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Coordinating technician allocation and maintenance routing for offshore wind
farms

Albert H. Schrotenboer∗, Michiel A. J. uit het Broek, Bolor Jargalsaikhan, Kees Jan Roodbergen

Department of Operations, Faculty of Economics and Business, University of Groningen

Abstract

A maintenance activity at offshore wind farms requires a combination of technicians with different skills. At an

operational level, it is important to fully utilize and coordinate technicians in order to increase efficiency of the

short-term maintenance planning. In this paper, we investigate sharing of technicians between wind farms over

multiple periods, while determining per period vessel routes for delivering and picking up technicians. The prob-

lem can be considered as a novel variant of the multi-period multi-commodity pick up and delivery problem. We

develop an adaptive large neighborhood search heuristic which achieves high quality, and often optimal, solutions

on benchmark instances from the literature. The heuristic is used to explore the benefits of different sharing poli-

cies. By sharing technicians, both the flexibility of the daily planning is improved and the expected maintenance

costs are reduced. In addition, the increased flexibility results in fewer vessel trips and increases the decision

maker’s ability to cope with extreme scenarios encountered in the short-term maintenance planning.

Keywords: Maintenance Routing, Resource Sharing, Offshore Wind, Adaptive Large Neighborhood Search,

Pickup and Delivery

1. Introduction

Resource sharing has the potential to improve the efficiency of the overall supply chain. To incorporate resource

sharing into a firm’s daily practice, supply chain integration is required on both a strategic and a tactical level of

supply chain management. On an operational level, supply chain integration is likely to reduce the waste of

valuable resources and to increase profitability of the business (Leuschner et al., 2013). Examples of such practice5

include inventory pooling (Berman et al., 2011; Zhong et al., 2017) and flexibly allocating workforce to multiple

sites (Bhandari et al., 2008). In this study, we analyse different policies to allocate the workforce in the context of

maintenance routing and scheduling at offshore wind farms, and their consequences on an operational level. We,

thereby, generalize existing routing and scheduling problems in this area (e.g., Dai et al. (2015), Stålhane et al.

(2015), Irawan et al. (2017)), and show that a flexible workforce policy is a natural way to improve the efficiency10

of the supply chain.
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The total number of offshore wind farms has increased significantly in the last years, and will increase even

more in the coming decades1. This results in a situation in which maintenance providers are becoming responsible

for maintaining multiple wind farms. It is clear that operating each wind farm in isolation may result in an incom-

plete utilization of the available resources, which is the main challenge of the short-term maintenance planning at15

offshore wind farms. A typical feature of this problem is the scarcity of technicians with different specialties that

restricts the flexibility, and thereby the efficiency, of the short-term maintenance planning. A maintenance activity

requires, besides required spare parts, a combination of technicians with different skills. Therefore, a coordinated

approach in which the available technicians are jointly utilized between wind farms may increase the overall ef-

ficiency of the planning, for example, by reducing idle time of technicians (Shafiee, 2015; Irawan et al., 2017).20

Such insights on an operational level offer opportunities to increase sustainability of the offshore wind sector, and

increases competitiveness with traditional energy suppliers.

Usually, technicians are assigned on a long-term basis to one of the Operating and Maintenance (O&M) bases,

from which the daily operations are coordinated. From this O&M base, the technicians are deployed to perform

maintenance activities at one or multiple wind farms. In order to improve efficiency, the maintenance provider may25

reassign technicians between O&M bases in the short-term. For example, technicians may be assigned completely

flexible on a daily basis or for multiple days to a single O&M base depending on the geographical restrictions.

Once the allocation of technicians is decided upon, the construction of a short-term maintenance planning itself

presents several challenges. Generally, the time frame of a short-term planning is a week as the maintenance

activities are heavily dependent on the weather conditions. Each maintenance activity requires an activity-specific30

set of technicians. Thus, technicians with a suitable skill set for an activity are chosen and transported to an

offshore location to perform maintenance activities. After completion of the maintenance, the set of technicians

may change to start other maintenance activities, i.e., technicians do not work in fixed teams throughout the period.

Summarizing, a set of vessel routes needs to be determined for each period that describes which technicians

are transferred to which offshore location, such that all maintenance activities are scheduled throughout the time35

horizon.

The allocation of technicians to different O&M bases classifies as tactical decision making. Embedding ve-

hicle routing problems into optimization problems of a tactical or a strategic nature are practically relevant but

challenging. Inherently, such problems are often intractable to solve exactly and, therefore, metaheuristics are of-

ten employed to provide insights on the problem. Ciancio et al. (2017) developed a heuristic solution approach for40

scheduling bus lines, and afterwards assigning crew to these lines. Technician allocation touches the field of work-

force management, of which its influence in routing problems is studied by Smilowitz et al. (2013) as well. They

study the efficiency of vehicle routing solutions in the presence of workforce management constraints, and show

that properly including workforce management conditions into the optimization slightly increases overall costs.

Many rich routing problems are found in health or home care applications. For example, Detti et al. (2017) have45

1European Wind Energy Association. Wind energy scenarios for 2030, EWEA, 2015.
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developed a hybrid heuristic combining variable neighborhood search and tabu search for a health care routing

problem with many side constraints.

In this paper, we introduce the Technician Allocation and Routing Problem for offshore wind farms (TARP).

Its goal is to jointly determine the daily allocation of differently skilled technicians to multiple O&M bases and the

accompanying daily vessel routes used to perform the maintenance activities. Daily vessel routes should depart50

and return to their corresponding O&M bases every day, assuring the pickup and delivery of technicians and

the transport of spare parts, to the offshore locations. By incorporating the technician allocation, the TARP is a

generalization of the short-term maintenance planning and routing problem at offshore wind farms, see Dai et al.

(2015); Stålhane et al. (2015); Irawan et al. (2017). In the TARP, technicians are flexibly allocated on a daily basis;

to analyze different practices at offshore wind farms, we introduce two variants of the TARP. The first variant,55

called TARP-F, allocates technicians at the beginning of the time horizon and the allocation is fixed over time. The

second variant, called TARP-G, assumes that the allocation of technicians to O&M bases is given, i.e., technicians

are not shared between O&M bases. The TARP-G serves as a benchmark to obtain insights on the impact of

technician sharing.

We develop a Two-Stage Adaptive Large Neighborhood Search (2-ALNS) heuristic to solve the TARP and its60

two variants. Our 2-ALNS achieves high quality (and often optimal) solutions on a set of benchmark instances

available in the literature for the TARP-G. Since we are the first to consider large-scale instances for the TARP and

its two variants, a set of new benchmark instances is provided. Via simulation, we provide insights on the impact

of technician sharing under the different technician allocation policies.To be specific, we varied parameters of the

geographical layout of the wind farms, O&M bases, and the maintenance characteristics by performing a Monte-65

Carlo simulation which embeds the 2-ALNS for the estimation of the expected maintenance and routing costs. It is

shown that reassigning technicians increases the robustness of the short-term planning, i.e., extreme scenarios are

handled more efficiently. On top of reducing expected maintenance and routing costs, sharing technicians leads to

fewer vessel routes on average.

In the remainder of this section, we discuss the literature related to the TARP. Note that TARP-G and TARP-F70

are special cases of the TARP and the statements regarding the TARP hold for its two variants as well, unless

explicitly mentioned. We first consider the general pickup and delivery literature as the TARP can be modeled as

a novel variant of a Pickup and Delivery Problem (PDP). Second, we discuss articles that study related problems

on maintenance routing and scheduling at offshore wind farms. Finally, we review miscellaneous results related to

our heuristic approach and computational analysis.75

The TARP can be classified as a new variant of the multi-depot multi-period pickup and delivery problem with

multiple commodities. Pickup and delivery problems (Dumas et al., 1991; Savelsbergh and Sol, 1995) consider the

fulfillment of transportation requests by developing cost-minimizing vehicle routes. Following the classifications

by Berbeglia et al. (2007) and Parragh et al. (2008), the TARP combines a one-to-one with a many-to-many pickup

and delivery structure. The former structure emerges between nodes representing the start and completion of a80

maintenance activity; a vessel delivering technicians to a maintenance location needs to pick up the technicians
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after completion. The latter structure, many-to-many pickup and delivery, is present between nodes representing

different maintenance activities; after completion of a maintenance activity, technicians with different skills become

available to start the next activity.

Both pickup-and-delivery structures have been extensively studied. Sophisticated exact solution approaches85

have been proposed for the one-to-one PDP with time windows, e.g., see Ropke et al. (2007); Ropke and Cordeau

(2009); Baldacci et al. (2011). An Adaptive Large Neighborhood Search (ALNS) is introduced by Ropke and

Pisinger (2006), involving larger instances up to 500 nodes. Given the characteristics of our problem, ALNS is

well suited for TARP as well. The many-to-many PDP is studied in several variants. We refer to Hernández-Pérez

and Salazar-González (2004) and Hernández-Pérez et al. (2009) for the single vehicle case, and Hernández-Pérez90

and Salazar-González (2014) and Hernández-Pérez et al. (2016) for the multi-commodity case. One of the main

areas of application is the so-called bike repositioning problem; a many-to-many pickup and delivery problem

where one needs to find cost-minimizing routes for multiple vehicles that re-balance the inventory of bike rental

systems (Dell et al., 2016; Bulhões et al., 2017).

Besides the transportation of technicians, spare parts need to be moved as well. This aspect shares characteris-95

tics with the fixed multi-compartment vehicle routing problem, in which multiple product types need to be stored

separately in capacitated vehicles (see, e.g., Alinaghian and Shokouhi, 2017). Instead of a regular vehicle routing

structure, as encountered in multi-compartment vehicle routing problems, the TARP has a pickup and delivery

structure. To the best of the authors’ knowledge, such a structure is only examined in maintenance and routing

problems at offshore wind farms.100

Maintenance routing and scheduling at offshore wind farms, with a given set of technicians to a single O&M

base, is first introduced by Dai et al. (2015): A mixed integer programming model is presented and solved with

standard commercial solvers. An exact decomposition method for a single period presented by Stålhane et al.

(2015). Recently, an extension to multiple wind farms and multiple depots (TARP-G) is discussed by Irawan

et al. (2017). Optimal solutions to instances of 24 maintenance activities were found by means of a set partition105

formulation. Their approach is not applicable for the TARP, since the inclusion of technician allocation in the

optimization problem increases the solution space exponentially. We, therefore, focus on a heuristic approach

capable of finding high quality solutions for large instances of the TARP.

We embed the 2-ALNS in a Monte-Carlo simulation for an in-depth analysis of the impact of technician sharing

for different underlying networks. Such a simulation to obtain insights on complex routing problems are common110

yet crucial for the analysis. For example, an analysis of periodic routing problems is given by Palhazi Cuervo et al.

(2016). By a full-grid Monte-Carlo simulation on parameters describing the transportation network, they provided

insights when it is beneficial for individual logistics carriers to cooperate. A similar simulation approach is taken

by Post et al. (2017), incorporating routing heuristics to provide an in-depth analysis of an LNG transportation

network.115

The remainder of this paper is as follows. The complete problem description is given in Section 2. In Section 3,

we introduce the 2-ALNS proposed to solve the TARP and its two variants. In Section 4, we show the performance
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of the 2-ALNS by solving benchmark instances from the literature, and secondly, we solve a new benchmark set

consisting of computationally challenging instances. Managerial insights, including the circumstances in which

technician sharing is beneficial, are provided in Section 5. We conclude and provide suggestions for future research120

in Section 6.

2. Problem description

In this section, we give a mathematical description of the Technician Allocation and Routing Problem (TARP).

In the TARP, one needs to jointly determine the allocation of technicians to depots (i.e., O&M bases) and the

accompanying short-term maintenance planning. After the mathematical description of the TARP, we present125

additional constraints that lead to the two variants TARP-F and TARP-G (with a fixed sharing policiy and without

sharing, respectively). At the end of the section, we restructure the travel costs and times to obtain a more efficient

and simpler problem structure. This is especially useful for the computational performance of the 2-ALNS.

2.1. The Technician Allocation and Routing Problem (TARP)

The TARP is defined on a graph G = (N, A), where the node set N = Nd ∪ Np ∪ N0 consists of delivery130

nodes Nd = {1, . . . , n}, pickup nodes Np = {n + 1, . . . , 2n}, and depots N0 = {2n + 1, . . . , 2n + B}. Every delivery

node i ∈ Nd has a corresponding pickup node i + n ∈ Np, i.e., every delivery and pickup pair represents a single

geographical location as they indicate the start and end of a single maintenance activity. Every node i ∈ Nd and

(i + n ∈ Np) belongs to a wind farm wi ∈ W, whereW = {1, . . . ,W} is the set of wind farms. Let T = {1, . . . ,T }

be the finite time horizon in which the nodes may be visited and let Vb = {1, . . . ,Vb} be the set of heterogeneous135

vessels at depot b ∈ N0, so that the complete set of vessels is given byV = ∪b∈N0Vb. Traversing arc (i, j) ∈ A with

vessel v ∈ Vb takes tv
i j time.

We consider a set of technicians’ types L = {1, . . . , L}. The demand for technician type ` ∈ L at node i equals

Q`
i so that Q`

i = −Q`
i+n for all i ∈ Nd. Each maintenance activity has a service time si ≥ 0, i ∈ Nd, i.e., if node i ∈ Nd

is visited at time ti, node i + n cannot be left before time ti + si. Every job is scheduled such that it is completed140

in a single period, and the vessel that delivers technicians to node i is responsible for picking them up at node

i + n. In addition, a maintenance activity may require a vessel to wait during the performance of the maintenance

activity. We denote this with the parameter ξi, equaling 1 if a vessel needs to wait, and 0 otherwise. For notational

convenience, we let ξi = 0 for all i ∈ Np.

The total number of available technicians of type ` equals Q̂`. For every period t ∈ T , one needs to determine145

qbt`, the number of technicians of type ` designed to depot b in period t. Hence for every period t, qbt` technicians

of type ` must be available at the start and end of period t. In addition, each vessel v has a limited capacity Q̄1
v

to transport spare parts, a limited capacity Q̄2
v to transport technicians, and transferring technicians from a vessel

to any node i takes τ time. The maximum time a vessel v can be utilized in period t equals ωvt. These model

restrictions in working hours due to weather conditions.150
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Each maintenance activity i has a due date di ∈ T . If a maintenance activity is scheduled in some period t′ > di,

a penalty pi per period exceedance is incurred. Using technicians to perform maintenance activities comes at a per

period cost of ĉ`. Utilizing edge (i, j) ∈ A with vessel v ∈ Vb comes at travel cost cv
i j.

A solution to the TARP consists of an allocation qbt` of technicians and accompanying vessel routes, for every

vessel v ∈ Vb, depot b ∈ N0, period t ∈ T , and all Q̂` technicians of type ` ∈ L. Let Rvt denote the complete set of155

feasible vessel routes of vessel v in period t, satisfying the constraints described in the previous paragraphs. Let θr
j

be equal to 1 if route r ∈ Rvt visits node j ∈ Nd and 0 otherwise. Similarly, let γr
` equal the number of technicians

of type ` used in route r. The costs of a route are given by cr, consisting of travel costs cv
i j for every edge (i, j) used

in route r, and of technician costs ĉ` for all technicians of type ` deployed in r. Let yr be a binary decision variable

equaling 1 if route r ∈ Rvt is part of the solution, and 0 otherwise.160

The following set partitioning formulation models the TARP:

min
∑
t∈T

∑
b∈N0

∑
v∈Vb

∑
r∈Rvt

yrcr (1)

s.t.
∑
r∈Rvt

yr ≤ 1 ∀ v ∈ Vb, b ∈ N0, t ∈ T (2)

∑
b∈N0

∑
v∈Vb

∑
t∈T

∑
r∈Rvt

yrθ
r
j = 1 ∀ j ∈ Nd (3)

∑
v∈Vb

∑
r∈Rvt

yrγ
r
` ≤ qbt` ∀ ` ∈ L, b ∈ N0, t ∈ T (4)

∑
b∈N0

qbt` ≤ Q̂` ∀ ` ∈ L, t ∈ T (5)

yr ∈ {0, 1}, qbt` ≥ 0 ∀ r ∈ Rvt, v ∈ Vb, b ∈ N0, t ∈ T (6)

The Objective (1) minimizes the costs of the chosen routes. Constraint (2) models that each vessel can only

perform a single trip each period, and Constraint (3) ensures that all nodes are visited exactly once throughout the

time horizon. Constraint (4) limits the use of technicians of the selected vessel routes to the number of technicians

being allocated, and Constraint (5) ensures that technician allocation obeys the availability of technicians.

2.2. The Technician Allocation and Routing Problem with Fixed Allocations (TARP-F)165

In this variant, we study a scenario in which wind farms and depots are located such that per period changing

depots is not practical for the technicians. In the TARP-F, we adhere a fixed allocation policy: The technicians are

assigned to depots and stay at their depots over the time horizon [1, . . . ,T ]. This variant arises when the wind farms

and depots are located such that period changing of depots is not practical for the technicians. A set partitioning

formulation for the TARP-F is obtained by extending formulation (1) - (6) with170

qbt` − qbt̃` = 0 ∀ t, t̃ ∈ T , b ∈ V0, ` ∈ L. (7)

2.3. The Technician Allocation and Routing Problem with Given Allocations (TARP-G)

To investigate the effects of efficiently coordinating technicians between the depots and wind farms, we con-

sider the Technician Allocation and Routing Problem with Given Allocations (TARP-G). It is derived from the
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TARP by taking qbt` as given, i.e., it is not longer a decision variable but a parameter. The TARP-G is referred to as

the Maintenance Routing and Scheduling Problem at offshore wind farms, and an exact solution approach based on175

a set partitioning formulation has been proposed by Irawan et al. (2017). However, an explicit enumeration of the

route sets Rvt is already complex and time consuming for a given technician allocation, and becomes intractable

when the technician allocation is included as a decision.

2.4. Preprocessing: cost and travel restructuring

Rich routing problems are often characterized with fluctuating travel costs or travel times due to a variety of180

side constraints. By letting travel costs be period dependent, i.e., the costs of traversing arc (i, j) with vessel v

in period t equals cvt
i j, we can incorporate the due date penalties pi into the cost function. The modified cost of

traversing edge (i, j) with vessel v in period t are defined as c̃vt
i j = cv

i j + max{ti − di, 0} · pi.

Similarly, both the transfer time and any required waiting time at location i during maintenance (if ξi = 1) are

incorporated into the travel time function. Let t̃v
i j = tv

i j +τ+ξ js j, be the modified travel time function for all i, j ∈ N.185

To be precise, we add the transfer times to every incoming edge, and the service times to the incoming edges of

the delivery nodes if needed. Then, for delivery nodes i with ξi = 1, the corresponding pickup can be performed

without additional costs after the delivery, since they resemble the same location.

At first, it may seem that the restructuring invalidates well-studied characteristics of routing problems such as

the triangle inequality. However, it does not introduce additional complexities for the TARP and its two variants,190

as the triangle inequality is already violated by the costs for using technicians. To be specific, as technicians can be

reused from the pickup nodes at no additional expenses, it may be cheaper to visit a delivery location via a pickup

location, instead of directly traveling to the delivery location.

3. Adaptive Large Neighborhood Search

We develop a Two-Stage Adaptive Large Neighborhood Search (2-ALNS) to solve the TARP and its two195

variants. We first give a brief overview of the 2-ALNS procedure. Afterwards, we provide the details of the 2-

ALNS and the operators used therein. We conclude this section with some minor differences between solving the

TARP-G instances on the one hand, and the TARP-F and TARP instances on the other hand.

Adaptive Large Neighborhood Search (ALNS), as first introduced by Ropke and Pisinger (2006), is a meta-

heuristic often used to solve complex routing problems, see, for example, Mancini (2016) and Ghilas et al. (2016).200

It is an iterative procedure relying on a set of destroy operators, removing parts of a solution, and a set of repair

operators, inserting the removed parts of the solution. The successive appliance of destroy operators and a repair

operator is called a move. A move consists of independently chosen destroy and repair operators according to a

continuously updated probability distribution. If a move appeared to be successful, the probability of selecting the

corresponding operators will slightly increase. Thereby, effective operators are more likely to be chosen in future205

iterations of the ALNS. As often encountered in current metaheuristics, we embed the iterative destroying and

repairing of the solution in a simulated annealing environment. A move is accepted with a probability that depends

7



Algorithm 1: ALNS Procedure

1 scur, sbest, sglob ← InitialSolution();

2 while n1 < N1
iter do

3 scur, sbest ← sglob;

4 while n2 < N2
iter do

5 scur ← sbest;

6 DestroyRepair(scur);

7 UpdateProb(scur);

8 if acceptSolution(scur, sbest, n2) then

9 sbest ← scur;

10 end

11 if c(scur) < c(sglob) then

12 sglob ← scur;

13 end

14 n2 ← n2 + 1;

15 end

16 n1 ← n1 + 1;

17 Shake(sbest, n1);

18 end

on the number of iterations and the difference in objective value. To widen the search space even more, a shaking

procedure is started when the above procedure terminates (after a fixed number of iterations). The shaking proce-

dure is especially included to cope with the dependency between the allocation of technicians and the optimization210

of the routes. This relation between the allocation and routes increases the difficulty of escaping local optima. The

general outline of the ALNS procedure is given in Algorithm 1.

The ALNS procedure as described above is embedded in a two-stage procedure. In the first stage, we start with

ten initial solutions and perform a single run of ALNS without the shaking procedure. In the second stage, we

continue with the four best solutions and improve those solution with the full ALNS procedure as described in the215

following.

3.1. Destroy operators

A destroy operator’s goal is to remove potentially suboptimal parts of a solution. This can either be achieved

by destroying random parts of the solution, or one could provide more guidance in destroying the solution. We

divided the destroy operators into two classes. The first class, random destroy operators, destroys the solution by220

randomly removing jobs while taking the actual solution structure into account. The second class, guided destroy

operators, are more sophisticated destroy operators. In the following, we discuss both classes of destroy operators.

3.1.1. Random destroy operators

By exploiting the problem structure, four random destroy operators are constructed, called randomJob, ran-

domVessel, randomDepot, and randomPeriod. The first one removes a random job, the second operator removes225
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Algorithm 2: Random Cheapest Feasible Insertion(s)
Data: Solution s, repair operator op, set of nodes U

1 Shuffle(s);

2 foreach v ∈ U do

3 InsertBestLocation(s, v, op);

4 end

all jobs from a random vessel in a random period, the third one removes all jobs from a random depot in a random

period, and the fourth operator removes all jobs in a random period.

3.1.2. Guided destroy operators

This class consists of six destroy operators. The first guided destroy operator is the worst removal operator (e.g.,

Ropke and Pisinger (2006)). It removes the job that results in the largest cost decrease, i.e., the most expensive job230

is removed from the solution. When multiple jobs are removed by this operator, it iteratively removes single jobs

and recalculates the cost decreases after each removal.

The five other guided destroy operators are based on the Shaw removal heuristic (e.g., Ropke and Pisinger

(2006)) which tries to identify jobs that have similar characteristics. The main difference with the classical use of

the Shaw removal heuristic is that the similarity of jobs does not depend on the actual solution, which improves the235

computational efficiency of the ALNS. Namely, the similarity of the jobs is computed before starting the ALNS

instead of being computed every iteration.

To remove two jobs simultaneously from the solution, we define S (i, j) as the similarity score for some jobs i

and j measuring the degree of similarity of jobs i and j. The higher the score, the higher the probability of being

selected simultaneously. It is defined in the following way,

S (i, j) = α̂

(
1 −

di, jχi, j

maxa,b da,b

)
+ β̂

1 − ∑3
`=1 |qi` − q j` |∑3

`=1 max{qi`, q j`}


+ γ̂

(
1 −

|si − s j|

max{si, s j}

)
+ δ̂

(
1 −

|di − d j|

max{di, d j}

)
,

(8)

where χi, j equals 1 if wi = w j and 0 otherwise. The four terms of Equation (8) measure for jobs i and j: The

relative difference in distance, the relative difference in technician demand, the similarity in service times, and the

difference in due dates. Let P(i, j) = S (i, j)/
∑

a S (i, a) be the probability of selecting job j while job i is already240

selected. In other words, job i is randomly selected whereas job j is selected with probabilities P(i, j).

We enhance the use of 5 destroy operators based on this similarity criteria. For each operator, different weights

are attached to the individual parts of S (i, j). The shaw operator has positive weight on every individual part, i.e.,

α̂, β̂, γ̂, δ̂ > 0. The shaw-distance, shaw-technician, shaw-service, and shaw-penalty guided destroy operators only

have a non-zero value for α̂, β̂, γ̂, and δ̂, respectively.245

3.2. Repair operators

The repair operators included in the ALNS are variants of so-called Random Cheapest Feasible Insertion

(RCFI). The general structure of RCFI can be found in Algorithm 2. It consists of two main stages. In the

9



first stage, a set of jobs that need to be inserted in the solution is randomly sequenced. The second stage con-

sists of inserting the jobs one by one on their ‘best’ location, based on an objective defined by the different repair250

operators. Notice that a single call to RCFI is of order O(n2), whereas the traditional and deterministic Cheapest

Feasible Insertion runs in O(n3). Thus using RCFI is faster, and it increases the randomness of the search, helping

to escape from local optima.

Some repair operators evaluate a job’s insert location with so-called noise, characterized by the noise parameter

0 ≤ Ω ≤ 1. Noise is a simple, though effective, way to include randomness in the ALNS. The costs used to compare255

insertion locations is obtained by multiplying the actual insertion costs with an uniformly drawn random number

between 1 −Ω and 1 + Ω.

In total, six repair operators are defined and divided in two classes, namely, the regular RCFI operators and the

guided RCFI operators.

3.2.1. Regular RCFI operators260

Regular RCFI operators are straightforward insertion operators based on the total costs of the repaired solution.

The first regular RCFI operator, RCFI-cost, finds the cheapest location of insertion for the job to be inserted. The

second operator, RCFI-k-cost, evaluates the RCFI-cost operator k times, and applies the one that results in the

lowest costs. Both operators do not include noise in the objective functions, i.e., Ω = 0. The RCFI-noise-cost is

similar to the RCFI-cost operator, but Ω is strictly positive for this operator.265

3.2.2. Guided RCFI operators

Guided RCFI operators are tailored operators to steer the solution into a direction that uses more or less techni-

cians or vessel trips. Main purpose is to quickly escape local optima during the search. The fourth repair operator,

RCFI-noise-tech, considers only the use of technicians by assuming zero travel costs, and includes noise. The fifth

repair operator, RCFI-vessel, favors insertion in unused vessels by ignoring the travel costs if a job is inserted in an270

empty vessel. For the rest, it is similar to RCFI-noise-cost. The last repair operator, RCFI-alloc, penalizes the use

of technicians that cause an increase of the allocation of that particular technician type to a depot. To be precise,

a penalty η > 0 per unit increase of the allocation is added to the costs of the particular insertion location. In

addition, it does not consider travel costs.

3.3. Destroy and repair procedure275

At the core of the ALNS lies the Destroy and Repair Procedure. Its general overview is presented in Algorithm

3. The repair and destroy operators deployed are the ones described in the previous sections. The Destroy and

Repair Procedure consists of Nd times applying a destroy operator, and afterwards repairing the solution by one of

the repair operators.

The number nd is randomly drawn between nd and nd in each iteration. Each of the nd destroy operators is280

applied a random number of times. We call this the operator intensity: The number of jobs a destroy operator

removes from the solution. It is a randomly drawn number between Ii and Ii, where i refers to the class the destroy

10



belongs to, i.e., i = 1 refers to the random destroy operators and i = 2 to the guided destroy operators. The actual

operator intensity is determined each time an operator is applied.

Besides operator settings, ALNS adapts the probability of the operators being selected depending on a move285

being successful or not. To do so, we keep an integer value p j > 0 for every operator j individually. Their initial

values are set as part of the operator group they belong to. These initial values are given by pinit
i , where i = 1 and

i = 2 are defined as above, i = 3 refers to the class of regular RCFI operators, and i = 4 to the class of guided RCFI

operators. If a move is accepted, the values p j of the operators involved in the move are increased by ∆ > 0. Thus,

drawing a random number between 0 and
∑

j p j is sufficient to select an operator. Finally, if the shaking procedure290

is started, the operator values p j are reset to the initial value pinit
i of their corresponding operator group i.

3.4. Initial solution

Due to multiple constraints and aspects of the TARP and its two variants, we first generate a set of Ninit random

solutions. Each random solution is generated by calling the RCFI-Cost repair operator on an empty solution, i.e.,

all jobs are inserted in a random order on their best location in the solution. We continue with the solution that has295

the lowest cost.

3.5. Acceptance criterion

We use a classical simulated annealing criterion to determine the acceptance of a move. It is defined by a

cooling parameter csa > 0 and a weight parameter wsa > 0. Let uold and unew be the objective before and after the

move, and let niter be the current iteration. If unew < uold, we always accept the move. If a move results in a higher

objective function, we calculate the acceptance probability of a move as

exp
(
−wsaû

n̂csa

)
,

where û = (unew − uold)/uold, and n̂ = 1− niter/N2
iter. A higher weight parameter steers towards a more deterministic

search, i.e., the probability of accepting a move that results in a higher objective value is lower. In addition, a

higher cooling parameter results in lower acceptance probabilities for the first few iterations.300

Algorithm 3: destroyrepair(s)
Data: Node set U = ∅

1 k = 0;

2 while k < Ninit do

3 op← chooseRandomDestroy();

4 v← destroy(s, op);

5 U ← U ∪ v;

6 ++k;

7 end

8 op← chooseRandomRepair;

9 repair(s, op);

11



3.6. Shaking procedure

When N2
iter iterations of applying the destroy and repair procedure have passed (see Algorithm 1), a shaking

procedure is started to escape from a possible local optimum. It is a destroy and repair procedure as indicated by

Algorithm 3, although two major changes are made. First, only destroy operators of the random destroy operators

class are used. Second, only repair operators RCFI-noise-vessel and RCFI-noise-alloc are used in the shaking305

procedure, being chosen at random. In addition, its intensity depends on the number of passed shaking procedures

nfail that did not yield a new best solution: It is applied nfail times, with a minimum of 1 and a maximum of nmax
fail

times. Preliminary experiments have shown that this works well.

3.7. Differences between TARP, TARP-F, and TARP-G

It is clear that the TARP and TARP-F have exponentially larger solution spaces than the TARP-G. The freedom310

of deviating from a given allocation of technicians causes the solution space to be rather unstructured. To avoid

being trapped in local optima, we change the first stage of the two-stage ALNS when we are solving TARP(-F)

instances: We perform the first stage of the ALNS two times for each of the 10 instances. First, we run it as if it

was a TARP-G instance, thereby taking the given allocation of technicians randomly around the expected number

of technicians. Then we take this solution as an initial solution for another round of the first stage, but now solving315

the instances as they are. The second stage is similar for every problem type.

4. Two-stage ALNS performance

We evaluate the performance of the 2-ALNS by solving benchmark instances from the literature, obtained from

Irawan et al. (2017). In addition, we generate a new set of computationally challenging benchmark instances. The

2-ALNS is implemented in C++ and the experiments are performed on an Intel Xeon E5 2680v3 CPU (2.5 GHz)320

with 200 MB memory. We made use of four parallel running threads, a setup available on any common desktop

machine nowadays. In the following, we first describe our benchmark instances in more detail. We follow with a

description of the 2-ALNS’ parameter tuning and conclude with its computational performance.

4.1. Benchmark instances

Two existing sets of benchmark instances (G1 and G2) are obtained from Irawan et al. (2017). Since their325

problem is equivalent to the TARP-G in our setting, we compared the performance of the 2-ALNS with the exact

approach by Irawan et al. (2017). Both benchmark sets comprise of 2 depots and 3 wind farms, with 2 available

vessels per depot. We refer to their paper for a complete description of parameter settings. Benchmark set G1

consists of 10 instances with 24 maintenance activities over a planning horizon 3 days, whereas set G2 consists of

10 instances with 36 maintenance activities over a planning horizon of 7 days.330

In addition to benchmark sets G1 and G2, we created a new benchmark set H. The instances herein are of

varying size and time horizon, see Table 2. The parameters regarding the vessels, depots, and the location of the

turbines and wind farms are the same as of those in G1 and G2. The actual maintenance activities in each instance

12



Table 1: Performance of the two-stage ALNS for benchmark sets G1 and G2 from Irawan et al. (2017)

Irawan et al. (2017) TARP-G (min) TARP-G (avg) TARP-F (min) TARP (min)

Instance obj. time (s) obj. gap % obj. gap % time (s) obj. gap % obj. gap %

G1-01 41839.74 244.69 41839.74 0.00 41839.74 0.00 4.17 40422.9 -3.39 40168.21 -4.00

G1-02 33425.30 542.18 33425.3 0.00 33425.3 0.00 3.61 33425.3 0.00 33425.3 0.00

G1-03 36501.28 317.69 36501.28 0.00 36502.35 0.00 3.47 36038.08 -1.27 36038.08 -1.27

G1-04 31316.73 2356.46 31316.31 0.00 31316.31 0.00 3.53 31316.31 0.00 31316.31 0.00

G1-05 31147.73 549.59 31147.73 0.00 31147.73 0.00 3.89 30961.79 -0.60 30961.79 -0.60

G1-06 36141.68 134.34 36141.68 0.00 36141.68 0.00 3.76 36141.68 0.00 36043.37 -0.27

G1-07 29995.24 1779.76 29995.24 0.00 29995.24 0.00 3.99 29995.24 0.00 29995.24 0.00

G1-08 37242.48 534.70 37242.48 0.00 37242.48 0.00 4.16 37242.48 0.00 37242.48 0.00

G1-09 30779.64 3465.71 30779.64 0.00 30779.64 0.00 4.1 30779.64 0.00 30779.64 0.00

G1-10 33030.87 674.37 33030.87 0.00 33030.87 0.00 4.23 33030.87 0.00 33030.87 0.00

G2-01 50835.10 1775.46 50896.33 0.12 51117.82 0.56 6.15 50835.1 0.00 50814.94 -0.04

G2-02 49047.09 3369.74 49047.09 0.00 49055.58 0.02 6.17 49047.09 0.00 49047.09 0.00

G2-03 44026.05 3518.18 44049.88 0.05 44050.4 0.06 6.86 44026.05 0.00 44026.05 0.00

G2-04 54139.22 1505.83 54139.22 0.00 54139.22 0.00 6.55 53564.54 -1.06 52755.73 -2.56

G2-05 53733.12 3549.63 53733.12 0.00 53733.12 0.00 6.35 52751.86 -1.83 52725.82 -1.87

G2-06 49156.52 3456.92 49156.52 0.00 49230.68 0.15 6.53 49156.52 0.00 49156.52 0.00

G2-07 49315.18 3436.71 49315.18 0.00 49327.49 0.02 6.35 49315.18 0.00 49315.18 0.00

G2-08 51051.50 1422.22 51051.5 0.00 51055.03 0.01 6.26 51051.5 0.00 51051.5 0.00

G2-09 57920.34 907.24 57920.34 0.00 57927.26 0.01 6.67 57920.34 0.00 57920.34 0.00

G2-10 52668.30 2866.38 52668.3 0.00 52668.3 0.00 6.73 52367.14 -0.57 52264.39 -0.77

Avg. 42665.66 1820.39 43013.48 0.01 43030.77 0.04 5.25 42469.48 -0.44 42403.94 -0.57

are obtained in the following way: For the first two wind farms, we randomly draw the number of maintenance

activities between 15 and 35 percent of the total number of activities of that particular instance. The third wind335

farm takes the remaining number of maintenance activities. Due dates are uniformly drawn over the time horizon,

service times are uniformly drawn between 2 and 6 hours, and spare part weights are uniformly drawn between

300kg and 900kg. The number of required technicians is randomly between 1 and 3 for each technician type.

This results in benchmark instances similar to the instances of G1 and G2. However, as opposed to the instances

of G1 and G2, the number of jobs per wind farm may vary. Preliminary experiments showed that this increases340

the complexity of the instances, which is in line with our aim of creating computationally challenging instances

reflecting practical scenarios in offshore wind maintenance.

4.2. Parameter tuning

An overview of the parameter tuning of the 2-ALNS is provided in Appendix A. It describes an extended

grid search through the main parameters. The parameter values used for benchmarking the 2-ALNS are given in345

Appendix A, Table 5.
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4.3. Computational results

We solve the TARP-G instances of benchmarks G1 and G2 and compare these with exact solutions of the litera-

ture. In addition, we solve the benchmark instances as if they were TARP(-F) instances as well. The instances from

benchmark H are solved as TARP-G, TARP-F, and TARP instances. The results are presented in Tables 1 and 2.350

The results of solving the instances from benchmarks G1 and G2 are presented in Table 1. The first two

columns represent the objective (obj.) and computation time (time (s)) of the exact approach of Irawan et al.

(2017). The next two columns provide the minimum solution found by the 2-ALNS over ten runs, solving the

instances as the TARP-G, and the corresponding gap with the best-known solution. Average values corresponding

to the ten runs are provided afterwards. The columns headed by ‘TARP-F (min)’ and ‘TARP (min)’ present the355

minimum objective value and corresponding gap to the best known solution when we solve the instances as the

TARP-F and TARP, respectively.

It is clear that the 2-ALNS provides high quality, and often optimal, solutions to the instances of Irawan et al.

(2017). We refer to those instances as TARP-G, as they are a special case of the TARP. Computation times are

on average 5.25 seconds, a decrease of factor 347 compared with the exact approach, only at the expense of an360

average optimality gap of 0.04%. Although the objective values of the instances of benchmark set G2 are not

proven to be optimal by Irawan et al. (2017), the 2-ALNS obtained similar results. Notice that by increasing the 2-

ALNS’ run time, it is possible to close the gap to the best known solutions. We included the results for running the

instances as if they are TARP-F and TARP instances. Results indicate that often the complete symmetric allocation

of technicians is best for the instances of Irawan et al. (2017), although some slight improvements are found. We365

provided more insights regarding the differences between the TARP, TARP-F and TARP-G with the instances of

benchmark set H, and in Section 5.

Table 2 presents the results of our benchmark set H. Every instance is solved by the 2-ALNS as a TARP,

TARP-F and a TARP-G instance, as the column markers indicate. For each problem type, we reported the min-

imum objective, average objective, and the average computation time over 10 runs. In addition, we provide the370

distribution of the costs of the minimum solution under ‘dcost’. It indicates the percentage of the total costs belong-

ing to transportation costs, personnel costs and penalty costs. The column ‘% dif.’ indicates the increase of the

minimum objective when compared to the TARP. For four instances, no feasible solutions can be found if they are

treated as TARP-G or TARP-F, as marked with a ‘-’.

The merits of the flexible allocation policy of the TARP can be observed, as the TARP-F and TARP-G give375

average objective increases of 3.47% and 6.27%, respectively. The impact of the fixed allocation policy (TARP-F)

is instance dependent, and will be further investigated in the simulation study in Section 5. Finally, computation

times of the TARP and TARP-F are somewhat larger than of the TARP-G, due to the fact that the TARP and

TARP-F consist of exponentially larger solutions spaces than the TARP-G.
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Figure 1: General layout used in the simulation study. The three squares at the bottom represent the O&M bases and the grids of dots represent

the wind farms. The distances α, β, and γ are given parameters and are varied in the simulation study.

5. Managerial insights380

The 2-ALNS provides optimal or near-optimal solutions to the short-term maintenance planning problem, as

shown in Section 4. In benchmark set H, it is observed that sharing technicians, according to both the flexible and

fixed allocation rule, reduces the overall maintenance costs. Recall that in the TARP, technicians are completely

shared between O&M bases, whereas in the TARP-G, technicians are assigned to O&M bases but they cannot

change between O&M bases over time. In the TARP-G, technicians are not assigned to O&M bases, i.e, each385

O&M bases the expected number of needed technicians.

We study in more detail the impact of technician sharing. We are especially interested in the characteristics

of the underlying network in which technician sharing is most promising. We do so by an extensive Monte-Carlo

simulation, in which we vary both the instance characteristics (e.g., number of technicians, number of jobs) and

layout characteristics (e.g., distance between wind farms and depots). First, we describe the set-up of the Monte-390

Carlo simulation. Second, we provide managerial insights on technician sharing based on the outcomes of the

simulation. In particular, we answer the following questions:

1. Does technician sharing contribute to sustainability by reducing the waste of valuable resources such as

technicians and vessels?

2. What is the added value of a completely flexible allocation rule over a fixed allocation rule.395

3. Which geographical settings offer opportunities for cost-savings by means of technician sharing?

5.1. Simulation set-up

We summarize the simulation set-up here, and refer to Appendix B for the specifics. Throughout all experi-

ments, we consider three O&M bases that are α kilometer apart. The distance between the O&M bases and the
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Table 3: The mean and 90%, 95% and 99% quantiles of the cost measures are presented here. Given values are averages over all experiment

runs for T = 5.
Cost Measure Problem type mean 90% 95% 99%

Total Costs TARP-G 48427.56 66674.88 72284.24 76588.63

TARP-F 47568.13 65788.28 70797.22 75178.79

TARP 44879.77 61390.62 66309.56 70631.05

Penalty Costs TARP-G 3649.70 7649.71 9040.22 10187.87

TARP-F 3107.83 7020.74 7957.02 9191.37

TARP 1466.98 3193.96 3800.00 4476.93

Number of trips TARP-G 12.62 15.84 16.34 16.64

TARP-F 12.24 15.46 16.08 16.40

TARP 10.92 13.59 13.96 14.19

Mean time to maintenance TARP-G 1.30 2.21 2.29 2.34

TARP-F 1.16 2.15 2.27 2.31

TARP 0.85 1.68 2.02 2.15

Table 4: Overview of the percentage feasible instances with T = 5 for different combinations of α and β.

α, β ≤ 30 β ≤ 30, α > 30 β > 30, α ≤ 30 α, β > 30

TARP-G 83.13 80.18 74.97 70.35

TARP-F 83.79 80.40 75.67 71.09

TARP 89.58 89.50 84.20 84.27

offshore wind farms equals β kilometer, and the distance between the wind farms is γ kilometer. We refer to α, β400

and γ as the layout parameters, see Figure 1.

The instance parameters of the simulation study are the number of available technicians Q̂`, the probability

p of a turbine requiring maintenance, and the time horizon T . The fleet of vessels is kept fixed throughout all

experiments, of which the specifics can be found in Appendix B. Other parameters, including service times and

technician costs, are chosen in accordance with those in dataset H, as described in Section 4.1.405

A single simulation experiment is defined by the instance and layout parameters described above. For each

simulation experiment, we generate Nsim instances. Those are solved as the TARP, TARP-F and the TARP-G,

where, in the latter one, we allocate technicians equally among the O&M bases as this coincides with the expected

number of jobs serviced from the O&M bases. The 2-ALNS is deployed to approximate the expected cost of the

short-term maintenance planning in each instance, under the instance and layout characteristics of that particular410

experiment. Each of the Nsim instances is generated by randomly selecting jobs for each wind farm, i.e., a turbine

needs maintenance within the considered time horizon with probability p. As a result, the number of maintenance

activities of the instances differ within a single experiment.

A complete overview of the instance and layout parameters can be found in Appendix B. We performed a

complete grid search over the instance and layout characteristics space, obtaining cost estimations of the short-415

term maintenance planning for a total of 1500 scenarios. Common random numbers are used between every
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experiment to reduce the variance in our results. All experiments consist of Nsim = 100 instances, unless stated

otherwise. Preliminary experiments have shown that this provides stable simulation outcomes.

5.2. Simulation outcomes

Four performance measures are used to assess the performance of the different technician allocation policies:420

The resulting total costs, penalty costs, the number of needed visits to the wind farms (trips), and the mean time

to maintenance. First, we provide an in-depth analysis of the effect of technician sharing. Second, results on the

relation between the layout parameters and the different sharing policies are presented.

5.2.1. Technician sharing analysis
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Figure 2: Empirical distribution functions of the Total Costs, Penalty Costs, Number of Trips and the Mean Time to Maintenance for all

experiments with T = 6.

The mean performance and the 90%, 95%, and 99% quantiles of the four performance measures are sum-425

marized in Table 3. It includes the average outcomes of all experiments with T = 5. Instances that are deemed

infeasible by the TARP-G are excluded for the TARP-F and TARP as well. Analyzing the effect of technician shar-

ing in general, it is seen that the number of trips decreases without increasing the mean time to maintenance. As a

matter of fact, both the mean and the high quantiles of the mean time to maintenance are decreased if technicians

are shared. The average cost increase of not allowing technicians to be shared equals 1.81% and 7.91% com-430

pared to the TARP-F and TARP, respectively. Main reason is the increase in penalty costs, which are 17.44% and
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Figure 3: Estimated density functions of the Total Costs and the mean difference between actual maintenance execution and due date for two

specific experiments with α = 100, p = 0.14, Q̄` = 18,T = 6, and β = 50 for ’Far’ and β = 20 for ’Close’.

148.79% compared with the TARP-F and TARP, respectively. That is, more maintenance activities are performed

within their deadline, which allows the decision maker to cope more easily with future disturbances.

As mentioned before, not all the problem instances included in all experiments are feasible. Table 4 shows the

percentage of instances that could be solved by each of the three problem variants, for different combinations of435

α and β. The TARP-F slightly increases feasibility of problem instances when T = 5, whereas the TARP shows a

more substantial increase of the feasibility of the instances at hand (e.g., from 70.35% to 84.27% for higher values

of α and β). Thus, sharing of technicians is a natural way to cope with difficult short-term maintenance planning

problems.

For the experiments with T = 6, empirical distribution functions of the four measures are given in Figure440

2. Especially the empirical distribution function of the number of trips with a completely flexibly allocation rule

(TARP) stands out. Other results are in line with the mean and high quantiles presented in Table 3.

In Figure 3, density functions of the four measures on two specific experiments are presented. It entails a

case in which the wind farms are situated far away from each other (α = 100). In this particular case, the fixed

allocation rule (TARP-F) is a suitable middle way between not sharing technicians (TARP-G) and a complete445

flexible allocation rule (TARP). This is especially true when the wind farms are situated relatively far from the

coast (β = 50).

Based on the simulation results presented so far, we can answer the first research question, posed in the begin-
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Figure 4: Percentage decrease in penalty costs and number of boats for the fixed (TARP-F) and the flexible (TARP) technician allocation

policies for α ∈ {10, 20, 30, 40, 50, 100}. The left two plots are for β = 20 and the right two plots are for β = 40

ning of Section 7, with the affirmative. We argue that sharing of technicians can be used as a tool by the operational

manager to increase its ability to cope with extreme scenarios. In particular, flexibly allocating technicians clearly450

has its merits compared with the other allocation rules. For offshore wind operations that are relatively nearby, but

operated in isolation, this may be a simple and effective way to reduce costs.

5.2.2. Experiment layout impact

The Monte-Carlo simulation allows us to study the effect of the layout parameters on the efficiency of techni-

cian sharing. We present the results for the experiments with T = 6. We excluded the extreme scenarios with a455

minimum of technicians and the highest job probability, as few comparisons could be made due to the high number

of infeasible instances for the TARP-G.

In Figure 4, the effect of α on the performance of the different sharing policies is depicted. We compare the

number of trips and the incurred penalty costs (as a proxy of the total costs) for two scenario in which the wind

farms are either relatively close, or relative far away, from the O&M bases. From Figure 4, one can observe that if460

O&M bases and wind farms are relatively far apart (higher values of α), the penalty costs can be decreased more

by allowing technician sharing. In addition, the decrease in the number of trips is slightly decreasing for higher

values of α, meaning that the number of trips is most efficiently reduced when O&M bases and wind farms are

relatively close.

In Figure 5, we study the same aspects as in Figure 4, but now we study the effect of the distance between the465
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Figure 5: Percentage decrease in penalty costs and number of boats for the fixed (TARP-F) and the flexible (TARP) technician allocation

policies for β ∈ {10, 20, 30, 40, 50}. The left two plots are for α = 20 and the right two plots are for α = 100

wind farms and the O&M bases (β). It can be observed that technician sharing leads to cost-decreases, though the

effect slightly decreases for high values of α and β, i.e, when the wind farms are far apart and far away from the

O&M Bases.

Reflecting on the second and third research question, we conclude that a flexible allocation policy increases

robustness significantly compared to a fixed allocation policy. In addition, on specific layouts, the fixed allocation470

performs significantly better than the no-sharing policy, for example the layout corresponding to Figure 3.

This is especially true for wind farms operated in relative isolation, as we allow every wind farm to be served from

every O&M Base.

6. Conclusions475

In this paper, we introduced the Technician Allocation and Routing Problem for offshore wind farms (TARP).

Its goal is to jointly optimize the daily allocation of technicians to O&M bases and the daily vessel routes trans-

porting those technicians to offshore wind farms, in order to perform all maintenance activities throughout a given

time horizon. We developed a Two-Stage Adaptive Large Neighborhood Search heuristic to solve the TARP and

two variants. The first variant restricts the allocation of technicians to O&M bases to be constant throughout time,480

whereas the second variant takes an allocation as given. We showed that the Two-Stage Adaptive Large Neigh-
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borhood Search provides high quality, and often optimal, solutions on benchmark instances from the literature. In

addition, we provided a new set of benchmark instances that are computationally challenging.

We embedded the Two-Stage Adaptive Large Neighborhood Search in a Monte-Carlo simulation to study the

impact of the technician sharing in different practical scenarios of offshore wind maintenance service logistics. It485

is found that an increase in technician sharing reduces the number of vessel trips due to a more efficient use of

the scarcely available technicians, which contributes to a more sustainable short-term maintenance planning. In

addition, it is shown that the increased flexibility of technician sharing allows the short-term maintenance planner

to cope with extreme scenarios more efficiently, leading to average cost-savings around 7%.

The opportunities for further research are numerous. Examples include the inclusion of stochastic travel times490

by imposing a rolling horizon framework or the inclusion of strategic decisions regarding the composition of the fleet.
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Appendix A

In this appendix, we present the details of the parameter calibration, and the resulting parameter values for

benchmarking the 2-ALNS. The performance of the ALNS is crucial for the performance of the 2-ALNS, as it is

the main ingredient of the 2-ALNS procedure. We therefore tuned the parameters of the ALNS by means of a grid

search, as specified in Table 5.565

The experiments are conducted on 90 instances with sizes varying between 20 and 60, similarly constructed

as the instances in Benchmark Set H. As a measure of the ALNS’ performance we take the average minimum

objective value over 10 runs over all instances. The parameter values that gave the highest quality solutions are

presented in Table 5. The column indicated by ’Benchmark‘ represents parameter settings used for benchmarking

purposes in Section 4 (for all problem variants). We only considered parameter values that had an average run time570

of at most 20 seconds. For the simulation study in Section 5, we considered the best parameter values within a

time limit of 150 seconds. They are given in the columns marked by ’TARP‘, ’TARP-F’, and ’TARP-G‘.

Table 5: Parameter calibration. Operator values (p1, . . . , p4) are taken equal to 1000. Shaw operator values α̂, β̂, γ̂, δ̂ are set equal to 5. The

number of initial solution Ninit is set equal to 1000

Parameter Interpretation Range Benchmark TARP-G TARP-F TARP

n1
iter Number of shaking procedure iterations {20, 30, 50} 20 30 20 20

n2
iter Number of iterations Destroy and Repair procedure {2000, 4000} 2000 4000 4000 4000

nfail
max Maximum shaking intensity {3, 5, 8} 5 8 5 8

csa Cooling parameter of SA {0.5, 1.0, 1.5} 1 0.5 1 0.5

wsa Weight parameter of SA {50, 100, 150} 100 150 100 150

(nd , nd) Number of destroy operators in a single destroy {(1,2), (1,3)}) (1,2) (1,3) (1,3) (1,3)

∆ Change in operator intensity after successful move {1, 50} 1 1 50 50

(I1, I1) Destroy operator class 1 intensities {(1, 1), (1, 2), (1, 3)} (1,1) (1,1) (1,2) (1,2)

(I2, I2) Destroy operator class 2 intensities {(1, 2), (1, 3)} (1,3) (1,3) (1,3) (1,3)
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Appendix B

In this appendix, we present additional details to the simulation set-up summary as presented in Section 5. We

made use of a fixed vehicle fleet as specified in Table 6. Every depot has two vessels: A relatively small though575

fast and cheap vessel, and a larger though slower and more expensive vessel. This is in line with practical scenarios

of offshore wind as encountered in the literature (see, e.g., Stålhane et al. (2015) and Irawan et al. (2017)).

In total 1500 scenarios are considered in the simulation study. Every scenario consists of a unique combination

of instance and layout parameters, of which the considered values are denoted in Table 7.

Table 6: Overview of vessel characteristics in simulation. Distances are euclidean. Travel times are obtained by dividing travel distance with

speed parameter. Travel costs are obtained by multiplying travel distance with the cost parameter

Depot Personnel cap. Spare parts cap. Speed Cost

1 15 2000 45 225

1 25 25000 25 300

2 12 2000 45 225

2 20 25000 25 300

3 8 2000 45 225

3 16 25000 24 300

Table 7: Considered values of instance and layout parameters. For each combination of parameters 100 instances are solved as a TARP,

TARP-G, and TARP-F.

Parameter Interpretation Considered Values

α Distance between O&M Bases {10, 20, 30, 40, 50, 100}

β Distance between wind farms and O&M Bases {10, 20, 30, 40, 50}

Q̃` Number of technicians of each type {9, 12, 15, 18}

p Probability of maintenance for each turbine {0.08, 0.12, 0.14, 0.16}

T Length of time horizon {5, 6}
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