affine feedback. In contrast to the model
studied in [15], the dynamics between two consecutive pulses is described by a
non-Metzler matrix, and hence the system may leave the positive orthant and
produce infeasible solutions. Nevertheless, we show that, under some conditions
on the parameters of the affine feedback, the results of [15] still hold, i.e., there
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exists a positive and unique 1-cycle solution to the extended system.

8.1.2 Conclusions of Part II

Part II of this thesis has been concerned with the analysis of a biochemical oscillator
model (the Frz system), describing the developmental stage of myxobacteria. This
biochemical oscillator is proposed in [73] as the control mechanism of motion
reversals of myxobacteria, a type of soil bacteria. In Chapters 6 and 7, we have
given a rigorous and detailed analysis of the claims made in [73], and of our
observations from numerical simulations. Our approach in Chapters 6 and 7 has
been based on regular perturbation theory and geometric singular perturbation
theory, respectively. The conclusions of each chapter are given as follows.

In Chapter 6, We have studied the Frz system from a regular-perturbation
perspective. With the results of this chapter, we have formalized and refined the
claims made in [73]. Particularly, after unifying all the Michaels-Menten constants
of the model by a parameter ε, we have given an estimate of such a parameter
for which almost all trajectories of the biochemical oscillator indeed converge to a
finite number of periodic solutions.

Although the coexistence among stable limit cycles has been reported for a
number of models for cellular oscillatory processes (see e.g. [19]), such a coexis-
tence among multiple stable rhythms has not yet been observed experimentally1 in
a biological context. Nevertheless, having a mathematical model, the convergence
of solutions to a finite number of periodic solutions can be investigated by tools
from dynamical systems theory, and in particular, bifurcation theory. Thus, we con-
clude that mathematical models along with tools from dynamical systems indeed
complement experiments. We emphasize that the presented approach in Chapter
6 is not confined to the specific oscillator that is studied there, and that the ideas
provided there can be applied to many other oscillatory systems, such as [88, 94].

In Chapter 7, we have analyzed the dynamics of the Frz system in the limit
of ε, corresponding to the small Michaels-Menten constants of the model. We
have proven that for sufficiently small ε > 0, there exists a strongly attracting
limit cycle for the system. Our approach has been based on a detailed geometric
analysis of an auxiliary system, being the polynomial form of the original system.
To prove the main result, we have used geometric singular perturbation theory
and the blow-up method. One conclusion of this chapter is that geometric singular
perturbation theory along with the blow-up method is a powerful tool for the
analysis of multiple-time-scale oscillators, even for those systems which are not in
the standard from.

1The author would like to thank Prof. Albert Goldbeter (Université Libre de Bruxelles) for motivating
this part.
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8.2 Directions for future research

The following subsections provides some directions for further research of the
problems that have been studied in Parts I and II.

8.2.1 Potential research directions for Part I

The second-order mathematical model proposed in Chapter 3 is a minimal model,
describing the pituitary-adrenal system. A more complete model should also include
the interactions from the hypothalamus as well as the effects of the exogenous
factors such as sleep, stress, and meals [7].

In Chapter 3, we have assumed that the infusion and clearance rates are
constant. However, these parameters can be considered such that they change
after every jump. In other words, it might be the case that after every jump either
the infusion rate changes while the clearance rate does not change or vice versa,
or both of them change simultaneously. In all such cases, the problem can be
formulated as a switched linear system, and hence investigated by the tools and
theories developed for switched systems.

The model presented in Chapter 4 is the first step in modeling as the transport
delays among hormones, discontinuities and stochastic noises are not taken into
account. A more complete model of endocrine regulation with several negative
feedback loops should consider such effects.

As we discussed in Chapter 4, the slop restriction on the additional nonlinear
feedback is only a sufficient condition for the convergence of solutions to periodic
orbits. One may relax such a restriction, and derive necessary and sufficient condi-
tions for the solutions’ convergence to periodic orbits. Moreover, our observations
from numerical solutions show that (almost) all solutions of both the Goodwin’s
model and its extension converge to a unique limit cycle, which is another open
problem that can be investigated.

In Chapter 5, the additional feedback is described by an affine function. As
discussed in [35], such a feedback can be described by a quadratic or cubic function;
note that in these two cases the dynamics between two consecutive pulses is not
linear anymore, posing some mathematical challenges. Another possibility to
improve the model, presented in Chapter 5, is to take into account the transport
delays among hormones.

8.2.2 Potential research directions for Part II

As discussed in Chapter 6, when a cell collides with other cells, a C-signal is
produced which influences the coordination of motion of such a cell. In the model
studied in Part II, the C-signal is assumed to be constant, i.e. kmax

a ≡ constant.
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A more interesting and complicated case that can be investigated is that such an
input signal is not constant but a square pulse such as [73]

kmax
a = k1 + k2 (H(t− t0)−H(t− t0 −∆t)) ,

where k1 and k2 are suitable constants, H(t) is a Heaviside function creating a
square pulse of unit amplitude, t0 is the beginning of the signaling pulse, and ∆t is
its duration.

In Chapter 7, we have proven that the limit cycle is locally unique. The geometric
method could be pushed to analyze the “global” uniqueness of the limit cycle which
is clearly of great interest from both the mathematical and biological point of
view. This requires a more global analysis of the singular flows, and in particular,
connecting orbits between the critical manifolds Si (i = 1, 2, ..., 6), by orbits of the
layer problem.
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of Clinical Endocrinology & Metabolism, 86(7):2909–2922, 2001.

[148] D. Terman and D. Wang. Global competition and local cooperation in a
network of neural oscillators. Physica D: Nonlinear Phenomena, 81(1-2):
148–176, 1995.

[149] R. Thaxter. Contributions from the cryptogamic laboratory of Harvard
University. XVI-II. on the Myxobacteriaceae, a new order of Schizomycetes.
Botanical Gazette, 14:389–406, 1892.

[150] C.D. Thron. The secant condition for instability in biochemical feedback
control. I. the role of cooperativity and saturability. Bull. Math. Biol., 53(3):
383–401, 1991.

[151] E.A. Tomberg and V.A. Yakubovich. Conditions for auto-oscillations in
nonlinear systems. Siberian Math. J., 30(4):641–653, 1989.



BIBLIOGRAPHY 169

[152] B. van der Pol and J. van der Mark. LXXII. the heartbeat considered as a
relaxation oscillation, and an electrical model of the heart. The London,
Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 6(38):
763–775, 1928.

[153] M.L. Vance, D.L. Kaiser, W.S. Evans, R. Furlanetto, W. Vale, J. Rivier, and
M.O. Thorner. Pulsatile growth hormone secretion in normal man during
a continuous 24-hour infusion of human growth hormone releasing factor
(1-40). evidence for intermittent somatostatin secretion. Journal of Clinical
Investigation, 75(5):1584, 1985.

[154] J.D. Veldhuis. Recent insights into neuroendocrine mechanisms of aging of
the human male hypothalamic-pituitary-gonadal axis. J. Andrology, 20(1):
1–18, 1999.

[155] J.D. Veldhuis. Pulsatile hormone secretion: mechanisms, significance and
evaluation. In Ultradian Rhythms from Molecules to Mind, pages 229–248.
Springer, 2008.

[156] J.D. Veldhuis, A. Iranmanesh, G. Lizarralde, and M.L. Johnson. Amplitude
modulation of a burstlike mode of cortisol secretion subserves the circadian
glucocorticoid rhythm. American Journal of Physiology-Endocrinology And
Metabolism, 257(1):E6–E14, 1989.

[157] J.D. Veldhuis, D.M. Keenan, and S.M. Pincus. Motivations and methods for
analyzing pulsatile hormone secretion. Endocrine reviews, 29(7):823–864,
2008.

[158] J.D. Veldhuis, D.M. Keenan, P.Y. Liu, A. Iranmanesh, P.Y. Takahashi, and A.X.
Nehra. The aging male hypothalamic–pituitary–gonadal axis: Pulsatility and
feedback. Molecular and Cellular Endocrinology, 299(1):14–22, 2009.

[159] G.J. Velicer and M. Vos. Sociobiology of the myxobacteria. Annual review of
microbiology, 63:599–623, 2009.

[160] A. Vidal, Q. Zhang, C. Médigue, S. Fabre, and F. Clément. Dynpeak: An
algorithm for pulse detection and frequency analysis in hormonal time series.
PloS one, 7(7):e39001, 2012.

[161] F. Vinther, M. Andersen, and J.T. Ottesen. The minimal model of the
hypothalamic–pituitary–adrenal axis. Journal of mathematical biology, 63
(4):663–690, 2011.

[162] D.J. Vis, J.A. Westerhuis, H.C.J. Hoefsloot, H. Pijl, F. Roelfsema, J. van der
Greef, and A.K. Smilde. Endocrine pulse identification using penalized



170 BIBLIOGRAPHY

methods and a minimum set of assumptions. American Journal of Physiology-
Endocrinology And Metabolism, 298(2):E146–E155, 2009.

[163] J.J. Walker, J.R. Terry, and S.L. Lightman. Origin of ultradian pulsatility in
the hypothalamic–pituitary–adrenal axis. Proceedings of the Royal Society of
London B: Biological Sciences, 277(1688):1627–1633, 2010.

[164] J.J. Walker, J.R. Terry, K. Tsaneva-Atanasova, S.P. Armstrong, C.A. McArdle,
and S.L. Lightman. Encoding and decoding mechanisms of pulsatile hormone
secretion. Journal of neuroendocrinology, 22(12):1226–1238, 2010.

[165] J.J. Walker, F. Spiga, E. Waite, Z. Zhao, Y. Kershaw, J.R. Terry, and S.L.
Lightman. The origin of glucocorticoid hormone oscillations. PLoS biology,
10(6):e1001341, 2012.

[166] N. Wiener. Cybernetics: Control and communication in the animal and the
machine. Wiley New York, 1948.

[167] S. Wiggins. Introduction to applied nonlinear dynamical systems and chaos,
volume 2. Springer Science & Business Media, 2003.

[168] A.T. Winfree. Biological rhythms and the behavior of populations of coupled
oscillators. Journal of Theoretical Biology, 16(1):15–42, 1967.

[169] A.T. Winfree. The Geometry of Biological Time, volume 12. Springer Science
& Business Media, 2001.

[170] V.A. Yakubovich. Frequency-domain criteria for oscillation in nonlinear
systems with one stationary nonlinear component. Siberian Math. J., 14(5):
768–788, 1973.

[171] E.A. Young, J. Abelson, and S.L. L.ightman. Cortisol pulsatility and its role in
stress regulation and health. Frontiers in neuroendocrinology, 25(2):69–76,
2004.

[172] E.A. Young, S.C. Ribeiro, and W. Ye. Sex differences in acth pulsatility
following metyrapone blockade in patients with major depression. Psy-
choneuroendocrinology, 32(5):503–507, 2007.

[173] Z.T. Zhusubaliyev and E. Mosekilde. Bifurcations And Chaos In Piecewise-
Smooth Dynamical Systems: Applications to Power Converters, Relay and Pulse-
Width Modulated Control Systems, and Human Decision-Making Behavior,
volume 44. World Scientific, 2003.



Summary

This book is devoted to the study of rhythms, so-called “oscillators”. In particular,
it is concerned with modeling, analysis, and control of biological oscillators. It is
divided into two parts, where Part I is devoted to the application of control theory
to endocrinology, and Part II is allocated to the application of dynamical systems to
microbiology.

Part I develops three mathematical models of endocrine regulation. The first
model, which is a second-order impulsive differential equation, describes the
cortisol’s diurnal patterns. Through an analytical approach, we design an impulsive
controller to identify the timing and amplitude of secretory events, while the blood
cortisol levels are restricted to a specific circadian range. By proposing an algorithm
and employing it into various examples, we show that the achieved cortisol levels
lead to the circadian and ultradian rhythms, which are in line with the known
physiology of cortisol secretion.

The second model, which is a third-order ordinary differential equation, gener-
ally describes the control mechanisms in the hypothalamic-pituitary axes, controlled
by the brain. For this model, which is an extension of the conventional Goodwin’s
oscillator with an additional nonlinear feedback, we establish the relationship
between its local behavior at the equilibrium point and its global behavior, i.e., the
convergence of solutions to periodic orbits.

The last model, which is a third-order impulsive differential equation, describes
the pulsatile secretion of the hypothalamic-pituitary axes. This model, obtained
from an impulsive version of the Goodwin’s oscillator, has an additional affine
feedback. For this model, we present conditions for the existence, uniqueness, and
positivity of a type of periodic solution.

Part II studies a biochemical oscillator model (known as “Frzilator”), which
describes the social-behavior transition phase of myxobacteria, a kind of soil bacteria.
This part studies the Frzilator from two different perspectives, namely, regular
perturbation, and geometric singular perturbation, respectively. Using regular
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perturbation theory, we investigate parameter-robustness analysis of the Frzilator.
In particular, after identifying and unifying some small parameters of the system,
we establish the relation between its local and global behavior at the equilibrium
point. Moreover, we explicitly give certain parameter regimes in which solutions of
the system converge to a finite number of periodic orbits.

Using geometric singular perturbation theory and the blow-up method, we
analyze the dynamics of the Frzilator in the limit of small parameters of the system.
We prove that, within certain parameter regimes, there exists a strongly attracting
periodic orbit for the system. Moreover, we give the detailed description of the
structure of such an orbit as well as the timescales along it. The existence of
multiple time scales along the orbit demonstrates that the Frzilator is a relaxation
oscillator.



Samenvatting

Dit boek is toegewijd aan de studie van ritmes, zogenaamde “oscillatoren”. In het
bijzonder richt dit proefschrift zich op het modeleren, analyseren en reguleren
van biologische oscillatoren. Er zijn twee delen: het Deel I richt zich op het
toeppassen van regeltechniek op endocrinologie en Deel II focust op het toepassen
van dynamische systemen op microbiologie.

In Deel I worden drie wiskundige modellen van de endocriene regulering ont-
wikkeld. Het eerste model is een tweede orde impulsieve differentiaalvergelijking
die de dagelijkse patronen van cortisol beschrijft. Met een analytische methode
wordt een impulsieve regelaar ontworpen voor de tijdsbepaling en amplitude van
hormoonafscheidingen waarbij de cortisol gehaltes in het bloed binnen een speci-
fiek circadiaans bereik worden gehouden. Door het voorgestelde algoritme toe te
passen op verschillende voorbeelden tonen we aan dat de door het model gegene-
reerde cortisol gehaltes in het bloed circadiaanse en ultradiaanse ritmes vertonen
die in lijn zijn met de bekende fysiologie van cortisol afscheiding in het lichaam.

Het tweede model is een derde orde gewone differentiaalvergelijking dat, door
de toevoeging van een extra niet-lineaire terugkoppeling een uitbreiding is van
de conventionele Goodwin oscillator. Het model beschrijft in het algemeen de
regelmechanismen in de hypothalamus-hypofyse-bijnier as die wordt aangestuurd
door het menselijke brein. We bepalen de relatie tussen de lokale dynamica rondom
het evenwichtspunt en het globale dynamische gedrag, i.e., de convergentie van de
oplossingen naar een periodieke baan.

Het laatste model is een derde orde impulsieve differentiaalvergelijking die de
pulserende hormoonafgiftes van de hypothalamus-hypofyse-bijnier-as beschrijft.
Dit model, dat is afgeleid van een impulsieve versie van een Goodwin’s oscillator,
heeft een additionele lineaire terugkoppeling. Voor dit model presenteren we
condities voor existentie, uniciteit en positiviteit van een type periodieke oplossing.

Deel II bestudeert een biochemische oscillator model (bekend als “Frzilator”),
die transitie fases in het sociale gedrag van myxobacteriën, een soort bodem-
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bacteriën, beschrijft. Dit deel bestudeert de Frzilator vanuit twee perspectieven:
reguliere perturbatietheorie en geometrische singuliere perturbatie. Door gebruik
te maken van reguliere perturbatie theorie bestuderen we de robuustheid van de
parameters in de Frzilator. In het bijzonder, na het identificeren en verenigen van
kleine parameters in het systeem, beschrijven we de relatie tussen het lokale en
globale gedrag bij het evenwichtstoestand. Bovendien geven we een expliciete be-
reik van parameter waarden waarvoor de oplossingen van het systeem convergeren
naar een eindig aantal periodieke banen.

Door gebruik te maken van singuliere perturbatie theorie en de blow-up me-
thode analyseren we de dynamica van het Frzilator model in de limiet van kleine
parameter waarden in het systeem. We bewijzen dat, voor bepaalde parameter
waarden, er een sterk aantrekkende periodieke baan bestaat voor het systeem.
Bovendien geven we een gedetailleerde beschrijving van de structuur van een der-
gelijke baan en de tijdschalen erlangs. Het bestaan van meerdere tijdschalen langs
de baan van de oplossingen demonstreert dat de Frzilator een relaxatie-oscillator
is.
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