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Kiselev, Dr. Elisa Lorenzo Garćıa, Dr. Steffen Müller & Dr. Maarten Derickx
who where open to my questions during my Ph.D. To CONACyT México, for
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Introduction

This thesis discusses some attempts to extend specific results and applications
dealing with elliptic curves, to the case of curves of genus 2.

The first question is to extend Manin’s elementary proof of the Hasse in-
equality (genus 1) [Man56] to genus 2.
Recall that the Hasse-Weil inequality states that the number of points of a
genus g curve over a finite field Fq of cardinality q is qC1�t where jt j � 2g

p
q.

The special case g D 1 of this result was originally proven by Hasse in the
1930’s and it is called the Hasse inequality.
In Chapter 1 we revisit Manin’s proof of the Hasse inequality. Although the
proof has already been revisited (see for example [Soo13]), we rearranged and
simplified the argument even further. We also added (although well-known) a
less elementary proof of the Hasse inequality in order to make a comparison
and appreciate the elementariness of Manin’s argument.

The main idea to prove the Hasse inequality for an elliptic curve E=Fq is
to obtain a formula for the degree dn of the sum F C Œn� of the Frobenius map
F WE ! E that raises every coordinate of a point on E to the q-th power, and
the multiplication by n map defined by Œn�.P / D nP (by convention dn D 0 if
F C Œn� is the zero map).
Manin restricted himself to an elliptic curve E given by an equation y2 D

x3 C Ax C B. In particular this means he ignored the case that q is a power
of 2, and also for q a power of 3, he did not describe all possible elliptic
curves. Taking a variable x over Fq and y in an extension of Fq.x/ with
y2 D x3 C Ax C B, Manin’s idea can be described as follows. The point
.x; y/ 2 E yields

Qn WD .F C Œn�/.x; y/ D .x
q; yq/C Œn�.x; y/ 2 E:

If Qn is non-trivial, then the x-coordinate of Qn is a rational function ˛n.x/
ˇn.x/

9
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with ˛n.x/; ˇn.x/ 2 FqŒx� coprime polynomials. The degree of the poly-
nomial ˛n.x/ is in fact dn and Manin uses this to show that dn satisfies
the recurrence formula dnC1 C dn�1 D 2dn C 2. As Cassels correctly re-
marked in his review [Cas56], Manin’s argument relies on the assumption that
deg.˛n.x// > deg.ˇn.x// and Manin did not comment on this assumption.
Various authors after this either provided proofs of Manin’s assumption, or
worked out the details of Cassels’ suggestion on how one might avoid the as-
sumption in the argument. In this thesis, by an elementary observation we
present a very short and simple new proof of the claim deg ˛n.x/ > degˇn.x/,
compared with previous proofs (e.g. [GL66, Chapter 10, Lemma 3], [Cha88,
Lemma 8.6], [Kna92, Theorem 10.8] or [Soo13, Lemma 5.3.1]).
Clearly d0 D q and it can be shown that d�1 D #E.Fq/. Further, since dn
satisfies a second order recursion formula, we obtain that

dn D n
2
C .q C 1 �#E.Fq//nC q:

From the observation that dn � 0 and that it cannot be zero for two consec-
utive integers n, it follows that the discriminant of the quadratic polynomial
x2 C .q C 1 �#E.Fq//x C q is � 0, which shows the Hasse inequality.
Chapter 1 is a preamble to the proof of the Hasse-Weil inequality for genus 2
presented in Chapter 3.

In Chapter 2 we essentially do technical work. Starting from a genus 2 curve
H with equation y2 D x5 C a4x

4 C a3x
3 C a2x

2 C a1x C a0 over a field k, we
construct and explore the function field of the associated Jacobian variety J
and of the Kummer surface K. The function field k.K/ may be used to give us
a geometric interpretation of our proof of the Hasse-Weil inequality for genus
2 presented in Chapter 3.
We obtain k.J / through an explicit affine open subset of J using the so called
Mumford representation of the points of J . This representation is popular in
the cryptographic literature and is also used in most symbolic algebra software
like MAGMA or SAGE to do arithmetic in J .k/ (see [Can87]). Further, using
this representation, we describe some families of functions in k.J / that will
be used in subsequent chapters. Moreover, we introduce and study a specific
function �4 2 k.J / directly related to the Kummer surface K, and we com-
pute the poles of this function. The same �4 was used by Flynn, see [Fly93,
Equation (6)] but here more details on its construction and properties are pre-
sented. The function �4 will be fundamental in our proof of the Hasse-Weil
inequality for genus 2 à la Manin.

In Chapter 3, we answer the first question of this thesis: we mimic Manin’s

10
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proof of the Hasse inequality and obtain a proof for the Hasse-Weil inequal-
ity for all hyperelliptic curves H=Fq of genus 2 given by an equation y2 D

x5 C a4x
4 C a3x

3 C a2x
2 C a1x C a0. The idea is to construct an integer

analogous to dn as it appears in Manin’s original proof. The strategy is to
first embed H in its Jacobian J via the map P 7! ŒP � 1�. The image of
this map is denoted ‚ � J . Next, introduce the curve ‚n � J as the image
of ‚ Š H under F C Œn� where F is the q-th power Frobenius map and Œn�

the multiplication by n map on J (the special case where F C Œn� is the zero
map, so that ‚n is not a curve, is in fact simpler and it is treated separately).
Assuming that ‚n is a curve, we assign an intersection number ın to the pair
of curves ‚n and ‚.
To mimic Manin’s approach, we use the rational function �4 obtained in Chap-
ter 2. This allows us to describe the proposed intersection number in a much
more elementary way. We restrict �4 to ‚n, thus obtaining a rational map
H! P1. Provided this map is not constant, its degree is related to the inter-
section number ın.

We obtain the second order recurrence formula ın�1 C ınC2 D 2ın C 4. Un-
fortunately the proof we found for this requires the interpretation of ın as an
intersection number. To have a proof of the Hasse-Weil inequality in the spirit
of Manin, an argument relying on the interpretation of ın in terms of degrees
of rational maps is preferred, but we did not find such.
After showing that ı0 D 2q and ı�1 D qC 1C#H.Fq/ we obtain the formula
ın D 2n2 C .q C 1 �#H.Fq//nC 2q. With this, our proof of the Hasse-Weil
inequality for genus 2 can be completed similar to Manin’s original argument.
In conclusion, our proof relies on some theory of Abelian surfaces and on some
intersection theory, making it less elementary than Manin’s proof for genus 1,
but still quite accessible for graduate students.

As a matter of a personal experience, our first attempt to get ın, was to exper-
iment with elements of J .Fq.J // Š MorFq .J ;J /. We did this since Manin
worked with elements of E.Fq.E// Š MorFq .E;E/. Using MorFq .J ;J /, re-
sulted in a very complicated situation due to the difficulty in the represen-
tation of its objects. The more successful approach to define a sequence
ın and prove a recursive formula for it, was found after experimenting with
J .Fq.H// Š MorFq .H;J /.

In Chapter 4 we consider a second question. The idea is to extend methods of
primality testing using elliptic curves to hyperelliptic curves. A framework for
such tests using elliptic curves is given in the master’s thesis of Wieb Bosma

11
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[Bos85] and more recently in a paper [ASSW16] by Abatzoglou, Silverberg,
Sutherland, and Wong. An explicit example where such elliptic curves meth-
ods are applied to Mersenne numbers Mp WD 2p � 1 is given in a paper by
Benedict Gross [Gro05]. He uses the rank 1 elliptic curve E W y2 D x3 � 12x.
Gross observes that when q � 7 mod 24 is prime, the point P WD .�2; 4/ is
not divisible by 2 in E.Fq/ and the latter group is cyclic of order qC 1. Using
this, he proves that Mp is prime if and only if 2kP 2 E.Q/ is a well defined
point modulo Mp for 1 � k � p � 1 and 2p�1P D .0; 0/. This result by Gross
can be implemented as an algorithm using recursive doubling of P in E.

We begin with primality tests using conics before discussing elliptic curves
and (Jacobians of) genus 2 curves. Note that a paper by Hambleton [Ham12]
discusses Pell conics for primality testing. Here for the sake of motivation, we
start using some specific conics to do primality tests, namely the ones given
as the zeros of xy � 1 and x2 C y2 � 1.
We interpret Pépin’s test for Fermat numbers Fn WD 22

n
C 1 geometrically,

in terms of a group structure on the conic h given by xy D 1. For the ring
R WD Z=.Fn/, the group h.R/ has order 22

n
if and only if Fn is prime. Further

if Fn is prime, we have that R� is cyclic. A primality test based on this is
obtained by choosing an .˛; 1

˛
/ 2 h.R/ where ˛ 62 .Z=.Fn//�2 and then repeat-

edly doubling it in the group h.R/. It turns out that Fn is prime if and only
if we obtain the point .�1;�1/ 2 h.R/ of order two after doubling 2n�1 times.

Similarly, we show how to do primality tests for certain integers of the form
Am;n WD m2n � 1 � ˙2 mod 5 where m < 2n � 2 C 2

2n
. We use the group

structure of the conic C W x2Cy2� 1 over Z=.Am;n/. The strategy is to square
recursively the point .3

5
; 4
5
/ 2 C.Z=.Am;n// (which is not a square in the mul-

tiplicative group C.Z=.Am;n//). We obtain the point .0;˙1/ 2 C.Z=.Am;n// of
order 4 at the m � 2 iteration if and only if Am;n is prime.

After the examples with conics, we continue with a primality test using the el-
liptic curve Et W y

2 D x3�.t2C1/x where t 2 Z. We show that if p � 3 mod 4
is prime then Et defines a supersingular elliptic curve over Fp, and the point
.�1; t/ is not divisible by 2 in Et .Fp/. Moreover, if t2 C 1 is not a square
in Fp then Et .Fp/ is cyclic and we obtain a primality test for integers of the
form m2n � 1 where 4m < 2n. The primality test is done using a reasoning
analogous to the one given by Gross, that is, multiplying by two the point
m.�1; t/ recursively in Et .

So far, we have described primality tests using group varieties as Z-modules.

12



Contents

As shown in [Bos85], the End.E/-module structure of an elliptic curve E can be
used to design a primality test algorithm. Denomme and Savin in [DS08] use
elliptic curves with j -invariants 0 and 1728 as cyclic ZŒ�3�-modules and ZŒi �-
modules respectively to obtain primality tests for certain integer sequences. In
particular, using a specific elliptic curve E with j -invariant 1728, they develop
a primality test for Fermat numbers Fn. Their test consists of the recursive
multiplication by Œ1 C i � 2 End.E/ Š ZŒi � of certain point Q 2 E modulo
Fn, expecting some point of order 2 at a specific step of the iteration. We
make variations on their arguments and in this way obtain primality tests for
integers of the form Sp;n WD p216n C 1 where p � ˙1 mod 10 is prime and
p < 2n. A key ingredient to extend their setting is the observation that if Sp;n
is prime, pE.FSp;n/ Š ZŒi �=.1 C i/4n as ZŒi �-modules. We show that when
Sp;n is prime, a certain point Q 2 E.FSp;n/ that was also used by Denomme
and Savin in their setting, has the property pQ 62 Œ1C i �E.FSp;n/. Therefore,
iterating the point pQ by recursive multiplication by Œ1C i �, leads to a primal-
ity test for Sp;n, similar to the test for the integers Fn described by Denomme
and Savin. Note that whereas heuristic arguments predict that only finitely
many Fermat numbers are prime, the same kind of heuristics applied to, e.g.,
S11;n D 121 � 16nC 1 suggests that there may be infinitely many primes of this
form.

Finally we focus on an open question stated in [ASSW16, Remark 4.13] re-
lated to designing a deterministic primality test using genus 2 curves. We
partially answer this question using the Jacobian variety J of the genus 2
curve H W y2 D x5C h as a ZŒ

p
5�-module (where h 2 Z). Note that the curve

H has the automorphism given by .x; y/ 7! .�5x; y/ where �5 is a complex
primitive fifth root of unity. This automorphism of H extends to an automor-
phism of J , which we use to obtain the endomorphism Œ

p
5� 2 End.J / Š ZŒ�5�

observing that 1C 2�5 C 2�
4
5 D
p
5.

Our method is able to find primes of the form �n WD 4 � 5
n � 1 using the curve

H when gcd.�n; h/ D 1. We use the recursive multiplication by Œ
p
5� 2 End.J /

of a divisor in J modulo �n similarly as in the previous tests.

We first show that when �n is prime, 4J .F�n/ Š ZŒ
p
5�=.
p
5
2n
/ as ZŒ

p
5�-

modules. Further, we construct recursively a sequence of divisors in J modulo
�n, similarly to the previous elliptic tests using Œ

p
5� 2 End.J /. This sequence

must be of certain form at each step and finish with a specific divisor of J to
infer that �n is prime.

An explicit example of this method is implemented using MAGMA. The curve

13
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H W y2 D x5 C 10 is used with the initial divisor 4Œ.�1; 3/ �1� 2 J , to which
repeatedly the map Œ

p
5� is applied. In this example we detected the primes

of the form �n where 1 < n < 5000. To be specific, we obtained primes �n for
all n 2 f3; 9; 13; 15; 25; 39; 69; 165; 171; 209; 339; 2033g.

As we mentioned, we only partially solved the open question in [ASSW16]
since we did not prove that if �n is prime, the divisor Œ.�1; 3/ �1� 2 J .F�n/
is not in Œ

p
5�J .F�n/.

Note that faster tests can be developed to check the primality of �n, but
here we focus on the use of an Abelian surface for primality testing purposes
for the first time [ASSW16].

As we will see in Chapter 4, the proofs and correctness of the elliptic and
hyperelliptic methods exposed here for primality testing, depend deeply on
the Hasse-Weil inequality which is the subject of the earlier chapters.

14



Chapter 1

Hasse inequality à la
Manin revisited

In this chapter we recall the Hasse inequality for elliptic curves as in [Man56]
(for the english translation we refer to [Man60]). This proof is elementary
and it was revisited for example in [GL66, Chapter 10], [Kna92, Section X.3],
[Cha95], and [CST14]. These revisions include:

� a missing argument in the original proof pointed out by Cassels (see
[Cas56]);

� a modern treatment of the original argument;

� the generalization of Manin’s reasoning to any finite field of any charac-
teristic.

We present here more simplifications to the existing proofs of the result by
Manin. The chapter is meant to be a preamble to Chapter 3, where we pro-
vide a similar proof inspired by Manin’s ideas for the new case of hyperelliptic
curves of genus 2.

Before starting the elementary proof of the Hasse inequality, the first sec-
tion is a non-elementary one in order to appreciate Manin’s argument. The
non-elementary proof intends to lead us to the same fundamental idea ex-
ploited by Manin in his proof of the Hasse inequality. This fundamental idea
is that if E=Fq is an elliptic curve and �; Œn� 2 End.E/ are the q-th Frobe-
nius and the multiplication by n 2 Z maps respectively, then deg.� C Œn�/ D

15



1.1. A non-elementary proof of the Hasse inequality

n2 C .q C 1 � #E.Fq//n C q � 0 for all n 2 Z. We fix by convention that
deg.Œ0�/ D 0 for the special situation � D �Œn�.

Both proofs rely on the quadratic polynomial in n describing deg.� C Œn�/.
With a small extra argument, the non-negativity of this quadratic polyno-
mial at any real number can be showed, implying the Hasse inequality. The
non-elementary proof is short and explicit, using some modern theory of alge-
braic curves. Standard references for the necessary background may be found
in mainly [Sil86] and sometimes [Har77]. The elementary proof in the subse-
quent section is more accessible for students since it does not need any of these
references.

1.1 A non-elementary proof of the Hasse in-
equality

In this section we construct a quadratic polynomial in n representing the degree
of the sum of the Frobenius endomorphism and the multiplication by n map
on an elliptic curve: deg.� C Œn�/. This is what Manin did in [Man56]. But
here we will use some algebraic geometry.
The purpose of this first part is to appreciate the elementariness of Manin’s
proof which is discussed in Section 1.2. All results of the present section are
standard and well known; references are, e.g., [Sil86] and [Was08].

1.1.1 First ideas

Formally, an elliptic curve E=k is a non-singular, projective, algebraic curve of
genus one with a distinguished k-rational point that we denote by 1. These
curves are Abelian varieties of dimension one and their locus E n f1g can be
given by the affine equation y2C˛1xyC˛3y D x

3C˛2x
2C˛4xC˛6 (see [Sti09,

Proposition 6.1.2]). If char.k/ 62 f2; 3g, there is a simpler equation called the
short Weierstrass model of E, namely y2 D x3C ˛xCˇ where ˛; ˇ 2 k. This
model is obtained by a projective linear change of coordinates that preserves
1. Similarly if char.k/ D 3, a projective linear change of coordinates leads to
the equation y2 D x3 C a2x

2 C a4x C a6.
The specific model of E presented here for odd and even characteristic will be
used in the following section.
As discussed in the introduction, Hasse’s result is the following theorem.

16



1.1. A non-elementary proof of the Hasse inequality

Theorem 1.1.1. Let E=Fq be an elliptic curve, thenˇ̌
#E.Fq/ � .q C 1/

ˇ̌
� 2
p
q: (1.1)

This is equivalent to the statement that #E.Fq/ D qC 1� t where jt j � 2
p
q.

Definition 1.1.2. An isogeny  W E1 ! E2 of elliptic curves over k is a non-
constant morphism that induces a homomorphism of groups E1.k/ ! E2.k/.
We define deg  D Œk.E1/ W 

�k.E2/� where � W k.E2/ ! k.E1/ is the map
given by F 7! F ı  .

The fact that k.E1/=
�k.E2/ is a finite extension can be seen in [Har77, II,6.8].

We say that an isogeny  is separable if the field extension k.E1/=
�k.E2/ is

separable (otherwise inseparable).
The importance of separability is illustrated in the next definition and the
subsequent lemma and proposition.

Definition 1.1.3. Let  W E1 ! E2 be a non-zero isogeny of elliptic curves
and take P 2 E1. Let t.P / 2 k.E2/ be a uniformizer at .P / 2 E2. We define
the ramification index of  at P by e .P / WD ordP .

�t.P //.

Lemma 1.1.4. Let  W E1 ! E2 be a non-zero isogeny of elliptic curves and

Q 2 E2, then deg  D
X

P2�1.Q/

e .P /.

Proof. [Sil86, Chapter II,�2, Proposition 2.6].

Proposition 1.1.5. Let  W E1 ! E2 be a separable isogeny, then

deg  D #Ker./:

Proof. Since the Ej have genus 1 and since the map  is separable, this follows
from [Sil86, II, 5.9]) and [Sil86, II, 2.6] and [Sil86, III, 4.10(a)].

Denote by End.E/ D Hom.E;E/ the endomorphism ring of E. So the ele-
ments of End.E/ are the zero map, and all isogenies of E to itself. End.E/ is
a ring with ring operations given by ı and C.

From the previous proposition we can say something interesting about the
number of points of E=Fq .
Let E=Fq be an elliptic curve and let Œn�; � 2 End.E/ denote the multiplication
by n map and the q-Frobenius map .x; y/ 7! .xq; yq/. The map � induces a
purely inseparable extension of fields Fq.E/=��Fq.E/ of degree q (see [Sil86,
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1.1. A non-elementary proof of the Hasse inequality

II, Proposition 2.11]). However, the map � � Œ1� is separable (see [Sil86, III,
Corollary 5.5]). Therefore, since �.P / D P if and only if P 2 E.Fq/ we have
that Ker.� � Œ1�/ D E.Fq/, hence, by Proposition 1.1.5:

deg.� � Œ1�/ D #E.Fq/: (1.2)

Our goal is to calculate deg.� C Œn�/ for all n.

1.1.2 Dual isogeny

For this non-elementary proof we will use the dual isogeny of an isogeny
 W E1 ! E2, which is an isogeny O W E2 ! E1.
The existence and construction of the dual isogeny uses machinery from al-
gebraic geometry. We only state and cite the theorem that guarantees the
existence and construction of O . Before the theorem, we define the pullback
of  in order to understand how the theorem exhibits the construction of O .

Recall that Div0.E/ is the free group consisting of finite Z-linear formal sums
of points of E of the form n1P1Cn2P2C� � �CnmPm such that

P
1�i�m ni D 0.

Let  W E1 ! E2 be a non-constant isogeny, then the pullback of  is de-
fined as:

� W Div0.E2/! Div0.E1/X
niPi 7!

X
ni

� X
Q2�1.Pi /

e .Q/Q
�
:

Theorem 1.1.6. Let  W E1 ! E2 be a non-constant isogeny. Then there
exists a unique isogeny O W E2 ! E1 such that  ı O D Œdeg �.
Further, consider the maps �i W Ei ! Div0.Ei / given by P 7! P �1 and the
“sum maps” �i W Div0.Ei / ! Ei given by

P
niPi 7!

P
Œni �Pi . We have that

O WD �1 ı 
� ı �2, that is, O is the composition of:

E2
�2
�! Div0.E2/

�

�! Div0.E1/
�1
�! E1: (1.3)

Proof. See [Sil86, Chapter III, Theorem 6.1].

Useful properties of the dual isogeny are:

�  ı O equals multiplication by deg  on E2 and O ı equals multiplication
by deg  on E1,

18



1.1. A non-elementary proof of the Hasse inequality

� OO D  ,

� b ı � D O� ı O ,

� 1 C � D O C Oı.
The last property is the hardest to verify, see [Sil86, Chapter III, Theorem 6.2]
for details.
In the case E1 D E2 D E, one extends the notion ‘dual isogeny’ to all of

End.E/ by defining bŒ0� D Œ0�. Note that with this extension, the properties
mentioned above hold for all ; � 2 End.E/.

Lemma 1.1.7. Let  2 End.E/, then  C O D Œ1�C Œdeg � � Œdeg.Œ1� � /�.

Proof. The properties of the dual isogeny imply

Œdeg.Œ1��/� D .Œ1��/ı3.Œ1� � / D .Œ1��/ı.Œ1�� O/ D Œ1��. OC/CŒdeg �;

where we used the evident equality bŒ1� D Œ1�.
Corollary 1.1.8. Let � 2 End.E/ be the q-Frobenius isogeny, then � C O� D
Œ1C q �#E.Fq/�.

Proof. Using Lemma 1.1.7, since deg � D q ([Sil86, II, Proposition 2.11]) we
have that deg.Œ1� � �/ D deg.� � Œ1�/ D #E.Fq/ as we saw in (1.2) above.

Therefore � C O� D Œ1C q �#E.Fq/�.

Theorem 1.1.9. Let E=Fq be an elliptic curve. Then, d.n/ WD deg.�C Œn�/ D
n2 C .q C 1 �#E.Fq//nC q � 0 for all n 2 Z.

Proof. Using Lemma 1.1.7 and Corollary 1.1.8 and the properties of the dual
isogeny, and the fact that deg � D q, one finds

Œdeg.� C Œn�/� D .� C Œn�/ ı 3.� C Œn�/ D .� C Œn�/ ı . O� C Œn�/
D � ı O� C � ı Œn�C Œn� ı O� C Œn� ı Œn�

D Œdeg ��C .� C O�/ ı Œn�C Œn2�

D Œn2 C .q C 1 �#E.Fq//nC q�:

Note that from row two to three, we used that Œn� is in the center of End.E/
for all n 2 Z, which is obvious since  is an homomorphism of groups.

Finally, deg.� C Œn�/ � 0 since � C Œn� is either Œ0� or non-constant.
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1.2. Elementary proof of the Hasse-inequality revisited

Corollary 1.1.10 (Hasse inequality). Let E=Fq be an elliptic curve, then

jq C 1 �#E.Fq/j � 2
p
q:

Proof. Consider the polynomial d.x/ WD x2 C x.q C 1 � #E.Fq// C q. By
Theorem 1.1.9 we know that d.n/ � 0 for all n 2 Z. We claim that d.x/ � 0
for all x 2 R.
To prove the claim, suppose that there is x 2 R such that d.x/ < 0. Then,
there are two real zeros ˛ < ˇ of d.x/. Since d.n/ � 0 for n 2 Z, there
are no integers in the open interval .˛; ˇ/, hence 0 < ˇ � ˛ � 1. Suppose
that ˇ � ˛ D 1, then ˛ and ˇ are consecutive integers. So, we have that
� � Œ˛� D Œ0� and � � Œˇ� D Œ0�. Then, subtracting these isogenies we obtain
that Œ0� D .� � Œ˛�/� .� � Œˇ�/ D Œ1� which is absurd. Therefore 0 < ˇ�˛ < 1,
but this is also absurd since .ˇ � ˛/2 is the discriminant of d.x/, which is an
integer.
As d.x/ � 0 for all x 2 R, the discriminant �d of d is non-positive. This
means .qC1�#E.Fq//2�4q � 0, and therefore jqC1�#E.Fq/j � 2

p
q.

1.2 Elementary proof of the Hasse-inequality
revisited

In this section we prove Theorem 1.1.9 essentially following Manin’s argument,
so, using only elementary techniques. The proof will be done for E=Fq with q
odd. This allows us to use the model y2 D x3 C a2x

2 C a4x C a6 introduced
in the previous section. We do not include the elementary proof for even
characteristic (which is included in Soomro’s PhD thesis and also in [CST14]).
However, we simplified some arguments presented in [Soo13]. Recall that
Hasse’s theorem is the following.

Theorem 1.2.1. Let Fq be a finite field of cardinality q, and let E=Fq be an
elliptic curve. Thenˇ̌

#E.Fq/ � .q C 1/
ˇ̌
� 2
p
q

This is equivalent to the assertion that #E.Fq/ D q C 1 � t where jt j � 2
p
q.

Recall that an elliptic curve E is a projective non-singular algebraic curve
of genus 1 equipped with a distinguished rational point that we denote as
1 2 E. Any elliptic curve E is an Abelian variety with the distinguished
point as the identity element of E.
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1.2.1 Degree of endomorphisms of elliptic curves

The definition of isogeny given in 1.1.2 in the previous section needed to be very
general for the proof to work. In the present proof, a much more down to earth
definition suffices, which we motivate using the following observations. We
know that a morphism between elliptic curves sending the identity element to
the identity element is an homomorphism of groups (see [Sil86, III, Proposition
4.8]). Further, a non-constant morphism of curves is surjective; this is since
a projective variety is complete and therefore, its image under a morphism is
also complete. Furthermore, since E is smooth, any rational map of the form
 W E ! C where C is a complete variety, is a morphism. Said this, we have
a new definition of isogeny which will be enough for this section (compare
[Was08, Section 12.2] for a similar approach):

Definition 1.2.2. An isogeny of elliptic curves E1; E2 over k is a non-
constant rational map  W E1 ! E2 sending 1 to 1.

This definition of isogeny will let us find explicitly the shape of the rational
functions expressing  W E1 ! E2. This will be done using the geometry and
group structure of E1 and E2 assuming that both are given by Weierstrass
equations. The following proof can be found in [Was08, Chapter 2, �2.9].

Lemma 1.2.3. Let E1=k and E2=k be elliptic curves given by y2 D fj .x/ for
j 2 f1; 2g respectively, so the fj are cubic polynomials. Let  W E1 ! E2 be
an isogeny, then the affine form of  is given explicitly as:

.x; y/ D

�
u1.x/

u2.x/
; y
v1.x/

v2.x/

�
: (1.4)

Here ui ; vi 2 kŒx� and gcd.u1; u2/ D 1 D gcd.v1; v2/.

Proof. Using affine coordinates we have that .x; y/ D .r.x; y/; s.x; y// for
certain r; s in the function field k.E1/ D k.x; y/ D k.x/C k.x/y, a quadratic
extension of the rational function field k.x/. Therefore r.x; y/ D �1.x/ C

�2.x/y and s.x; y/ D �1.x/ C �2.x/y for certain rational functions �j ; �j .
Moreover since  is a homomorphism one has in particular  ı Œ�1� D Œ�1� ı

 . Written in coordinates this means �1.x/ C �2.x/y D �1.x/ � �2.x/y and
�1.x/ C �2.x/y D ��1.x/ C �2.x/y. As a consequence �2 D 0 D �1. The
lemma follows immediately from this.

Now, to calculate the degree of  , we state an elementary observation concern-
ing the rational function field which will be useful for the subsequent proposi-
tions. The same observation is also stated and proven in [Soe13, Lemma 6.2].
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1.2. Elementary proof of the Hasse-inequality revisited

Lemma 1.2.4. Consider the rational function field k.x/ and let ˛; ˇ 2 kŒx�
be relatively prime and not both constant. Then

Œk.x/ W k
�
˛.x/
ˇ.x/

�
� D maxfdeg ˛.x/;degˇ.x/g:

Proof. We know that Œk.x/ W k
�
˛.x/
ˇ.x/

�
� D deg.m.T // where m.T / 2 k

�
˛.x/
ˇ.x/

�
ŒT � is

the minimal polynomial of x over k. ˛.x/
ˇ.x/

/. We claim that this minimal polyno-

mial (up to a multiplicative constant in k. ˛
ˇ
/) equals �.T / WD ˇ.T / ˛.x/

ˇ.x/
�˛.T /.

Clearly �.x/ D 0 so we need to check that �.T / is irreducible in k. ˛
ˇ
/ŒT �. Put

 WD ˛.x/
ˇ.x/

.

We have that �.T / 2 kŒT �Œ� Š kŒ�ŒT �, therefore � is linear as a polyno-
mial in  . As by assumption gcd.˛.x/; ˇ.x// D 1 in kŒx�, it follows that � is

irreducible in kŒT �Œ� D kŒ ˛.x/
ˇ.x/

�ŒT � Š kŒ ˛.x/
ˇ.x/

; T �. Moreover, this implies that

�.T / 2 k. ˛.x/
ˇ.x/

/ŒT � is also irreducible as a polynomial in T (Gauß’ lemma).

With this we conclude m.T / D �.T / (up to a multiplicative constant), hence

degm.T / D deg�.T / D maxfdeg ˛.x/;degˇ.x/g:

See [Sti09, Theorem 1.4.11] for a more general result of the previous lemma.

Now, we combine the previous two lemmas with E WD E1 D E2 to calculate
for  2 End.E/ the value deg  explicitly.

Proposition 1.2.5. Let E=k be an elliptic curve given by the equation y2 D
f .x/ for some cubic polynomial f . Take a non-constant  2 End.E/.

Then .x; y/ D . ˛.x/
ˇ.x/

; y�.x// where �.x/ 2 k.x/ and ˛; ˇ 2 kŒx� satisfy gcd.˛; ˇ/ D

1. Moreover deg  D maxfdeg ˛.x/;degˇ.x/g.

Proof. The formula for  follows from Lemma 1.2.3. Using Definition 1.1.2
one has

deg  D Œk.x; y/ W �k.x; y/� D Œk.x; y/ W k. ˛.x/
ˇ.x/

; y�.x//�:

Consider the tower of field extensions:

k. ˛.x/
ˇ.x/

; y�.x// � > k.x; y/

k. ˛.x/
ˇ.x/

/

2

[

∧

� > k.x/

2

[

∧
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To see that the vertical arrows indeed define quadratic extensions, first observe
that the Œ�1� map on E induces an automorphism of k.x; y/ with x 7! x and
y 7! �y. Hence this automorphism is the identity when restricted to the fields
k. ˛
ˇ
/ � k.x/. Moreover it sends y to �y and y� to �y�. So the vertical arrows

define extensions of degree at least 2.
Since y2 D f .x/ and y2�.x/2 D f

�
˛.x/
ˇ.x/

�
due to the equation defining E, we

conclude that indeed y� resp. y define quadratic extensions.
As a consequence

2Œk.x/ W k. ˛.x/
ˇ.x/

/� D Œk.x; y/ W k. ˛.x/
ˇ.x/

/� D 2Œk.x; y/ W k. ˛.x/
ˇ.x/

; y�.x//� D 2 deg :

Hence Lemma 1.2.4 implies deg  D maxfdeg ˛.x/;degˇ.x/g.

Note that in [Was08, Section 12.2] the formula for deg  proven above is in
fact used as the definition of the degree of a (non-constant) isogeny.
The next proposition is the most important result of this section. It is moti-
vated by a comment by Cassels (see [Cas56]) on Manin’s proof. Other proofs
of the same proposition can be found, e.g., in [GL66, Chapter 10, Lemma 3]
and [Cha88, Lemma 8.6]; a different proof extending the result to finite fields
of arbitrary characteristic is given in [Soo13, Lemmas 5.3.1, 5.4.2, 5.4.6]. We
remark here that the proof presented below also extends without any difficulty
to characteristic 2.

Proposition 1.2.6. Let E=k be an elliptic curve in Weierstrass form. Con-

sider  2 End.E/ given by .x; y/ 7! . ˛.x/
ˇ.x/

; y�.x// with gcd.˛; ˇ/ D 1 and

�.x/ 2 k.x/ and  non-constant. Then deg  D deg ˛.x/.

Proof. We need to prove that maxfdeg ˛.x/;degˇ.x/g D deg ˛.x/. In fact we

show that deg ˛.x/ > degˇ.x/ which is equivalent to ˛.x/
ˇ.x/
62 O1 � k.x; y/ Š

k.E/.
Let � 2 k.E/ be a uniformizer at 1, so �O1 D m1 (the unique maximal
ideal of O1). Then x D u��2 for some u 2 kŒE�� and:

v1.
˛.x/
ˇ.x/

/ D deg ˛.x/v1.x/ � degˇ.x/v1.x/ D �2 deg ˛.x/C 2degˇ.x/:

Since .1/ D1 we have that v1.
˛.x/
ˇ.x/

/ < 0. This shows degˇ.x/ < deg ˛.x/.

Hence, by Lemma 1.2.5 indeed deg  D deg ˛.x/.

1.2.2 Proof of the Hasse inequality

Let E=Fq be an elliptic curve given by the equation y2 D x3Ca2x
2Ca4xCa6.

Let �; Œn� 2 End.E/ be the q-Frobenius map and the multiplication by n endo-
morphisms. In this section we derive, using only elementary means as in the
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1.2. Elementary proof of the Hasse-inequality revisited

original result by Manin, a polynomial expression in n for deg.� C n/.

Let Fq.E/ Š Fq.x; y/ be the function field of E and consider the map:

‡ W MorFq .E;E/! E.Fq.E//
 7!

�
�1.x/C �2.x/y; �1.x/C �2.x/y

� (1.5)

where  2 MorFq .E;E/ is given by  .x; y/ D
�
�1.x/C�2.x/y; �1.x/C�2.x/y

�
(compare the proof of Lemma 1.2.3) for certain �j ; �j 2 Fq.x/. It is evident
that ‡ is an isomorphism of groups (see e.g. [Soo13, Chapter 5, Section 5.2]).
This ‡ allows us to work with MorFq .E;E/ instead of with E.Fq.E//; this is
illustrated in the proposition below. As a remark, the next proposition was
stated and proved originally by Manin completely elementary in terms of a
point in ETW.Fq.t// where ETW denotes the quadratic twist of E defined using
the extension Fq.E/ � Fq.t/. The elementary argument given below directly
uses (1.5).

Proposition 1.2.7. Let E=Fq be an elliptic curve given in Weierstrass form
y2 D x3 C a2x

2 C a4x C a6 D f .x/ with q odd. Then deg.� � Œ1�/ D #E.Fq/.

Proof. First, by the Lemma 1.2.3 we know that � � Œ1� W E ! E is of the

form .x; y/ 7! . ˛.x/
ˇ.x/

; y�.x// in which ˛; ˇ 2 FqŒx� are coprime (note � � 1 is

non-constant since deg.Œ1�/ D 1 ¤ q D deg.�/. Further by Lemma 1.2.6 it
suffices to show deg ˛.x/ D #E.Fq/.

Consider ‡.�/ D .xq; yf .x/.q�1/=2/ 2 E.Fq.E// and ‡.Œ1�/ D .x; y/ 2 E.Fq.E//.
Using the addition ˚ on E.Fq.E// we have that:

.xq; yf .x/
q�1
2 /˚ .x;�y/ D . ˛.x/

ˇ.x/
; y�.x// 2 E.Fq.E//:

Hence before cancellations, ˛.x/
ˇ.x/

is given by:

˛.x/
ˇ.x/
WD
�
yqCy
xq�x

�2
� .xq C x/ � a2 D

f .x/qCf .x/.2f .x/.q�1/=2C1/

.xq�x/2
� .xq C x/ � a2

D
f .x/qCf .x/.2f .x/.q�1/=2C1/�.xqCx/.xq�x/2�a2.x

q�x/2

.xq�x/2
:

The numerator in the last given expression has degree 2q C 1.

To simplify notation let �.x/ WD f .x/q C f .x/.2f .x/
q�1
2 C 1/, so that

˛.x/
ˇ.x/
D

�.x/�.xqCx�a2/
Q
�2Fq .x��/

2Q
�2Fq .x��/

2 : (1.6)
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We proceed to count the common factors of the numerator and denominator
of the right hand side of (1.6), and thereby find the degree of ˛.
To do this counting, we evaluate �.x/ D f .x/q C f .x/.2f .x/.q�1/=2 C 1/ at
x D a 2 Fq . Take b 2 Fq2 such that b2 D f .a/, so that .a; b/ 2 E. We will
distinguish three possibilities.
Case b … Fq: In this case, f .a/.q�1/=2 D �1 and aq D a. Hence �.a/ D

f .a/q � f .a/ D 0. Further, @�
@x
D .f .x/.q�1/=2 C 1/f 0.x/ which is also zero at

x D a, hence a is a double zero of � and .x � a/2 divides both the numer-
ator and the denominator of the right hand side of (1.6). An easy counting
argument tells us that the number of cancellations of this type is exactly
2q C 2 � .#E.Fq/C#EŒ2�.Fq//.
Case b 2 F�q: In this case, f .a/.q�1/=2 D 1 and aq D a. Hence �.a/ D
4f .a/ ¤ 0, and no cancellation occurs in this case.

Case b D 0: In this case, f .a/.q�1/=2 D 0 and aq D a. Hence, �.a/ D
f .a/ D 0 is a single zero of �.x/ since f .x/ is separable. The total number of
cancellations or this type is #EŒ2�.Fq/�1 (the �1 because of the point1 2 E).

Combining these cases one finds

deg ˛.x/ D 2qC1�
�
2q C 2 � .#E.Fq/C#EŒ2�.Fq// �#EŒ2�.Fq/

�
C1 D #E.Fq/:

Denote dn WD deg.� C Œn�/, where we write deg.Œ0�/ D 0 by convention.
We give details about the curve ETW used by Manin in his original elementary
proof.

As before, let E=Fq be an elliptic curve given by y2 D x3Ca2x
2Ca4xCa6 D

f .x/. Consider the curve ETW=Fq.t/ given by f .t/y2 D x3 C a2x
2 C a4x C a6.

The curve ETW is the quadratic twist of E=Fq.t/ corresponding to the exten-
sion Fq.t; s/ � Fq.t/, where s2 D f .t/ (see [Soo13, Section 2.6]). In particular
ETW Š E over Fq.t; s/ Š Fq.E/. An explicit isomorphism is given by:

& W E
�
�! ETW

.u; v/ 7����! .u; v
s
/:

Observe that if  2 End.E/ � MorFq .E;E/ corresponds via the isomorphism

‡ to the point
�
˛.t/
ˇ.t/

; s�.t/
�
2 E.Fq.t; s// Š E.Fq.E//, then its corresponding

point in ETW is given by &
�
˛.t/
ˇ.t/

; s�.t/
�
D

�
˛.t/
ˇ.t/

; �.t/
�
2 ETW.Fq.t//. Hence we
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can also calculate deg  D deg ˛.t/ using the arithmetic of ETW.Fq.t//. This is
the approach used by Manin; in particular he defined and showed properties
of the numbers dn in terms of points in ETW.Fq.t//.

Note that the q-Frobenius point ‡.�/ D .tq; sf .t/.q�1/=2/ 2 E.Fq.E// cor-
responds to .tq; f .t/.q�1/=2/ 2 ETW.Fq.t//. Moreover, the identity map .t; s/ 2
E.Fq.E// corresponds to .t; 1/ 2 ETW.Fq.t//.
Note that ETW is not in Weierstrass form, so the group law has a small variation
(see [Soo13, Section 5.3]).

Lemma 1.2.8. Let E=Fq be an elliptic curve. Then dn WD deg.�CŒn�/ satisfies
2dn C 2 D dn�1 C dnC1 for all n 2 Z.

Proof. This can be shown quite elementary, although somewhat elaborate. It
requires Proposition 1.2.6. Manin did it in odd characteristics by working
explicitly with the points &.‡.�C n// 2 ETW.Fq.t//, manipulating the rational
functions that define their coordinates. He considered all the cases where
these points add up 1 2 ETW and showed the recursion formula with explicit
calculation.
For the original proof see [Man56, Pages 675-678, “Osnovna� Lemma”]. For
a modern treatment see [Cha95, Pages 226 and 229-231, “Basic identity”].
Further, a small reduction in the proof and the extension of the proof to
characteristic two can be found in [Soo13, Lemma 5.3.4].

With this lemma, we state the main theorem which is the same as Theorem
1.1.9.

Theorem 1.2.9. Let E=Fq be an elliptic curve. Then dn D deg.� C Œn�/ D
n2 C .q C 1 �#E.Fq//nC q � 0 for all n 2 Z.

Proof. The proof follows by induction using the previous Lemma 1.2.8 twice
(positive n and negative n).
We have that d�1 D #E.Fq/ by Proposition 1.2.7 and d0 D deg � D deg xq D
q which is the basis step. Suppose that the formula holds for two consecutive
values n � 1; n. Then, by Lemma 1.2.8:

dnC1 D 2dn � dn�1 C 2

D 2.n2 C .q C 1 �#E.Fq//nC q/�
..n � 1/2 C .q C 1 �#E.Fq//.n � 1/C q/C 2

D .nC 1/2 C .nC 1/.q C 1 �#E.Fq//C q:
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1.2. Elementary proof of the Hasse-inequality revisited

Therefore, the theorem holds for n; nC1. The induction is similar in the other
direction.

Now we state again the Hasse inequality.

Corollary 1.2.10 (Hasse inequality). Let E=Fq be an elliptic curve. Then

jq C 1 �#E.Fq/j � 2
p
q:

Proof. Use the same proof as for Corollary 1.1.10. But here, use Theorem
1.2.9.

As we saw, in this section we used very little algebraic geometry to prove the
Hasse inequality.
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Chapter 2

Jacobian and Kummer
varieties function fields

In this chapter we construct and explore the function fields of the Jacobian
J and of the Kummer surface K associated to a genus 2 curve H over a field
k. This is done in terms of Mumford coordinates, which are used in many
computer algebra systems such as MAGMA, sage, PARI. We define, in terms
of these coordinates, some interesting symmetric functions in k.J / used in
Chapter 3 for our proof of the Hasse-Weil inequality for genus 2 à la Manin.
Furthermore, we introduce and calculate two infinite families of symmetric
functions �n and �n in k.J / recursively in terms of these coordinates. These
families of functions facilitate the explicit computation of Œ

p
5� 2 End.J / for

the genus 2 curve y2 D x5 C h presented in Chapter 4 for primality testing
purposes.
Finally, we introduce a codimension 1 subvariety ‚ � J such that ‚ Š
H. We construct a specific basis of the Riemann-Roch space L.2‚/ � k.J /.
An element of this basis will be important for the proof of the Hasse-Weil
inequality for genus 2.

2.1 The Jacobian J of a genus 2 curve and its
function field

Here we construct k.J / using Mumford coordinates which we briefly recall.
Further we find equations for an affine variety J Aff � A4 birational to J .
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2.1. The Jacobian J of a genus 2 curve and its function field

Let k be a field with char.k/ ¤ 2. We consider a complete, smooth curve
H of genus 2 over k corresponding to an equation

y2 D x5 C a4x
4
C a3x

3
C a2x

2
C a1x C a0 D f .x/ (2.1)

where f .x/ 2 kŒx� is a separable polynomial. This is the canonical form of
hyperelliptic curves of genus 2 in odd characteristic having a unique k-rational
point at infinity 1 2 H.k/. The point 1 is fixed by the hyperelliptic involu-
tion t 2 Aut.H/ given by .x; y/ 7! .x;�y/. For details about this canonical
form see [CF96, Chapter 1]. Denote by J the Jacobian variety associated to H.

The geometry of J can be thought of as follows. Consider H � H and
take � 2 Aut.H � H/ where �.P1; P2/ D .P2; P1/ for P1; P2 2 H. More
precisely, let Pi WD .xi ; yi / 2 H, we have that � permutes x1 $ x2 and
y1 $ y2 with .x1; y1; x2; y2/ the generic point of H � H. Consider the
quotient Sym2.H/ WD .H � H/=� , that is, the identification of the points
.P1; P2/ $ .P2; P1/ in H � H. The elements of Sym2.H/ are denoted by
fP1; P2g, that is unordered 2-tuples. The map Sym2.H/! Pic0.H˝ k/ given
by fP1; P2g 7! ŒP1 C P2 � 21� contracts the curve ffP; t.P /gWP 2 Hg to one
point, and is injective everywhere else. Hence, after blowing down) the men-
tioned curve in Sym2.H/ one obtains a variety birational to J (see also [Mil86,
Proposition 3.2]). The formal procedure of blowing down is described, e.g., in
[CF96, Chapter 2, Appendix I].

The previous construction of J gives us details about the geometry of J , how-
ever, we also require an algebraic description of J .k/ as a group. In the next
chapter (Section 3.2.1), we give details of the isomorphism J .k/ Š Pic0.H=k/.

Denote Gk WD Gal.k=k/, where k WD ksep. Then we have

J .k/ D J .k/Gk Š Pic0.H˝k k/Gk
.Š/
D Pic0.H=k/ D Div0.H=k/= � :(2.2)

Here � is linear equivalence of divisors defined over k, namely D1 � D2 if and
only if D1 �D2 D div.f / for some f 2 k.H/.

We also show in the next chapter that the elements of J .k/ can be repre-
sented by divisor classes of the form ŒP CQ� 21� or ŒR�1�. Being defined
over k means in the first case that P;Q are fixed by Gk and therefore either
P;Q 2 H.k/ or P;Q 2 H.`/ with ` a quadratic extension of k, and then P;Q
are conjugate over k. In the other case R 2 H.k/.
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2.1. The Jacobian J of a genus 2 curve and its function field

2.1.1 Mumford coordinates and k.J /
In this section, we use Mumford coordinates to describe the generic point of
J and the function field of J . The Mumford representation of the elements
of J .k/ Š Pic0.H/ is ubiquitous in the theory of hyperelliptic Jacobians, and
it is very much used in applications of this theory in, e.g., cryptography.

Definition 2.1.1 (Mumford Representation). Let H=k be a hyperelliptic curve
of genus 2 given by the equation y2 D x5Ca4x

4Ca3x
3Ca2x

2Ca1xCa0 D f .x/

and let D WD Œ.˛1; ˇ1/C .˛2; ˇ2/� 21� 2 J .k/. We represent D by the unique
pair hu; vi where u; v 2 kŒx� explicitly by the following cases:

� Case ˛1 ¤ ˛2 (general case):

u.x/ D x2 � .˛1 C ˛2/x C ˛1˛2 and v.x/ D ˇ1�ˇ2
˛1�˛2

x C ˛1ˇ2�˛2ˇ1
˛1�˛2

� Case ˛1 D ˛2 and ˇ1 D ˇ2 with ˇ1 ¤ 0:

u.x/ D .x � ˛1/
2 and v.x/ D f 0.˛1/

2ˇ1
x � f 0.˛1/

2ˇ1
˛1 C ˇ1

� Case ˛1 D ˛2 and ˇ1 D �ˇ2:
u.x/ D 1 and v.x/ D 0.

If D WD Œ.˛; ˇ/�1� 2 J .k/, we represent D using u.x/ D x�˛ and v.x/ D ˇ.

The previous definition says that u; v have coefficients in k. This is clear from
the description of k-rational divisors as given at the end of the previous section.

The following lemma yields a property of Mumford coordinates:

Lemma 2.1.2. Let H be a genus 2 curve defined by y2 D x5Ca4x
4Ca3x

3C

a2x
2 C a1x C a0 D f .x/. If hu; vi are the Mumford coordinates of a point in

J .k/ then u j f � v2.
Moreover if u 2 kŒx� is monic of degree � 2, v 2 kŒx� has deg.v/ < deg.u/ and
u j f � v2, then hu; vi is the Mumford representation of a point in J .k/.

Proof. In case of the zero point we have u.x/ D 1 and v.x/ D 0 and then the
lemma follows trivially.
In case hu; vi D hx�˛; ˇi for some point .˛; ˇ/ 2 H.k/ we have f .˛/�ˇ2 D 0
hence indeed x � ˛ j f .x/ � ˇ2.
If the point corresponds to Œ.˛1; ˇ1/C .˛2; ˇ2/� 21� and ˛1 ¤ ˛2 then f � v2

clearly has ˛1 and ˛2 as zeros, settling this case.
Finally, starting from Œ.˛1; ˇ1/C .˛1; ˇ1/� 21� with ˇ1 ¤ 0 then both f � v2

and its derivative f 0 � f 0.˛1/
ˇ1

v have a zero at x D ˛1, which again implies

u j f � v2.
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2.1. The Jacobian J of a genus 2 curve and its function field

To show the last statement of the lemma, the case that deg.u/ � 1 is ob-
vious. If deg.u/ D 2 and u is separable, then the two zeros ˛1 ¤ ˛2 of u are
also zeros of f �v2. Hence v.˛j /

2 D f .˛j / and .˛j ; v.˛j // 2 H.k/ for j D 1; 2.

Then hu; vi represents the point Œ.˛1; v.˛1//C .˛2; v.˛2// � 21� 2 J .k/.
The last case is if deg.u/ D 2 and u is non-separable. Here u has a dou-
ble zero, say at ˛ and u.x/ D .x � ˛/2 j f � v2. Hence v.˛/2 D f .˛/

and 2v0.˛/v.˛/ D f 0.˛/. We have that v.˛/ ¤ 0 since otherwise f would
have a multiple zero at ˛. By assumption deg v < deg u D 2, so v equals
its own first order Taylor expansion around ˛, i.e., v D v.˛/ C v0.˛/.x � ˛/.
A direct verification shows that hu; vi equals the Mumford representation of
Œ2.˛; v.˛// � 21� 2 J .k/.

With this lemma we proceed to construct the locus J Aff � A4 consisting of
the points in general position in J namely Œ.x1; y1/C .x2; y2/� 21� 2 J with
x1 ¤ x2, using the Mumford representation. The variety J Aff will be useful to
find generators of the function field of J .
We use the Mumford coordinates to embed J Aff in A4 as an intersection of
two hypersurfaces . Let D WD Œ.x1; y1/C .x2; y2/� 21� 2 J .k/ be the generic
point. Consider the symmetric functions A WD x1Cx2, B WD x1x2, C WD

y1�y2
x1�x2

and D WD x1y2�x2y1
x1�x2

. We have that D is represented by hu.x/; v.x/i D hx2 �

Ax C B;Cx CDi and by Lemma 2.1.2:

x5C a4x
4
C a3x

3
C a2x

2
C a1xC a0 � .CxCD/

2
� 0 mod x2 �AxCB:

Solving this congruence yields the equations of two hypersurfaces in A4, namely:

A4 � AC 2 C B2 � 2CD C a4.A
3
� 2AB/C a3.A

2
� B/C a2A � 3A

2B C a1 D 0;

�A3B C BC 2 �D2
C 2AB2 � a4.A

2B � B2/ � a3AB � a2B C a0 D 0:

These two equations in A;B;C;D define an embedding in A4 of the locus of
the points of J in general position. Denote by J Aff � A4 this embedded affine
variety. Then k.J Aff/ D k.J /. We proceed to show that this function field
equals k.A;B;C;D/ and that the relations between A;B;C;D are generated
by the two given ones.

In H � H consider the four curves 1 � H and H � 1 and the two graphs
of the identity map and of the hyperelliptic involution t. The complement of
these four curves is an affine surface we denote .H �H/Aff; it is birational to
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2.1. The Jacobian J of a genus 2 curve and its function field

H � H hence k..H � H/Aff/ D k.x1; x2; y1; y2/. Here the xi are independent
variables and y2i D f .xi /. There is a well-defined morphism

.H �H/Aff ! J Aff

given by ..˛1; ˇ1/; .˛2; ˇ2// 7! Œ.˛1; ˇ1/C.˛2; ˇ2/�21�. The map � introduced
earlier restricts to .H�H/Aff and it interchanges the two elements in each fiber
of the given morphism. Hence k.J / D k.J Aff/ is isomorphic to the subfield of
k.x1; x2; y1; y2/ consisting of all elements fixed by ��. Clearly k.A;B;C;D/ is
contained in this subfield and it remains to show k.A;B;C;D/ D k.x1; x2; y1; y2/

��

and to find the relations between A;B;C;D.
We have that Œk.H �H/ W k.x1; x2/� D 4. The involution �� restricts to an

involution (which we also denote by ��) on k.x1; x2/. Its fixed field is clearly
k.A;B/, since x1; x2 are the zeros of X2 � AX C B 2 k.A;B/ŒX�.

Now, consider the following diagram describing inclusions of function fields.

k.x1; x2; y1; y2/
��

2
,! k.x1; x2; y1; y2/

,! ,! 4

k.A;B/
2
,! k.x1; x2/:

It shows that Œk.x1; x2; y1; y2/
�� W k.A;B/� D 4. The equation

A4�AC 2CB2�2CDCa4.A
3
�2AB/Ca3.A

2
�B/Ca2A�3A

2BCa1 D 0

implies D 2 k.A;B;C /. Expressing D as a rational function in A;B;C , the
remaining relation

�A3B C BC 2 �D2
C 2AB2 � a4.A

2B � B2/ � a3AB � a2B C a0 D 0

shows that Œk.A;B; C;D/ W k.A;B/� � 4.
Consider the extension of k.A;B;C;D/ given by k.A;B;C;D/.x1 � x2/.

We have that x1 � x2 is a zero of X2 � .A2 C 4B/ 2 k.A;B;C;D/ŒX� and
x1�x2 2 k.x1; x2; y1; y2/ is not fixed by ��, therefore x1�x2 … k.A;B;C;D/.
This means that Œk.A;B; C;D/.x1 � x2/ W k.A;B;C;D/� D 2.

Moreover,

x1 D
AC .x1 � x2/

2
x2 D

A � .x1 � x2/

2

y1 D D C x1C y2 D D C x2C:
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2.1. The Jacobian J of a genus 2 curve and its function field

This shows that k.x1; x2; y1; y2/ D k.A;B;C;D/.x1 � x2/ and

k.J / Š k.x1; x2; y1; y2/�
�

D k.A;B;C;D/:

Moreover, the argument shows that Œk.A;B; C;D/ W k.A;B/� D 4 which means
that the two relations obtained for C;D in terms of A;B generate the prime
ideal defining the affine variety in A4 birational to J Aff.

To end this section we present an example of how to use the previous Lemma
and discussion to do symbolic computations with elements of J . The fol-
lowing code constructs the generic point of J =Q.�5/ in Mumford coordinates
using MAGMA. We do it for the Jacobian J of H W y2 D x5 C h, consid-
ered over the 5-th cyclotomic field. We extend the element of Aut.H/ given by
.x; y/ 7! .�5x; y/ to an automorphism �5 of J and construct the multiplication
by
p
5 endomorphism, that is, Œ

p
5� 2 End.J / Š ZŒ�5� (see [CF96, Chapter 5,

Section 2]). We will see more details in Chapter 4. The code below obtains
formulas in terms of Mumford coordinates for the action of Œ

p
5� on the generic

point of J . This is done noting that �5 C �
4
5 D

�1C
p
5

2
2 End.J / Š ZŒ�5�.

> Q<z> := CyclotomicField(5);

> K<h> := RationalFunctionField(Q);

> MumCoef<d,c,b,a> := PolynomialRing(K, 4);

> MumPol<X> := PolynomialRing(MumCoef);

> jaceqs := (X^5+h - (c*X+d)^2) mod (X^2-a*X+b);

> FFJ<D,C,B,A> := FieldOfFractions(quo<MumCoef | Coefficients(jaceqs)>);

> H := HyperellipticCurve(Polynomial([FFJ|h,0,0,0,0,1]));

> J := Jacobian(H);

> gp := elt<J | Polynomial([B,-A,1]), Polynomial([D,C]), 2>;

> gpz1 := elt<J | Polynomial([z^2*B,-z*A,1]), Polynomial([D,C/z]),2>;

> gpz4 := elt<J | Polynomial([z^(-2)*B,-(z^-1)*A,1]), Polynomial([D,C/(z^-1)]),2>;

> gp;

(x^2 - A*x + B, C*x + (-1/2*A^2 + 2*B)/(A^4 - 3*B*A^2 + B^2)*C^3 + (1/2*A^5 -

7/2*B*A^3 + 9/2*B^2*A + 2*h)/(A^4 - 3*B*A^2 + B^2)*C, 2)

> gpz1;

(x^2 - z*A*x + z^2*B, (-z^3 - z^2 - z - 1)*C*x + (-1/2*A^2 + 2*B)/(A^4 - 3*B*A^2

+ B^2)*C^3 + (1/2*A^5 - 7/2*B*A^3 + 9/2*B^2*A + 2*h)/(A^4 - 3*B*A^2 +

B^2)*C, 2)

> sq5 := 2*(gpz1+gpz4)+gp;

Time: 179.180

In the next section we reduce the number of Mumford coordinates defining
k.J /. Further we find some interesting symmetric functions in terms of these
coordinates which will be used in subsequent chapters.
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2.2. k.J / with three generators and some interesting symmetric functions

2.2 k.J / with three generators and some inter-
esting symmetric functions

In the previous section we saw that D D x1y2�x2y1
x1�x2

2 k.A;B;C / using the
equations that define J Aff. We show for ı WD x1y2 C x2y1, that:

k.A;B; ı/ D k.A;B;C;D/ Š k.J / (2.3)

which is convenient in certain situations to get compact formulas for some
symmetric functions in J .
It is clear that the function ı is invariant under ��. Consider the following
diagram where the numbers represent the degrees of the field extensions, as
explained in the previous section:

k.A;B;C;D/
� � 2 // k.x1; y1; x2; y2/

k.A;B; ı/
?�

1‹

OO

k.A;B/
. �

8

==

O/

4

??

?�

4‹

OO

� � 2 // k.x1; x2/
?�

4

OO

To infer that Œk.A;B; ı/ W k.A;B/� D 4, the following proposition suffices
together with the previous diagram.

Proposition 2.2.1. The minimal polynomial of ı WD x1y2Cx2y1 over k.x1; x2/
where y2i D x

5
i C a4x

4
i C a3x

3
i C a2x

2
i C a1xi C a0 DW f .xi /, has degree 4.

Proof. Let B D f1; y1; y2; y1y2g be a basis of k.x1; x2/.y1; y2/ as a vector
space over k.x1; x2/. Consider the matrix that represents in its columns the
coefficients in k.x1; x2/ using the basis B to represent powers of ı, namely
ı0; ı1; ı2; ı3.

M D

0BB@
1 0 x21f .x2/C x

2
2f .x1/ 0

0 x2 0 3x21x2f .x2/C f .x1/x
3
2

0 x1 0 3x22x1f .x1/C f .x2/x
3
1

0 0 2x1x2 0

1CCA
A direct calculation shows that the determinant of this matrix is nonzero i.e.
this matrix has rank 4.
It is easy to see that Œk.x1; x2; ı/ W k.A;B; ı/� D 2. Hence the above diagram
implies k.J / D k.A;B; ı/ and that Œk.A;B; ı/ W k.A;B/� D 4, from which the
result follows.
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2.2. k.J / with three generators and some interesting symmetric functions

Remark. We can go further and calculate explicitly the minimal polynomial
of ı. The column vector for ı4 in terms of the basis B is given by:

b D

0BB@
x41f .x2/

2 C 6x21x
2
2f .x1/f .x2/C f .x1/

2x42
0

0

4x31x2f .x2/C 4x1x
3
2f .x1/:

1CCA
By the previous proposition we can solve the system M˛ D b, where ˛ D
.˛0; ˛2; ˛3; ˛4/

T , and ˛i 2 k.A;B/ � k.x1; x2/. We obtain:

˛0 D �.f .x1/
2x42 C x

4
1f .x2/

2/C 2x21x
2
2f .x1/f .x2/

˛1 D 0

˛2 D 2x
2
2f .x1/C 2x

2
1f .x2/

˛3 D 0:

Note that each ˛i is symmetric. Writing ˛0 and ˛2 in terms of A D x1 C x2,
B D x1x2, we obtain

˛0 WD � A
6B4 � 2a4A

5B4 C 2a0A
5B2 C 6A4B5 C .�2a3 � a

2
4/A

4B4 C 2a1A
4B3

C 2a0a4A
4B2 � a20A

4
C 10a4A

3B5 � 2a3a4A
3B4 C .�10a0 C 2a1a4/A

3B3

C 2a0a3A
3B2 � 2a0a1A

3B � 9A2B6 C .10a3 C 4a
2
4/A

2B5

C .�10a1 � a
2
3/A

2B4 C .�8a0a4 C 2a1a3/A
2B3 � a21A

2B2 C 4a20A
2B

� 8a4AB
6
C 8a3a4AB

5
C .8a0 � 8a1a4/AB

4
� 8a0a3AB

3
C 8a0a1AB

2

C 4B7 � 8a3B
6
C .8a1 C 4a

2
3/B

5
� 8a1a3B

4
C 4a21B

3

˛2 WD2A
3B2 C 2A2B2a4 � 6AB

3
C 2AB2a3 � 4B

3a4 C 2A
2a0 C 2ABa1

C 4B2a2 � 4Ba0

where the ai 2 k are the coefficients of the polynomial f defining the hyper-
elliptic curve. By Proposition 2.2.1 we know that P.X/ WD X4 � ˛2X

2 � ˛0 2

k.A;B/ŒX� is irreducible, and P.ı/ D 0.

2.2.1 Useful functions in k.J /
In this section, in terms of the generators A;B;C;D of the function field k.J /
we introduce some useful functions in k.J /. These will be used in the next
chapters.
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2.2. k.J / with three generators and some interesting symmetric functions

Let H=k be a hyperelliptic curve given by y2 D x5 C a4x
4 C a3x

3 C a2x
2 C

a1x C a0. Define the following functions in k.J / (verifying that the different
expressions indeed define the same function is just a direct computation).

s1 W D a1 C a2AC a3.A
2
� B/C a4.A

3
� 2AB/C A4 � B.3A2 � B/

D
f .x1/�f .x2/

x1�x2
;

s2 W D 2a0 C a1AC a2.A
2
� 2B/C a3.A

3
� 3AB/C a4.A

4
� 4A2B C 2B2/

C A5 C 5AB2 � 5A3B

D f .x1/C f .x2/;

s3 W D
s2 � C

2.A2 � 4B/

2

D y2y1;

(2.4)

s4 W D a0 C a1AC a2.A
2
� B/C a3.A

3
� 2AB/C a4.A

4
� B.3A2 � B//

C A.A2 � 3B/.A2 � B/

D
x1f .x1/�x2f .x2/

x1�x2
;

�0 WD 2D C AC D y1 C y2;

�1 WD A
2C C AD � 2BC D x1y1 C x2y2;

�1 WD AD C 2BC D x1y2 C x2y1 D ı:

In the following two lemmas we describe recursively two infinite families of
symmetric functions in terms of the Mumford coordinates A;B;C;D, namely
�n D xn1y1 C x

n
2y2 2 k.J / and �n D xn1y2 C x

n
2y1 2 k.J /. We are interested

in �n; �n 2 k.J / since they can be used in Chapter 4 to derive formulas
describing certain elements of End.J /. In particular this makes MAGMA
implementations shorter.

Lemma 2.2.2. Let �n WD xn1y1 C x
n
2y2 2 k.J /, then we have the recursion

formula �n D A�n�1�B�n�2. Moreover, as was noted in (2.4), �0 D 2DCAC
and �1 D A

2C C AD � 2BC .
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2.3. Kummer surface and its function field

Proof. Recall A D x1 C x2 and B D x1x2. We have Ax1 � B D x21 and
Ax2 � B D x

2
2 and hence

A�n�1 � B�n�2 D A.x
n�1
1 y1 C x

n�1
2 y2/ � B.x

n�2
1 y1 C x

n�2
2 y2/

D xn�21 .Ax1 � B/y1 C x
n�2
2 .Ax2 � B/y2

D xn�21 x21y1 C x
n�2
2 x22y2 D �n:

Lemma 2.2.3. Let �n WD x
n
1y2Cx

n
2y1 2 k.J /, then �n D A�n�1�B�n�2 and

�0 D 2D C AC and �1 D AD C 2BC .

Proof. The proof is similar to the previous lemma.

Note that we can express D in terms of A;B;C using the functions s1; s2; s4 2
k.A;B/ and s3 2 k.A;B;C / defined in (2.4), namely:

D D x1y2�x2y1
x1�x2

D
C.s2 C s3 � s4/

s1
: (2.5)

2.3 Kummer surface and its function field

Let H=k be a hyperelliptic curve of genus 2 given by y2 D f .x/ with f

of degree 5, and let J =k be the associated Jacobian variety. Previously we
described k.J / as the function field of Sym2.H/. That is, as the field of in-
variants k.Sym2.H// D k.H � H/�� � k.H � H/. Moreover, we obtained
k.J / Š k.A;B; ı/ by Proposition 2.2.1. Further, using Equation (2.5) we have
k.A;B; ı/ D k.A;B;C /.
We now discuss the subfield of k.J / obtained by taking the invariants under
the Œ�1� map.
Consider the hyperelliptic involution t 2 Aut.H/, given by t.x0; y0/ D .x0;�y0/.
This automorphism can be extended naturally to J , namely as

Œ.x1; y1/C .x2; y2/ � 21� 7! Œ.x1;�y1/C .x2;�y2/ � 21�:

Since .x1;�y1/C .x2;�y2/ � 21 � �.x1; y1/ � .x2; y2/C 21, this is exactly
the Œ�1� map on J .
We are interested in the field of invariants k.J /Œ�1�� � k.J /. This is related
to the Kummer surface of J as we will now recall.
The Kummer surface K associated to J is obtained by the desingularization
of the quotient J =Œ�1�. This means that K is the surface resulting from the
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2.3. Kummer surface and its function field

identification of opposite points in J with its
�
6
2

�
C 1 D 16 singularities blown

up. These singularities correspond to the elements of J Œ2� which are invariant
under Œ�1�. So now, consider the induced automorphism Œ�1�� 2 Aut.k.J //.
Since K is birational to J =Œ�1�, the function field of K equals the subfield of
k.J / consisting of all invariants under Œ�1��, so

k.K/ D k.J /Œ�1�� D k.A;B;C /Œ�1�� D k.A;B; ı/Œ�1�� :

Clearly k.A;B/ � k.A;B;C /Œ�1�
�

. Recall that Œk.A;B; C / W k.A;B/� D 4,
hence as Œ�1�� has order 2 we have Œk.A;B; C / W k.A;B;C /Œ�1�

�

� D 2 and
Œk.A;B; C /Œ�1�

�

W k.A;B/� D 2. To get an explicit generator for the extension
k.K/ over k.A;B/, note that s3 D y1y2 is invariant under Œ�1�� and s3 62

k.A;B/. Therefore k.K/ D k.J /Œ�1�� Š k.A;B; s3/. In fact we have that
k.A;B; s3/ D k.A;B;C

2/ since C 2 D 2s3�s2
4B�A2

and s2 D f .x1/Cf .x2/ 2 k.A;B/.

In the next section we describe the minimal polynomial of s3 and of C 2 over
k.A;B/. Moreover, we present a singular surface birational to K explicitly
similar to what we did for J in Section 2.1.1.

2.3.1 A singular surface birational to K
Here we introduce a surface Ks which is birational to the Kummer surface K.
Recall that k.K/ Š k.A;B; ı/Œ�1�� D k.A;B; y1y2/.

As before, we assume the hyperelliptic curve H of genus 2 over k to be given
by y2 D x5Ca4x

4Ca3x
3Ca2x

2Ca1xCa0 D f .x/. We have that f .x/ 2 kŒx�
factors in NkŒx� as f .x/ D

Q5
iD1.x � ˛i / with ˛i 2 Nk. Then

.y1y2/
2
D f .x1/f .x2/ D

5Y
iD1

.x1 � ˛i /.x2 � ˛i /

D

5Y
iD1

.x1x2 � .x1 C x2/˛i C ˛
2
i /

D

5Y
iD1

.B � A˛i C ˛
2
i / DW �.A;B/

(2.6)
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2.3. Kummer surface and its function field

where A D x1 C x2 and B D x1x2 as usual. Since �.A;B/ D f .x1/f .x2/, it is
clear that �.A;B/ 2 kŒA;B�. A direct calculation shows

�.A;B/ WDa0A
5
C a1A

4B C a0a4A
4
C a2A

3B2 C .�5a0 C a1a4/A
3B

C a0a3A
3
C a3A

2B3 C .a2a4 � 4a1/A
2B2 C .a1a3 � 4a0a4/A

2B

C a0a2A
2
C a4AB

4
C .a3a4 � 3a2/AB

3
C .5a0 � 3a1a4 C a2a3/AB

2

C .a1a2 � 3a0a3/AB C a0a1AC B
5
C .a24 � 2a3/B

4

C .2a1 � 2a2a4 C a
2
3/B

3
C .2a0a4 � 2a1a3 C a

2
2/B

2

C .a21 � 2a0a2/B C a
2
0:

Formula (2.6) says

s23 D �.A;B/ (2.7)

which implies that T 2 � �.A;B/ 2 k.A;B/ŒT � is the minimal polynomial of s3
over k.A;B/. Taking A;B; s3 as coordinates in A3, we define the affine surface
Ks � A3 as the zeros of the equation s23 D �.A;B/. By construction Ks is
birational to K.
As described in detail in [vGT06, Section 4.3], we discuss some of the geometry
of Ks. From Equation (2.7) one sees that the map .A;B; s3/ 7! .A;B/ realizes
Ks as a double cover of A2 branched over the lines B � ˛iA C ˛

2
i D 0 for

i D 1; : : : ; 5. These lines are tangent to the parabola with equation A2 D 4B.
The affine tangency points are .2˛i ; ˛

2
i / 2 A2.

Since k.A;B; s3/ D k.A;B;C 2/, we can also describe k.K/ using the mini-
mal polynomial of C 2 over k.A;B/. One verifies that C 2 D s2�2s3

A2�4B
is a zero

of

T 2 �
2s2

A2 � 4B
T C

s2
2 � 4�.A;B/

.A2 � 4B/2
2 k.A;B/ŒT �:

To end this chapter, in the next section we discuss the curve ‚ � J isomorphic
to H, given as the image of the map H! J defined by P 7! ŒP �1�. Since J
has dimension 2, we have that ‚ is a codimension 1 subvariety of J and we can
regard it as a divisor on J . Further, we will construct a function �4 2 k.J /
having ‚ � J as a pole of order 2 and no other poles. We will see that a basis
of the Riemann Roch space L.2‚/ realizes the Kummer Surface of J in P3.
The function �4 in the constructed basis of L.2‚/ will be important to prove
the Hasse-Weil inequality for genus 2 in the next chapter.
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2.4. The divisor ‚ 2 Div.J / and L.2‚/ � k.J /

2.4 The divisor ‚ 2 Div.J / and L.2‚/ � k.J /
Let H=k be a hyperelliptic curve of genus 2 given by y2 D f .x/ where f has
degree 5. Let Q 2 H.k/. The image of H in its Jacobian J translated over
Œ1�Q� is given by the image of the injective map:

�Q W H! J
P 7! ŒP �Q�:

This map has the following universal property:
Given an Abelian variety A=k and any � 2 Mork.H;A/ such that �.Q/ D
0 2 A, there exists a unique  2 Hom.J ;A/, such that the following diagram
commutes (see Chapter III, Proposition 6.1 [Mil08]):

H �Q //

�
  

J



��

A

(2.8)

where  is defined with the property � D  ı �Q.
In our case we have the point 1 2 H, so we fix the embedding � WD �1 2

Mork.H;J /. The image of the curve H in J will be defined as ‚ WD �.H/
and is called the Theta divisor of J . The word divisor is coined since ‚ has
codimension 1 in J , therefore ‚ 2 Div.J /.

Now we examine functions in k.J / having ‚ as a pole. Let H=k be a hy-
perelliptic curve of genus 2 given by the equation Y 2 D f .X/ with deg f D 5.
In previous sections we saw that D WD Œ.x1; y1/ C .x2; y2/ � 21� 2 J is
represented in Mumford coordinates by four symmetric rational functions
A;B;C;D 2 k.J /.
Recall that the Mumford representation of the generic point D is given by two
polynomials in k.J /Œx�, namely hx2�AxCB;CxCDi. These functions were
presented in previous sections, in fact they are given by:

A D x1Cx2; B D x1x2; C D
y1�y2
x1�x2

and D D x2y1�x1y2
x1�x2

: (2.9)

It is easy to see that the functions f1; A;Bg D f1; x1Cx2; x1x2g � L.2‚/ since
every point of ‚ is of the form ŒP C1� 21� and xi has pole order 2 at 1
in each component of H � H. Further, these functions linearly independent
but dimkL.2‚/ D 2g D 4 as we will see in this section. Hence, for a basis of
L.2‚/ one more function is needed. The first candidate is C since ‚ belongs
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2.4. The divisor ‚ 2 Div.J / and L.2‚/ � k.J /

to the pole divisor of C . However, C 2 L.3‚/ nL.2‚/, as we will show below,
that is, ‚ is the only pole of C 2 k.J /, and its order is 3. First we introduce
notation below to prove this.

Notation 2.4.1. Let V=k be a smooth and irreducible variety, P a codimen-
sion 1 subvariety of V and F 2 k.V / a function on V . The order of vanishing
of F at P is denoted by ordVP .F /:

Proposition 2.4.2. C 2 L.3‚/ n L.2‚/

Proof. Let k.H/ DW k.x; y/ be the function field of the hyperelliptic curve H,
where y2 D f .x/ and f of degree 5. Let P WD .x; y/ 2 H be the generic
point of H and consider C as a function in k.H�H/ DW k.x1; y1; x2; y2/ where
y2j D f .xj /. Note that k.J / D k.Sym2.H// � k.H � H/ as we showed in
previous sections.
Consider the function CP 2 k.H � H/ D k.H/.H/ as a rational map in a
variable Q, fixing the generic point P , namely:

CP W H �! P1

Q 7! �1.Q/
�2.Q/

WD
y1.P /�y2.Q/
x1.P /�x2.Q/

:
(2.10)

Since P is generic and y1.P / D y; x1.P / D x are constant we have that
�1; �2 2 k.x; y/.H/. One has ordH

1.�1/ D �5 since the y-coordinate function
on H has a pole at 1 of order 5. Similarly ordH

1.�2/ D �2. Hence:

ordH
1.CP / D ordH

1.
�1
�2
/ D �3:

Further, symmetrically, ordH�H
H�f1g.C / D �3.

This calculation implies that if we see C as a function in k.Sym2.H// and we

define � W H! Sym2.H/ given by �.P / D fP;1g then ord
Sym2.H/
Im.�/

.C /D�3.

Finally for C 2 k.J / D k.Sym2.H// since ‚ Š Im.�/, from the birationality
of Sym2.H/ 99K J (see the previous section) we deduce that ordJ

‚

�
y1�y2
x1�x2

�
D

ordJ
‚ .C / D �3.

Naively, one could think that C has other poles than‚, that is, C … L.n‚/ and
invalidate the previous proof. This is since another possible pole of C 2 k.J /
could be � WD fŒ2R � 21� W R 2 Hg. However

C � y1Cy2
y1Cy2

j�D
f .x1/�f .x2/

.y1Cy2/.x1�x2/
j�D

s1.A;B/
y1Cy2

j�D
f 0.X/
2Y

which implies that C is defined at almost all points of �. Further, C is also
not defined at ffR; t.R/g W R 2 Hg � Sym2.H/ which is the canonical class of
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Sym2.H/. This class in Sym2.H/ is blown down to the identity point Œ0� 2 J
(see [CF96]). Hence it does not give a codimension 1 subvariety of J and
therefore not a pole of C . With this we have that C 2 L.3‚/ n L.2‚/.
An obvious consequence of C 2 L.3‚/ nL.2‚/ is that ordJ

‚ .C
2/ D �6, there-

fore C 2 2 L.6‚/.

Now to simplify notation we look at another function in k.J / Š k.A;B;C;D/.
We claim that there is a polynomial �.A;B/ 2 kŒA;B� such that the function
C 2� �.A;B/2L.2‚/. Moreover, we show in the next proposition that given
such �.A;B/, the set f1; A;B; C 2 � �.A;B/g forms a basis of L.2‚/.

Proposition 2.4.3. Let H=k be a hyperelliptic curve of genus 2 given by
the equation y2 D x5 C a4x

4 C a3x
3 C a3x

2 C a1x C a0 D f .x/ and let
A WD x1 C x2; B WD x1x2; C WD

y1�y2
x1�x2

2 k.J /.
Let ‚ 2 Div.J / and put �.A;B/ WD A3�ABCa4A

2Ca3ACa2 2 kŒA;B� then
�4 WD C

2 � �.A;B/ 2 L.2‚/ and f1; A;B; �4g is a basis of L.2‚/.

Proof. As we saw in the previous proposition, ordJ
‚ .C

2/ D �6. We show that

ordJ
‚ .C

2 � �.A;B// D �2.
Using the identities in (2.4) we have that:

C 2 D
s2.A;B/ � 2s3.A;B; C /

A2 � 4B
D
f .x1/C f .x2/ � 2y1y2

.x1 � x2/2
: (2.11)

A similar reasoning as in the Proposition 2.4.2, here applied to (2.11) shows

ordJ
‚ .y1y2/ D ordH�H

H�f1g.y1y2/ D �5;

ordJ
‚ .x

n
1 C x

n
2 / D ordH�H

H�f1g.x
n
1 C x

n
2 / D �2n:

(2.12)

Note that the term with most negative order at ‚ in the numerator of (2.11)
is x51Cx

5
2 . Hence ordJ

‚ .x
5
1Cx

5
2/ D �10 and the denominator of (2.11) satisfies

ordJ
‚ .A

2 � 4B/ D �4.
We proceed to show that the numerator of C 2��.A;B/ has order �6 at‚ to in-
fer that ordJ

‚ .C
2��.A;B// D �2 which is equivalent to C 2��.A;B/ 2 L.2‚/.

Note that we do not care about the term y1y2 in the equation (2.11) since its
order at ‚ is low enough (�5).

Recall that �.A;B/ D A3 � AB C a4A
2 C a3A C a2 2 kŒA;B�. It is easy

to see that ord‚
�
C 2 �

�
A3 � AB C a4A

2
��
D �2. The other two terms in

�.A;B/ do not have any effect the order at ‚; they were chosen to simplify
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the lower degree terms:

�4 D C
2
� �.A;B/

D
2a0Ca1.x1Cx2/C2a2x1x2Ca3x1x2.x1Cx2/C2a4.x1x2/

2C.x1x2/
2.x1Cx2/�2y1y2

.x1�x2/2

DW
F0.A;B/ � 2s3.A;B; C /

A2 � 4B
2 k.J /:

(2.13)

Similar to the calculation for C 2 one verifies that �4 has no other poles, so
indeed �4 2 L.2‚/.

To show the linear independence of f1; A;B; �4g, note that the minimal poly-

nomial of C 2 D f .x1/Cf .x2/�2y1y2
.x1�x2/2

D
s2�2s3
A2�4B

over k.A;B/ has degree 2, in fact

is given by:

X2 � 2s2
A2�4B

X C
s2
2
�4�.A;B/

.A2�4B/
2 k.A;B/ŒX�

where �.A;B/ D f .x1/f .x2/ (see Section 2.3.1 for details). Hence C 2 62
k.A;B/ and therefore also �4 62 k.A;B/. In particular �4 is linearly inde-
pendent of f1; A;Bg. Independence of 1; A;B is evident.

Finally to show that dimk.L.2‚// D 4, we use the Theorem of Riemann-
Roch for Abelian varieties applied to n‚ 2 Div.J / (see [Mum74, Chapter III,
�16]), namely:

dimk.L.n‚// D h0.2‚/ D deg.n‚/ D .n‚/g

gŠ
:

We are interested in g D 2, hence dimk.L.n‚// D n2‚�‚
2
D n2 since ‚�‚ D 2

by the adjunction formula (or see Lemma 3.4.3 for an elementary deduction
of this). With this we have that L.2‚/ has dimension 22 D 4 and f1; A;B; �4g
is a basis.
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Chapter 3

Hasse-Weil inequality à la
Manin for genus 2

In this chapter we prove the genus 2 case of the Hasse-Weil inequality using
elementary arguments that mimic as close as possible the elementary proof
obtained by Manin in the genus 1 case. The difference with the genus 1 case
is that we will require some theory of Abelian surfaces since the proof will rely
on the Jacobian variety J of the genus 2 curve H.

3.1 From elliptic curves to hyperelliptic curves

Before we expose the general idea for the proof of the Hasse-Weil theorem for
genus 2 we will arrange Manin’s proof in such a way that we can compare it
with the new genus 2 scenario.

3.1.1 General idea for genus 1

Recall that in Chapter 1 the Hasse inequality for an elliptic curve E=Fq given
by a Weierstrass equation Y 2 D f .X/, was obtained in an elementary way. Let
�; Œn� 2 EndFq .E/ be the q-th power Frobenius map and the multiplication by n
map, respectively. Basically we proved that when  n WD �C Œn� 2 EndFq .E/ is

non-trivial then it is of the form .x; y/ 7!
�
u1.x/
u2.x/

; y v1.x/
v2.x/

�
, (see Lemma 1.2.3),

with u1; u2; v1; v2 2 FqŒx� such that gcd.u1; u2/ D 1. The Hasse inequality
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3.1. From elliptic curves to hyperelliptic curves

follows from:

deg. n/ D deg.u1/ D n
2
C .q C 1 �#E.Fq//nC q � 1: (3.1)

Here deg. n/ D ŒFq.E/ W  �nFq.E/� is the degree of  n and deg.u1/ is the
degree of the polynomial u1 2 FqŒx�.

The Leftmost equality (3.1) follows from the inequality deg.u1/ > deg.u2/
(see Lemma 1.2.6). The fact that deg.u1/ D deg. n/, is an elementary obser-
vation (see Section 1.2.1, Lemmas 1.2.4 and 1.2.5).
The Rightmost part of the equality (3.1) is shown by induction on n, observ-
ing that  nC1 D  n C Œ1� 2 EndFq .E/ where Œ1� is the identity map. Let
Fq.x; y/ Š Fq.E/ where y2 D f .x/. Using that MorFq .E;E/ Š E.Fq.E//
we define the following function for the isogeny  n 2 MorFq .E;E/ given by

.x; y/ 7! .u1.x/
u2.x/

; y v1.x/
v2.x/

/:

dn WD

(
deg.u1/ if  n is non-trivial;
0 otherwise:

These equalities, led by a somewhat elaborate but elementary computation,
give us the recursion relation dn�1 C dnC1 D 2dn C 2 from which the formula
n2 C .q C 1 �#E.Fq//nC q for dn is easily deduced.
Finally the non-negativity of dn D n

2C .qC 1�#E.Fq//nC q yields that the
discriminant of this quadratic polynomial in n is non-positive, implying the
Hasse inequality.

The above sketch is phrased in terms of elements  n 2 EndFq .E/, however,
Manin did not mention this endomorphism ring in his original proof. To obtain
the translation from our perspective to his, consider the Weierstrass equation
of E given by Y 2 D f .X/.
Define Pn WD P0 C n � .x; y/ as a point in E.Fq.x; y// Š MorFq .E;E/ where

y2 D f .x/; by definition Pn D .� C Œn�/.x; y/ D
�
u1.x/
u2.x/

; y v1.x/
v2.x/

�
, so P0 D

.xq; yf .x/
q�1
2 / is the “q-Frobenius point”. Now, E W Y 2 D f .X/ is isomor-

phic over Fq.x; y/ to ETW W f .x/Y 2 D f .X/. Note that the curve ETW is the
quadratic twist of E=Fq.x/ by the non-square f .x/ 2 Fq.x/.
An explicit isomorphism E

�
�! ETW is given by .a; b/ 7! .a; b

y
/; this means that

Pn is mapped to
�
u1.x/
u2.x/

; v1.x/
v2.x/

�
2 ETW.Fq.x// where u1; u2; v1; v2 2 FqŒx�.

Particularly under this isomorphism, the q-Frobenius point P0 2 E.Fq.x; y//
is mapped to .xq; f .x/

q�1
2 / 2 ETW.Fq.x//.
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Manin formulated the proof completely in terms of the group ETW.Fq.x//.

To interpret dn more geometrically, let �1 W E ! P1 be the double cover
of P1 by E, so �1.x; y/ D x, then deg.�1/ D 2. Also consider  n.x; y/ D�
u1.x/
u2.x/

; y v1.x/
v2.x/

�
and the following diagram:

E

�1ı n   

 n // E

�1
��

P1

(3.2)

Here deg.�1ı n/
2

D deg n D deg.u1/ D dn.
Note that as before deg u1 means the degree of u1 as a polynomial in x, not
deg as a function in Fq.E/.

3.1.2 General idea for genus 2

Now we define an analogous integer dn for the genus 2 case such that it satisfies
some polynomial behavior, and use it to prove the Hasse-Weil inequality for
genus 2. To achieve this we do arithmetic with points in the Jacobian variety
J , as H does not have a natural group structure. More precisely, where in the
elliptic curve case the group MorFq .E;E/ Š E.Fq.E// was used, here we use
MorFq .H;J / Š J .Fq.H//.

We are interested in H.Fq/ so, to work with H in J we use the theta di-
visor ‚ of J . This ‚ is the image of the Abel-Jacobi map � W H ! J given
by P 7! ŒP � 1]. Note that H Š ‚ � J is an irreducible subvariety of
codimension 1. This means that ‚ can be regarded as an ample1 Weil divisor.

Now we construct our geometrical scenario. Let H=Fq be a genus 2 curve
given by the affine equation y2 D x5Ca4x

4Ca3x
3Ca2x

2Ca1xCa0 D f .x/.
Let1 be the unique point at infinity on H and consider the Jacobian J of H.
Take �; Œn� 2 EndFq .J /, where as before � denotes the q-th power Frobenius
map and let ˆn WD � C Œn� 2 EndFq .J /. Consider the following diagram (the
maps and notations used in the lower part of it will be explained below). The

1The basis of L.4‚/ defines a projective embedding of J ,! P15, see [CF96]
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diagram is analogous to the diagram (3.2):

J
ˆnWD�CŒn�

  

H

�

??

‰n

��

 n // J

�2W1

��

�4

~~

Ks
�

��

P1

(3.3)

The most important thing about this diagram is the map ‰n. The behavior
of the degree of ‰n for every n will let us prove the Hasse-Weil inequality for
genus 2. The calculation of its degree is the whole purpose of this chapter. We
sketch in this section how this is done, and we formalize it later. But first, we
proceed to describe the diagram (3.3).

The map � is a rational 2:1 map. It sends points in the Jacobian to points
in a variety Ks � P3 described in the previous chapter, which is birational to
the Kummer surface associated to H. Recall that this variety consists of the
identification of pairs of points D;�D 2 J . In other words, Ks is the quotient
of J by Œ�1� 2 Aut.J / where Œ�1� is the automorphism obtained from the
hyperelliptic involution in Aut.H/. The variety Ks is a singular variety with
16 singular points corresponding to �.J Œ2�/; note that the points of J fixed
by Œ�1� are precisely the 2-torsion points of J .

The rational map � can be described explicitly by four symmetric even func-
tions f�1; �2; �3; �4g on J that realize Ks as a surface in P3. This will be
described in the following sections justified by the Lefschetz embedding theo-
rem.
By the previous chapter we have that as that as a vector space dimFq .L.2‚// D
4, in fact L.2‚/ D hf�1; �2; �3; �4gi. These functions on J are defined for the
generic point Œ.x1; y1/C .x2; y2/ � 21� 2 J as:

�1 WD 1; �2 WD x1 C x2; �3 WD x1x2; �4 WD
F0.x1;x2/�2y1y2

.x1�x2/2
2 Fq.J /

where

F0 WD 2a0 C a1�2 C 2a2�3 C a3�2�3 C 2a4�
2
3 C �

2
3�2: (3.4)
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3.1. From elliptic curves to hyperelliptic curves

By construction �i W J � � � ! P1 factors over Ks. With this we proceed to
sketch the calculation of deg‰n.

Consider the group MorFq .H;J / Š J .Fq.H// where the addition of mor-
phisms is induced by the addition on J .
The q-th Frobenius action FrH on H in J yields ˆ WD � ı FrH D � ı �. Now,
since �; ˆ 2 MorFq .H;J / we define  n WD ˆCn�� D ˆC.Œn�ı�/ 2 MorFq .H;J /.

Now suppose that  n.H/ 6� ‚, hence  n is non-constant because  n.1/ 2 ‚.
Therefore the map ‰n D �4 ı  n is also non-constant. This will be shown by
considering the poles of �4. We will conclude that if .x; y/ 2 H is the generic
point, ‰n W H ! P1 is given by the rational map .x; y/ 7! �4. n.x; y// WD
�1;n.x/

�2;n.x/
2 Fq.x/ where �1;n; �2;n 2 FqŒx� are coprime. Therefore we mea-

sure deg‰n through the polynomial degree deg�1;n since we will show that
deg�1;n > deg�2;n. With this, we will get information about #H.Fq/ for
every n as we explain below.

Note that  n.1/ D Œ0� 2 ‚ � J and ‚ is exactly where �4 2 L.2‚/ � Fq.J /
has a double pole. So, if n ¤ 0 and  n.H/ � ‚ we have that ‰n WH ! P1
is the constant map 1, therefore we say that deg‰n D 0 in this case. For
the case n D 0, namely  0 D ˆ D � ı FrH, we will prove separately that
“degˆ0 D 2q” since �4. 0.x; y// is not well defined. In the remaining situa-
tion  n.H/ 6� ‚, the map ‰n W H! P1 is non-constant and fully determined
by �4. n.x; y// 2 Fq.x/. Now define ın as follows:

ın WD

( 2q if n D 0I

deg �4. n.x; y// D deg�1;n D
deg‰n
2

if  n.H/ 6� ‚I
0 otherwise.

(3.5)

We will show the equalities involved in this definition later. Similarly to dn
in the elliptic case, we show that ın satisfies a second order recurrence rela-
tion. As a consequence ın is given by an explicit quadratic polynomial in n.
The non-positiveness of its discriminant will entail the Hasse-Weil for genus 2 .

To understand ın geometrically, define � WH! P1 by �.x; y/ D x and consider
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3.1. From elliptic curves to hyperelliptic curves

the following diagram:

H

�

�� ‰n   

 n // J

�4
��

P1
�n
// P1

(3.6)

Here �n is the rational map defined by x 7! �4. n.x; y// D
�1;n.x/

�2;n.x/
and

‰n D �n ı � . By definition, ın is the degree of the morphism �n and therefore
2ın is the degree of ‰n as asserted in the definition of ın.
Using this scenario, to prove the Hasse-Weil inequality for genus 2 we adapt
Manin’s ideas as we describe below.

Let T WD q C 1 �#H.Fq/ and recall that ˆn WD � C Œn� 2 EndFq .J /, then we
will show that:

2ınD deg‰n D 2‚ �ˆn
�‚D 2.2n2 C T nC 2q/.

Here � denotes the intersection number D1 �D2 of divisors D1;D2 on J . The
ideas behind these equalities are, first of all, the observation that deg‰n equals
the number of points counted with multiplicity in the preimage ‰�1n .1/. Ob-
serving that �4 2 Fq.J / has only a pole of order 2 at the curve ‚ Š H and
no other poles, we will show that deg‰n is 2 times the degree of 2‚ � ˆ�n‚.
If ˆn.‚/ 6� ‚, this last number is explicitly computed by deg�1;n.x/ as a

polynomial in FqŒx� since ‰n is defined by �4. n.x; y// D
�1;n.x/

�2;n.x/
2 Fq.x/,

deg�1;n > deg�2;n and �4 has ‚ as its only double pole. If ˆn.‚/ � ‚ is a
non-constant curve in J , we will use a translation of ˆn.‚/ invariant under
Œ�1� 2 End.J / to proceed similarly.

The remaining equality ‚ � ˆn
�‚ D 2n2 C T n C 2q relies on a second or-

der recurrence relation for ın similar to the one that Manin obtained for genus
1. We will deduce that 2ın C 4 D ın�1 C ınC1 using ı�1; ı0 and ı1. After in-
duction we obtain the aforementioned polynomial describing ın. Since ın � 0
regardless of  n.H/ being contained in ‚ or not, one deduces that the discrim-
inant of the polynomial 2x2 C T x C 2q 2 ZŒx� is non-positive. This implies
the Hasse-Weil inequality for genus 2.
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3.2. Construction of J and an interesting family of curves ‚n � J

3.2 Construction of J and an interesting family
of curves ‚n � J

In this section we construct our basic objects of this chapter. First we re-
call the construction of J using divisors of a genus 2 hyperelliptic curve
H W Y 2 D X5Ca4X4Ca3X3Ca2X2Ca1XCa0 over Fq and linear equivalence.
Moreover, we will show how to represent its elements in a compact way using
the Mumford representation of the elements of Pic0.H/ Š J .

After constructing J , a geometrical interpretation of Mork.H;J / will be given
In fact we show that J .Fq.H// Š MorFq .H;J / where Fq.H/ is the function
field of H. Using this we construct points Ln 2 J .Fq.H// corresponding to
certain morphisms  n 2 MorFq .H;J /, which are closely related to the q-th
Frobenius and the multiplication by n endomorphisms of J as we sketched in
the previous section. The points Ln yield curves ‚n WD Im. n/ � J . These
curves can be seen as elements of Div.J / since they have codimension 1 in
J . In order to work with H using the geometry of J , we work with the curve
‚ � J which is isomorphic to H as we saw in the previous chapter. The
intersection number ‚ �‚n will be of our interest as we will see in the rest of
the chapter.

A reason why we work with the curves ‚ D �.H/ and ‚n D  n.H/ in Div.J /
and not directly with the maps  n 2 MorFq .H;J / is because divisors will let
us work geometrically to get information on #H.Fq/ for every n. We will de-
duce a quadratic polynomial in n describing deg.‰n/ using some intersection
theory on ‚;‚n 2 Div.J /. Finally, as we saw in the beginning of this chap-
ter, the behavior of the discriminant of the quadratic polynomial describing
deg.‰n/ will have as a consequence the Hasse-Weil inequality for genus 2.

3.2.1 Definition of J .k/ via Pic0.H/ and its elements

Recall that we are working with points in the Jacobian J =k of a hyperelliptic
curve H=k of genus 2 with one distinguished point 1. Let k WD ksep be a
separable closure of k.

It is well known that the Abelian variety J can be embedded in P15 (see
[Fly90]) and sometimes in P8 (see [Gra90]); this suggests that it may not be
a good idea to work with the points of these models of J . Therefore we will
use divisor classes on H modulo linear equivalence over k, we recall this below.
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3.2. Construction of J and an interesting family of curves ‚n � J

Consider the group Pic0.H/ WD Div0.H/=� where D1 � D2 if and only if
D1 �D2 D .g/ 2 Div0.H/ for some g 2 k.H/. We have that Pic0.H/ Š J .k/
as groups by a result due to Abel and Jacobi over C. Over k this isomorphism
also holds using the Lefschetz principle. We are interested in J .k/, so we
proceed to sketch the construction of it. A more detailed algebraic treatment
of this for hyperelliptic curves is presented in [Mum84] and in an analytic way
in [ACGH13].

The isomorphism Pic0.H/ Š J .k/ is a consequence of the surjectivity of the
linear extension to degree 0 divisors of the usual Abel-Jacobi map P 7! ŒP�1�

that embeds H into J . The linearly extended Abel-Jacobi map is naturally
a homomorphism ˛ W Div0.H/ ! J whose kernel consists of all principal di-
visors .g/ 2 Div0.H/, where g 2 k.H/� (see [Sil94] III,2.6). These principal
divisors in Ker.˛/ are exactly characterized by �, that is, they are the divisors
“indistinguishable” under ˛. Therefore Div0.H/=Ker.˛/ Š J .k/ as groups.

Now, we are interested in the divisor classes representing J .k/ � J .k/. There
are two distinct natural choices for a definition of J .k/: the first one is to take
Gk D Gal.k=k/ and consider the Gk-invariants in Div0.H/=Ker.˛/, and their
image under the Abel-Jacobi map,�

Div0.H/=Ker.˛/
�Gk
�! J :

The other choice is to take Div0.H/.k/, the group of Gk-invariant divisors
on H of degree 0, and take the quotient by the principal divisors .g/ with
g 2 k.H/�. The image under the Abel-Jacobi map�

Div0.H/
�Gk

=
�
k.H/�

�
�! J

is the alternative choice.

For general curves and fields the two choices can be different. However for
curves of genus 2 they coincide, as is explained, e.g., in [PS97, Section 3]. The
justification of Pic0.H/.k/ Š J .k/ is relevant since we will work with the Ja-
cobian of H over a non-perfect field k WD Fq.H/, using divisors classes.

Now we show how representatives of the divisor classes in Pic0.H/.k/ look
like.
For genus 2, if 1 2 H.k/ (our case), ŒD� 2 Pic0.H/.k/ can be represented by
ŒP CQ�21� or ŒR�1�. In other words, if D 2 Div0.H/, there is an effective
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3.2. Construction of J and an interesting family of curves ‚n � J

D0 2 Div.H/ such that D � D0 � k1 with deg.D0/ D k � g D 2.
To show this, let D WD D1 � D2 2 Div0.H/ with D1;D2 effective. Fur-
ther, suppose that there are no pairs of points in the supports of D1 and
D2 related by the hyperelliptic involution t 2 Aut.H/ (if there are, use that
P C t.P / � 21 � 0).
The first case is for D D P1�P2 where Pi 2 H. If P2 D1 we are done. Sup-
pose that P2 ¤1, if P1 ¤1 we have that P1 � P2 � P1 C t.P2/ � 21 since
P2Ct.P2/�21 � 0. For P1 D1 we have that P1�P2 D1�P2 � t.P2/�1.

Now suppose that D D D1 � D2 2 Div0.H/ with degDi � 2 and Di ef-
fective. Recall that the Theorem of Riemann-Roch guarantees the existence of
a function with prescribed poles and zeroes when the number of the required
zeros is at most 2g � 2. More precisely, it says in our genus 2 case that for
D 2 Div.H/ we have that dimL.D/ D degD � 1C dimL.!H �D/.
Take F 2 L.D1�D2C21/ with F ¤ 0 (this vector space has at least dimension
1 by Riemann-Roch since deg.D1�D2C21/ D 2, so, this F exists). Note that
.F / ¤ Q�1 forQ 2 H as degDi � 2 (and alsoQ�1 is not principal). There-
fore .F /DD0�D1CD2�21 andD0 WD DC21C.F / D D1�D2C21C.F / D
D0 has degree 2 and is effective. Hence D0 � 21 � D1 �D2 D D if and only
if D D D1 �D2 2 ŒD0 � 21�.

Now, for the divisors ŒP C Q � 21� we have that P;Q are affine points of
H (not related by the hyperelliptic involution t 2 Aut.H/), and moreover
since we want the divisor P CQ to be fixed by the absolute Galois group of
k, either both points are defined over k or they are conjugate over k and their
coordinates generate a quadratic extension of k.
For the second form ŒR�1� we have that R 2 H is k-rational. A special case
is R D1 which describes the zero point in J .k/.
Note that the formal addition of the representatives of divisor classes in Pic0.H/.k/
remains reduced to these cases modulo �, by the previous discussion.

A handy way to represent the reduced representants of elements of Pic0.H/.k/
in order to do arithmetic with them, is the Mumford representation [Mum84].
Let P WD .xP ; yP /;Q WD .xQ; yQ/ and R WD .xR; yR/ 2 H. We encode the
divisor classes ŒP CQ � 21� and ŒR �1� in a unique way. For the first case
this representation consists of two polynomials hu.t/; v.t/i where u 2 kŒt � is
monic and quadratic and satisfies u.xP / D u.xQ/ D 0. The polynomial v has
degree at most 1 and is determined by v.xP / D yP and v.xQ/ D yQ. A divisor
class ŒR�1� is represented as ht�xR; yRi. Moreover we represent Œ0� as h1; 0i.
Addition between divisor classes using Mumford representation was studied in

52



3.2. Construction of J and an interesting family of curves ‚n � J

the general setting for hyperelliptic curves of genus g by Cantor in [Can87].
Cantor’s algorithm is very practical although there are ways to improve it if
the genus g is fixed (see for example [CL12, DO14]).

We use Mumford representation hu.t/; v.t/i 2 J .k/ to do explicit arithme-
thic in J . For the theory we will use the usual divisor class representation
ŒP CQ � 21�, ŒP �1� or Œ0�.

3.2.2 Morphisms as points

In this small section, we show how to treat the Abelian group Mork.H;J / as
the group of points on the Jacobian of H over the function field k.H/. We
do this since in the rest of this chapter we study a family of morphisms  n 2
Mork.H;J / by doing arithmetic with the associated points Ln 2 J .k.H//. It
will turn out that the Mumford representation comes in very handy here.

The set Mork.H;J / has a natural Abelian group structure using pointwise
addition of morphisms by means of the addition ˚ on J .
To be precise, let ˛; ˇ 2 Mork.H;J /, we define for every P 2 H the addition of
morphisms as .˛Cˇ/.P / WD ˛.P /˚ˇ.P / 2 J , therefore ˛Cˇ 2 Mork.H;J /.
For the inverse �˛, consider the Œ�1�-map on the Jacobian, which is obtained
from the hyperelliptic involution t 2 Aut.H/. We define �˛ WD Œ�1� ı ˛. Fi-
nally the neutral element is given by the map fP 7! Œ0�g 2 Mork.H;J /. With
these definitions, the Abelian group structure of Mork.H;J / follows from the
Abelian group structure of J . The following lemma allows us to work with
the elements of Mork.H;J / as points of J .k.H//.

Lemma 3.2.1. Let H=k be a hyperelliptic curve of genus g. Consider its
associated Jacobian variety J , then J .k.H// Š Mork.H;J / as Abelian groups.

Proof. This is a special case of a much more general fact. Namely; if V � PN
is a projective variety and C a smooth irreducible curve over k, then:

‡ W V.k.C //! Mork.C; V /

.˛0 W : : : W ˛N / 7! fP 7! .˛0.P / W : : : W ˛N .P //g
(3.7)

is a bijection. This general fact follows from [Sil86] (II,2.1).
In the special case of this lemma we have that C WD H and V WD J (which
indeed is a projective variety; e.g., it can be embedded in P4g�1 as can be
seen in [CF96] for g D 2 and in [Mum66] for the general case). The group
isomorphism follows from the bijection (3.7) and the Abelian group structure
on J .k.H//.
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3.2.3 The family of curves ‚n � J via � C Œn� 2 EndFq.J /
Recall the diagram (2.8) in Section 2.4 that we used to construct ‚ � J .
Using that diagram we construct similarly the curves ‚n. Fix A WD J and
consider the q-th Frobenius action FrH 2 MorFq .H;H/ on the coordinates of
the points in H. Take ˆ WD � ıFrH; � 2 MorFq .H;J /. Since MorFq .H;J / is an
Abelian group we define  n WD ˆC n � � for n 2 Z.
Using the diagram (2.8), assume that  n is non-constant. Let ˆn WD �C Œn� 2
EndFq .J / where � is the q-th Frobenius endomophism, then we have the
following commutative diagram:

H � //

 n   

J

ˆn

��

J :

(3.8)

We have that  n D ˆn ı � D .� C Œn�/ ı � is uniquely determined by ˆn 2

EndFq .J / (see Section 2.4 for details). We define the curves‚n WD  n.H/ � J .
These curves ‚n can be regarded as divisors in Div.J / since they have codi-
mension 1 in J .

We have been emphasizing previously the constraint on  n 2 MorFq .H;J /
to be non-constant. This is motivated by some special cases where ˆ D �n � �
and therefore  n D 0. This also means that the curve ‚0 D �Œn�.‚/ � J for
some n and Œn� 2 EndFq .J /. We give an example of this situation below.

Example 3.2.2. ( n 2 MorFq .H;J / is the zero map)

Consider the hyperelliptic curve Y 2 D X5 C 5X over F72 . An explicit com-
putation of  7 shows that this is the map that sends every point of H to
Œ0� 2 J . This is because ˆ;�7� 2 MorF

72
.H;J / are the same morphism,

where ˆ.x; y/ D Œ.x7
2
; y7

2
/ �1�. We check this with MAGMA:

> p := 7;
> F := FiniteField(p^2);
> P<x> := PolynomialRing(F);
> f := x^5 + 5*x;
> H := HyperellipticCurve(f);
> FH<X,Y> := FunctionField(H);
> HE := BaseExtend(H,FH);
> JE := Jacobian(HE);
> M<t> := PolynomialRing(FH);
> q := p^2;
> Phi := JE![t-X^q, Y^q];
> GPt := JE![t-X, Y];
> -7*GPt;
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(x + 6*X^49, (X^120 + X^116 + 5*X^112 + 6*X^108 + X^92 + X^88 + 5*X^84 +
6*X^80 + 5*X^64 + 5*X^60 + 4*X^56 + 2*X^52 + 6*X^36 + 6*X^32 + 2*X^28 +
X^24)*Y, 1)
> Phi;
(x + 6*X^49, (X^120 + X^116 + 5*X^112 + 6*X^108 + X^92 + X^88 + 5*X^84 +
6*X^80 + 5*X^64 + 5*X^60 + 4*X^56 + 2*X^52 + 6*X^36 + 6*X^32 + 2*X^28 +
X^24)*Y, 1)
> Phi+7*GPt;
(1, 0, 0)

therefore  7 WD ˆC 7� 2 MorF
72
.H;J / is the zero map.

This situation is in some sense exceptional since in this example, J is isogenous
to the square of a supersingular elliptic curve. To be more precise, J � ES�ES
and the ground field has p2 elements. In this case the characteristic polyno-
mial of Frobenius � 2 EndF

72
.J / is given by ��.X/ WD .X C 7/

4 which is the
main reason of this behavior.
The general construction of these curves having Jacobian isogenous to a square
of a supersingular elliptic curve was achieved by Moret-Bailly in [MB81].

In the next proposition we calculate the number of points of H=Fq assum-
ing that there is an n 2 Z such that  n D .� C Œn�/ ı � D 0. In particular the
proposition implies the Hasse-Weil inequality under this additional assump-
tion. It turns out that this is an exceptional case, and we will deal with it
in a combinatorial way. Later, in Subsection 3.4.2 we treat the general case,
assuming that  n 2 MorFq .H;J / is non-constant for all n. This general case
is treated in a more geometric way.

Proposition 3.2.3. Let H=Fq be a hyperelliptic curve of genus 2, given by
an equation y2 D f .x/ with f of degree 5. Let J be the Jacobian of H and
�WH ! J the map P 7! ŒP �1�. Suppose that there is an n 2 Z such that
 n D .� C Œn�/ ı � 2 MorFq .H;J / is constant. Then q is a perfect square and
#H.Fq/ D q C 1C 4n D q C 1˙ 4

p
q.

Proof. First, we show that if  n D .� C Œn�/ ı � is constant, then � D �Œn�.

We have that  n D .� C Œn�/ ı � is constant and 0 2 Im n, hence  n D 0;
this is equivalent to .� C Œn�/.‚/ D 0 since ‚ D �.H/.
Moreover, ‚ generates J , that is J D fD1 C D2 W D1;D2 2 ‚g. So
if any ' 2 End.J / is zero on ‚ then it is the zero map. Hence we have
� D �Œn� 2 End.J /.
Note that � D �Œn� implies q2 D deg.�/ D deg.Œ�n�/ D n4, hence q D n2, so
q is a perfect square and n D ˙

p
q (depending on the sign of n).
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Now we proceed to count #H.Fq/. Using that � D �Œn� we have that:

#J .Fq/ D #Ker.� � Œ1�/ D #Ker.�ŒnC 1�/ D .nC 1/4: (3.9)

(Here we used that n C 1 is not a multiple of char.Fq/). Moreover, an easy
counting argument (see [CF96, Chapter 8,�2]) shows:

#J .Fq/ D
#H.Fq/2 C#H.Fq2/

2
� q: (3.10)

Consider the quadratic twist of H denoted by HTW and its Jacobian J TW. We
have that:

#J TW.Fq/ D Ker.� C Œ1�/ D Ker.�Œn�C 1/ D .n � 1/4 (3.11)

Similarly as in (3.10) and using that #H.Fq/C#HTW.Fq/ D 2qC 2 D 2n2C 2
and HTW.Fq2/ Š H.Fq2/, we have that:

#J TW.Fq/ D
#HTW.Fq/2 C#H.Fq2/

2
� q

D
.2n2 C 2 �#H.Fq//2 C#H.Fq2/

2
� q D .n � 1/4

(3.12)

Subtracting (3.12) from (3.10) yields:

#H.Fq/2 � .2n2 C 2 �#H.Fq//2 D 2
�
.nC 1/4 � .n � 1/4

�
D 16n.n2 C 1/;

(3.13)

which can be rewritten as #H.Fq/ D n2 C 4nC 1 D q C 1˙ 4
p
q.

Applying Proposition 3.2.3 to H W y2 D x5 C 5x over F72 (see Example 3.2.2)
which has the property  7 D 0, give us #H.F72/ D 49C1C4�7 D 78. Moreover,
if we calculate its quadratic twist HTW we have that  TW

�7 2 MorF
72
.HTW;J TW/ is

trivial, hence #HTW.F72/ D 49C 1 � 4 � 7 D 22.

Now we associate to every curve ‚n � J .Fq/ a point Ln 2 J .Fq.H//. We
do this to look at the coefficients that define Ln in its Mumford representa-
tion which are functions in Fq.H/. These coefficients will be shown to encode
explicit information about #H.Fq/.
Definition 3.2.4. Let H=Fq be a hyperelliptic curve of genus 2 and .x; y/ 2
H.Fq.H// its generic point. We define the following point in J .Fq.H//:

Ln WD ˆn.�.x; y// D  n.x; y/ D Œ.xq; yf .x/
q�1
2 / �1�˚ nŒ.x; y/ �1�

where n denotes the multiplication by n 2 Z in End.J /.
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With this definition we now characterize easily the inverse �Ln in J .

Lemma 3.2.5. Let H=Fq be a hyperelliptic curve of genus 2 with one point at
infinity and J its Jacobian. Let P WD .x; y/ 2 H.Fq.H// be the generic point
of H, then �Ln D  n.x;�y/ 2 J .Fq.H//.

Proof. Let t 2 Aut.H/ be the hyperelliptic involution, then:

�Ln D � n.x; y/ D ��.Œ.x; y/ �1�/ � nŒ.x; y/ �1�
D Œt.xq; yq/ �1�C nŒt.x; y/ �1�

� Œ.xq;�yq/ �1�C nŒ.x;�y/ �1� D  n.x;�y/:

The point Ln 2 J .Fq.H// is completely determined by  n using Lemma 3.2.1,
since (using notation as in the proof of 3.2.1) ‡.Ln/ D  n 2 MorFq .H;J /.

3.3 Even functions in Fq.J / and the map ‰n 2

MorFq.H;P1/
Let .x; y/ 2 H be the generic point. In this section we look at the even
functions in J . We built already in Proposition 2.4.3 a set of generators
for them, namely f�1; �2; �3; �4g � Fq.J /. These generators form a basis of
the vector space L.2‚/ � L.4‚/ as we saw in the previous chapter, fur-
ther, the basis defines a map J � � � ! P3 with image a surface Ks � P3.
This surface is birational to the Kummer surface associated to H. The map
J ! Ks will be denoted �. The map � is defined over Fq and given by
D 7! Œ�1.D/ W �2.D/ W �3.D/ W �4.D/�. The projective coordinate correspond-
ing �4.Ln/ D �4. n.x; y// 2 P1.Fq.H// will be associated to a rational map ‰n
whose degree is of our main interest. The morphism ‰n W H! P1 is defined as
.x; y/ 7! �4.Ln/. Moreover, the degree of the map ‰n will define the integer
ın already mentioned at the beginning of this chapter. The integer deg.‰n/
will be expressed as the degree of some rational function, since we will show
that �4.Ln/ 2 Fq.x/.
Our goal is to show that deg �4.Ln/ is given by a quadratic polynomial in n.
The discriminant turns out to be negative and a consequence of this is the
Hasse-Weil inequality for genus 2.
We start by motivating the analysis of the points L˙1 2 J .Fq.H//, evaluating

them with the even function C 2 WD
�
y2�y1
x2�x1

�2
2 Fq.J /. This will allow us to

obtain a formula for #H.Fq/ for every hyperelliptic curve of genus g encoded
in the degree of the numerator of C 2.L˙1/. Note that we have shown already
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that C 2 2 L.6‚/ � Fq.J / (see Proposition 2.4.2). After this we use the “bet-
ter” function �4 2 L.2‚/ compared to C 2 constructed in Proposition 3.16.
This function has smaller pole order at ‚ and we use it to also to obtain in-
formation of #H.Fq/ as well, via �4.L˙1/. This will give us the step induction
to obtain the degree of �4.Ln/ as a quadratic polynomial in n.

Consider the point L�12J .Fq.H//, that is, the point related to the morphism
 �1 D ˆ�� 2 MorFq .H;J / via Lemma 3.2.1. Note that # �1-1 .Œ0�/ D #H.Fq/.
This is since if .x0; y0/ 2 H.Fq/, we have that:

 -1.x0; y0/ D Œ.x0
q; y0

q/C .x0;�y0/ � 21� 2 J .Fq/:

Therefore  -1.x0; y0/ D Œ0� if and only if Œ.x0
q; y0

q/ �1� � Œ.x0; y0/ �1� if
and only if .x0

q; y0
q/ D .x0; y0/ 2 H.Fq/.

With this observation, an interesting proposition arises for a hyperelliptic curve
of genus g.

Proposition 3.3.1. Let H be a hyperelliptic curve given by the equation Y 2 D
f .X/ for some separable polynomial f . Let g be the genus of H and suppose
H has only one rational point at infinity. Consider the function field Fq.H/ Š
Fq.x; y/ where y2 D f .x/.
Let ht2C˛.x/tCˇ.x/; .x; y/tCı.x; y/i be the Mumford representation of L-1

then 2 2 Fq.x/ and considered as a rational function in the variable x one
has deg 2 D .2g � 1/q C#H.Fq/ � 1.

Proof. The Mumford representation of L�1 is given by two polynomials in
Fq.H/Œt �, namely:

L-1 D  -1.x; y/ D Œˆ.x; y/ �1�˚ Œ.x;�y/ �1�

D Œ.xq; yq/C .x;�y/ � 21�

D ht2 � .xq C x/t C xqC1; y
qCy
xq�x

t C xyqCxqy
xq�x

i:

Therefore .x; y/ D yqCy
xq�x

2 Fq.H/, and:

.x; y/2 D
�yq C y
xq � x

�2
D

�y.f .x/ q�12 C 1/
xq � x

�2
D
f .x/.f .x/

q�1
2 C 1/2

.xq � x/2
2 Fq.x/:

(3.14)

Since f is separable we have deg f .x/D 2g C 1. Therefore the degree of the
numerator of 2 before cancellations is given by .2g C 1/q. We proceed to
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count the cancellations to get the final degree.

Since 2 2 Fq.x/ � Fq.x; y/ Š Fq.H/ is a function from H to P1 we eval-
uate this function at x D ˛ 2 Fq and check whether .˛; ˇ/ 2 H.Fq/ (meaning
that f .˛/ is zero or is a square in F�q) or neither. Using the equation (3.14)

we have that ˇ2 D f .˛/ and if f .˛/ ¤ 0 then f .˛/
q�1
2 D ˙1 2 Fq (Euler’s

criterion). The sign depends on the conditions ˇ 2 F�q or ˇ 2 F�
q2
n F�q for C1

and �1 respectively. This leaves us three possible cases for cancellations using
the numerator of the equation (3.14).

Case ˇ … Fq:
If this holds, then ˇ 2 Fq2 n Fq , hence .f .˛/

q�1
2 C 1/2 D 0 since f .˛/ is not

a quadratic residue in Fq . Therefore the numerator of (3.14) has the factor
x � ˛ which cancels with a factor .x � ˛/ in the denominator since ˛ 2 Fq .
Moreover, .x � ˛/ cancels twice since both .xq � x/2 and .f .x/

q�1
2 C 1/2

are squares. The factor .x � ˛/ does not have higher multiplicity as follows
from the factorization of the denominator. With this we have a cancellation
at all the points .˛; ˇ/ 2 H such that ˛ 2 Fq and ˇ 62 Fq . There are exactly
2qC1�.#H.Fq/C#W.Fq// such points, where W.Fq/ is the set of Fq-rational
affine Weierstrass points. This follows from an easy counting argument.

Case ˇ 2 F�q:
In this case f .˛/

q�1
2 D 1 and ˛ 2 Fq , hence the numerator of (3.14) is given

by 4f .˛/ ¤ 0. So there is no cancellation here.

Case ˇ D 0:

Here the factor .f .x/
q�1
2 C 1/2 in the numerator is not divisible by .x � ˛/,

but the factor f .x/ is exactly once (note that f is separable). So this results
in #W.Fq/ cancellations.

Combining the above cases one obtains for the degree of 2, viewed as a
rational function (i.e., as a map P1 ! P1) that

deg 2 D deg
�yq C y
xq � x

�2
D .2g C 1/q �

�
2q C 1 � .#H.Fq/C#W.Fq//C#W.Fq/

�
D .2g � 1/q C#H.Fq/ � 1:
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Proposition 3.3.2. Let H be as in Proposition 3.3.1, and consider the Mum-
ford representation ht2 C ˛.x/t C ˇ.x/; .x; y/t C ı.x; y/i of L1.
Then deg 2 D .2g C 1/q �#H.Fq/C 1

Proof. The proof is analogous to the proof of Proposition 3.3.1 but in this case

using  D y2�y
xq�x

.

Example: The curve H over F5 given by y2 D x9 � x3 C x C 1 has genus
4 and #H.F5/ D 7. We illustrate Propositions 3.3.1 and 3.3.2 by explicitly
computing the rational functions 2. The propositions state that these have
degrees .2 � 4� 1/ � 5C 7� 1 D 41 and .2 � 4C 1/ � 5� 7C 1 D 39, respectively.

> q := 5; F := FiniteField(q);
> P<x> := PolynomialRing(F);
> H := HyperellipticCurve(x^9 + x^3 + x + 1); #H;
7
> g := Genus(H);g;
4
> FH<X,Y> := FunctionField(H);
> HE := BaseExtend(H,FH);
> JE := Jacobian(HE);
> M<t> := PolynomialRing(FH);
> Lminus1 := JE![t-X,Y] - JE![t-X^q,Y^q];
> Lplus1 := JE![t-X,Y] + JE![t-X^q,Y^q];
> gamma_m1 := Coefficient(Lminus1[2],1);
> gamma_p1 := Coefficient(Lplus1[2] ,1);
> FH!gamma_m1^2;
(X^41 + 2*X^40 + 2*X^39 + X^38 + X^37 + 4*X^36 + 4*X^35 + 2*X^34 + X^33 +
X^32 + X^31 + 3*X^30 + X^29 + 3*X^28 + 3*X^27 + 4*X^26 + X^25 + 2*X^23 +
4*X^22 + 4*X^20 + 4*X^19 + 4*X^18 + 4*X^15 + 3*X^14 + 3*X^13 + 4*X^12 + X^11
+ 2*X^9 + X^8 + 2*X^6 + X^5 + 4*X^4 + 4*X^3 + 4*X^2 + 2*X + 1)/(X^6 + 2*X^5
+ 2*X^4 + X^3 + 4*X^2)
> FH!gamma_p1^2;
(X^39 + 3*X^38 + 2*X^37 + 4*X^36 + X^35 + X^34 + 4*X^33 + 3*X^32 + X^31 +
4*X^30 + X^29 + 2*X^28 + X^27 + 2*X^26 + 3*X^25 + X^24 + X^23 + 3*X^21 +
4*X^20 + 2*X^19 + 2*X^16 + 2*X^15 + 2*X^14 + 4*X^13 + 2*X^12 + 3*X^11 +
3*X^10 + 3*X^8 + 2*X^7 + X^6 + 2*X^4 + 2*X^2 + 3*X + 1)/(X^4 + 3*X^3 + 2*X^2
+ 4*X + 4)
> (2*g-1)*q+(#H-1);
41
> (2*g+1)*q-(#H-1);
39

Proposition 3.3.1 applies to all hyperelliptic curves of genus g with one point
at infinity. Now we have the full setting to prove the Hasse-Weil inequality for
genus 2.
But before doing so, we introduce a geometrical interpretation of the current
situation. Consider the already known functions in Fq.J / given by:

�1 WD 1; �2 WD A; �3 WD B; �4 WD C
2
��.A;B/ D C 2�A3CAB�a4A

2
�a3A�a2
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which as shown in Proposition 2.4.3 forms a basis of L.2‚/. Consider the map:

� W J 99K P3

ht2 � At C B; tC CDi 7! Œ�1 W �2 W �3 W �4�

We define the surface Ks WD Im.�/ � P3.

As we sae in the previous chapter, k.Ks/ Š k.A;B;C 2/ D k.A;B; �4/. Fur-
ther, the variety Ks is birational to the Kummer surface associated to H. This
is because the points of Ks are obtained by identifying any point P 2 J with
its ”negative” �P . This is seen by observing that every �i is symmetric and
even, and moreover the subfield of k.J / D k.A;B;C / consisting of all even
functions is generated by A;B, and C 2. In particular �i .D/ D �i .�D/ for
every D 2 J , i D 1; : : : ; 4.

Recall that ˆn WD � C Œn� 2 EndFq .J /. We have the following situation.

J
ˆn

  

H

�

??

‰n

��

 n // J

�2W1

��

�4

~~

Ks
�

��

P1

(3.15)

Here �4 is seen as a rational map to P1. We introduce the map‰n 2 MorFq .H;P1/
given by .x; y/ 7! �4. n.x; y//.

The above diagram suggests that the next step is to study �4 in the same
way that we studied C 2 ı  ˙1 in Proposition 3.3.1, that is �4 ı  ˙1. Finally,
with this we study the degree of �4 ı  n through the map ‰n to get the fun-
damental lemmas and prove our final result.

Proposition 3.3.3. Let H be a hyperelliptic curve of genus 2 given by Y 2 D
X5 C a4X

4 C a3X
3 C a2X

2 C a1X C a0 D f .X/. Let .x; y/ 2 H.Fq.H// be
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the generic point of H. Then �4.L�1/ 2 Fq.x/ and considered as a rational
function in the variable x, deg �4.L�1/ D deg �4. �1.x; y// D #H.Fq/CqC1.

Proof. Recall that in Proposition 3.3.1 we calculated the point L�1 which is:

L�1 D  �1.x; y/ D Œ.xq; yf .x/
q�1
2 /C .x;�y/ � 21� 2 J .Fq.H//:

The present proof is analogous to the one for Proposition 3.3.1. Consider
�4.L�1/ D �4. �1.x; y//

x3qC2Cx2qC3C2a4x
2qC2Ca3.x

2qC1CxqC2/C2a2x
qC1Ca1.x

qCx/C2a0C2f .x/
qC1
2

.xq�x/2
:(3.16)

In particular �4.L�1/ 2 Fq.x/ � Fq.H/. Let � and � be the numerator and
denominator of 3:16 respectively before cancellations. We have that before
cancellations, deg.�/ D 2q, in fact every ˛ 2 Fq is a double root of �. Further,

the highest exponent in the numerator is 3q C 2 since f .x/
qC1
2 has degree

5.qC1/
2

, therefore deg.�/ D 3q C 2 before cancellations.
With this we have that after cancellations deg.�4.L�1// D 3qC2�deg.gcd.�; �//.
Since �4.L�1/ D �4. �1.x; y// is a function on the curve H , that is �4.L�1/ 2
Fq.H/ � Fq.J /, the common factors .x � ˛/ of � and � occur at the points
.˛; ˇ/ 2 H such that ˛ 2 Fq and ˇ 2 F�q or ˇ 2 F�q n F�q2 or ˇ D 0. Hence, we

have three possible cases for cancellations:

Case ˇ 2 F�q:
In this case .˛; ˇ/ 2 H.Fq/ and therefore f .˛/ is a square in F�q . Hence

f .˛/
q�1
2 D 1. Moreover, ˛q D ˛ and ˇq D ˇ. Using this, the last term of

�.˛/ is 2f .˛/
qC1
2 D 2f .˛/f .˛/

q�1
2 . Therefore 2f .˛/

qC1
2 D 2f .˛/ and

�.˛/ D 4f .˛/:

Since ˇ ¤ 0 there are no cancellations for this case.

Case ˇ D 0:
We have that f .˛/ D 0 and ˛q D ˛, so the numerator of (3.16) is 2f .˛/ D 0.
Therefore �.x/ and �.x/ share the linear factor x � ˛ with multiplicity one or
two. The multiplicity in fact equals one since d

dx
�.x/ j˛D 4f

0.˛/ ¤ 0 as f .x/
does not have repeated roots.

Case ˇ 62 Fq:

62



3.3. Even functions in Fq.J / and the map ‰n 2 MorFq .H;P1/

In this case f .˛/ is nonzero and is not a square in F�q . Therefore f .˛/
q�1
2 D �1

by Euler’s criterion. Moreover ˛q D ˛ and �.˛/ is in this case

2.˛5 C a4˛
4
C a3˛

3
C a2˛

2
C a1˛ C a0/ � 2f .˛/ D 0:

To find the multiplicity of ˛ as a zero of �.x/, we calculate the derivative of
�.x/ at ˛:

d

dx
�.x/ j˛ D 2˛

3qC1
C3˛2qC2C4a4˛

2qC1
Ca3.˛

2q
C2˛qC1/C2a2˛

q
Ca1�f

0.˛/

D 5˛4 C 4a4˛
3
C 3a3˛

2
C 2a2˛ C a1 � f

0.˛/

D f 0.˛/ � f 0.˛/:

D 0

This tells us that the factor .x�˛/2 appears in � and then it cancels with the
denominator.

Combining the cases, one concludes deg.gcd.�.x/; �.x/// D 2q C 1 �#H.Fq/
and therefore deg.�4.L�1// D deg.�4. �1.x; y/// D q C 1C#H.Fq/.

Proposition 3.3.4. Assume the hypotheses of the Proposition 3.3.3, then:

deg.�4.L1// D deg.�4. 1.x; y/// D 3.q C 1/ �#H.Fq/:

Proof. An explicit calculation of L1 2 J .Fq.H// shows that:

�4.L1/ D x3qC2Cx2qC3C2a4x
2qC2Ca3.x

2qC1CxqC2/C2a2x
qC1Ca1.x

qCx/C2a0�2f .x/
qC1
2

.xq�x/2

Note that �4.L1/ differs from (3.16) just at the sign of the last term of the

numerator, namely 2f .x/
qC1
2 . An analogous argument as the one given above

proves the proposition.

If we compare the last Proposition 3.3.3, with Proposition 3.3.1 with g D 2,
we have that deg.C 2. �1.x; y///�deg.�4. �1.x; y// D 2q�2. This difference
on the degree is the main reason of why is less complicated to work with �4
even when computing and experimenting.
We proceed to show an important (and almost trivial at this point) property
of �4.Ln/ for n ¤ 0. This property will be used to measure the degree of the
associated map ‰n.x; y/ D �4. n.x; y// in terms of a polynomial degree in
one variable.
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Proposition 3.3.5. Assume the hypotheses of the Proposition 3.3.3.
Let n ¤ 0 and let  n 2 MorFq .H;J / be non-constant. If .x; y/ 2 H is the
generic point, then �4.Ln/ 2 Fq.x/ � Fq.H/.

Proof. In Proposition 2.4.3 we built �4 2 L.2‚/ explicitly as the function in
Fq.J / given by:

�4 WD
2a0Ca1.x1Cx2/C2a2x1x2Ca3x1x2.x1Cx2/C2a4.x1x2/

2C.x1x2/
2.x1Cx2/�2y1y2

.x1�x2/2
:

Let Œ�1� 2 Aut.J / be the inversion map on the group variety J . It is induced
by the hyperelliptic involution t 2 Aut.H/. We see that �4 is invariant under
the field automorphism Œ�1�� W Fq.J / ! Fq.J /, that is, Œ�1��.�4/ D �4.
Particularly by Lemma 3.2.5 �.Ln/ D �.�Ln/, which means

�4. n.x; y// D �4. n.x;�y// 2 Fq.H/ Š Fq.x; y/:

Writing �4. n.x; y// D
�.x/Cˇ.x/y

�.x/
for certain rational functions �.x/; ˇ.x/; �.x/,

it follows that ˇ.x/ D 0 and �4.Ln/ 2 Fq.x/ � Fq.x; y/.

We have shown that when ‚n 6� ‚ (recall that ‚n is the image of H in

J under the composition .� C Œn�/ ı �), we have that �4.Ln/ WD �.x/
�.x/

2

Fq.x/. Further, we show in the next lemma that in this case deg �4.Ln/ D
maxfdeg �.x/; deg �.x/g D deg �.x/. With this, the degree of‰n 2 MorFq .H;P1/
is determined by the degree of the numerator of �4.Ln/ as a polynomial in x:

namely, ‰n.x; y/ D �4. n.x; y// D
�.x/
�.x/
2 Fq.x/. Calculating this degree for

all n is the analog for genus two of what Manin did for genus one. In both
cases it leads to a proof of the Hasse-Weil inequality.

Lemma 3.3.6. Assume the hypotheses of the previous Proposition 3.3.5.

Let �4.Ln/ D �4. n.x; y// D �1;n.x/

�2;n.x/
2 Fq.x/ with gcd.�1;n; �2;n/ D 1.

Then deg �4. n.x; y// D max fdeg�1;n;deg�2;n g D deg�1;n.

Proof. To simplify notation denote u WD �1;n and t WD �2;n. Recall that
�4.Ln/ 2 Fq.x; y/ Š Fq.H/ is a function on the curve H where y2 D f .x/

is the defining equation of H. To show that the degree of the numerator of
�4.Ln/ D �4. n.x; y// is higher than the degree of its denominator, we just
need to calculate the order of �4.Ln/ D �4. n.x; y// 2 Fq.H/ at 1 2 H and
check its sign.
Let O1 � Fq.H/ be the ring of regular functions at 1 2 H. Consider a
uniformizer � 2 Fq.H/ at 1 2 H, that is, �O1 D m1 where m1 is the
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maximal ideal of O1. Therefore x D u��2 2 Fq.H/ for a unit u 2 FqŒH�,
hence

ordH
1.

�.x/
�.x/

/ D deg u � ordH
1.x/ � deg t � ordH

1.x/ D �2 deg uC 2 deg t:

Further, we have that 1 2 ‚ and �4 2 L.2‚/ � Fq.J / (i.e. ‚ is a double
pole of �4 in J ), therefore, �4.Ln/ 2 Fq.H/ � Fq.J / is not regular at 1 2 H,

that is �4.Ln/ … O1 if and only if 0 > ordH
1.

u.x/
t.x/

/ D �2deg uC 2 deg t if and
only if deg u > deg t .

With this we have that if n ¤ 0 and  n is non-constant and .x; y/ 2 H is the
generic point, then deg‰n D deg.�4 ı  n/ D 2 deg u.x/ D 2 deg�1;n. The “2”
is because x as a function H! P1 has degree 2; the last ‘deg’ denotes degree
as a polynomial in x.

3.4 Computing deg‰n explicitly

Suppose that  n.H/ 6� ‚. The purpose of this section is to finally compute

the degree of the rational function �4.Ln/ D �1;n.x/

�2;n.x/
for every n 2 Z, that is,

we obtain deg�1;n.x/ (as a polynomial) by the previous Lemma 3.3.6. This
will tell us deg‰n. This calculation will be done in terms of a second order
recurrence formula for ın WD

deg‰n
2
D deg �.x/ similar to the one Manin found

for the genus 1 case. In order to find an expression for this degree we will
require some machinery from the theory of Abelian varieties.

First, we define the intersection multiplicity (number) between the curves ‚n
and ‚ in J and prove its relation with ın. We also define and deduce the
self intersection number of ‚ in J . Moreover we deduce the intersection of
Im 0 D ‚0 with ‚ (we cannot use �4 as before since ‚0 � ‚) using a linear
equivalent divisor ‚00 in order to use explicitly �4 and obtain ı0.

Finally, an important theorem that we use to obtain deg‰n comes from a
general result in algebraic geometry, the Theorem of the Cube (see Chapter III
�10 [Mum74]). This theorem is very general and usually is stated for schemes
using invertible sheaves. However, we relax the theory since we are working
with J , which is an Abelian variety and therefore smooth. So, we switch the
language of invertible sheaves L 2 Pic.J / to Weil divisors L 2 Div.J /= �
since both groups are isomorphic in this case (see Chapter II, Proposition 6.15
and Corollary 6.16 [Har77]).
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As a remark, the theory of Abelian varieties for J =k using divisors Div.J /.k/
works for any k with a separable closure ksep. This was justified in the Section
3.2.1 obtaining J .k/ via the invariants of J under Gk D Gal.k=k/.

3.4.1 Intersection theory on J and ın

Definition 3.4.1. Let D1;D2 2 Div.J /. By D1 �D2 we denote the intersec-
tion number of the divisors D1 and D2 on the surface J .

As a matter of formality we briefly explain in the next paragraph what “inter-
section number” means, for more details see [Har77, Appendix C or Chapter
V]. In what follows we will be mostly interested in ‚n � ‚. We will show in
Lemma 3.4.2 that this number is related to the degree of the rational function
�4. n.x; y// 2 Fq.x/.

When D1;D2 2 Div.J / are irreducible curves intersecting transversally, D1 �
D2 D jD1 \ D2j. The general situation is different, let D1 and D2 be two
curves in J with no common irreducible components. Take P 2 D1 \D2 and
consider local equations describing the curves D1 and D2 in J at P , namely 1
and 2. Consider the local ring OJ ;P of J at P , that is kŒU �mP where U is an
affine neighborhood of P and mP � kŒU � is the maximal ideal corresponding
to P . Then OJ ;P =.1; 2/ is the ring that best describes the intersection of
D1 and D2 at P in J . Namely, D1 �D2 WD

P
P2D1\D2

dimk

�
OJ ;P =.1; 2/

�
(see [Har77, Chapter V, Proposition 1.4]). This number is finite since these
quotient rings are local Artinian over k and hence finite dimensional over k.

The next lemma shows the expected relation between ‚n �‚ and ın. This will
allow us to show that ı0 D 2q and ‚ �‚ D 2 using �4.

Lemma 3.4.2. Suppose that Im n D ‚n 6� ‚. Let ˆn WD � C Œn� 2 End.J /,
then

2‚n �‚ D deg‰n D 2ˆ
�
n‚ �‚:

Proof. Let .x; y/ 2 H be generic. Since Im n D ‚n 6� ‚ we have that
‰n.x; y/ D �4. n.x; y// 2 Fq.x/ by Lemma 3.3.6. Further, �4 2 Fq.J / has
divisor D � 2‚ for some effective divisor D 2 Div.J /. Therefore deg‰n D
deg

�
.�4j‚n/

�1
�
D 2‚n �‚ which shows the first equality.

For the second equality, note that ˆ�1n .‚/ D fD 2 J W ˆn.D/ 2 ‚g and
‚ is the locus where �4 has a pole (in fact a double pole). Since deg.‰n/ D
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deg.�4 ıˆnj‚/ we conclude deg‰n D 2ˆ
�1
n .‚/�‚. Applying [Ful84, Lemma 1.7.1],

this equals 2ˆ�n‚ �‚.

Note that since ın D
deg‰n
2
D deg �4. n.x; y// by Lemma 3.3.6, the previous

lemma implies that ı�1 D qC 1C#H.Fq/ and ı1 D 3.qC 1/�#H.Fq/ using
Propositions 3.3.3 and 3.3.4 respectively.

We will show soon how to deal with the cases where ‚n � ‚ using a lin-
ear equivalent divisor ‚0n 2 Div.J /.

We now prove in the next lemma that ‚ � ‚ D 2. This number is the in-
tersection number of ‚ with ‚0 where ‚ � ‚0. A divisor ‚0 can be regarded
as a translation of ‚ in J . This number will be useful to compute ‚n � ‚.
The following lemmas use the known fact that the intersection number of two
divisors is invariant under translation since they are linearly equivalent (see
[Har77, Chapter V. Theorem 1.1] and [BL13, Corollary 2.5.4]).

To see the intuition of why we want the intersection number ‚n �‚, for n 2 Z,
think about n D �1. The integer ‚�1�‚ is directly related with #H.Fq/ since
it counts (with multiplicities) the number of solutions D 2 ‚ � J such that
 �1.D/ D 0 if and only if �.D/ D D where � 2 End.J / is the q-th Frobenius.
Note that the divisors (on H, so points in J ) considered here are the ones in
‚ Š H and ‚ � J . Therefore we are counting points in H Š ‚.

Lemma 3.4.3. Let H=Fq be a hyperelliptic curve of genus 2 given by Y 2 D
X5 C a4X

4 C a3X
3 C a2X

2 C a1X C a0 and consider its Jacobian J . Let
Im � D ‚ � J , then ‚ �‚ D 2.

Proof. Let .w; 0/ 2 H.Fq/ be a Weierstrass point and consider �w 2 Mor.H;J /
given by P 7! ŒP C .w; 0/ � 21�. Let .x; y/ 2 H be the generic point. We
have that ‚0 WD Im �w � J is a translation of ‚, and therefore ‚0 � ‚ in
Div.J /. Hence ‚ �‚ D ‚0 �‚ D deg �4.�w.x; y//. We have that �4.�w.x; y//
is well defined since ‚0 6� ‚ and �4 only has a double pole at ‚. By an
analog argument used in the previous Lemma 3.4.2, we have that ‚ � ‚ D
deg �4.�w.x; y//. Note that �w.x; y/ D Œ.x; y/C .w; 0/ � 21�, therefore:

�4.�w.x; y// D
2a0Ca1.xCw/C2a2xwCa3.xCw/xwC2a4.xw/

2C.xCw/.xw/2

.x�w/2

D
a1Ca3xwC.xw/

2

.x�w/
C

2a2xwC.xw/
2C2a0

.x�w/2

(3.17)
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We see explicitly that deg �4.�w.x; y// D 2. Note that when w D 0, the degree
is taken as the degree of the denominator which has highest degree.

Note that the previous lemma can be showed also using the adjunction for-
mula ([Har77, Chapter V �1, 1.5] ) but here we show how to obtain these
intersection numbers using �4.

Using an analogous argument we calculate ‚0 �‚ as we see in the next lemma,
justifying the definition of ı0 in (3.5).

Lemma 3.4.4. Let H=Fq be a hyperelliptic curve of genus 2 given by Y 2 D
X5 C a4X

4 C a3X
3 C a2X

2 C a1X C a0 D f .x/ and consider its Jacobian J .
Let Im  0 D ‚0 � ‚ � J , then ı0 D ‚0 �‚ D 2q.

Proof. Let .x; y/ 2 H be generic. By a similar argument in the previous
Lemma 3.4.3 we translate ‚0 by .w; 0/ 2 H.Fq/ using the map  0;w.x; y/ WD

Œ.xq; yf .x/
q�1
2 /C Œ.w; 0/ � 21�. Let ‚00 WD Im  0;w , we calculate ‚0 � ‚ D

‚00 �‚ as the degree of:

�4. 0;w.x; y// D
2a0Ca1.x

qCw/C2a2x
qwCa3.x

qCw/xqwC2a4.x
qw/2C.xqCw/.xqw/2

.xq�w/2

D
a1Ca3x

qwC.xqw/2

.xq�w/
C

2a2x
qwC.xqw/2C2a0
.xq�w/2

:

(3.18)

This rational function has clearly degree 2q, therefore ‚0 �‚ D 2q.

In summary, with the previous Propositions 3.3.4 and 3.3.3, we know that
ı�1 D ‚�1 � ‚ D q C 1 C #H.Fq/ and ı1 D ‚1 � ‚ D 3.q C 1/ � #H.Fq/.
Further, using 3.4.2 we justified ı0 D ‚0 �‚ D 2q and also that ‚ �‚ D 2.

Finally we state an important result from the theory of Abelian varieties.
Let .A;˚/ be an Abelian variety.
For every non-empty I � f1; 2; 3g define the map �I W A � A � A ! A by
�I .x1; x2; x2/ D

L
i2I xi . For example, for f2; 3g we have �23.x1; x2; x2/ D

x2 ˚ x3 2 A.
Consider the pullbacks ��I W Div.A/! Div.A�A�A/. We state the following
fundamental result.

Theorem 3.4.5 (Theorem of the Cube on Abelian varieties). Let A be an
Abelian variety and L 2 Div.A/. Consider the divisor D 2 Div.A � A � A/
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given by:

D W D ��123L � ��12L � ��13L � ��23LC ��1LC ��2LC ��3L

D �

X
I�f1;2;3g

.�1/#I��I .L/

then D � 0.

Proof. An elegant and compact proof over C using that D is the divisor of an
explicit � function when L is effective, is found in [HS13] (Theorem A.7.2.1).
The algebraic proof there follows from the Lefschetz principle. Other proofs
can be found in [Mil08] using the Seesaw principle.

The next corollary is a handy tool for the main result of this chapter.

Corollary 3.4.6. Let A be an Abelian variety, ˛; ˇ;  2 Endk.A/ and L 2
Div.A/, then :

E WD .˛CˇC/�L�.˛Cˇ/�L�.˛C/�L�.ˇC/�LC˛�LCˇ�LC�L � 0

in Div.A/

Proof. Put

% W A! A �A �A
X 7! .˛.X/; ˇ.X/; .X//

(3.19)

Let D be as in Theorem 3.4.5. It is easy to see that %�.D/ D E, that is, the
inverse image of D under % is E. Therefore E � 0 by Theorem 3.4.5

3.4.2 Proof of the Hasse-Weil inequality for genus 2

In this section we show that the degree of ‰n is given by an explicit quadratic
polynomial in the variable n. The proof uses the Theorem of the cube de-
scribed in the previous section. Finally we use this polynomial to infer the
Hasse-Weil inequality for genus 2.

We recall the full setting for the definition of ın now using Lemma 3.3.6.

Definition 3.4.7. Let H=Fq be a hyperelliptic curve of genus 2 with one point
at infinity and J its Jacobian. Let �; Œn� 2 EndFq .J / be the Frobenius and the
multiplication by n endomorphisms. Consider the inclusion � W H ! J . Put
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 n WD .� C Œn�/ ı � 2 MorFq .H;J /. Using the diagram (3.15) we have that ‰n

is the map given by .x; y/ 7! �4. n.x; y// D
�1;n.x/

�2;n.x/
. We define:

ın WD

(
deg �4. n.x; y// D deg�1;n D

deg‰n
2

if  n.H/ 6� ‚I
2q if n D 0I
0 otherwise:

Theorem 3.4.8. Suppose that Im j D‚j 6� ‚ for j 2 fn� 1; n; nC 1g, then:

ın�1 C ınC1 D 2ın C 4: (3.20)

Moreover, for any n we have ‚n �‚ D 2n
2Cn.qC 1�#H.Fq//C 2q and this

equals ın provided n D 0 or ‚n 6� ‚.

Proof. Using Corollary 3.4.6, let L WD ‚ 2 Div.J / and take ˛ WD � C Œn�; ˇ D
Œ1�;  WD �Œ1� 2 EndFq .J /. Let ˆm WD � C Œm�, then in this case the Corollary
of the theorem of the cube (3.4.6) says:

2ˆ�n‚ �ˆ
�
nC1‚ �ˆ

�
n�1‚C 2‚ � 0;

or equivalently:

2ˆ�n‚C 2‚ � ˆ
�
n�1‚Cˆ

�
nC1‚: (3.21)

Intersecting both sides of the equivalence with ‚ proves the first part of the
theorem. To be more precise, we use Lemma 3.4.2 together with Lemma 3.4.3
to deduce 2ın C 4 D ın�1 C ınC1.

Now, for the explicit value of ın in case it equals ‚n � ‚, we proceed to
prove by induction that:

‚n � n.n � 1/‚C n‚1 C .1 � n/‚0: (3.22)

Note that intersecting both divisors in the previous equivalence with ‚, using
the known values of ı0; ı�1 and ı1 we see that it yields the desired polynomial
formula in n for ‚n �‚.

Recall that ‚0 WD Im 0 D ˆ0.‚/ � J is the divisor that corresponds to
the image of � ı � 2 MorFq .H;J /, that is, the Frobenius action on the points
of ‚.

The argument we give here to prove (3.22) is completely analogous to the
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proof of Proposition 10.13 in [Mil08]; we give a few more details.

Clearly (3.22) is satisfied for n D 0 and n D 1. Furthermore by (3.21) we
have ‚nC1 � 2‚n C ‚n�1 � 2‚. Hence if we assume ‚n � n.n � 1/‚ C

.n/‚1C .1� n/‚0 and ‚n�1 � .n� 1/.n� 2/‚C .n� 1/‚1C .1� .n� 1//‚0,
it follows that

‚nC1 � 2‚n �‚n C 2‚

� .nC 1/n‚C .nC 1/‚1 C .1 � .nC 1//‚0:
(3.23)

Completely similarly, if (3.22) is assumed for nC2 and for nC1, then it follows
for n. This finishes the induction proof of (3.22) and we are ready to calculate
ın D ‚n �‚.
Finally, we know that ‚ � ‚ D 2, ı1 D ‚1 � ‚ D 3.q C 1/ � #H.Fq/ and
ı0 D ‚0 � ‚ D 2q by the Lemma 3.4.3, Proposition 3.3.4 and Lemma 3.4.4
respectively. Therefore, using the linear relation of the divisors in (3.22):

‚n �‚ D n.n � 1/‚ �‚C n‚1 �‚C .1 � n/‚0 �‚

D 2n.n � 1/C n.3.q C 1/ �#H.Fq//C 2q.1 � n/
D 2n2 C n.q C 1 �#H.Fq//C 2q:

(3.24)

Corollary 3.4.9 (Hasse-Weil for g D 2). Let H=Fq be a hyperelliptic curve
with one rational point at infinity and char.Fq/ ¤ 2, then:

jq C 1 �#H.Fq/j � 4
p
q: (3.25)

Proof. Consider the polynomial in n appearing in (3.24) in the previous The-
orem 3.4.8. The polynomial has the form ı.x/ WD 2x2 C T x C 2q with
T WD q C 1 �#H.Fq/. Its discriminant is

�ı WD T
2
� 16q:

We want to prove that �ı � 0 since that would imply that jT j � 4
p
q, which

is exactly the statement of the Hasse-Weil inequality for g D 2.

We already proved in Proposition 3.2.3 that if n 2 Z exists such that  n 2
MorFq .H;J / is constant, then  n D 0, q D n2 is a perfect square and
#H.Fq/ D q C 1 ˙ 4

p
q. Hence from the existence of such n, the Hasse-

Weil inequality over Fq for the curve in question follows. So from now on we
will suppose that  n is non-constant for every n 2 Z. By Theorem 3.4.8 this
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implies that ı.n/ D ‚ �‚n for all n 2 Z.

We proceed to show first that ‚ � ‚n > 0 for all n 2 Z. A fast and not very
elementary argument for that uses that the divisor ‚ is ample, hence by the
Nakai-Moishezon criterion for ampleness on surfaces, its intersection number
with any curve is positive. However, we now present a more elementary proof
of the fact that ‚ �‚n > 0. In Lemma 3.4.4 we showed that ‚ �‚0 D 2q > 0.
The remaining cases are the following:

Case  n.H/ 6� ‚ for all n 2 Z n f0g: In this case ı.n/ D ın D
deg‰n
2

for all n 2 Z n f0g, hence ı.n/ > 0 for all n 2 Z.

Case  n.H/ � ‚ for some n 2 Z n f0g: Here  n W H ! J is given by
P 7! Œ.x.P /; y.P //�1� for some x; y 2 Fq.H/. Let .w; 0/ 2 H.Fqk / be a Weier-
strass point on H (defined over some extension of Fq of degree k). Consider
its associated 2-torsion point �.w; 0/ D Œ.w; 0/ � 1� 2 J . Further, consider
the morphisms W; n 2 MorF

qk
.H;J / where W is given by the constant map

P 7! Œ.w; 0/ �1�.
Let  wn .x; y/ WD . n CW /.x; y/ D Œ.x.x; y/; y.x; y//C .w; 0/ � 21�, we have
that ‚wn WD  wn .H/ 6� ‚ and ‚wn 2 Div.J / is clearly a translation of ‚n by
a 2-torsion point, so ‚wn � ‚n (see [BL13, Corollary 2.5.4]). Moreover, let
Œ�1� 2 Aut.J /, we have that �4.Œ�1� 

w
n .P // D �4. 

w
n .P // by Proposition

3.3.5 and the fact that W.P / D Œ�1�W.P / D Œ.w; 0/ �1�. This means that
‚wn is symmetric with respect to Œ�1�, therefore �4. 

w
n .x; y// 2 Fqk .x/, which

is well defined since ‚wn 6� ‚ and �4 2 L.2‚/. Now, let ‰wn W H ! P1 be the

induced map by �4. 
w
n .x; y// D

�w
1;n
.x/

�w
2;n
.x/

(analogous to Diagram (3.15)) which

is non-constant, then:

‚n �‚ D ‚
w
n �‚ D deg

‰wn
2
D maxfdeg�w1;n;deg�w2;ng > 0:

The leftmost equality follows from the fact that the intersection number is in-
variant under linear equivalence (see [Har77, Chapter V. Theorem 1.1]). The
middle and rightmost equalities are justified analogous to Lemma 3.4.2. The
inequality follows from the fact that �4. 

w
n .x; y// is non-constant and well

defined.

Now we show that ı.x/ is non-negative for all x 2 R hence, it has non-positive
discriminant.
Suppose that the Hasse-Weil inequality for genus 2 is false. This is equivalent
to the statement �ı > 0. In this case ı.x/ has two different real zeros ˛ < ˇ.
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We have that �ı in terms of ˛ and ˇ is given by:

�ı D 4.˛ � ˇ/
2
D T 2 � 16q:

The integer �ı is assumed to be positive, so we conclude 4.˛ � ˇ/2 � 1.
Moreover, recall ı.n/ > 0 for every n 2 Z. Since for any x0 2 .˛; ˇ/ we have
that ı.x0/ < 0, it follows that .˛; ˇ/ contains no integers. This implies that
ˇ � ˛ < 1 and then 1 � 4.˛ � ˇ/2 < 4.
So we have just three situations for positive discriminant: T 2�16q 2 f1; 2; 3g.
Each of these possibilities results in a contradiction as we will see below.

Case T 2 � 16q D 3: Consider the parabola … given by of x2 � 16y D 3.
We are interested in the integer points .T; q/ DW .x; y/ of ….
Since 16y D x2 � 3, we have that x 2 Z must be odd, namely x D 2k C 1 for
k 2 Z. If we substitute x D 2kC1 in the equation of… we get 8yC1 D 2.k2Ck/
which obviously does not have integer solutions. ����

Case T 2 � 16q D 2: This is similar to the previous case since the integer
solutions for the parabola 16y D x2 � 2 must have x D 2k with k 2 Z. There-
fore 8y C 1 D 2k2 which also does not have integer solutions. ����

Case T 2 � 16q D 1: Again we consider the parabola … given by the lo-
cus of 16y D x2 � 1. Here we have that the integer solutions .x; y/ 2 … must
have x coordinate odd, namely x D 2k C 1.
We substitute x D 2k C 1 in the equation and we get that 4y D k2 C k. So
k2 C k � 0 mod 4, therefore we have two subcases for k.

(i) k D 4w with w 2 Z: then y D 4w2 C w and one obtains the integral
point .8w C 1; 4w2 C w/ 2 …. We will show that this integer point in
… cannot be of the form .T; q/ with q the cardinality of a finite field Fq
and T D q C 1 �#H.Fq/ for some genus 2 curve H=Fq .

(ii) k D 4w C 3 with w 2 Z: Here one obtains y D 4w2 C 7x C 3 hence we
find the integral point .8w C 7; 4w2 C 7w C 3/ 2 …. We will prove that
no pair .T D 8w C 7; q D 4w2 C 7w C 3/ 2 … is possible for a genus 2
hyperelliptic curve H=Fq .

Subcase (i): T D 8w C 1 D q C 1 �#H.Fq/, q D 4w2 C w D pn.

Since p is the only prime dividing q D w.4wC1/ and since gcd.w; 4wC1/ D 1,
it follows that w D ˙1 or 4wC 1 D ˙1. We proceed to check all possibilities.
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If 4w C 1 D C1 then w D 0 and q D 0 which is not possible.
If 4w C 1 D �1 then w D �1

2
which is absurd since w is an integer.

If w D C1 then q D 5 and T D 9. However 9 D 5C 1�#H.F5/ is impossible
since a curve cannot have less than 0 points.
If w D �1 then q D 3 and T D �7. However a hyperelliptic curve H=F3 has
at most 2 � 3C 2 rational points, hence T � 3C 1 � 8 D �4.

Subcase (ii): T D 8w C 7 D q C 1 �#H.Fq/, q D 4w2 C 7w C 3 D pn

Again p is the only prime dividing q D 4w2 C 7w C 3 D .w C 1/.4w C 3/.
Moreover these two factors are coprime since 4.wC 1/� .4wC 3/ D 1. There-
fore one of the factors must be ˙1. Again we check all possibilities
If w C 1 D 1 then q D 3 and T D 7. However any curve C=F3 has at least 0
rational points, hence T D 3C 1 �#C.F3/ � 4.
If w C 1 D �1 then q D 5 and T D �9. Any hyperelliptic H=F5 satisfies
#H.F5/ � 2 � .5C 1/, hence T � 6 � 12 D �6.
The case 4w C 3 D 1 is impossible since w is assumed to be an integer.
Finally, 4w C 3 D �1 leads to q D 0 which is absurd.

This shows that the assumption �ı D T
2 � 16q > 0 leads to a contradiction.

As a consequence jT j � 4
p
q which is precisely the Hasse-Weil inequality for

genus 2.
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Chapter 4

Geometric primality tests
using curves of genus 0; 1 &
2

Here we revisit and generalize some geometric techniques behind determinis-
tic primality testing for some integer sequences using curves of genus 0 and 1
over finite rings. Subsequently we develop a similar primality test using the
Jacobian of a genus 2 curve.

This chapter is mainly inspired by a lecture at the Intercity Seminar [Top15]
given by Jaap Top, “Lucas-Lehmer revisited”. Also a paper by B.H. Gross was
relevant for this topic: in this paper [Gro05] he was the first to use an elliptic
curve for constructing a deterministic primality test for numbers of the form
2p � 1 (Mersenne numbers).

We begin with the simplest case, namely conics. Conics are going to be a
motivation for all subsequent primality tests discussed in the present chapter.
After a rather trivial first example, we describe the usage of the unit circle to
identify primes of the form m2n � 1 where m < 2n � 2� 2

2n
is odd. The obser-

vation that makes the methods work is that over any finite field F considered,
the conics C we use have the structure of a group variety over F and we have
good estimates for #C.F/.

After the case of conics, we describe the usage of elliptic curves Et W y
2 D

x3 � .t2 C 1/x for primality testing of integers of the same form as before,
namely m2n � 1. Here we demand the odd integer m to satisfy 4m < 2n.
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Again the group structure and size of Et .F/ for F certain finite fields is used
for designing a primality test. In [DS08] Denomme and Savin use complex
multiplication on elliptic curves to develop primality tests for several sequences
of integers. Variants and generalizations of this were obtained by Gurevich and
Kunyavskĭı in [GK12], by Tsumura [Tsu11], and by Wong [Won13]. As one
of their examples, Denomme and Savin used a quadratic twist of E W y2 D
x3�x to do a primality test on Fermat numbers using the EndQ.i/.E/-module
structure of E. Here we extend their setting from Fermat integers to integers
of the form p216n C 1 where p � ˙1 mod 10 and p < 4n.

Finally, with this, we focus our attention to an open question stated by
Abatzoglou, Silverberg, Sutherland and Wong in [ASSW16, Remark 4.13].
This question asks about the design of a potential primality test using Jaco-
bians of genus 2 curves. We develop a method to identify primes of the form
4 �5n�1 using the Jacobian J of the genus 2 curve H W y2 D x5Ch as a cyclic
EndQ.

p
5/.J /-module. We emphasize that efficient primality tests for integers

4 �5n�1 may exist, but here we state a result to work with these integers using
an Abelian variety of dimension 2.

4.1 Motivation: Primality testing à la Lucas
and conics

It is well known that a necessary condition (but not sufficient) for a number
n 2 N to be prime is that for all a 2 N such that 2 � a < n the congruence
an�1 � 1 mod n holds. This Little Theorem by Fermat can be used as a test
for compositeness calculating the congruence for several a. We infer that n is
composite if for some a, the congruence does not hold. When the congruence
holds for many choices of a the number n is said to be probably prime. The
computation of this congruence can be done quite fast using modular repeated
squaring.

Unfortunately there is a problem with this Fermat test, there are infinitely
many composite numbers such as m D 561 satisfying am�1 � 1 mod m for all
a such that .m; a/ D 1. These numbers are known as Carmichael numbers.
Even though Carmichael numbers are rarer than prime numbers (see [EM56])
other extensions of this test were developed to deal with this, like Miller-Rabin
or Solovay-Strassen which are more common in practice. In order to turn this
Fermat test into a primality testing algorithm, Édouard Lucas stated the fol-
lowing theorem:
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Theorem 4.1.1. [Lucas, 1876] Let a; n 2 Z be such that an�1 � 1 mod n and

a
n�1
p 6� 1 mod n for all primes p j .n � 1/. Then n is prime.

Proof. Let a 2 .Z=nZ/� and k D #hai. Since an�1 � 1 mod n, we have

k j n � 1. Further, we have that a
n�1
p 6� 1 mod n for all p j .n � 1/, hence

k D n�1. With this we have that #.Z=nZ/� D n�1 and then n is prime.

This elementary theorem is used by several deterministic primality tests.
A problem for potential algorithms that could arise from this theorem is that
it requires the prime divisors of n� 1. This is very difficult in general, but for
example, if we restrict our algorithms to potential prime numbers of the form
k2n C 1 or 22

n
C 1 this theorem can be applied effectively. Also, another less

difficult problem when using Theorem 4.1.1 is that in case of n being prime,
we need to find a correct a 2 .Z=nZ/� that satisfies the hypotheses of Theo-
rem 4.1.1. This “problem” means that when n is prime then .Z=nZ/� is cyclic,
so we need an a 2 .Z=nZ/� that generates this cyclic group (of units of Z=nZ).
The existence of this a satisfying Theorem 4.1.1 is a classical result by Gauß
exposed in the article 57 from Disquisitiones where he calls them primitive
roots modulo n, see [Gau86]. Gauß proved that such a exists but finding it in
general is a different problem.
The main motivation for primality testing using geometrical tools can be ob-
tained from the following theorem for Mersenne numbers Mn WD 2

n � 1.

Theorem 4.1.2. [Lucas-Lehmer] Consider the sequence a0 WD 4; aiC1 WD a
2
i �

2. Let n > 2. Mn WD 2
n � 1 is prime if and only if an�2 � 0 mod Mn.

This result is classical and many proofs of it can be found in the literature.
We sketch a proof that uses properties of an Abelian group variety given by a
Pell conic, namely:

G WD f.x; y/ 2 A2 W x2 � 3y2 D 1g:

The group variety structure is defined by

G �G ! G W ..x1; y1/; .x2; y2// 7! .x1x2 C 3y1y2; x1y2 C x2y1/:

The element aj in the sequence of Theorem 4.1.2 is exactly 2 times the x coor-
dinate of the j th recursive doubling of the point .2; 1/ 2 G mod Mn, in other
words aj D 2 � x.2j .2; 1// mod Mn. When Mn is prime and n > 2, one first
shows that #G.FMn/ D 2n and that this group contains only one element of
order 2. As a result, the group is cyclic. Next, one shows that the point .2; 1/
is not the double of some other point in G.FMn/ and therefore .2; 1/ generates
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this group. It follows that 2n�2.2; 1/ 2 G.FMn/ has order 4. It is easy to see
that any point of order 4 has x-coordinate equal to 0, and therefore an�2 D 0.
For the converse, assume that an�2 � 0 mod Mn. Take a prime divisor `jMn.
The assumption implies that 2n�2.2; 1/ has order 4 in G.F`/. Hence .2; 1/ has
order 2n in that group, and one concludes 2n � #G.F`/ � ` C 1. It follows
that ` DMn and hence Mn is prime.

In the following sections we explore a geometrical perspective of the Lucasian
primality tests arising from these ideas using algebraic groups from conics,
elliptic curves and finally from Jacobians of genus 2 curves. It is important to
mention that a formal treatment of primality test algorithms using Pell conics
exists (see [Ham12]). We begin with two specific conics (a hyperbola and a
unit circle) in order to get the motivation for the next parts.

4.1.1 Fermat primes and the rational curve xy D 1

We denote Fermat numbers by Fn WD 22
n
C 1.

Consider the conic H � A2 given by the zeros of xy � 1. This is in fact the
standard model of the group variety Gm; the group structure is given by

.x1; y1/ � .x2; y2/ D .x1x2; y1y2/; .x; y/�1 D .y; x/; and 1 WD .1; 1/:

For any commutative ring R the group

H.R/ WD f.a; b/ 2 A2 W a; b 2 R; ab D 1g

is isomorphic to R�, the group of units in the ring R. Our interest is in the
group H.Z=FnZ/ Š .Z=FnZ/� since it has order 22

n
if and only if Fn is prime.

Moreover, if Fn is prime, this group is cyclic.
.

Proposition 4.1.3. Let Fn be prime with n > 0. Q WD.˛; 1
˛
/ generates H.FFn/

if and only if ˛…F�2Fn .

Proof. Consider the Euler’s totient function '. Suppose that Q generates
H.FFn/. Since #H.FFn/ D '.Fn/ D 22

n
, there is no R 2 H.FFn/ such that

R2 D Q (otherwise Q is not a generator). This is equivalent to say that
x2 D ˛ has no solutions over FFn , hence ˛ is not a square.
For the converse, if ˛ is not a square in F�Fn then there is no R 2 H.FFn/

with R2 D Q. Since H.FFn/ is cyclic of order 22
n

we have that Q generates
H.FFn/.

78



4.1. Motivation: Primality testing à la Lucas and conics

With this, we obtain Pépin’s test for Fermat primes naturally.

Corollary 4.1.4. Let ˛ 2 .Z=FnZ/� be a non-square.
Fn is prime iff the sequence x0 D ˛, xiC1 D x

2
i has x2n�1 � �1 mod Fn.

Proof. Let Fn be prime, then H.FFn/ is cyclic of order Fn � 1 D 22
n
.

The sequence above is equivalent to the first coordinate of a recursive squaring

in H of the point Q WD .˛; 1
˛
/, that is, xi is the first coordinate of Q2i . Since ˛

is not a square in FFn we have that H.FFn/ is generated by Q by the previous

proposition. With this we have that Q has order 22
n

and T WD Q22
n�1

has
order 2, hence T D .�1;�1/ since this is the only point of order 2. This is
equivalent to x2n�1 � �1 mod Fn.

For the converse, if x2n�1 � �1 mod Fn then x2n � 1 mod Fn. This means
that the order of Q WD .˛; 1

˛
/ 2 H.Z=FnZ/ divides Fn � 1 D 22

n
. Further

the order of Q does not divide Fn�1
2

(since x2n�1 � �1 mod Fn), hence Q 2

H.Z=FnZ/ has order 22
n
. Is equivalent to say that 22

n
j #H.Z=FnZ/ D '.Fn/.

This implies that '.Fn/ D Fn � 1 hence Fn is prime.

To put Corollary 4.1.4 in practice, it is useful to find a fixed ˛ 2 Z such
that ˛ is not a square modulo Fn for n > 0. This potential ˛ can be found
using the Jacobi symbol. For example, ˛ D 3 works, as is seen as follows.
Since n > 0, Fn is odd and Fn 6� 3 mod 4 and Fn � 2 mod 3. Therefore�
3
Fn

�
D
�Fn
3

�
D
�
2
3

�
D �1, hence ˛ … .Z=FnZ/�

2
.

A similar computation shows that for n > 1 we can use ˛ D 5 to do pri-
mality test on Fn. Further, we can use ˛ D 10, but it requires a little bit more
to show that

�
10
Fn

�
D �1. A proof runs as follows. Observe 

10

Fn

!
D

 
5

Fn

! 
2

Fn

!
D �

 
2

Fn

!
:

We have to show that
�
2
Fn

�
D
Q�

2
fi

�
D 1 where Fn D

Q
fi is the prime

factorization of Fn. Using Gauss’ Lemma on quadratic residues, we have
that

�
2
p

�
D �1 iff p � 3 or 5 mod 8. Hence,

�
2
Fn

�
D 1 if #ffj j Fn W fj �

3; 5 mod 8g is even. We proceed to show that there are no primes in the
factorization of Fn that are 3 or 5 mod 8.
Let f j Fn be a prime divisor, then 22

n
� �1 mod f , hence, squaring the

last congruence we have that the order of 2 modulo f is 2nC1. Hence f �
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1 mod 2nC1 which implies that f � 1 mod 8 for n > 1 for every prime divisor
of Fn. Hence,

�
2
Fn

�
D 1 and

�
10
2

�
D �1.

We remark as a consequence of the equality
�
2
Fn

�
D 1 that if ˛ works as

the initial point in Pépin’s test, then so does 2˛.

We show a sample code using the computer algebra system MAGMA of a
typical implementation of this test.
We test F15 D 232768 C 1, which has � 10; 000 decimal digits.

> IsFermatPrime := function(n)
function> xi := 3; Fn := 2^(2^n)+1; R := Integers(Fn);
function> for n := 1 to 2^n-1 do
function|for> xi := R!xi^2;
function|for> end for;
function> return xi eq R!-1;
function> end function;
> time IsFermatPrime(15);
false
Time: 784.000

Pepin’s test is the fastest deterministic primality test known for Fn, but due
to the fact that the size of Fn increases very rapidly with n, only a few of them
can be tested in reasonable time. According to the Proth Search Project (http:
//www.prothsearch.com/fermat.html), it is unknown (January 2018) whether
F33 is prime or not (2.6 billion decimal digits).

4.1.2 Primes of the form m2n�1 with m < 2n odd and the
conic x2 C y2 � 1

In this section we set the stage for a primality test applied to certain integers
of the form Am;n WD m2n � 1 (with m; n 2 Z>0). We use (an algebraic group
structure on) the conic C � A2 given by the zeros of x2 C y2 � 1.
The group law for C is written multiplicatively, and it is defined for .x1; y1/; .x2; y2/2
C by .x1; y1/ � .x2; y2/D .x1x2 � y1y2; x1y2 C x2y1/ and .x; y/�1 D .x;�y/.
The neutral element of C is 1 WD .1; 0/.
Observe that the group operation of C is motivated by the usual multiplication
of complex numbers x C yi 2 C. Further, the inverses in C reflect complex
conjugation (on the subgroup S D fz W jzj D 1g � C� indeed complex con-
jugation and taking inverses coincide). This observation can be extended to a
more algebraic description of the groups discussed here, e.g.,

C.Z=nZ/ Š faC bi 2 .ZŒi �=.n//� W a2 C b2 � 1 mod ng: (4.1)

We will show some lemmas allowing us to use C.Z=Am;nZ/ for a primality
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4.1. Motivation: Primality testing à la Lucas and conics

testing algorithm applicable to certain integers of the form Am;n.
First we state the next easy lemma to discard trivially composite numbers of
the form Am;n.

Lemma 4.1.5. The integer Am;n D m2n � 1 is divisible by 3 if one of the
following conditions holds:

� m � 2 mod 3 and n � 1 mod 2;

� m � 1 mod 3 and n � 0 mod 2.

Further, Am;n D m2n � 1 is divisible by 5 if one of the following conditions
holds:

� m � 1 mod 5 and n � 0 mod 4;

� m � 2 mod 5 and n � 3 mod 4;

� m � 3 mod 5 and n � 1 mod 4;

� m � 4 mod 5 and n � 2 mod 4.

Proof. This is clear analyzing the period of the map n 7! 2n mod 3 and of the
map n 7! 2n mod 5.

Now we show some properties of the group C.Fp/.

Lemma 4.1.6. If p � 3 mod 4 is prime then C.Fp/ is a cyclic group of order
p C 1.

Proof. Since p � 3 mod 4 we have that p is prime in ZŒi � and therefore
ZŒi �=.p/ Š Fp2 . As a consequence the multiplicative group .ZŒi �=.p//� Š F�

p2

is cyclic. Since C.Fp/ is isomorphic to a subgroup of .ZŒi �=.p//� (compare
(4.1)), we have that C.Fp/ is cyclic.

It remains to show that #C.Fp/ D p C 1, which is done by a well known
argument we recall here.

Consider the lines through 1 D .1; 0/ 2 C with slope � 2 Fp, namely y D

�.x � 1/. If we intersect such a line with C, an intersection point .x; y/ sat-

isfies x2 C �2.x � 1/2 D 1. Hence x D �2�1
�2C1

or x D 1. For the first solution,

since p 6� 1 mod 4 we have that �2C1 ¤ 0, hence the slope � can have all the
different p values in Fp obtaining p points of C.Fp/. The additional point in C
is 1, the ”base” point of our lines intersecting C. Hence, #C.Fp/ D pC 1.
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An important remark about the group C.Z=nZ/ is that if n D pk11 � : : : � p
kr
r is

the prime factorization of n, then C.Z=nZ/ Š C.Z=pk11 Z/ � : : : � C.Z=pkrr Z/.
This follows from the Chinese remainder theorem. As a consequence, for r > 1

we have that C.Z=pk11 � : : : � p
kr
r Z/ is non-cyclic because every factor C.Z=pkrr /

contains the element .0; 1/ which has order 2 (case pr D 2) or order 4 (case
pr > 2).
The following lemma identifies important points in C that will be used in our
primality test algorithm.

Lemma 4.1.7. Let p > 2 be prime. The only point order 2 in C.Fp/ is .�1; 0/
and there are only two points of order 4 given by .0;˙1/.

Proof. Suppose that T WD .a; b/ is a point of order 2. Using the group law we
have that a2 � b2 D 1, 2ab D 0 and a2 C b2 D 1. It follows that a2 D 1 and
b D 0. Since T ¤ 1, this implies T D .�1; 0/ which indeed has order 2.

Suppose that U WD .z; w/ 2 C.Fp/ has order 4. Then we have that U 2 has
order 2, therefore

U 2 D
�
z2 � w2; 2zw

�
D .�1; 0/

Using that z2 C w2 D 1 and U ¤ 1 it follows that U D .0;˙1/, and indeed
these points have order 4.

Now fix the point Q WD .3
5
; 4
5
/ 2 C. The following easy lemma tells us for

which p the point Q is a square in C.Fp/.

Lemma 4.1.8. Let p > 5 be prime. Q WD .3
5
; 4
5
/ is a square in C.Fp/ if and

only if p � ˙1 mod 5.

Proof. Using the group law on C we have that Q is a square in C.Fp/ if and
only if the system of equations given by x2�y2 D 3

5
, 2xy D 3

5
and x2Cy2 D 1

has a solution .x; y/ 2 Fp � Fp. Adding the first and the third equations we

obtain x2 D 4
5
. There is a solution to this equation if and only if 5 2 F�p

2.
Quadratic reciprocity implies that this holds if and only if p � ˙1 mod 5.
Furthermore, if this congruence holds then taking x 2 Fp with x2 D 4

5
one

easily checks that .x; x
2
/ 2 C.Fp/ squared is Q.

Remark: We will test primality of certain integers of the form Am;n using
the point Q WD .3

5
; 4
5
/ 2 C.Z=Am;nZ/ together with Lemma 4.1.8.

We require that 5 is not a square modulo Am;n. For any integer N with
gcd.N; 10/ D 1 one has that 5 is a quadratic residue mod N if and only if
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every prime that divides N is congruent to ˙1 mod 5. In our case, if Am;n WD
m2n�1 happens to be ˙2 modulo 5 and n > 0, then clearly gcd.Am;n; 10/ D 1
and the reasoning above shows that 5 is not a quadratic residue modulo Am;n.

Lemma 4.1.9. Let Am;n WD m2n�1 be an integer, m odd and n � 1 such that
one of the following conditions on m and n hold:

(i) m � 1 mod 5 and n � 3 or 2 mod 4;

(ii) m � 2 mod 5 and n � 2 or 1 mod 4;

(iii) m � 3 mod 5 and n � 0 or 3 mod 4;

(iv) m � 4 mod 5 and n � 1 or 0 mod 4.

Then Am;n � ˙2 mod 5 and 5 is not a square modulo Am;n.

Proof. This is a direct calculation using the period of the map n 7! 2n mod
5.

With this we get the following deterministic primality test algorithm for certain
integers Am;n WD m2n � 1.

Theorem 4.1.10. Let m; n be positive integers such that n > 1, m < 2n�2C 2
2n

is odd, and Am;n WD m2n � 1 � ˙2 mod 5. Define coprime integers ˛; ˇ as
follows. Take Q WD .3

5
; 4
5
/ 2 C.Q/ and let ˛

ˇ
be the x-coordinate of Qm. Then

ˇ is a unit modulo Am;n. Define the sequence x0 WD
˛
ˇ

, xiC1 D 2x
2
i � 1.

We have that Am;n is prime if and only if xn�2 � 0 mod Am;n.

Proof. Note that p D 5 is the only prime appearing in the denominator of
the coordinates of Q. The formula for multiplication in C then shows that the
only prime that can possibly appear in a coordinate of Qa for an integer a, is
again p D 5. Hence ˇ is (up to sign) a power of 5, so by assumption it is a
unit modulo Am;n. As a consequence, all xj mod Am;n are well defined.

Suppose that Am;n is prime. Note that the xj given above are the x-

coordinates of certain powers of Qm 2 C.FAm;n/, namely xj D x..Q
m/2

j
/.

Since n > 1 we have that Am;n � 3 mod 4, hence C.FAm;n/ is cyclic of
order m2n by Lemma 4.1.6. By assumption Am;n � ˙2 mod 5, hence by
Lemma 4.1.8 Q is not a square in C.FAm;n/.
With this, since m is odd, we have that Qm generates the 2-Sylow-subgroup of

C.FAm;n/. Hence .Qm/2
n�2

has order four in C.FAm;n/, and therefore xn�2 �
0 mod Am;n by Lemma 4.1.7.
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For the converse suppose that xn�2 � 0 mod Am;n and assume Am;n is com-
posite. Let s j Am;n be a proper prime divisor of Am;n with the property

s2 � Am;n. Then xn�2 � 0 mod s. Hence . NQm/2
n�2
2 C.Fs/ is of the form

.0;˙1/, by Lemma 4.1.7. This last point has order 4 in C.Fs/ and therefore
NQm has order 2n. Further, we have that s �

p
Am;n D

p
m2n � 1, implying

that 2n � #C.Fs/ � sC 1 �
p
m2n � 1C 1.

As a consequence 2n C 2
2n
� 2 � m, contradicting the hypotheses. ����Hence

Am;n is prime.

The proof of this theorem guarantees the primality of Am;n starting on a
certain n with respect to a fixed m. In the next subsection, we provide an
example of a primality test algorithm for a sequence of numbers of the form
Am;n using Theorem 4.1.10.

4.1.3 Example: Finding primes via the conic method

Consider the integers of the form A7;n D 7 � 2n � 1. Theorem 4.1.10 says that
we have a conclusive primality test for A7;n when the inequality 7 < 2n�2C 2

2n

holds. This means that we can test starting from n � 4 (note that A7;2 D 33
and A7;3 D 5 � 11).
Since 7 � 2 mod 5 and 7 � 1 mod 3, it is easy to see that A7;2k and A7;4kC3
are divisible by 3 and 5 respectively (see Lemma 4.2.4). This means that
all the primes of the form A7;n must have n D 4k C 1. Further, we can use
Q D .3

5
; 4
5
/ 2 C.Z=A7;4kC1Z/ to do a primality test since A7;4kC1 � �2 mod 5,

and by Lemma 4:2:6 we have that 5 is not a square modulo A7;4kC1.
With this, we implement a primality test algorithm for the sequence A7;4kC1
for all k > 1.

Let Q D .3
5
; 4
5
/ 2 C.Q/, then Q7 can be calculated with the group law, or

also as Q7 D .cos.7 cos�1.3
5
//; sin.7 sin�1.4

5
/// D .76443

78125
; 16124
78125

/. We use the
sequence presented in Theorem 4.1.10:

x0 WD
76443
78125

; xiC1 WD 2x
2
i � 1 mod A7;n:

We have to check that xn�2 � 0 mod A7;n to infer that A7;n is prime (n � 2
steps), otherwise composite.
For example using MAGMA, we checked that the number 7 �270209�1 is prime
which has � 21,500 decimal digits.

> primetest7 := function(n)
R := Integers(7*2^n -1); xi := R!(76443/78125);
for i:=1 to n-2 do
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xi := R!(2*xi^2 -1);
end for;

return xi eq 0;
end function;
primetest7(70209);
true

Running this for n D 4; : : : ; 5000, one finds that the only integers in this range
such that A7;n is prime, are the integers n 2 f5; 9; 17; 21; 29; 45; 177g. This took
less than half a minute on a standard laptop.

Similarly, a faster program can be done in GP/PARI. In this case we do it
for 13 � 2n � 1. Primes of this form can only occur when the exponent is of the
form n D 4k C 3 for some integer k, as we will see in the next section. The
code is:

{
p = 13;
for (k=3, 100,
xi = (1064447283/1220703125) ;

for (i=1, (4*k+3) - 2,
xi = (2*xi^2 - 1) % (p*2^(4*k+3) - 1);

);
if (xi == 0,
printf("at n=%d IS prime\n", 4*k+3),

printf("at n=%d NOT prime\n", 4*k+3)
);

);
}

4.2 Primality testing with genus 1 curves

In the first subsection here, we construct a primality test using properties of
supersingular elliptic curves without using the complex multiplication of its
endomorphism ring; later we will use the complex multiplication as well.
For the first part we use recursive doubling of points similar to the primality
test algorithm proposed by B.H. Gross for Mersenne primes, but now for cer-
tain integers of the form m2n � 1.
Additionally we will extend a test presented by Denomme and Savin in [DS08]
from Fermat numbers to integers of the form p216nC1 where p � ˙1 mod 10
and p < 4n. The idea behind the test by Denomme and Savin is to use an
endomorphism of degree 2 arising from the complex multiplication of an el-
liptic curve E of j -invariant 1728, namely .1 C i/ 2 End.E/. Their method
is to recursively apply this map on a specific point to prove that a Fermat
number is prime using the same principle given by Theorem 4.1.2. They use
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the ZŒi �-module structure of the elliptic curve E obtained by the action of ZŒi �
on the Abelian group given by the rational points of the elliptic curve E.

4.2.1 Primality testing with supersingular elliptic curves

In this subsection we provide a family of elliptic curves that will lead to pri-
mality tests for certain integers of the form Am;n WD m2n � 1. The following
proposition is a key part for the design of a primality test algorithm of Am;n.

Proposition 4.2.1. Let p > 3 be a prime number such that p � 3 mod 4
and t 2 Fp. The equation y2 D x3 � .t2 C 1/x D ft .x/ over Fp defines a
supersingular elliptic curve Et=Fp and the point .�1; t/ is not divisible by 2 in
Et .Fp/.

Proof. The first claim can be proved directly. First, since p � 3 mod 4, we
have that t2 ¤ �1 for all t 2 Fp. Hence Et indeed defines an elliptic curve.
The fact that it is supersingular is well known, compare [Sil86, V Example 4.5].
For convenience we provide an alternative argument. Let w 2 f1; 3g be the
number of Fp-rational zeros of ft .x/ and let x0 2 Fp be such that ft .x0/ ¤ 0.
We have that ft .�x0/ D �ft .x0/, hence using p � 3 mod 4, one concludes
ft .x0/ is a square over Fp if and only if ft .�x0/ is not a square over Fp (this
is because �1 … F2p). Hence, the number of points of Et .Fp/ is given by twice
the aforementioned squares ft .xi / for all xi 2 Fp such that ft .xi / ¤ 0. The
value #Et .Fp/ is given by counting these xi which are p�w

2
� 2 and adding the

number of Weierstrass points given by w C 1. Hence #Et .Fp/ D p C 1 for all
t 2 Fp and Et=Fp is supersingular.

To prove that .�1; t/ is not divisible by two, in other words that there is
no Q 2 Et .Fp/ such that 2Q D .�1; t/, consider the multiplication- by-2 map
given by 2 2 EndFp .E/. It is equivalent to show that .�1; t/ … 2Et .Fp/. The
2-descent homomorphism ı (see [Sil86] Chapter X, �4 Prop. 4.9 for details) is
useful here since Ker.ı/ D 2Et .Fp/. We proceed to construct ı for Et .Fp/ and
apply it to .�1; t/. This construction will be done in two cases depending on
t2 C 1 being a square or not in Fp.

Let t2C1 … F2p and consider the ring Rt WD FpŒX�=.ft .X//. Since t2C1 is not
a square, ft .X/ defines only one affine Fp-rational Weierstrass point in Et .Fp/,
namely .0; 0/. Hence Rt Š Fp�FpŒ��=.�2�.t2C1//. Let P WD .˛; ˇ/ 2 Et .Fp/.
Since X 2 Rt satisfies the equation ft .X/ D 0, the 2-descent homomorphism
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of Et .Fp/ in this case is given by:

ı W Et .Fp/! R�t =R
�2

t

P 7!

8̂<̂
:
1 if P D1

Œ�.t2 C 1/ �X� if P D .0; 0/

Œ˛ �X� otherwise,

(4.2)

compare [ST15, � 3.5].
Since Ker.ı/ D 2Et .Fq/ we have that .�1; t/ is divisible by 2 if and only if

�1 �X is in R�
2

t . However it is not a square since its image �1 in F�p=F�p
2 is

nontrivial.

The other case is when �2 D t2 C 1 2 F2p, hence ft .X/ splits in FpŒX� and
Rt Š FpŒX�=.X/ � FpŒX�=.X C �/ � FpŒX�=.X � �/ Š Fp � Fp � Fp. The 2-

descent map ı W Et .Fp/! R�t =R
�
t
2 in this case applied to .�1; t/ again yields

in the first factor �1 which is nontrivial. This shows that .�1; t/ 62 2Et .Fp/ in
all cases.

Now we need to know when Et is cyclic, this will depend on the base field of
Et . This is important in order to establish for which integers our primality
testing algorithm will be useful.

Lemma 4.2.2. Let p � 3 mod 4 be prime and t 2 Fp such that t2 C 1 …
.Fp�/2. Consider the elliptic curve Et given by y2 D x3 � .t2 C 1/x, then
Et .Fp/ is cyclic.

Proof. Consider the multiplication by pC 1 map, that is pC1 2 End.Et /. We
have that Ker.pC1/ D Et .Fp/ŒpC1� Š Z=.pC1/Z�Z=.pC1/Z. By Proposition
4.2.1 #Et .Fp/ D pC1, hence Et .Fp/ � Et .Fp/ŒpC1�. With this, for 1 � ˛ � ˇ
we have that Et .Fp/ Š Z=˛Z � Z=ˇZ such that ˛ j ˇ and ˛ � ˇ D p C 1.
Now we show that ˛ j p � 1.
We look at the ˛�torsion. We have that Z=˛Z � Z=˛Z � Z=˛Z � Z=ˇZ Š
Et .Fp/, this means that Et .Fp/ � Ker.˛/. Using the surjectivity of the Weil
pairing (see [Sil86], III, Corollary 8.1.1) there must be P;Q 2 Et .Fp/ with
.P;Q/ D !˛ where !˛ 2 Fp is a ˛th root of unity. Using the fact that
the Weil pairing is Galois invariant (see [Sil86],III, Proposition 8.1), for any
� 2 Gal.Fp.!˛/=Fp/ we have that .P � ;Q� / D .P;Q/� , hence !˛ is invariant
under � . This means that !˛ 2 F�p, which implies that ˛ j #F�p hence ˛ j p�1.
Now we have that ˛ j p C 1 and ˛ j p � 1 hence ˛ j 2. This means that if
˛ D 2 then Et .Fp/ has full two-torsion. But this is not the case since t2C 1 is
not a square and p � 3 mod 4. Hence ˛ D 1 and Et .Fp/ is cyclic.
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Corollary 4.2.3. Let m � 1 be an odd integer and suppose that Am;n WD
m2n � 1 is prime with n > 1. Take t 2 FAm;n such that t2 C 1 is not a square
and consider the elliptic curve Et=FAm;n . Then the point m.�1; t/ generates
the 2-Sylow subgroup of Et .FAm;n/.

Proof. Since n > 1 we have that Am;n � 3 mod 4. Using Lemma 4.2.2 and
t2 C 1 … FAm;n

2, the group Et .FAm;n/ is cyclic and has m2n points. By Propo-
sition 4.2.1 the point .�1; t/ is not divisible by 2 and since m is odd, m.�1; t/
has order 2n.

The following simple lemma will be used to discard some trivial small
divisors of Am;n for every n > 0 and m > 2. This lemma will make the proof
of the main Theorem of this section shorter.

Lemma 4.2.4. The number Am;n D m2n � 1 is divisible by 3 if and only if
one of the following conditions holds:

� m � 2 mod 3 and n � 1 mod 2;

� m � 1 mod 3 and n � 0 mod 2.

Further, Am;n D m2n � 1 is divisible by 5 if and only if one of the following
conditions holds:

� m � 1 mod 5 and n � 0 mod 4;

� m � 2 mod 5 and n � 3 mod 4;

� m � 3 mod 5 and n � 1 mod 4;

� m � 4 mod 5 and n � 2 mod 4.

Proof. This is clear analyzing the period of 2n mod 3 and mod 5.

With this we are ready to formulate the statement that will lead us to a
primality testing algorithm for Am;n.

Theorem 4.2.5. Let m � 1 be odd and n > 1 be such that Am;n WD m2n � 1

is not divisible by 3 or 5 (see Lemma 4.2.4) and 4m < 2n. Consider t 2 Z
such that the Jacobi symbol

�
t2C1
Am;n

�
D �1. Take . ˛

ˇ
; 
ı
/ WD m.�1; t/ 2 Et .Q/

and define the sequence:

x0 WD
˛
ˇ
; xiC1 WD

.x2
i
Ct2C1/2

4.x3
i
�.t2C1/xi /

mod Am;n:

Then Am;n is prime if and only if xi is well defined for every 0 � i � n � 1
and xn�1 � 0 mod Am;n.
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Proof. Suppose that Am;n is prime. Observe that xi equals the x-coordinate
of the point m2i .�1; t/ 2 Et .FAm;n/. Since 2n > 4m we have that n > 2, hence
Am;n � 3 mod 4. By Lemma 4.2.2 using that t2 C 1 … F2Am;n we have that
Et .FAm;n/ is cyclic. By Corollary 4.2.1, the point .�1; t/ is not divisible by 2
and #Et .FAm;n/ D m2

n, hence since m is odd m.�1; t/ has order 2n by Corol-
lary 4.2.3. This means that xn�1 D x.2n�1. ˛

ˇ
; 
ı
// equals the x-coordinate of

the unique FAm;n -rational point of order 2 in Et .FAm;n/, namely .0; 0/. The
fact that xi is well defined for 0 � i � n � 1 also follows from the reasoning
above.

For the converse suppose that Am;n is not prime. Also suppose that the xi
modulo Am;n are well defined for 0 � i � n � 1 and that xn�1 � 0 mod Am;n.

Take ` j Am;n the smallest prime divisor of Am;n. Since
�
t2C1
Am;n

�
D �1, it follows

that t2 C 1 ¤ 0 in F`. Moreover ` is odd hence Et defines an elliptic curve
over F`.
With this we have that the point 2n�1m.�1; t/ 2 Et .F`/ has x-coordinate 0 by
assumption, so this point equals .0; 0/ which has order 2. Hence m.�1; t/ 2
Et .F`/ has order 2n. Since Am;n is not divisible by 3 or 5 we have that
` > 5. Further ` �

p
Am;n and m.�1; t/ generates a subgroup of order 2n

in Et .F`/. Furthermore by the Hasse inequality and the fact that ` > 5 we
have #Et .F`/ � .

p
`C 1/2 < 2` , hence:

2n � #Et .F`/ < 2` � 2
p
Am;n D 2

p
m2n � 1:

Since 4m < 2n it follows that 4n � 4m2n � 4 < 22n � 4 D 4n � 4 which is
absurd. This contradiction shows that Am;n must be prime.

The algorithm in the previous theorem uses the recursive iteration of a degree
4 map (multiplication by 2). In the next section we will define a primality test
for other integers using a map of degree 2.

4.2.2 Example: Finding primes via the elliptic supersin-
gular method

We show an example algorithm for A13;n using Theorem 4.2.5.
First note that A13;n is divisible by 3 or 5 when n � 0; 1; 2 mod 4 by Lemma
4.2.6. Hence, the only non-trivial case to do a primality test is with the integers
13 �24kC3�1. To apply the previous theorem we need that 4m D 4 �13 < 2n D
24kC3, which indeed holds for every k � 1.
Now we need to choose our elliptic curve Et according to Lemma 4.2.2, so we
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4.2. Primality testing with genus 1 curves

need a t 2 Z such that
�

t2C1
A13;4kC3

�
D �1. We state the following technical result

as a lemma for this example:

Lemma 4.2.6. Let Am;n WD m2n�1 be an integer, m � 1 and n > 1 such that
one of the following conditions on m and n hold:

(i) m � 1 mod 5 and n � 3 or 2 mod 4

(ii) m � 2 mod 5 and n � 2 or 1 mod 4

(iii) m � 3 mod 5 and n � 0 or 3 mod 4

(iv) m � 4 mod 5 and n � 1 or 0 mod 4

Then Am;n � ˙2 mod 5 and therefore 5 is not a square modulo Am;n.

Proof. This is a direct calculation using the period of 2n modulo 5.

The above Lemma 4.2.6 part (iii) allows us to use the curve Et for t D 2

to check precisely A13;4kC3 since m D 13 � 3 mod 5, hence t2 C 1 D 5 is not
a square modulo A13;4kC3, for every k 2 N.
With this, consider the curve E2 given by y2 D x3 � 5x.
The x-coordinate of the point 13.�1; 2/ 2 E2.Q/ can be computed instantly
with a computer algebra software and is given by:

x0 D �
38867230505264472384304448711791072932034380121
20648248720215880190543854206835397627372795209

:

A computer program can be easily implemented to check the primality of
A13;4kC3 returning “composite” when the denominator of xj for 0 � j �

4k C 2 is not a unit modulo A13;4kC3 and returning “prime” when x4kC2 �
0 mod A13;4kC3. A similar analysis can be done using these results for other
sequences Am;n.

4.2.3 Primality testing using CM by ZŒi � on elliptic curves

Now we propose a primality test for integers of the form Sp;n WD p216n C 1

with p � ˙1 mod 10 prime and p < 2n. For the iteration step in the primality
test we will use an endomorphism of an elliptic curve E with j -invariant 1728.
The resulting algorithm is similar to the one in the previous section but now
using a degree 2 endomorphism which is computationally better.

We chose these integers since p216n C 1 is prime in Z if and only if its
Gaussian factor p4nC i (and its conjugate of course) is prime in ZŒi �. We did
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4.2. Primality testing with genus 1 curves

not choose p24n C 1 since this integer is divisible by 5 for n odd.

For the integers Sp;n, it is not immediate how to adapt a primality test as
proposed in the previous section.
In the previous section we implicitly used the Z-module structure of the ellip-
tic curve Et , that is, we used the action of Z � End.Et / on Et . Here we will
use the action of ZŒi � on E for our primality testing purposes.

Let p � 1 mod 4 and consider the elliptic curve E=Fp given by y2 D x3 � x.
Take � 2 Fp such that �2 D �1. The action of i 2 ZŒi � on E.Fp/ is defined as
the “multiplication by i” map:

i WE.Fp/! E.Fp/;
.x; y/ 7! .�x; �y/:

(4.3)

The map i is clearly an element of Aut.E/ � End.E/ and E.Fp/ obtains the
structure of ZŒi �-module using the ring homomorphism

ZŒi �! End.E/

aC bi 7! aCbıi:
(4.4)

We will use the next theorem for the rest of this section. It has an interesting
history related to the last entry in Gauß’ Tagebuch (July 7th, 1814), discovered
by Felix Klein in 1897 and published in Math. Annalen 1903 [Kle03]. Gauß
conjectured a way of calculating the number of points over Fp of a curve
birational to the elliptic curve with j -invariant 1728 where p � 1 mod 4.
Gustav Herglotz was the first to prove Gauß’s conjecture in 1921. Here we
show another elementary proof using modern language (first proved in [Her21]
and more general in [Kob12] and [Ire90]). The subsequent corollary is precisely
the conjecture predicted by Gauß.
For the rest of this text we will denote the composition of endomorphisms as
ab WD a ı b using the previously defined homomorphism in (4.4).

Theorem 4.2.7. Let p � 1 mod 4 be a prime and let E=Fp be given by
y2 D x3 � x. Consider the pth Frobenius endomorphism �p and the identity
map 1. We have that End.E/ D ZŒi � and �p D a C bi 2 End.E/ satisfies
a2 C b2 D p and .2C 2i/ j

�
�p � 1

�
.

Proof. We already saw that ZŒi � � End.E/. Since p 6� 3 mod 4 we have that
E is not supersingular (see Proposition 4.2.1 and take t D 0), hence End.E/
is contained in the ring of integers of an imaginary quadratic field and then
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4.2. Primality testing with genus 1 curves

End.E/ D ZŒi �. Moreover p D deg.�p/ D a
2 C b2.

Note that 2C 2i 2 End.E/ is a separable map since p - deg.2C 2i/ D 8. We
proceed to analyze its kernel since 2C 2i j �p � 1 if and only if Ker.2C 2i/ �
Ker.�p � 1/ D E.Fp/.
Let P 2 E.Fp/, we have that .2C 2i/P D .1C i/2P , hence, if Q 2 Ker.1C i/
is non-trivial, we have that:

Ker.2C 2i/ D EŒ2�.Fp/ [ Œ2��1.Q/

Note that Q D .0; 0/ generates Ker.1C i/ � E.Fp/. Computing the tangent
lines to E=Fp that contain Q, one obtains:

Œ2��1.Q/ D f.�;˙.1 � �//; .��;˙.1C �//g:

Since p � 1 mod 4 we have that � 2 Fp and the four points in Œ2��1.Q/

are fixed by �p. Trivially the other four points f.0; 0/; .1; 0/; .�1; 0/;1g in
Ker.2C 2i/ are fixed by �p, hence Ker.2C 2i/ � Ker.�p � 1/ and the result
follows.

This theorem gives a lot of information of the Frobenius endomorphism of E
and the precise answer to Gauß’ last entry in his Tagebuch which we will use
soon.

Corollary 4.2.8. Let p � 1 mod 4 and consider the elliptic curve E=Fp
given by y2 D x3 � x, then #E.Fp/ D p C 1 � 2˛ where p D ˛2 C ˇ2 and if
p � 1 mod 8 then ˛ � 1 mod 4, otherwise ˛ � 3 mod 4.

Proof. We have that #E.Fp/ D deg.�p � 1/ D deg.˛ C ˇi � 1/, hence

#E.Fp/ D ˛2 C ˇ2 C 1 � 2˛ D p C 1 � 2˛:

Theorem 4.2.7 shows 2 C 2i j ˛ � 1 C ˇi , hence ˛ is odd and ˇ is even.
Further we have that 8 j #Ker.�p � 1/ D deg.�p � 1/ D .˛ � 1/2 C ˇ2 since
Ker.2C 2i/ � Ker.�p � 1/ D E.Fp/ by the same theorem.
With this, since ˛2 C ˇ2 D p we have that

p C 1 � 2˛ � 0 mod 8: (4.5)

This implies the result.

We illustrate the corollary with the following example.
Consider the elliptic curve E=F37 given by y2 D x3 � x. We have that
37 � 5 mod 8. By the previous corollary, 37 D ˛2 C ˇ2, ˛ � 3 mod 4 and
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ˇ even, hence ˛2Cˇ2 D 1C36, ˛ D �1, and #E.F37/ D 37C1�2.�1/ D 40.

The following proposition will be used to tell us the structure of E.FSp;n/

as an abstract group, given that Sp;n is prime.

Proposition 4.2.9. Let p be a prime such that p � 1 mod 8 and p � 1 is a
square. Consider the elliptic curve E W y2 D x3 � x, then p D .˛ � i/.˛ C i/

in ZŒi �, #E.Fp/ D ˛2 and E.Fp/ Š Z=.˛/ � Z=.˛/ as Abelian groups.

Proof. We have that p � 1 D ˛2 for some ˛ 2 Z, hence p D .˛ C i/.˛ � i/

in ZŒi �. Using Theorem 4.2.7, since p � 1 mod 8 we have that #E.Fp/ D
p C 1 � 2 D ˛2.

Let �p 2 End.E/ D ZŒi � be the pth power of Frobenius. The previous calcu-
lation shows that Tr.�p/ D 2. Further deg �p D p D ˛

2 C 1 D .˛ C i/.˛ � i/,
hence (after possibly changing the sign of ˛/ the Frobenius endomorphism
is given by �p D ˛i C 1. With this, if P 2 E.Fp/ we have that P D
�p.P / D .˛i C 1/.P /. Hence ˛P D 1 and P 2 EŒ˛� Š Z=.˛/ � Z=.˛/.
Since #E.Fp/ D ˛2 we conclude that E.Fp/ Š Z=.˛/ � Z=.˛/.

Now we present two corollaries that describe particular properties of the
group E.FSp;n/ (again, provided Sp;n is prime). These corollaries will be used
to extend the structure of E.FSp;n/ to a cyclic ZŒi �-module in the subsequent
proposition.

Corollary 4.2.10. Let Sp;n WD p216n C 1 be prime and n > 0. Consider the
elliptic curve E=FSp;n given by y2 D x3 � x, then #E.FSp;n/ D p

216n.

Proof. Immediate from Proposition 4.2.9.

Corollary 4.2.11. Let Sp;n WD p216n C 1 be prime with p odd and n > 0.
Consider the elliptic curve E W y2 D x3 � x, then E.FSp;n/ has full p-torsion,
that is EŒp� � E.FSp;n/.

Proof. Again, this is a direct consequence of Proposition 4.2.9.

The next proposition provides the group pE.FSp;n/ with the structure of
a cyclic ZŒi �-module.

Proposition 4.2.12. Let Sp;n WD p216n C 1 be prime such that p is odd
and n > 0. Consider the elliptic curve E=FSp;n given by y2 D x3 � x, then
pE.FSp;n/ Š ZŒi �=.1C i/4n/ as cyclic ZŒi �-modules.
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Proof. Since n > 0 we know by Lemma 4.2.10 that #pE.FSp;n/ D 16n and
pE.FSp;n/ is a finitely generated End.E/-module with End.E/ D ZŒi �. Fur-
ther, ZŒi � is a PID and by the structure theorem for finitely generated modules
over a PID there exists a finite sequence of ideals .1/ ¤ .z1/ � .z2/ � : : : � .zt /
of ZŒi �, for some t 2 N, such that

pE.FSp;n/ Š ZŒi �=.z1/˚ ZŒi �=.z2/˚ : : :˚ ZŒi �=.zt /: (4.6)

This sequence of ideals implies that z1 j z2 j : : : j zt . Let N WZŒi � ! Z be
the norm map. Each direct summand has cardinality N .zj / D zj Nzj and
N .zj / j 16n. Thus for every j one concludes N .zj / D 2mj for some power
mj > 0. Hence .zj / D ..1C i/mj / � ZŒi �. This implies, using mj > 0 for all
j , that the 1C i -torsion in

L
ZŒi �=.zj / is isomorphic to .Z=2Z/t .

Note that deg.1 C i/ D 2, hence t D 1 and pE.FSp;n/ Š ZŒi �=..1 C i/4n/,
proving the result.

Now we know that if Sp;n is prime, pE.FSp;n/ is a cyclic ZŒi �-module. We need
a generator of this ZŒi �-module to apply ideas as used in the previous sections.
Similarly to [DS08], we use the quadratic twist of E given by the curve E30 W
30y2 D x3 � x, but now we will do a primality test on Sp;n instead of Fermat
numbers. Assuming Sp;n is prime, the curve E30 is isomorphic to E W y3 D
x3 � x over FSp;n if and only if

�
30

Sp;n

�
D 1. The following simple lemma will

tell us for which p the element 30 is a square in FSp;m .

Lemma 4.2.13. Let p � ˙1 mod 10 and Sp;n WD p216n C 1 be prime, then
E30.FSp;n/ Š E.FSp;n/

Proof. We have to show that 30 is a square modulo Sp;n. This is a direct
application of the properties of the Legendre symbol, using that Sp;n � 2 mod
5 and Sp;n � 2 mod 3 and Sp;n � 1 mod 8; these properties imply 

30

Sp;n

!
D

 
5

Sp;n

! 
3

Sp;n

! 
2

Sp;n

!
D .�1/.�1/.1/ D 1: (4.7)

The curve E30 was chosen since the point p.5; 2/ turns out to be a generator
of the cyclic ZŒi �-module pE30.FSp;n/. We proceed to prove this.

Lemma 4.2.14. Let p � ˙1 mod 10 be prime and consider Q WD p.5; 2/ 2

pE30.FSp;n/ Š ZŒi �=..1 C i/4n/. The point Q generates the ZŒi �-submodule
ZŒi �=..1C i/4n/ of E30.FFSp;n/
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Proof. Since p is odd, we just need to show that .5; 2/ is not in the image of
.1C i/. This is the same as saying that .1C i/.X; Y / D .X; Y /C .�X; �Y / D
.5; 2/ has no FSp;n -rational solution.
We proceed to calculate .1C i/.X; Y / explicitly. Consider the endomorphism
1C i 2 End.E30/ where E30 W 30y

2 D x3 � x. The slope between .X; Y / and

i.X; Y / D .�X; �Y / is � WD .1��/Y
2X

. A quick computation shows that

.1C i/.X; Y / D .30�2; �.X�30�2/�Y / D . �.1�X
2/

2X
;� .1C�/.X

2C1/Y

4X2

�
:(4.8)

We have that .5; 2/ 2 E30.FSp;n/ is not in the image of 1 C i 2 End.E30/
(divisible by 1 C i) if and only if the solutions of the equations below for X
and Y are not FSp;n -rational:

.1C i/.X; Y / D .30�2; �.X � 30�2/ � Y / D .5; 2/

If we look at the equation 30�2 D 5, it means that 5 must be a square modulo
Sp;n since 30 is by Lemma 4.2.13. By the proof of that lemma we have that�
5

Sp;n

�
D �1 so there is no such FSp;n -rational point .X; Y /, hence .5; 2/ is

not divisible by 1 C i . Therefore p.5; 2/ generates ZŒi �=..1 C i/4n/ and the
generated submodule has cardinality 24n D 16n.

Now we state the main theorem of this section. This theorem will lead us
to a conclusive deterministic primality test algorithm for integers of the form
Sp;n D p216n C 1.

Theorem 4.2.15. Consider the integer Sp;n WD p216nC1 where p � ˙1 mod
10 is prime, and p < 2n. Let E30 be the elliptic curve 30y2 D x3 � x and
consider the point Q WD p.5; 2/ 2 E30.Q.i// (which is a ZŒi �-module).
Then Sp;n is prime if and only if .1C i/4n�1Q D .0; 0/ mod .p4n C i/.

Proof. Suppose that the congruence holds and Sp;n is not prime. Take k j Sp;n
the smallest prime divisor of Sp;n, hence k �

p
p216n C 1. Further we have

that p216nC 1 � 0 mod k if and only if .p4n/2 � �1 mod k. This means that
�1 is a square in Fk and then k D �� with � 2 ZŒi � Gaussian prime.
Now, since � j p216nC1 D .p4nCi/.p4n�i/ without loss of generality, assume
that � j p4n C i . Let N be the Gaussian norm. Since �� D k �

p
Sp;n we

have that:

N .�/ <
p
N .p4n C i/ D

p
Sp;n (4.9)

Further, the discriminant of E30 is .22 �3�5/2 and it is easy to see that p216nC1
is not divisible by 2; 3 or 5. Hence, E30.ZŒi �=.�// defines an elliptic curve.
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Furthermore, .1C i/4n�1Q � .0; 0/ mod � in E30.ZŒi �=.�// if and only if .1C
i/4nQ D 1 mod � . This means that Q D p.5; 2/ generates a ZŒi �-submodule
of E30.ZŒi �=.�// of size 16n. With this we get the following inequalities using
the Hasse inequality and the inequality in (4.9):

16n � #E30.ZŒi �=.�// � .
p
N .�/C 1/2 < . 4

p
Sp;n C 1/2: (4.10)

This implies that 4n � 1 < 4
p
p216n C 1 and then .4n�1/4�1

16n
< p2. Since

p < 2n by hypothesis this implies that .4n�1/4�1
16n

< 4n, hence 0 � n < " with
" � 0:91 < 1 which is absurd since n � 1. ����. We conclude that Sp;n is prime.

Suppose that Sp;n is prime, thenQ generates pE30.FSp;n/ Š ZŒi �=..1Ci/4n/ by
Lemma 4.2.14. Further .0; 0/ is the only non-trivial point in the .1C i/-torsion
of E30.FSp;n/, hence .1 C i/4n�1Q D .0; 0/ mod p4n C i since E30.FSp;n/ Š

E30.ZŒi �=.p4n C i//.

The same theorem can be stated as an algorithm.

Corollary 4.2.16. Consider the integer Sp;n WD p216n C 1 such that p is
prime, p � ˙1 mod 10 and p < 2n. Let .x0; y0/ WD p.5; 2/ 2 E30.Q.i// and
consider the sequence:

xjC1 D
i.1�x2

j
/

2xj
mod p4n C i

Sp;n is prime if and only if xj is well defined for all j < 4n and x4n�1 �

0 mod p4n C i

Proof. This is equivalent to Theorem 4.2.15. The sequence is the recursive
multiplication by .1C i/ starting with the x coordinate of the point p.5; 2/ 2
E30. This formula was deduced in Equation (4.8).

4.2.4 Example: Finding primes via the elliptic CM method

In order to implement the previous corollary as a primality test algorithm for
Sp;n, note that we can test these integers starting from n > log.p/

log.2/
.

Consider the ring Z=.Sp;n/. We have that i WD p � 4n and i2 D �1 in Z=.Sp;n/.
Take the curve E30 W 30y

2 D x3 � x. The curve E 0 W y2 D x3 � 900x is
isomorphic fo E30 under the change of variables .x; y/ 7! .30x; 900y/. The
initial value of the iteration is x0 from .x0; y0/ D p.5; 2/. We calculate it in
E 0 as p.30 � 5; 900 � 2/ and its x coordinate divided by 30 will be our x0.
We show the primes Sp;n D p216nC 1 with this technique where p � ˙1 mod

10, p � 101 and logp
log 2

< n � 2000 using a GP/PARI implementation.
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p �
logp
log 2

n values where Sp;n D p216n C 1 is prime logp
log 2

< n � 2000

11 3.45943 11; 21; 24; 57; 66; 80; 183; 197; 452; 1982

19 4.24792 7; 9; 25; 78; 142; 646

29 4.85798 6; 19; 33; 36; 86; 103; 326; 352

31 4.95419 5; 65; 142; 148; 196; 1154

41 5.35755 12; 18; 48; 81; 113; 305; 620; 1098

59 5.88264 9; 19; 33; 46; 121; 264; 904; 1365; 1858

61 5.93073 11; 259; 361; 415; 427; 594

71 6.14974 12; 21; 33; 36; 49; 70; 82; 85; 91; 111; 114; 129; 147; 255

79 6.30378 13; 17; 19; 81; 375; 1027; 1562; 1785

89 6.47573 39; 41; 47; 65; 71; 99; 299; 909; 1901

101 6.65821 8; 202; 238; 1484

4.3 Primality testing using real multiplication
on hyperelliptic Jacobians of dimension 2

In this last part we identify primes of the form �n WD 4 � 5n � 1 using the Ja-
cobian of a hyperelliptic curve of genus 2. This will be done similarly to what
was done in the previous section using complex multiplication on an elliptic
curve.
This section is motivated by an open question stated by Abatzoglou, Silver-
berg, Sutherland and Wong in [ASSW16] (Remark 4.13) asking for a primality
test algorithm using higher dimensional Abelian varieties such as Jacobians
of genus 2 curves. We will use the Jacobian J of the hyperelliptic curve
y2 D x5Ch where h 2 Z to partially answer this question. We begin with the
structure of End.J /.

Proposition 4.3.1. Let h ¤ 0 be an integer and H W y2 D x5Ch a hyperelliptic
curve of genus 2 over Q. Consider the Jacobian of H denoted by J . We have
that End.J / D ZŒ�� where � is a primitive fifth root of unity.

Proof. Let �� 2 Aut.H/ be the automorphism ��.x0; y0/ D .�x0; y0/ 2 H
where � is a primitive fifth root of unity. The action of �� on H is naturally
extended to the Jacobian which implies that �� 2 End.J /. As �� generates
a subring Š ZŒ�� � End.J / and J is a simple Abelian variety over Q (see
[CF96], Chapter 15) , and moreover ZŒ�� is integrally closed, we have that
End.J / D ZŒ��.
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Remark: We will use J and End.J / to test whether �n D 4 � 5
n� 1 is prime.

Note that 3 j �2k , so we will only test �n when n is odd.

Let �n be prime. We proceed to deduce the group structure of J .F�n/. First
we state and prove two easy lemmas that will tell us the structure of J Œ2�.F�n/.

Lemma 4.3.2. Let H be the hyperelliptic curve given by y2 D x5 C h and let
�n WD 4 � 5

n � 1 be prime, then there is only one F�n-rational point in H of the
form .˛; 0/ for some ˛ 2 F�n
Proof. This follows from Fermat’s little theorem. We have that 5 and �n�1 D
2.2 � 5n � 1/ are coprime, hence, the map x 7! x5 is invertible over F�n , hence,
x5 D �h has only one solution in F�n .

We calculate explicitly the F�n-rational zero ˛ of x5 C h 2 F�n Œx� as follows:
by the proof of the previous lemma it is easy to see that there is a d 2 Z such
that the map x 7! .xd /5 defined over F�n is the identity map. By Fermat’s
little theorem, this d satisfies 5d � 1 mod .�n � 1/ and �n � 1 D 4 � 5

n � 2. To
calculate d , let N D 2 � 5n � 1 and consider �n � 1 D 2N . Using the Chinese
Remainder Theorem we evaluate 5�1 with the isomorphism � W Z=2NZ !
Z=2Z�Z=NZ, using the fact that 5�1 � 2 � 5n�1 mod N and 5 is odd. Hence,
�.5�1/ D .1; 2 � 5n�1/ D .1; 0/C .0; 2 � 5n�1/ and therefore:

d D 5�1 D ��1.1; 0/C ��1.0; 2 � 5n�1/ D N C 2 � 5n�1 D 12 � 5n�1 � 1:

Using this we have that x5d D x in F�n , and particularly if:

˛ D .�h/d (4.11)

we have that ˛5 D �h in F�n .

Observe that the zeros of x5 C h are given by �j˛ for 0 � j � 4 and � a
fifth root of unity. Therefore by the previous lemma � … F�n and

x5 C h D

4Y
jD0

.x � �j˛/

D .x � ˛/.x2 � ˛.� C �4/x C ˛2/.x2 � ˛.�2 C �3/x C ˛2/:

(4.12)

In order to deduce the structure of the 2-torsion of J , the following lemma
tells us the field extension of F�n where � lives and this will give us directly
the structure of the 2-torsion of J . In fact, the following lemma implies that
the Polynomial (4.12) is defined over F�n Œx�.
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Lemma 4.3.3. Let n > 0 and suppose �n WD 4 � 5
n � 1 is prime. Consider the

field F�n . Let � be a primitive fifth root of unity, then � 2 F�2n and ��n D ��1.

Proof. This is immediate by observing that �2n � 1 mod 5, using that the unit
group of a finite field is cyclic.

Observe that we can factorize explicitly x5 C h 2 F�n Œx� as follows:

Note that over Q.�/ using the 5-th cyclotomic polynomial, � C �4 D �1C
p
5

2

and �2 C �3 D �1�
p
5

2
. Further, if �n is prime we know that n is odd and

one can check easily that
p
5 � 2 � 5.nC1/=2 mod �n. Furthermore, note that

1
2
� 2 � 5n mod �n. Hence, using (4.12), the root ˛ in (4.11), and the previous

congruences, we obtain the explicit factorization of x5 C h 2 F�n Œx�.

With this, we deduce easily the structure of J Œ2�.F�n/ in the next corollary.

Corollary 4.3.4. Let n > 0 and suppose �n is prime. Consider the hyperel-
liptic curve H=F�n given by y2 D x5 C h. Then J Œ2�.F�n/ Š Z=.2/ � Z=.2/.

Proof. We know that J Œ2�.F�n/ � J consists of divisor classes D � 21 where
D consists of pairs of Weierstrass points of H and D is fixed under the action
of the absolute Galois group of F�n . By the previous discussion we know that
all the Weierstrass points of H are of the form .�j˛; 0/ for 0 � j � 4, with
˛ 2 F�n satisfying ˛5 C h D 0. Further, only two Weierstrass points are
defined over F�n by Lemma 4.3.2, namely .˛; 0/ and 1. The other four lie in
a quadratic extension of F�n since � lies there by Lemma 4.3.3. Let �k WD �

k˛

be a zero of x5 C h, then Lemma 4.3.2 shows that the only conjugate of �k is
��k (if 5 - k). Hence there are two pairs of conjugate Weierstrass points plus
two ordered pairs of F�n-rational Weierstrass points:

J Œ2�.F�n/ D
˚
f.�1; 0/; .�4; 0/g; f.�2; 0/; .�3; 0/g; f.�0; 0/;1g; f1;1g

	
Therefore J Œ2�.F�n/ Š Z=.2/ � Z=.2/.

Proposition 4.3.5. Let H be the hyperelliptic curve given by y2 D x5 C h

and suppose �n WD 4 � 5n � 1 is prime and n > 0. Then #J .F�n/ D 16 � 52n

and J .F�n/ Š Z=.�n C 1/ � Z=.�n C 1/ D Z=.4 � 5n/ � Z=.4 � 5n/

Proof. First we calculate the zeta function of H. We refer to an old paper by
Tate and Shafarevich [TS67] where they proved that the numerator of the zeta
function of the curve C=Fp given by ye D xf C ı can be described explicitly
when m D lcm.e; f /jpkC1 for some k. In our case p D �n D 4 �5

n�1, m D 10
and k D 1. By [TS67] the numerator of the zeta-function of H=F�n is in this
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case given by �2nT
4 C 2�nT

2 C 1 which tells us the characteristic polynomial
�J .T / of Frobenius of J equals T 4 C 2�nT C �

2
n D .T 2 C �n/

2. With this
#J .F�n/ D �J .1/ D 16 � 52n.
For the structure of J .F�n/, using that �J .T / D .T 2 C �n/

2 and �n �

3 mod 4, by Theorem 3.2 (iii) in [Xin96], we have that J .F�n/ Š Z=.4�5n
2a
/ �

Z=.4�5n
2b
/�Z=.2aCb/ with 0 � a; b � 2. Further, by the previous Lemma 4.3.4,

J Œ2�.F�n/ Š Z=.2/�Z=.2/. Hence a D b D 0 and J .F�n/ Š Z=.4 � 5n/�Z=.4 �
5n/.

Lemma 4.3.6. Let H be the hyperelliptic curve y2 D x5 C h and take �n WD
4 � 5n � 1 prime. Then

p
5 2 EndF�n .J /

Proof. By Proposition 4.3.1 we have that End.J / D ZŒ�� with � a primitive
fifth root of unity. Using the fifth cyclotomic polynomial we have that 1C �C
�2C �3C �4 D 0. Consider � WD �C �4, then �2 D �3C �2C2 D 1� .�C �4/ D
1��. With this we have that �2C� D 1 if and only if 4.�2C�/C1 D 5 if and
only if .2�C 1/2 D 5. With this 2.�C �4/C 1 is a square root of 5 in End.J /.
It is defined over F�n since the Frobenius automorphism interchanges � and
�4 by Lemma 4.3.3.

Proposition 4.3.7. Suppose �n is prime and consider the hyperelliptic curve

H=F�n given by y2 D x5 C h, then 4J .F�n/ Š ZŒ
p
5�=.
p
5
2n
/ as ZŒ

p
5�-

modules.

Proof. By Proposition 4.3.5 we have 4J .F�n/ Š Z=.5n/ � Z=.5n/. This is a

ZŒ
p
5� module with

p
5 2 EndF�n .J / acting as 2.� C �4/C 1. Moreover

p
5
2n

acts trivially. Since ZŒ
p
5�=.5n/ Š Z=.5n/ � Z=.5n/, the module is necessarily

cyclic since otherwise it would contain too many elements of order 5.

4.3.1 Computation of Œ
p
5� 2 End.J /

We use the Mumford representation for elements of J and briefly recall this
here. Details and proofs of correctness and uniqueness are given in classical
texts such as [Mum84, Can87]. We fix our curve H W y2 D x5 C h and its
Jacobian J .
Any point in J is represented by a divisor D � 21 on H, with D a sum of
two points. In case D D .x1; y1/ C .x2; y2/, then define polynomials u.x/ D
.x � x1/.x � x2/ and v.x/ of degree � 1 such that v.xi / D yi . Then

v.x/2 � x5 C h mod u.x/: (4.13)
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Note that the pair u; v determines the divisor D. In case D D .x1; y1/C1

put u.x/ D x � x1 and v D y1, and if D D 21 put u D 1 and v D 0. So in all
cases the pair u; v determines D.
For the generic point g WD .x1; y1/ C .x2; y2/ � 21 2 J , the coefficients of
u.x/ D x2 � ˛x C ˇ and v.x/ D x C ı are given by the symmetric functions
˛ D x1Cx2; ˇ D x1x2;  D

y1�y2
x1�x2

; ı D x2y1�x1y2
x1�x2

. The congruence (4.13) yields
defining equations for an affine part of J under this representation as we calcu-
lated in Chapter 2, Section 2.1.1 as the intersection of two hypersurfaces in A4.

With this representation, the points of J will be denoted by hu.x/; v.x/i.
Cantor in [Can87] developed a useful algorithm to do arithmetic in .J ;˚/ us-
ing this representation; in fact as he explains, his method generalizes to every
hyperelliptic Jacobian of genus g.

Now we show how to construct the
p
5 endomorphism acting on the generic

point g 2 J .Q.
p
5// � J .Q.�//. Further, we will show how to deal with the

exceptional case when the image of
p
5 corresponds to an exceptional element

(not generic) of the form .�; �/ �1 2 J .

By Lemma 4.3.6 we have that � WD �C �4 D �1C
p
5

2
. We know that �i acts on

the points of H by multiplication on their x coordinate. This action is natu-
rally extended to J , namely �i maps g to .�ix1; y1/C .�

ix2; y2/ � 21. With
this we evaluate the image of the generic point under � 2 End.J / explicitly:

�.g/ D .�x1; y1/C .�x2; y2/ � 21˚ .�
4x1; y1/C .�

4x2; y2/ � 21: (4.14)

Let u.x/ D x2�˛xCˇ and v.x/ D xCı be the polynomials representing the
generic point g of J in Mumford representation and let G WD hu.x/; v.x/i 2 J .
The Mumford representation of (4.14) is given by the resulting divisor below
which can be calculated explicitly using Cantor’s addition:

G� WD �.G/ D hx
2
� �˛x C �2ˇ; �4.x C ı/i ˚ hx2 � �4˛x C �3ˇ; �.x C ı/i:

Then
p
5G D 2G� C G using again Cantor’s addition since � D �1C

p
5

2
. The

polynomials u� and v� defining the resulting divisor G� will have coefficients
in ZŒ�� by Lemma 4.3.6.

For the case of multiplication by
p
5 acting on an exceptional element of the
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form OG WD hx � x0; y0i, we calculate

OG� WD � OG D hx � �x0; y0i ˚ hx � �
4x0; y0i

D hx2 � .� C �4/x0x C x
2
0 ; y0i

D hx2 � �x0x C x
2
0 ; y0i:

Similarly to the previous case, we calculate the explicit formula for
p
5 in this

exceptional case using Cantor’s addition by
p
5 OG D 2 OG� C OG.

The remaining case is if the resulting element of J under
p
5 2 End.J /

is exceptional (not generic), that is, D0 2 J and
p
5D0 D hx � �; �i orp

5D0 D h1; 0i. This can be managed in several ways. For example, fix a
divisor Dc 2 J such that

p
5Dc is not an exceptional element of J . Calculate

L WD
p
5.D0 C Dc/ and if L results again in an exceptional divisor repeat

this procedure with a different Dc . Hence using Cantor’s addition, we obtainp
5D0 D L �

p
5Dc D hx � �; �i. If L D

p
5Dc , it means that D0 2 Ker.

p
5/

and
p
5D0 D h1; 0i is the identity.

Now we are ready to formulate the main theorem of this section.

Theorem 4.3.8. Let n > 1 be an odd integer and let �n WD 4 � 5
n � 1.

Consider the hyperelliptic curve H=Q.
p
5/ given by y2 D x5 C h such that

gcd.�n; h/ D 1. Suppose F2J .Q.
p
5// is given and consider the sequence of

divisors D0 WD 4F, Di WD
p
5Di�1 D hui .x/; vi .x/i with its coefficients reduced

in ZŒ1C
p
5

2
�=.2 � 5

nC1
2

p
5 � 1/ Š Z=.�n/.

If Dj is well defined and ¤ h1; 0i for j � 2n � 1 and D2n D h1; 0i then �n is

prime and F … Œ
p
5�J .F�n/ for Œ

p
5� 2 EndF�n .J /.

Proof. Suppose that Dj D huj .x/; vj .x/i is well defined for 0 � j � 2n � 1,
D2n D h1; 0i and �n is not prime. Take the smallest prime divisor k j �n, hence
k �
p
4 � 5n � 1. Since 2 or 5 do not divide �n we have that k ¤ 2; 5. Moreover

since k j �n - h it follows that J has good reduction at k. Finally, since in
Fk we have 5 D 1=.4 � 5n�1/ and n is odd, it follows that

p
5 2 Fk . Consider

the group J .Fk/ which, by the argument above, is a ZŒ
p
5�-module. The

assumption on Dj implies that Dj is well defined for 0 � j � 2n�1 in J .Fk/.
Moreover D0 generates a ZŒ

p
5�-submodule of J .Fk/ of size 52n. Further,

#J .Fk/ � .
p
kC1/4 � .

4
p
4 � 5n � 1C1/4 by the Hasse-Weil inequality. Hence

52n � #J .Fk/ � .
4
p
4 � 5n � 1C 1/4:

Since n > 1, this inequality is false����. Therefore �n is prime.
It follows that F … Œ

p
5�J .F�n/ by the existence of the sequence of Dn in the

hypothesis and the cardinality of 4J .F�n/.
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To implement Theorem 4.3.8 as an algorithm we need a fixed h and an explicit
F 2 J . Optionally, a proof that if �n is prime then F … Œ

p
5�J .F�n/ where

Œ
p
5� 2 EndF�n .J /. This proof would make the above result into an if and only

if criterion. If �n is prime and F 2 Œ
p
5�J .F�n/, we will reach the identity in

4J .F�n/ under recursive multiplication by
p
5 in less than 2n steps. However

we can use the previous theorem even that this F is not available to find primes
when the sequence in the previous theorem can be constructed.

4.3.2 Example: Finding primes via the hyperelliptic Ja-
cobian RM method

Let h WD 10, that is, H W y2 D x5C10. We chose the divisor F WD .�1; 3/�1 2
J (in Mumford representation hx C 1; 3i). In this case

D0 D 4F D hx
2
C

9678206
70644025

x C 117106201
70644025

; 3088313263561
7125156361500

x C 22033622417431
7125156361500

i

regarded as polynomials in Z=.�n/Œx�.

Using Theorem 4.3.8 we tested primality of �n for 1 < n < 5000 using the above
choice of h;F. Only for n 2 f3; 9; 13; 15; 25; 39; 69; 165; 171; 209; 339; 2033g, the
integer �n was found to be prime. But there could be gaps in this list since
we did not prove that our choice of F is “not divisible by”

p
5 when �n is

prime. However, a different computation tells us that in fact this list is com-
plete, so we conjecture that for h D 10, our divisor F turns Theorem 4.3.8
into a practical deterministic primality test. If our choice of F turns out to be
divisible by

p
5, to make a practical use of Theorem 4.3.8 and generate the

sequence f�ng of primes without gaps, future work will be to find the correct
h and F. An idea to do this is to fix h and suppose that �n is prime. Then
one could descend through the isogeny

p
5 2 EndF�n .J / explicitly and find

the correct F 2 J .F�n/ n Œ
p
5�J .F�n/. Another idea is to solve the

p
5 isogeny

map equated with a choice of F 2 J and show that no solutions over Z=.�n/
exist for n > 1.
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Appendix:

p
5 2 EndQ.

p
5/.J / for H W y2 D x5 C h in MAGMA

This code is though to be seen using the digital version of this doc-
ument. Please go to http://www.rug.nl and search for this Ph.D.
thesis in order to copy it and paste it for testing.
// MAGMA implementation of multiplication by Square root of 5 Endomorphism for the Jacobian of the curve y^2 = x^5 + h.

// This is a Square root of 5 - rational map, so it can be modified to work with any field where 5 is a square.

// Eduardo Ruiz Duarte

Sq5 := function(D)

F := BaseField(Parent(D));

d := Sqrt(F!5);

h := F!-Evaluate(DefiningEquation(Curve(Parent(D))), [0,0,1]);

P<A,B,C> := PolynomialRing(F,3);

R<x> := PolynomialRing(F);

J := Parent(D);

a :=F!-Coefficient(D[1],1);

b :=F! Coefficient(D[1],0);

c :=F! Coefficient(D[2],1);

vec := [a,b,c];

An := -2*A^17*B^3*h^2 - 48*A^16*B*h^3 + 27*A^15*B^4*h^2 + 2*A^14*B^3*C^2*h^2 + 644*A^14*B^2*h^3 - 204*A^13*B^5*h^2 + 48*A^13*B*C^2*h^3 - 64*A^13*h^4 + A^12*B^8*h - 25*A^12*B^4*C^2*h^2 - 3472*A^12*B^3*h^3 + 1033*A^11*B^6*h^2 -

632*A^11*B^2*C^2*h^3 + 32*A^11*B*h^4 - 47/2*A^10*B^9*h + 178*A^10*B^5*C^2*h^2 + 9452*A^10*B^4*h^3 - A^9*B^8*C^2*h - 3212*A^9*B^7*h^2 + 3184*A^9*B^3*C^2*h^3 + 3328*A^9*B^2*h^4 + 603/4*A^8*B^10*h - 864*A^8*B^6*C^2*h^2 -

13776*A^8*B^5*h^3 + 576*A^8*B*C^2*h^4 + 192*A^8*h^5 - 1/8*A^7*B^13 + 45/2*A^7*B^9*C^2*h + 5605*A^7*B^8*h^2 - 7640*A^7*B^4*C^2*h^3 - 15008*A^7*B^3*h^4 - 785/2*A^6*B^11*h + 2406*A^6*B^7*C^2*h^2 + 10928*A^6*B^6*h^3 -

4544*A^6*B^2*C^2*h^4 - 2432*A^6*B*h^5 - 1/2*A^5*B^14 - 253/2*A^5*B^10*C^2*h - 4940*A^5*B^9*h^2 + 8936*A^5*B^5*C^2*h^3 + 24608*A^5*B^4*h^4 + 1/8*A^4*B^13*C^2 + 444*A^4*B^12*h - 3221*A^4*B^8*C^2*h^2 - 4472*A^4*B^7*h^3 +

11232*A^4*B^3*C^2*h^4 + 6784*A^4*B^2*h^5 + 19/4*A^3*B^15 + 238*A^3*B^11*C^2*h + 1353*A^3*B^10*h^2 - 4984*A^3*B^6*C^2*h^3 - 13952*A^3*B^5*h^4 + 128*A^3*B*C^2*h^5 + 256*A^3*h^6 + 5/8*A^2*B^14*C^2 - 178*A^2*B^13*h +

1520*A^2*B^9*C^2*h^2 + 184*A^2*B^8*h^3 - 9040*A^2*B^4*C^2*h^4 - 5888*A^2*B^3*h^5 - 51/16*A*B^16 - 112*A*B^12*C^2*h + 806*A*B^11*h^2 + 1376*A*B^7*C^2*h^3 - 1520*A*B^6*h^4 - 512*A*B^2*C^2*h^5 - 512*A*B*h^6 - 9/2*B^15*C^2 -

129/2*B^14*h + 16*B^10*C^2*h^2 + 256*B^9*h^3 - 192*B^5*C^2*h^4 - 192*B^4*h^5;

Ad := A^14*B^4*h^2 - 32*A^13*B^2*h^3 - 2*A^12*B^5*h^2 + 256*A^12*h^4 + 192*A^11*B^3*h^3 - 29*A^10*B^6*h^2 - 2560*A^10*B*h^4 + 2*A^9*B^9*h + 112*A^9*B^4*h^3 + 56*A^8*B^7*h^2 + 9696*A^8*B^2*h^4 - 13/2*A^7*B^10*h - 3112*A^7*B^5*h^3 +

512*A^7*h^5+ 399*A^6*B^8*h^2-16736*A^6*B^3*h^4- 51/2*A^5*B^11*h + 7752*A^5*B^6*h^3 - 2560*A^5*B*h^5 + A^4*B^14 - 1438*A^4*B^9*h^2 + 11936*A^4*B^4*h^4 + 251/2*A^3*B^12*h - 6184*A^3*B^7*h^3 + 3328*A^3*B^2*h^5 - 9/2*A^2*B^15 +

1317*A^2*B^10*h^2 - 1760*A^2*B^5*h^4 + 256*A^2*h^6 - 261/2*A*B^13*h + 304*A*B^8*h^3 - 128*A*B^3*h^5 + 81/16*B^16 - 18*B^11*h^2 + 16*B^6*h^4;

Bn := 16*A^17*B*h^3 - A^16*B^4*h^2 - 212*A^15*B^2*h^3 + 5*A^14*B^5*h^2 - 16*A^14*B*C^2*h^3 + 64*A^14*h^4 + A^13*B^4*C^2*h^2 + 1152*A^13*B^3*h^3 + 26*A^12*B^6*h^2 + 200*A^12*B^2*C^2*h^3 - 704*A^12*B*h^4 - 9/2*A^11*B^9*h - 4*A^11*B^5*C^2*h^2 - 3396*A^11*B^4*h^3 -

255*A^10*B^7*h^2 - 984*A^10*B^3*C^2*h^3 + 3872*A^10*B^2*h^4 + 165/4*A^9*B^10*h - 32*A^9*B^6*C^2*h^2 + 6048*A^9*B^5*h^3 - 32*A^9*B*C^2*h^4 - 192*A^9*h^5 + 9/2*A^8*B^9*C^2*h + 714*A^8*B^8*h^2 + 2452*A^8*B^4*C^2*h^3 - 13536*A^8*B^3*h^4 - 277/2*A^7*B^11*h +

240*A^7*B^7*C^2*h^2 - 6392*A^7*B^6*h^3 + 1024*A^7*B*h^5 - 3/8*A^6*B^14 - 147/4*A^6*B^10*C^2*h - 735*A^6*B^9*h^2 - 3368*A^6*B^5*C^2*h^3 + 28016*A^6*B^4*h^4 + 206*A^5*B^12*h - 563*A^5*B^8*C^2*h^2 + 2056*A^5*B^7*h^3 + 1472*A^5*B^3*C^2*h^4 + 640*A^5*B^2*h^5 +

15/8*A^4*B^15 + 193/2*A^4*B^11*C^2*h - 41*A^4*B^10*h^2 + 2668*A^4*B^6*C^2*h^3 - 28352*A^4*B^5*h^4 + 384*A^4*B*C^2*h^5 - 256*A^4*h^6 + 3/8*A^3*B^14*C^2 - 113*A^3*B^13*h + 442*A^3*B^9*C^2*h^2 + 3424*A^3*B^8*h^3 - 4624*A^3*B^4*C^2*h^4 - 5888*A^3*B^3*h^5 -

13/8*A^2*B^16 - 365/4*A^2*B^12*C^2*h + 257*A^2*B^11*h^2 - 960*A^2*B^7*C^2*h^3 + 9712*A^2*B^6*h^4 - 1600*A^2*B^2*C^2*h^5 - 256*A^2*B*h^6 - 3/2*A*B^15*C^2 - 23/2*A*B^14*h + 72*A*B^10*C^2*h^2 - 2488*A*B^9*h^3 + 3136*A*B^5*C^2*h^4 + 3136*A*B^4*h^5 + 9/16*B^17 +

21*B^13*C^2*h + 139*B^12*h^2 - 448*B^8*C^2*h^3 - 304*B^7*h^4 + 256*B^3*C^2*h^5 + 256*B^2*h^6;

Bd := A^14*B^4*h^2 - 32*A^13*B^2*h^3 - 2*A^12*B^5*h^2 + 256*A^12*h^4 + 192*A^11*B^3*h^3 - 29*A^10*B^6*h^2 - 2560*A^10*B*h^4 + 2*A^9*B^9*h + 112*A^9*B^4*h^3 + 56*A^8*B^7*h^2 + 9696*A^8*B^2*h^4 - 13/2*A^7*B^10*h - 3112*A^7*B^5*h^3 + 512*A^7*h^5 + 399*A^6*B^8*h^2 -

16736*A^6*B^3*h^4 - 51/2*A^5*B^11*h + 7752*A^5*B^6*h^3 - 2560*A^5*B*h^5 + A^4*B^14 - 1438*A^4*B^9*h^2 + 11936*A^4*B^4*h^4 + 251/2*A^3*B^12*h - 6184*A^3*B^7*h^3 + 3328*A^3*B^2*h^5 - 9/2*A^2*B^15 + 1317*A^2*B^10*h^2 - 1760*A^2*B^5*h^4 + 256*A^2*h^6 -

261/2*A*B^13*h + 304*A*B^8*h^3 - 128*A*B^3*h^5 + 81/16*B^16 - 18*B^11*h^2 + 16*B^6*h^4;

Cn := 1/5*d*A^27*B^5*C*h^3 + 308/5*d*A^26*B^3*C*h^4 - 34/5*d*A^25*B^6*C*h^3 + 1216/5*d*A^25*B*C*h^5 - 1/5*d*A^24*B^5*C^3*h^3 - 6472/5*d*A^24*B^4*C*h^4 + 132*d*A^23*B^7*C*h^3 - 308/5*d*A^23*B^3*C^3*h^4 - 24336/5*d*A^23*B^2*C*h^5 + 1/10*d*A^22*B^10*C*h^2 +

33/5*d*A^22*B^6*C^3*h^3 + 62412/5*d*A^22*B^5*C*h^4 - 1216/5*d*A^22*B*C^3*h^5 - 768/5*d*A^22*C*h^6 - 7223/5*d*A^21*B^8*C*h^3 + 6232/5*d*A^21*B^4*C^3*h^4 + 216864/5*d*A^21*B^3*C*h^5 + 117/20*d*A^20*B^11*C*h^2 - 626/5*d*A^20*B^7*C^3*h^3 - 73312*d*A^20*B^6*C*h^4 +

25264/5*d*A^20*B^2*C^3*h^5 + 2240*d*A^20*B*C*h^6 - 1/10*d*A^19*B^10*C^3*h^2 + 48522/5*d*A^19*B^9*C*h^3 - 57276/5*d*A^19*B^5*C^3*h^4 - 1119488/5*d*A^19*B^4*C*h^5 + 256/5*d*A^19*C^3*h^6 - 104*d*A^18*B^12*C*h^2 + 6593/5*d*A^18*B^8*C^3*h^3 +

1464156/5*d*A^18*B^7*C*h^4 - 229952/5*d*A^18*B^3*C^3*h^5 - 40064/5*d*A^18*B^2*C*h^6 - 7/80*d*A^17*B^15*C*h - 119/20*d*A^17*B^11*C^3*h^2 - 218133/5*d*A^17*B^10*C*h^3 + 319524/5*d*A^17*B^6*C^3*h^4 + 3592464/5*d*A^17*B^5*C*h^5 + 3648/5*d*A^17*B*C^3*h^6 +

4352/5*d*A^17*C*h^7 + 7511/10*d*A^16*B^13*C*h^2 - 41887/5*d*A^16*B^9*C^3*h^3 - 4155276/5*d*A^16*B^8*C*h^4 + 1185008/5*d*A^16*B^4*C^3*h^5 - 153664/5*d*A^16*B^3*C*h^6 + 443/80*d*A^15*B^16*C*h + 1963/20*d*A^15*B^12*C^3*h^2 + 696154/5*d*A^15*B^11*C*h^3 -

242332*d*A^15*B^7*C^3*h^4 - 6939952/5*d*A^15*B^6*C*h^5 - 103488/5*d*A^15*B^2*C^3*h^6 - 86016/5*d*A^15*B*C*h^7 + 7/80*d*A^14*B^15*C^3*h - 16602/5*d*A^14*B^14*C*h^2 + 35178*d*A^14*B^10*C^3*h^3 + 8292816/5*d*A^14*B^9*C*h^4 - 3682624/5*d*A^14*B^5*C^3*h^5 +

1896768/5*d*A^14*B^4*C*h^6 - 1792/5*d*A^14*C^3*h^7 - 949/16*d*A^13*B^17*C*h - 3208/5*d*A^13*B^13*C^3*h^2 - 1603171/5*d*A^13*B^12*C*h^3 + 3239664/5*d*A^13*B^8*C^3*h^4 + 6252048/5*d*A^13*B^7*C*h^5 + 805632/5*d*A^13*B^3*C^3*h^6 + 557824/5*d*A^13*B^2*C*h^7 +

1/80*d*A^12*B^20*C - 109/20*d*A^12*B^16*C^3*h + 52257/5*d*A^12*B^15*C*h^2 - 518686/5*d*A^12*B^11*C^3*h^3 - 10743456/5*d*A^12*B^10*C*h^4 + 1323936*d*A^12*B^6*C^3*h^5 - 8325888/5*d*A^12*B^5*C*h^6 + 3072*d*A^12*B*C^3*h^7 + 1024/5*d*A^12*C*h^8 +

10271/40*d*A^11*B^18*C*h + 50723/20*d*A^11*B^14*C^3*h^2 + 2553413/5*d*A^11*B^13*C*h^3 - 5910976/5*d*A^11*B^9*C^3*h^4 + 690672*d*A^11*B^8*C*h^5 - 3209728/5*d*A^11*B^4*C^3*h^6 - 1710336/5*d*A^11*B^3*C*h^7 + 99/320*d*A^10*B^21*C + 2151/40*d*A^10*B^17*C^3*h -

93387/4*d*A^10*B^16*C*h^2 + 1078094/5*d*A^10*B^12*C^3*h^3 + 6953208/5*d*A^10*B^11*C*h^4 - 5195616/5*d*A^10*B^7*C^3*h^5 + 21556736/5*d*A^10*B^6*C*h^6 - 768/5*d*A^10*B^2*C^3*h^7 + 44032/5*d*A^10*B*C*h^8 - 1/80*d*A^9*B^20*C^3 - 20489/40*d*A^9*B^19*C*h -

143063/20*d*A^9*B^15*C^3*h^2 - 2503679/5*d*A^9*B^14*C*h^3 + 6470872/5*d*A^9*B^10*C^3*h^4 - 16365984/5*d*A^9*B^9*C*h^5 + 7713856/5*d*A^9*B^5*C^3*h^6 + 3501312/5*d*A^9*B^4*C*h^7 + 2048/5*d*A^9*C^3*h^8 - 121/32*d*A^8*B^22*C - 15857/80*d*A^8*B^18*C^3*h +

677709/20*d*A^8*B^17*C*h^2 - 1454286/5*d*A^8*B^13*C^3*h^3 + 1270708/5*d*A^8*B^12*C*h^4 - 2742496/5*d*A^8*B^8*C^3*h^5 - 34085632/5*d*A^8*B^7*C*h^6 - 243712/5*d*A^8*B^3*C^3*h^7 - 482304/5*d*A^8*B^2*C*h^8 - 103/320*d*A^7*B^21*C^3 + 31121/80*d*A^7*B^20*C*h +

69012/5*d*A^7*B^16*C^3*h^2 + 1123937/5*d*A^7*B^15*C*h^3 - 2627588/5*d*A^7*B^11*C^3*h^4 + 19237056/5*d*A^7*B^10*C*h^5 - 2344128*d*A^7*B^6*C^3*h^6 - 1323776*d*A^7*B^5*C*h^7 - 37888/5*d*A^7*B*C^3*h^8 - 4096*d*A^7*C*h^9 + 479/40*d*A^6*B^23*C +

22833/80*d*A^6*B^19*C^3*h - 119693/4*d*A^6*B^18*C*h^2 + 1015729/5*d*A^6*B^14*C^3*h^3 - 5018208/5*d*A^6*B^13*C*h^4 + 8793264/5*d*A^6*B^9*C^3*h^5 + 30290176/5*d*A^6*B^8*C*h^6 + 437248/5*d*A^6*B^4*C^3*h^7 + 1115136/5*d*A^6*B^3*C*h^8 + 1111/320*d*A^5*B^22*C^3 +

23283/80*d*A^5*B^21*C*h - 74901/5*d*A^5*B^17*C^3*h^2 + 19771*d*A^5*B^16*C*h^3 - 358456*d*A^5*B^12*C^3*h^4 - 10588992/5*d*A^5*B^11*C*h^5 + 10547904/5*d*A^5*B^7*C^3*h^6 + 9256448/5*d*A^5*B^6*C*h^7 + 169984/5*d*A^5*B^2*C^3*h^8 + 172032/5*d*A^5*B*C*h^9 -

471/40*d*A^4*B^24*C - 6883/80*d*A^4*B^20*C^3*h + 166009/10*d*A^4*B^19*C*h^2 - 109313/5*d*A^4*B^15*C^3*h^3 + 2098348/5*d*A^4*B^14*C*h^4 - 5809616/5*d*A^4*B^10*C^3*h^5 - 11683328/5*d*A^4*B^9*C*h^6 + 61696*d*A^4*B^5*C^3*h^7 - 233472/5*d*A^4*B^4*C*h^8 +

4096/5*d*A^4*C^3*h^9 - 1351/160*d*A^3*B^23*C^3 - 76881/80*d*A^3*B^22*C*h + 35323/5*d*A^3*B^18*C^3*h^2 - 151804/5*d*A^3*B^17*C*h^3 + 1657112/5*d*A^3*B^13*C^3*h^4 + 2067584/5*d*A^3*B^12*C*h^5 - 4265792/5*d*A^3*B^8*C^3*h^6 - 5609984/5*d*A^3*B^7*C*h^7 -

191488/5*d*A^3*B^3*C^3*h^8 - 249856/5*d*A^3*B^2*C*h^9 + 1881/320*d*A^2*B^25*C - 5421/40*d*A^2*B^21*C^3*h - 21057/4*d*A^2*B^20*C*h^2 - 29962*d*A^2*B^16*C^3*h^3 + 318012/5*d*A^2*B^15*C*h^4 + 839232/5*d*A^2*B^11*C^3*h^5 - 1024/5*d*A^2*B^10*C*h^6 -

821504/5*d*A^2*B^6*C^3*h^7 - 958464/5*d*A^2*B^5*C*h^8 - 16384/5*d*A^2*B*C^3*h^9 - 16384/5*d*A^2*C*h^10 + 81/40*d*A*B^24*C^3 + 48717/80*d*A*B^23*C*h - 8412/5*d*A*B^19*C^3*h^2 - 72417/5*d*A*B^18*C*h^3 + 38432/5*d*A*B^14*C^3*h^4 + 214832/5*d*A*B^13*C*h^5 -

73472/5*d*A*B^9*C^3*h^6 - 115712/5*d*A*B^8*C*h^7 - 53248/5*d*A*B^4*C^3*h^8 - 53248/5*d*A*B^3*C*h^9 - 513/320*d*B^26*C + 2187/10*d*B^22*C^3*h + 2061/4*d*B^21*C*h^2 - 8552/5*d*B^17*C^3*h^3 - 12948/5*d*B^16*C*h^4 + 22528/5*d*B^12*C^3*h^5 + 19776/5*d*B^11*C*h^6 -

11264/5*d*B^7*C^3*h^7 - 11264/5*d*B^6*C*h^8;

Cd := A^25*B^6*h^3 - 48*A^24*B^4*h^4 - 6*A^23*B^7*h^3 + 768*A^23*B^2*h^5 + 480*A^22*B^5*h^4 - 4096*A^22*h^6 - 32*A^21*B^8*h^3 - 10752*A^21*B^3*h^5 + 3*A^20*B^11*h^2 - 456*A^20*B^6*h^4 + 73728*A^20*B*h^6 + 203*A^19*B^9*h^3 + 51408*A^19*B^4*h^5 - 87/4*A^18*B^12*h^2 -

11244*A^18*B^7*h^4 - 573952*A^18*B^2*h^6 + 966*A^17*B^10*h^3 - 26256*A^17*B^5*h^5 - 12288*A^17*h^7 - 129/4*A^16*B^13*h^2 + 42660*A^16*B^8*h^4 + 2522624*A^16*B^3*h^6 + 3*A^15*B^16*h - 7822*A^15*B^11*h^3 - 723360*A^15*B^6*h^5 + 159744*A^15*B*h^7 +

1239/2*A^14*B^14*h^2 + 52464*A^14*B^9*h^4 - 6851328*A^14*B^4*h^6 - 51/2*A^13*B^17*h + 5388*A^13*B^12*h^3 + 3342672*A^13*B^7*h^5 - 847104*A^13*B^2*h^7 - 3783/4*A^12*B^15*h^2 - 704364*A^12*B^10*h^4 + 11822720*A^12*B^5*h^6 - 12288*A^12*h^8 + 579/16*A^11*B^18*h +

82158*A^11*B^13*h^3 - 7249392*A^11*B^8*h^5 + 2325504*A^11*B^3*h^7 + A^10*B^21 - 12099/2*A^10*B^16*h^2 + 1972080*A^10*B^11*h^4 - 12835328*A^10*B^6*h^6 + 98304*A^10*B*h^8 + 1227/4*A^9*B^19*h - 300951*A^9*B^14*h^3 + 8637264*A^9*B^9*h^5 - 3439872*A^9*B^4*h^7 -

39/4*A^8*B^22 + 110025/4*A^8*B^17*h^2 - 2646732*A^8*B^12*h^4 + 8383872*A^8*B^7*h^6 - 276480*A^8*B^2*h^8 - 23337/16*A^7*B^20*h + 454166*A^7*B^15*h^3 - 5436528*A^7*B^10*h^5 + 2550528*A^7*B^5*h^7 - 4096*A^7*h^9 + 583/16*A^6*B^23 - 45762*A^6*B^18*h^2 +

1722120*A^6*B^13*h^4 - 3004352*A^6*B^8*h^6 + 304128*A^6*B^3*h^8 + 41163/16*A^5*B^21*h - 310965*A^5*B^16*h^3 + 1514304*A^5*B^11*h^5 - 748800*A^5*B^6*h^7 + 12288*A^5*B*h^9 - 4077/64*A^4*B^24 + 33018*A^4*B^19*h^2 - 424848*A^4*B^14*h^4 + 483328*A^4*B^9*h^6 -

89088*A^4*B^4*h^8 - 15525/8*A^3*B^22*h + 72254*A^3*B^17*h^3 - 143088*A^3*B^12*h^5 + 64512*A^3*B^7*h^7 - 4096*A^3*B^2*h^9 + 3159/64*A^2*B^25 - 14985/2*A^2*B^20*h^2 + 22344*A^2*B^15*h^4 - 18048*A^2*B^10*h^6 + 3072*A^2*B^5*h^8 + 7047/16*A*B^23*h - 1809*A*B^18*h^3

+ 2256*A*B^13*h^5 - 768*A*B^8*h^7 - 729/64*B^26 + 243/4*B^21*h^2 - 108*B^16*h^4 + 64*B^11*h^6;

an := Evaluate(An,vec);

ad := Evaluate(Ad,vec);

bn := Evaluate(Bn,vec);

bd := Evaluate(Bd,vec);

cn := Evaluate(Cn,vec);

cd := Evaluate(Cd,vec);

aa := an/ad;

bb := bn/bd;

cc := cn/cd;

// We can deduce D by A,B,C in <x^2 + Ax + B, Cx + D>

sigma1 :=(1/2)*(2*h - aa^5 - 5*aa*bb^2 + 5*aa^3*bb - cc^2 *(aa^2 - 4*bb));

DD := cc*(h - aa^5 - 5*aa*bb^2 + 5*aa^3*bb + sigma1 + aa*(aa^2-3*bb)*(aa^2-bb))/(aa^4 -bb*(3*aa^2 - bb));

Rdiv := J![x^2 + aa*x + bb, cc*x+DD ];

return Rdiv;

end function;

// We test H:y^2 = x^5 + 10 using the divisor, D:=2*<x+1,3>

// We calculate the multiplication by d:=SQ5 twice and compare it with 5*D

Q<d> := QuadraticField(5);

P<X> := PolynomialRing(Q);

J := Jacobian(HyperellipticCurve(X^5 + 10));

D0 := J![X+1,3];

printf "Divisor D to test\n";

D := 2*D0;

D;

printf "Square root of 5 acting on D\n";

Ds5 := Sq5(D);

Ds5;

printf "Square root of 5 acting two times on D\n";

D5 := Sq5(Ds5);

D5;

printf "Is 5*D the same as twice the action of square root of 5 on D? %o\n", D5 eq 5*D;
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Summary

The Hasse-Weil inequality asserts that a curve C of genus g defined over
a finite field Fq of cardinality q, satisfies j#C.Fq/ � q � 1j � 2g

p
q. Here

#C.Fq/ denotes the number of elements in the finite set C.Fq/ consisting of
the Fq-rational points on C . In this thesis, first we extend the ideas of an
elementary proof of this inequality for elliptic curves, originally invented by
Yu.I. Manin, to hyperelliptic curves of genus 2. We obtain similar lemmas
compared to the genus 1 elementary proof, entailing the Hasse-Weil inequality
for curves of genus 2 provided that an Fq-rational Weierstrass point is present
in the curve. Our proof uses some intersection theory on the Jacobian of the
genus 2 curve, making the proof not quite as elementary as Manin’s one.

Further as a second part of this thesis, we provide applications of curves of
genus 1 and 2 to primality testing. We use the group structure of an elliptic
curve and the Jacobian of a genus 2 curve over finite rings.

In the first chapter we discuss and revisit the original proof of the Hasse
inequality for elliptic curves by Manin. This proof has been revisited before,
however we reduce some of the proofs of the lemmas involved using elementary
observations. Moreover, we rearrange the lemmas in order to obtain a more
compact proof of the Hasse inequality à la Manin.

In the second chapter we discuss and construct the Jacobian and the Kum-
mer surface associated to a hyperelliptic curve H=Fq of genus 2 using Mumford
coordinates. We explore their function fields using these coordinates which
are ubiquitous in cryptography and most computer algebra systems such as
MAGMA or SAGE. This chapter also introduces certain functions on the Kum-
mer surface and on the Jacobian of H which are used in subsequent chapters.

The third chapter is dedicated to the proof of the Hasse-Weil inequality
for genus 2, mimicking Manin’s ideas. The proof relies on the Jacobian of
the curve, since the original proof for genus 1 uses the group structure of the
elliptic curve over its function field. In our new proof we use the Jacobian of
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the genus 2 curve over the function field of the curve.
Finally, in the fourth chapter we discuss various algorithms for primality

testing using curves of genus 0, 1 and 2. We first discuss primality tests using
conics, namely the unit circle and a hyperbola. Further, inspired by authors
like W. Bosma, A. Silverberg, R. Denomme and G. Savin, we extend some of
their deterministic primality tests using elliptic curves E as End.E/-modules.
We illustrate these tests by applying them to some infinite families of integer
sequences.

Using the previous ideas for primality testing with elliptic curves, we par-
tially answer an open question stated by A. Abatzoglou, A. Silverberg, A. V.
Sutherland and A. Wong. They asked about the potential design of a deter-
ministic primality test using an Abelian surface. We provide an algorithm to
detect primes in some sequence of integers f�ng using the Jacobian J of a hy-
perelliptic curve H of genus 2 as an End.J /-module. The proposed algorithm
using the algebraic group J , conjecturally detects composite numbers in the
sequence, that is why we say that the open question is partially solved.

The algorithm is tested using MAGMA where an explicit endomorphism
of J was implemented, finding several primes in the sequence f�ng.

Future work is to extend our proof of the Hasse-Weil inequality, for example
to characteristic 2. Moreover, we used an embedding of the curve into its
Jacobian using a rational Weierstrass point of the curve in order to mimic
Manin’s proof. An open question is to adapt this proof when such a point is
not present in the curve.

For the primality testing, future work is to convert our primality test using
genus 2 curves to a deterministic test. To do this, an explicit descent map of
the multiplication by Œ

p
5� 2 End.J / is required, where J is the Jacobian of

the curve y2 D x5 C h. Some of the lemmas in Chapter 4 may be useful to
build such a descent map.
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Resumen

La desigualdad de Hasse-Weil afirma que una curva C de género g sobre un
campo finito Fq de cardinalidad q, satisface j#C.Fq/ � q � 1j � 2g

p
q. Aqúı

#C.Fq/ denota el número de elementos en el conjunto finito C.Fq/ que con-
siste de puntos Fq-racionales de C . En esta tesis, primero extendemos las
ideas de una demostración elemental de esta desigualdad para curvas eĺıpticas,
originalmente inventada por Yu. I. Manin, a curvas hipereĺıpticas de género
2. Obtenemos lemas similares comparados con la demostración elemental de
género 1 que implican la desigualdad de Hasse-Weil para curvas de género 2
cuando ésta tiene un punto de Weierstrass Fq-racional. Nuestra demostración
usa un poco de teoŕıa de intersección en la Jacobiana de la curva de género 2,
haciéndo la demostración no tan elemental como la prueba de Manin

Más adelante, en la segunda parte de esta tesis, proveemos aplicaciones
de curvas de género 1 y 2 a pruebas de primalidad. Usamos la estructura de
grupo de una curva eĺıptica y la Jacobiana de una curva de género 2 sobre
anillos finitos.

En el primer caṕıtulo discutimos y retomamos la demostración original
de la desigualdad de Hasse para curvas eĺıpticas hecha por Manin. Esta de-
mostración ya ha sido retomada antes, sin embargo hemos reducido algunas
demostraciones de los lemas involucrados usando observaciones elementales.
También reacomodamos los lemas de tal manera que obtuvimos una version
más compacta de la demostración de la desigualdad de Hasse à la Manin.

En el segundo caṕıtulo discutimos y construimos la Jacobiana y superfi-
cie de Kummer asociada a una curva hipereĺıptica H=Fq de género 2 usando
coordenadas de Mumford. Exploramos sus campos de funciones usando estas
coordenadas que son ubicuas en criptograf́ıa y en la mayoŕıa de los sistemas
de álgebra computacionales como MAGMA o SAGE. Este caṕıtulo también
introduce ciertas funciones interesantes en la superficie de Kummer y en la
Jacobiana de H, las cuales son usadas en capitulos siguientes.
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El tercer caṕıtulo es dedicado a la demostración de la desigualdad de Hasse-
Weil para género 2, imitando las ideas de Manin. La prueba se basa en la
Jacobiana de la curva, ya que la prueba original para género 1 usa la estructura
de grupo de la curva eĺıptica sobre su campo de funciones. En nuestra nueva
demostración usamos la Jacobiana de la curva de género 2 sobre el campo de
funciones de la curva.

Finalmente, en el cuarto caṕıtulo discutimos varios algoritmos para pruebas
de primalidad usando curvas de género 0, 1 y 2. Comenzamos discutiendo al-
goritmos de primalidad usando cónicas, precisamente la circunferencia unitaria
y una hipérbola. Además, inspirados por autores como W. Bosma, A. Silver-
berg, R. Denomme y G. Savin, extendimos algunos algoritmos de primalidad
determińısticos usando curvas eĺıpticas E como End.E/-módulos. Aqúı ilus-
tramos estos algoritmos aplicándolos a algunas familias infinitas de sucesiones
de enteros.

Usando las ideas previas para pruebas de primalidad con curvas eĺıpticas,
respondimos parcialmente una pregunta abierta de A. Abatzoglou, A. Sil-
verberg, A.V. Sutherland y A. Wong. Ellos se preguntaron sobre el diseño
potencial de una prueba de primalidad determińıstica usando una superfi-
cie Abeliana. Nosotros proveemos un algoritmo que detecta primos en cierta
sucesión de enteros f�ng usando la Jacobiana J de una curva hipereĺıptica H de
género 2 como un End.J /-módulo. El algoritmo propuesto usando el grupo
algebraico J , conjecturalmente detecta enteros compuestos en la sucesión,
esta es la razón por la que decimos que respondimos parcialmente la pregunta
abierta.

El algoritmo fue probado usando MAGMA, donde un endomorfismo expĺıcito
de J fue implementado, encontrando varios números primos en la sucesión
f�ng.

El trabajo futuro es extender nuestra demostración de la desigualdad de
Hasse-Weil a caracteŕıstica 2. Además, usamos un encaje de la curva en su Ja-
cobiana usando un punto de Weierstrass racional, de tal manera que podamos
imitar la demostración de Manin. Una pregunta abierta es la adaptación de
nuestra demostración cuando dicho punto no está presente en la curva.

Para las pruebas de primalidad, el trabajo futuro es convertir nuestra
prueba de primalidad que usa curvas de género 2 en una prueba determińıstica.
Para hacer esto, un mapeo de descenso expĺıcito de la multiplicacion por
Œ
p
5� 2 End.J / es requerido, donde J es la Jacobiana de la curva y2 D x5Ch.

Algunos de los lemas en el Caṕıtulo 4 podŕıan ser útiles para construir este
mapeo de descenso.
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Samenvatting

De Hasse-Weil-ongelijkheid stelt dat een kromme C van geslacht g gedefinieerd
over een eindig lichaam Fq van cardinaliteit q, voldoet aan j#C.Fq/� q� 1j �
2q
p
q. Hierin is #C.Fq/ het aantal elementen van de eindige verzameling

C.Fq/ van Fq-rationale punten op C . In deze scriptie breiden we eerst de ideeën
van een elementair bewijs van deze ongelijkheid voor elliptische krommen, oor-
spronkelijk uitgevonden door Yu.I. Manin, naar hyperelliptische krommen van
geslacht 2. We krijgen vergelijkbare lemma’s als in het elementaire bewijs
voor geslacht 1, met als conclusie de Hasse-Weil-ongelijkheid voor krommen
van geslacht 2, onder de aanname dat een Fq-rationaal Weierstrasspunt aan-
wezig is op de kromme. Ons bewijs maakt gebruik van doorsnijdingstheorie
op de Jacobiaan van de geslacht 2-kromme, waardoor het bewijs niet precies
zo elementair is als dat van Manin.

Verder als tweede deel van deze thesis geven we toepassingen van krom-
men van geslacht 1 en 2 op priemgetaltests. We gebruiken de groepsstructuur
van een elliptische kromme en de Jacobiaan van een geslacht 2-kromme over
eindige ringen.

In het eerste hoofdstuk bespreken en herzien we het originele bewijs van
de Hasse-ongelijkheid voor ellitische krommen door Manin. Dit bewijs is al
eerder herzien, maar we reduceren enkele bewijzen van de lemma’s met behulp
van elementaire observaties. Daarnaast herschikken we de lemma’s zodat we
een compacter bewijs verkrijgen van de Hasse-ongelijkheid á la Manin.

In het tweede hoofdstuk bespreken en construeren we de Jacobiaan en het
Kummeroppervlak behorend bij een hyperelliptische kromme H=Fq van ge-
slacht 2 met behulp van Mumfordcoördinaten. We onderzoeken hun functieli-
chamen met behulp van deze coördinaten, die veelvuldig voorkomen in cryp-
tografie en in de meeste computeralgebrasystemen zoals MAGMA en SAGE.
Dit hoofdstuk introduceert ook bepaalde functies op het Kummeroppervlak en
op de Jacobiaan van H die we in de volgende hoofdstukken zullen gebruiken.
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Het derde hoofdstuk is toegewijd aan het bewijs van de Hasse-Weil-ongelijkheid
voor geslacht 2, analoog aan Manin’s ideeën. Het bewijs berust op de Jaco-
biaan van de kromme, aangezien het originele bewijs voor geslacht 1 van de
groepsstructuur van de elliptische kromme over zijn functielichaam gebruik
maakt. In ons nieuwe bewijs gebruiken we de Jacobiaan van de geslacht 2-
kromme over het functielichaam van de kromme.

Ten slotte, in het laatste hoofdstuk, bespreken we verschillende algoritmes
voor priemgetaltests, gebruik makend van krommen van geslacht 0, 1 en 2.
Als eerste bespreken we priemgetaltests met behulp van kegelsneden, namelijk
de eenheidscirkel en een hyperbool. Verder, gëınspireerd door auteurs als
W. Bosma, A. Silverberg, R. Denomme en G. Savin, breiden we enkele van hun
deterministische priemgetaltests uit, gebruik makend van elliptische krommen
E als End.E/-modulen. We illustreren deze tests door ze toe te passen op
enkele oneindige families van rijen van gehele getallen.

Met behulp van de voorgaande ideeën voor priemgetaltests met elliptische
krommen, beantwoorden we gedeeltelijk een open vraag geformuleerd door
A. Abatzoglou, A. Silverberg, A.V. Sutherland and A. Wong. Zij vroegen
naar het potentiële ontwerp van een deterministische priemgetaltest die ge-
bruik maakt van een Abels oppervlak. We geven een algoritme dat priem-
getallen detecteert in bepaalde rijen van gehele getallen f�ng met behulp van
de Jacobiaan J van een hyperelliptische kromme H van geslacht 2 als een
End.J /-moduul. Het voorgestelde algoritme, gebruik makend van de alge-
bräısche groep J , detecteert vermoedelijk samengestelde getallen in de rij; om
deze reden zeggen we dat de open vraag gedeeltelijk is beantwoord.

Het algoritme is getest met behulp van MAGMA, waar een expliciet endo-
morfisme van J is gëımplementeerd. We vinden meerdere priemen in de rij
f�ng.

Toekomstig werk is om ons bewijs van de Hasse-Weil-ongelijkheid uit te
breiden, bijvoorbeeld naar karakteristiek 2. Daarnaast hebben we een imbed-
ding van de kromme in zijn Jacobiaan met behulp van een rationaal Weier-
strasspunt gebruikt om Manin’s bewijs na te bootsen. Een open vraag is om
dit bewijs aan te passen wanneer zo’n punt niet aanwezig is in de kromme.

Voor de priemgetaltests is er toekomstig werk in het omzetten van onze
priemgetaltest met geslacht 2-krommen naar een deterministische test. Om
dit te doen is een expliciete afdalingsafbeelding van de vermenigvuliging met
Œ
p
5� 2 End.J / noodzakelijk, waar J de Jacobiaan is van de kromme y2 D

x5 C h. Enkele van de lemma’s in Hoofdstuk 4 zijn mogelijk nuttig voor het
construeren van zo’n afdalingsafbeelding.
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zen. I. Math. Z., 19(1):153–206, 1924.

[ASSW16] Alexander Abatzoglou, Alice Silverberg, Andrew Sutherland, and
Angela Wong. A framework for deterministic primality proving
using elliptic curves with complex multiplication. Mathematics of
Computation, 85(299):1461–1483, 2016.

[BL13] Christina Birkenhake and Herbert Lange. Complex abelian vari-
eties, volume 302. Springer Science & Business Media, 2013.

[Bos85] Wieb Bosma. Primality testing using elliptic curves. Master thesis,
http://www.math.ru.nl/�bosma/pubs/PRITwEC1985.pdf, 1985.

[Can87] David G Cantor. Computing in the jacobian of a hyperelliptic
curve. Mathematics of computation, 48(177):95–101, 1987.

[Can94] David G Cantor. On the analogue of the division polynomials for
hyperelliptic curves. Journal fur die reine und angewandte Math-
ematik, 447:91–146, 1994.

[Cas56] J.W.S. Cassels. Revision: On cubic congruences to a prime mod-
ulus. http:// www.ams.org/ mathscinet-getitem?mr=81308 , 1956.

[CF96] J.W.S. Cassels and E. Victor Flynn. Prolegomena to a middlebrow
arithmetic of curves of genus 2, volume 230. Cambridge University
Press, 1996.

112

http://www.math.ru.nl/~bosma/pubs/PRITwEC1985.pdf
http://www.ams.org/mathscinet-getitem?mr=81308


Bibliography

[Cha88] JS Chahal. Equations over finite fields. In Topics in Number The-
ory, pages 147–162. Springer, 1988.

[Cha95] Jasbir S. Chahal. Manin’s proof of the Hasse inequality revisited.
Nieuw Arch. Wisk. (4), 13(2):219–232, 1995.

[CL11] Craig Costello and Kristin Lauter. Group law computations on ja-
cobians of hyperelliptic curves. In Selected Areas in Cryptography,
pages 92–117. Springer, 2011.

[CL12] Craig Costello and Kristin Lauter. Group law computations on ja-
cobians of hyperelliptic curves. In Selected Areas in Cryptography,
pages 92–117. Springer, 2012.

[CST14] Jasbir S Chahal, Afzal Soomro, and Jaap Top. A supplement to
manin’s proof of the hasse inequality. Rocky Mountain Journal of
Mathematics, 44(5):1457–1470, 2014.

[DO14] Eduardo Ruiz Duarte and Octavio Páez Osuna. Explicit endomor-
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