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In the behavioral sciences, many research questions pertain to a regression problem in that one wants
to predict a criterion on the basis of a number of predictors. Although in many cases, ordinary least squares
regression will suffice, sometimes the prediction problem is more challenging, for three reasons: first,
multiple highly collinear predictors can be available, making it difficult to grasp their mutual relations
as well as their relations to the criterion. In that case, it may be very useful to reduce the predictors to a
few summary variables, on which one regresses the criterion and which at the same time yields insight
into the predictor structure. Second, the population under study may consist of a few unknown subgroups
that are characterized by different regression models. Third, the obtained data are often hierarchically
structured, with for instance, observations being nested into persons or participants within groups or
countries. Although some methods have been developed that partially meet these challenges (i.e., principal
covariates regression (PCovR), clusterwise regression (CR), and structural equation models), none of
these methods adequately deals with all of them simultaneously. To fill this gap, we propose the principal
covariates clusterwise regression (PCCR) method, which combines the key idea’s behind PCovR (de Jong
&Kiers in Chemom Intell Lab Syst 14(1–3):155–164, 1992) and CR (Späth in Computing 22(4):367–373,
1979). The PCCR method is validated by means of a simulation study and by applying it to cross-cultural
data regarding satisfaction with life.
Key words: clusterwise regression, component analysis, multicollinearity, population heterogeneity,
hierarchically organized data.

1. Introduction

In the behavioral sciences,many research questions pertain to the effect of one or several quan-
titative predictor variables on a quantitative criterion. These questions are traditionally addressed
by ordinary linear least squares regression (OLS). Although OLS will often be adequate, at times
it will fall short, because of three kind of complications that may simultaneously occur: First of
all, sometimes multiple (e.g., in the range 10–20) predictors are involved, some of which might
be highly correlated. In that case, without further insight into the underlying structure of the
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predictors, it becomes very hard to interpret each individual regression weight separately; all the
more because multicollinearity problems might render instable regression weights. Second, often
the population under study is not homogeneous with respect to the underlying regression model,
but rather consists of a few unknown subgroups that are characterized by different underlying
regression models. Finally, in many studies, the obtained data have a hierarchical structure in
that the observations are nested within higher level units (e.g., measurement occasions nested
within persons, individuals nested in cultural groups, or students nested in classes), where one is
interested in the regression models of these higher level units.

To illustrate that these three challenges regularly occur simultaneously, let us take a look at
three examples.As afirst example, consider the paper of Stormshak et al. (1999) on the relationship
between aggression and peer acceptance. These authors measured the extent to which first-grade
students, that were nested into classes, exhibited five different kinds of aggressive behavior (pre-
dictors) and the extent to which they were socially accepted by their class mates (criterion).
Stormshak et al. (1999) solved the interpretational problems of having multiple strongly collinear
predictors by simply summing them. As such, all predictors received equal weight in the analysis,
but no insight was given into their underlying structure. Regarding the regression part, it was
found that classes differed with respect to the relation between aggression and peer acceptance: If
aggressive behavior was accepted in the class, increasingly aggressive behavior led to increased
acceptance. In contrast, in classes where aggressive behavior was frowned upon, more aggressive
students were less liked by their class mates. Note that in this study, the subgroups were not
induced from the data, because one expected the regression relationships to be moderated by the
class norm about aggressive behavior (acceptable or not). This allowed to model the class differ-
ences in a straightforward manner. However, this does not rule out that the data might contain
other interesting but unknown subgroups.

As a second example, consider the study of DeSarbo & Edwards (1996) regarding the effect
of several personality characteristics (e.g., perfectionism, self-esteem, and avoidance coping) and
psychiatric symptoms and disorders (e.g., depression, compulsiveness, and anxiety) on self-
reported compulsive buying behavior. They found that two groups of persons could be distin-
guished. In the first group, compulsive buying was mainly associated with psychological reasons
while in the latter group, compulsive buying was more related to environmental factors. Because
multiple correlated predictors were included, DeSarbo & Edwards (1996) were faced with mul-
ticollinearity problems, which they dealt with by imposing a positivity constraint on the regres-
sion weights. However, in this way, no further insight was obtained into the predictor structure
because all predictors were simply retained without modeling their interrelations.

As a final example, Ceulemans, Kuppens, & Van Mechelen (2012) examined the role of
appraisals (predictors) in the elicitation of anger (criterion) and individual differences therein. To
this end, participants rated 24 situations with respect to 11 appraisals and with respect to anger.
In this example, the observations are the situations, which are nested within persons. Using a
Boolean method for binary data (CLASSI; Ceulemans & Van Mechelen, 2008), Ceulemans et al.
(2012) simultaneously clustered the appraisals and the persons into three appraisal types and two
person types. These two person types differed with respect to which appraisal types are necessary
to become angry. Note that in order to apply CLASSI, Ceulemans & Van Mechelen (2008) had
to dichotomize their data, implying a loss of information.

In the past, a few methods have been developed that tackle one or two of the three identified
challenges (i.e., strongly collinear predictors, categorical differences in underlying regression
models, and nested data) by combining principal component analysis (PCA) or cluster analy-
sis with regression analysis (see Fig. 1). To obtain insight into the predictor structure and ease
the interpretation of the regression weights, de Jong & Kiers (1992) developed principal covari-
ates regression (PCovR), which simultaneously reduces the predictors to a few components and
regresses the criterion on these components. PCovR allows to attach different weights to the
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Figure 1.
Graphical representation of themodeling features (ellipses) that are combined in different regressionmethods (rectangles).

reconstruction of the predictors and the reconstruction of the criterion, and therefore encompasses
Principal Component Regression (Coxe, 1986) as well as Reduced Rank Regression (Rao, 1964)
as special cases. Another related method is partial least squares (PLS) Regression (Wold, 1966),
which emphasizes prediction of the criterion, at the expense of reconstructing the predictors.
Specifically, PLS reduces the predictors to components such that these components are as much
related (in terms of squared covariance) as possible to the criterion. Thus, a difference between
both methods is that, unlike PLS, PCCR allows the user to flexibly weigh the reconstruction of
the predictors and the prediction of the criterion. To detect categorical differences in underlying
regression models on the other hand, Späth (1979, 1981) developed Clusterwise Regression (CR)
that clusters observations on the basis of the underlying regression model. Related methods exist
within the mixture and latent class framework (DeSarbo & Cron, 1988; Leisch, 2004; Wedel &
DeSarbo, 1995). Note that extensions of CR exist that allow for nested data (DeSarbo, Oliver, &
Rangaswamy, 1989).

Although all methods mentioned above can provide some useful insight into the data, none of
them addresses all of the discussed challenges at the same time. In fact, the only methods that do
combine dimension reduction of the predictors with detecting subgroups in the data on the basis
of regression weights belong to the family of structural equation models and path models and are
confirmatory in nature in that hypotheses are required about the predictor structure (Arminger
& Stein, 1997; Hahn, Johnson, Herrmann, & Hubert, 2002; Sarstedt & Ringle, 2010). As in
practice often no hypotheses are available about which variables are measuring what construct or
such hypotheses prove to be incorrect, an exploratory counterpart of the latter methods can be a
very useful tool. Therefore, we propose such a method, called Principal Covariates Clusterwise
Regression (PCCR), which combines the key idea’s behind PCovR (de Jong & Kiers, 1992) and
CR (Späth, 1979) into one model (see Fig. 1).

The remainder of the paper will be organized as follows: In Sect. 2, we discuss the data
structure and preprocessing, the PCCR model, and the link to related models. In the third section,
the aim of a PCCR analysis is described and an algorithm is presented for estimating PCCR
models; we also briefly consider model selection. Section 4 reports on a simulation study that
we conducted to evaluate the performance of the PCCR method. In Sect. 5, we apply the PCCR
method to cross-cultural data. Finally, in Sect. 6, we discuss when to apply PCCR and reflect on
some of the more technical choices that were made.
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Figure 2.
Graphical representation of the data needed for PCCR analysis.

2. The Principal Covariates Clusterwise Regression (PCCR) Model

2.1. Data Structure and Preprocessing

PCCR requires I predictor data blocks Xi (Ni × J ) and criterion data vectors yi (Ni × 1)
that, respectively, contain scores on J predictors and on a criterion, where the number of observa-
tions Ni (i = 1, . . . , I ) in the data blocks may differ. These data blocks can be concatenated into
an N (observations) ×J (variables) predictor data matrix X and an N × 1 criterion data vector y,
where N = ∑I

i=1 Ni . A graphical presentation of the data structure is given in Fig. 2. It should be
noted that PCCR can be used to analyze many types of nested data (e.g., students nested within
classes and situations nested within persons). To indicate this, in the remainder of the manuscript,
we will refer to the data blocks as the level-2 units and to the rows within each data block as the
level-1 units.

Because (1) PCCR aims at revealing the linear relationships within the predictor dataset as
well as between predictors and criterion rather than modeling individual differences in means and
(2) Brusco, Cradit, Steinley, & Fox (2008) have conjectured that the results of CR methods tend
to be dominated by differences in means, we center the variables per level-2 unit. Furthermore,
to remove arbitrary scale differences, one may consider to standardize (i.e., a variance of one) the
variables across level-2 units, as is often done in PCA analysis (see also Sect. 6 for a discussion
on different scaling options).

2.2. Model

PCCR has a twofold aim: First, it captures the underlying structure of the predictor data
block. Assuming that the underlying constructs or mechanisms are the same for all level-2 units,
we reduce the predictors to R components. Given that PCCR belongs to the family of compo-
nent analysis methods, the components are weighted sums of the predictors. Second, regressing
the criterion on these components, it detects K subgroups or clusters of level-2 units that are
characterized by different regression models.
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Figure 3.
Decomposition of the predictor data blocks Xi in the PCCR model.

Regarding the first goal, the predictor data block Xi of each level-2 unit i is decomposed as
follows (see Fig. 3):

Xi = XiWP′
X + EXi = T iP′

X + EXi (1)

In (1),T i indicates the Ni by R component scorematrix for level-2 unit i . These component scores
are a weighted combination of the predictor variables, with the weights being represented in the J
by R weighting matrixW . Moreover, to avoid multicollinearity problems, the component scores
are restricted to be orthogonal across level-2 units: T ′T = IN , with T (N × R) comprising the
concatenated T i matrices (i = 1, . . . , I ). Given that the variables are centered per level-2 unit,
this orthogonality constraint implies that the components are uncorrelated across level-2 units. PX
is a J by R loading matrix, which contains the loadings of the J variables on the R components.
Note that these loadings amount to the correlations between the predictor variables in X and the
component scores in T when the predictors are standardized across level-2 units. As PX and W
are restricted to be identical for all level-2 units, the interpretation of the components is the same
for all level-2 units. Finally, EXi (Ni × J ) represents the predictor residuals for level-2 unit i .

Regarding the second goal, the decomposition rule for the criterion data vector yi of each
level-2 unit i is given by (see Fig. 4):

yi =
∑K

k=1
cikTipk

′
Y + eY i . (2)
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Figure 4.
Decomposition of the criterion data vectors yi in the PCCR model.

In (2), cik denotes the entries of the I by K partition matrix C, which equal one if level-2 unit i
belongs to cluster k, and zero otherwise. Furthermore, pkY indicates the 1 by R regression weight
vector of cluster k (k = 1, . . . , K ), which specifies the cluster-specific regressionmodel of cluster
k, regressing the criterion on the components. Because the data are centered per level-2 unit, no
intercepts are included in these regression models. Finally, eY i (Ni × 1) indicates the criterion
residuals of level-2 unit i .

As is the case for most component analysis models, PCCR solutions have rotational freedom.
More specifically, one can rotate either the loading matrix PX , the component score matrix T, or
the regression weight vectors pkY (k = 1, . . . , K ), provided that this rotation is compensated for
in the other twomatrices. One could, for instance, apply theVarimax rotation (Kaiser, 1958) on the
loadings, which rotates them toward simple structure and makes them easier to interpret. Another
option would be to rotate the component scores in such a way that they become as orthogonal as
possible for each level-2 unit, rather than across level-2 units only, making the interpretation of
the regression weights more clear. Indeed, if the components are orthogonal per level-2 unit, the
level-2 unit-specific regression weights on which the clustering of the level-2 units is based, only
depend on the level-2 unit-specific correlations between the components and the criterion and not
on the level-2 unit-specific intercorrelations among the components. To find the rotation matrix
that makes all level-2 unit-specific component scores as orthogonal as possible, one can use the
INDORT algorithm for fitting constrained INDSCAL solutions (Kroonenberg, 1983, 2008; Kiers,
1989), as the rotation criterion that has to be optimized can be rewritten into the INDORT criterion
(see Appendix 1).
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2.3. Relations to Other Models

As stated in the introduction, the PCCR model encompasses both PCovR (de Jong & Kiers,
1992) and CR for nested data (DeSarbo et al., 1989) as special cases. More specifically, the PCCR
model boils down to PCovR when the number of clusters K equals one and is equivalent to CR
when the number of components R equals the number of variables J .

3. Data Analysis

3.1. Aim

Given a pre-specified number of components R, number of clusters K and weight α (0 ≤
α ≤ 1), the aim of PCCR is to find a weighting matrix W , a partition matrix C, a loading matrix
PX , and K regression weight vectors pkY (k = 1, . . . , K ) such that the following least squares
loss function is minimized, subject to the restriction that T ′T = IN :

L = α
‖EX‖2
‖X‖2 + (1 − α)

‖eY‖2
‖y‖2

= α

‖X‖2
∑I

i=1

∥
∥Xi − XiWP′

X

∥
∥2 + (1 − α)

‖y‖2
∑I

i=1

∥
∥
∥
∥yi −

∑K

k=1
cikXiWpk

′
Y

∥
∥
∥
∥

2

, (3)

with ‖. . .‖2 denoting the norm of a matrix/vector (i.e., sum of its squared elements). The loss
function in (3) implies that the dimension reduction step and the clusterwise regression step
are conducted simultaneously instead of sequentially. The weight α indicates the importance of
reconstructing X when optimizing the loss function, whereas (1 − α) denotes the importance of
predicting y. This loss function (3) can be rewritten (up to a constant) as

L2 = β
∑I

i=1

∥
∥Xi − XiWP′

X

∥
∥2 + (1 − β)

∑I

i=1

∥
∥
∥
∥yi −

∑K

k=1
cikXiWpk

′
Y

∥
∥
∥
∥

2

, (4)

with β = α‖y‖2
α‖y‖2+(1−α)‖X‖2 (Vervloet, Van Deun, Van den Noortgate, & Ceulemans, 2013).

3.2. Algorithm

Tominimize the loss function L2 in (4), subject to the constraint thatT ′T = IN , the following
alternating least squares algorithmwas developed (MATLAB code that implements this algorithm
is available from the authors):

1. Initialize the partitionmatrixCinitial An initial partition is obtained by randomly drawing
the cluster membership of each level-2 unit from a multinomial distribution with K
categories and probabilities equal to 1

K . Notice that this procedure does not necessarily
yield a partition in which all clusters are nonempty. When one (or more) cluster(s) is
empty, the whole procedure is repeated until a partition is obtained in which each of the
K clusters contains at least one level-2 unit. It should further be noted that this procedure
favors an initial partition with more or less equally sized clusters. As a consequence,
when the true clusters differ considerably in size, the PCCR algorithm may perform
poorer. To solve this problem one can increase the number of runs of the algorithm
and use other types of starts, like rationally obtained (i.e., based on some previous
analysis of the data) and pseudo-random (i.e., slightly perturbing a rationally obtained
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start) initializations (for more information on different types of starting procedures, see
Ceulemans, Van Mechelen, & Leenen, 2007). However, a small simulation study with
unequally sized clusters shows that our initialization procedureworks reasonablywell in
that case, except for some specific situations (i.e., very noisy data with a large number
of underlying clusters).1 These results are in line with simulation studies regarding
other methods that also combine clustering and component analysis (e.g., Wilderjans &
Ceulemans, 2013; Wilderjans, Ceulemans, & Kuppens, 2012; De Roover, Ceulemans,
Timmerman, Vansteelandt, Stouten, & Onghena, 2012).

2. InitializePX,T (W), and pkY conditional on the initial partitionmatrix Cinitial A singular
value decomposition is conducted on X: X = KML′. Next, PX is obtained by multi-
plying the first R columns of L with the R largest singular values, which can be found
on the diagonal of M, and T is set to the first R columns of K. Next, in order to ensure
T ′T = IN ,T is multiplied by

√
N and PX by

√
1/N .W is computed as

(
X′X

)−1 X′T,
with (. . .)−1 denoting matrix inversion. Initial estimates for the cluster-specific regres-
sion weights pkY are obtained by regressing yk on Tk , where yk and Tk , respectively,
correspond to the concatenated criterion and component scores of the level-2 units that
belong to cluster k (k = 1, . . . , K ).

3. Consecutively update the cluster memberships of the level-2 units, conditional upon
the clustering of the other level-2 units, until convergence In each iteration, all level-2
unit memberships are updated and the resulting loss function value is computed. This
procedure is repeated until the improvement in the loss function value is smaller than
a tolerance value (e.g., .0000001)2. To update the cluster membership of level-2 unit
i , the level-2 unit in question is assigned to each of the K clusters and the associated
conditionally optimal W,PX , and pkY are computed by repeating the following three
steps until convergence3:

3.1 Update W conditionally upon C, PX , and pkY under the constraint that T ′T =
I = ∑K

k=1W
′X′

kXkW (with Xk being obtained by vertically concatenating all
data matrices Xi of level-2 units i belonging to cluster k). Because of the orthog-
onality constraint on W , no closed-form solution for this constrained problem is
available. Away out consists of first solving the unconstrained problem4, yielding
Wuncon, and next enforcing the constraint by means of a nonsingular transforma-

1 We generated 360 datasets by manipulating the number of clusters (at three levels: two, three, and four clusters),
the cluster sizes (at two levels: one small cluster with 20 % of the level-2 units and one large cluster with 80 % of
the level-2 units; the other level-2 units were equally spread across the other clusters) and the α-level (at six levels:
.001, .01, .05, .15, .25 and .35); all other factors were held constant (i.e., 50 level 2-units with 25 level-1 units each, 20

predictors, two relevant and six irrelevant components, the same cluster-specific regression weights pk
true

Y as in Table 2 and
20 % noise in X and in y); we used ten replications for each cell of the design. The recovery of the underlying clustering,
quantified by the adjusted rand index (ARI; see Sect. 4.3.2), can be considered reasonable as the mean ARI value equals
.93, whereas the mean ARI for the comparable conditions in the simulation study with equal sized underlying clusters
amounts to .96. Recovery, however, drops when the number of clusters increases (i.e., mean ARI of .94, .95 and .89 for
two, three, and four clusters, respectively) and/or when there is one large cluster next to multiple small ones (i.e., mean
ARI of .99 and .87 for the first and second level of the cluster size factor, respectively).

2 Note that taking .0000001 as convergence criterion might be too strict, resulting in a considerable lengthening of the
computation time. A possible solution is to use .0000001 ‖X‖2 instead (i.e., to look at the proportional decrease instead
of the absolute decrease in fit).

3 Note that step three of the PCCR algorithm consists of a double (nested) iterative procedure of which the outer
iterations pertain to updating the level-2 unit memberships and the inner iterations to updatingW,PX , and p

k
Y , conditional

on C.
4 Another option is to directly solve the constrained problem (instead of the unconstrained one) by means of an

iterative majorization approach (Kiers & ten Berge, 1992). The technical details of this approach are available upon
request from the authors. The results of a pilot simulation study showed that both algorithms in most cases lead to the
same final solution, but that the majorization approach consumes more time. Therefore, the majorization approach is not
further discussed in this manuscript.



94 PSYCHOMETRIKA

tion of Wuncon. The solution to the unconstrained minimization problem equals
(see Appendix 2):

Wuncon = (
Z′Z

)−1 Z′y,

where

Z′Z =
K∑

k=1

[(
βP′

XPX + (1 − β) pk
′

Y p
k
Y

)
⊗ X′

kXk

]

Z′y = vec

[

β

(
K∑

k=1

X′
kXk

)

PX + (1 − β)

K∑

k=1

X′
kykp

k
Y

]

,

and ⊗ denotes the Kronecker product of two matrices and vec the vectorization-
operator for matrices (Schott, 2005). To enforce the orthogonality constraint, an
eigenvalue decomposition is performed on ZW = W ′

unconX
′XWuncon, result-

ing in a diagonal matrix P that contains the eigenvalues and a matrix A that
holds the associated normalized eigenvectors. Next, W can be computed as

W = WunconA
(√

P
)−1

.

3.2 UpdatePX and the pkY (k = 1, . . . , K ) vectors conditionally upon C and W as
follows:

PX = (
X′XW

) (
W ′X′XW

)−1
,

pkY = y′
kXkW

(
W ′X′

kXkW
)−1

.

3.3 Check the loss function value for improvement. If the resulting decrease in loss
function value is larger than a pre-specified tolerance value, then return to step
3.1; otherwise, stop.

Next, level-2 unit i is assigned to the cluster k for which the resulting loss function L2 is lowest,
and the corresponding W,PX , and pkY are retained. If the C that is obtained at the end of an
iteration contains empty clusters, the level-2 unit that fits its cluster the worst is assigned to (one
of) the empty cluster(s), and the resulting W,PX , and pkY are recomputed (as in steps 3.1 and
3.2)5; this procedure is repeated until all clusters are nonempty.

4. Rescale the obtained solution such that T ′T = IN To this end, T andW are multiplied
by

√
N and PX and pkY (k = 1, . . . , K ) are divided by

√
N .

In order to minimize the risk that the PCCR algorithm ends in a suboptimal solution (i.e., a local
minimum), a multistart procedure is performed. This procedure consists of running the algorithm
many times (e.g., 50 or 100), each time using a different initial partition matrix Cinitial. The
solution that has the lowest loss function value L2 is retained as the final solution.

5 When the worst fitting level 2-unit is the only level-2 unit in his/her cluster, we move on to the level-2 unit with the
second worst fit, etcetera.
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3.3. Model Selection

As described above, the PCCR algorithm requires the number of components R, the number
of clusters K , and the value of α to be specified. Sometimes, R, K , and α can be chosen on the
basis of substantive arguments. However, often no strong a priori information is available. In such
cases, one may adopt the following strategy: first, estimate PCCR solutions using several values
for R, K , and α; next, select a model that fits well, is not too complex and that generalizes well to
other data from the same population. To this end, one may use k-fold cross-validation with k, for
example, being equal to ten. In this procedure, ten new cross-validation samples are created from
the original dataset by removing each time ten percent of the level-1 units within each level-2 unit
(such that each level-1 unit is removed exactly once). On each of these cross-validation samples,
PCCR analyses are performed with all the different values of R, K , and α, and the criterion values
of the deleted level-1 units are predicted based on the estimated parameters. Finally, the cross-
validation error for each (R, K , α) combination is computed by summing the squared prediction
errors for the deleted level-1 units across the ten samples. The (R, K , α) combinations with the
lowest cross-validation errors are to be preferred. The use of this model selection strategy will be
illustrated in the application section (see Sect. 5).

4. Simulation Study

4.1. Aim

The aim of this simulation study is twofold. First, we want to evaluate the performance of
the PCCR algorithm with regard to sensitivity to local minima, on the one hand, and the recovery
of the underlying clustering, components and regression models, on the other hand. Second, we
will compare the performance of PCCR, which simultaneously extracts components and predicts
the criterion, and a sequential strategy (i.e., first extract components from X; next, predict y based
on these components).

Regarding the second aim, it is useful to make a distinction between relevant and irrelevant
components in X, with irrelevant components having zero regression weights. We hypothesize
that when the strongest components in X (in terms of explained variance) are all relevant, PCCR
and the sequential strategy will perform equally well6. However, clear performance differences
are expected when X contains a weak but relevant component and one or more irrelevant com-
ponents, of which some are strong (Vervloet et al., 2013). In these situations, we predict that
the sequential strategy will extract a strong but irrelevant component rather than the weak but
relevant one, because the criterion variable is not taken into account and because most model
selection procedures focus on strong components only (Ceulemans & Kiers, 2009). In contrast,
we hypothesize that PCCRwill ignore the irrelevant components and will retain the relevant ones,
because it takes both the information in X and y into account. Herewith, we expect that PCCR
will perform best when α is small (Vervloet et al., 2013). To test this hypothesis, we conducted a
simulation study in which we added a number of irrelevant components and varied their strength.

4.2. Design and Procedure

We kept the following data characteristics fixed: (1) 50 level-2 units and 25 level-1 units per
level-2 unit, (2) 20 predictors, (3) two relevant components, (4) the cluster-specific regression
weights pk

true

Y of these relevant components (see Table 2), (5) the amount of noise on y is set to
20 %, and (6) equal cluster sizes. We manipulated the following three characteristics:

6 The results of a pilot study in which the number of components and clusters (i.e., two and four), the amount of noise
in X and y (i.e., 10 and 40 %), and the cluster sizes (see Brusco & Cradit, 2001; Steinley, 2003) have been manipulated
indeed reveal that PCCR and a sequential approach perform equally well, when all components are strong and relevant.
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Table 1.
Percentage of explained variance per relevant and irrelevant component.

Ncomp Relevant components Irrelevant components

1 (%) 2 (%) 3 (%) 4 (%) 5 (%) 6 (%) 7 (%) 8 (%)

4 38 2 30 25.7 2.2 2.1 – –
6 38 2 25 15 13.4 2.3 2.2 2.1

Ncomp number of irrelevant components.

(1) Number of irrelevant components, at two levels: four and six irrelevant components. The
amount of variance explained by each relevant and irrelevant component is displayed in
Table 1. For all datasets, the first relevant component explains 38 % of the variance and
the weak but relevant second component only 2 %. Half of the irrelevant components
(i.e., two or three in case of four and six irrelevant components, respectively) are weak
too and explain about the same amount of variance as the weak relevant component,
whereas the other half of the irrelevant components are strong and thus explain a sizeable
amount of variance in X.

(2) The amount of noise in X, at three levels: 10, 20, and 40 %.
(3) The number of clusters, at three levels: two, three, and four clusters.

Each dataset was created as follows: The true partitionmatrixCtrue was obtained by randomly
assigning level-2 units to a cluster taking into account the desired number of clusters and cluster
size. The true component scores on both the relevant and irrelevant components, stored in the
matrix T true, were drawn from a multivariate normal distribution with the 0 vector as mean vector
and the identitymatrix as variance-covariancematrix.Next, these component scoreswere centered
per level-2 unit and orthogonalized (i.e., T true′

T true = I) and standardized across level-2 units7.
True relevant and irrelevant component loadings Ptrue

X were obtained by first randomly generating
numbers between -1 and 1 from a uniform distribution and next rescaling these numbers in order
to get the desired percentages of explained variance (see Table 1). The true regression weights
pk

true

Y that have been used are presented in Table 2.8 Finally, data matrices X and y were obtained
by adding error matrices EX and eY to Xtrue and ytrue, respectively, with Xtrue and ytrue resulting
from combining the true partitioning, component scores, loadings, and regression weights by the
decomposition rules (1) and (2). The elements of EX and eY were independently sampled from a
standard normal distribution and rescaled so as to obtain the desired amount of noise. At the end,
the data per level-2 unit (both X and y) were centered.

7 W true can be computed from Ttrue as follows: W true =
(
Xtrue′Xtrue

)−1
Xtrue′Ttrue, with Xtrue = TtruePtrue

′
X .

8 This choice of cluster-specific regression weights implies that the clusters are clearly separated in terms of their
underlying cluster-specific regression models. To quantify the degree of cluster separation, we computed the ratio

z =
∑R

r=1

∣
∣
∣
∣p

k
Y
true
r −pkY

′
r
true

∣
∣
∣
∣

∑R
r=1

∣
∣
∣pkY

true
r

∣
∣
∣

for each pair of clusters, with z > .50 implying that clusters are well separated (Kiers &

Smilde, 2007) and pk
true

Yr

(

pk
′

Yr

′true)
indicating the r th true regression weight for cluster k

(
k′). For the generated datasets

with two clusters the z-ratio equals 1.23, whereas the mean z-ratio (computed over all possible cluster pairs) for the three-
and four-cluster datasets equals 1.57 (with separate values of 1.23, 1.82, and 1.67) and 4.47 (with separate values of
1.23, 2.64, 8.76, 1.15, 7.33, and 5.71), respectively. Note that for generated datasets in the three- and four-cluster condi-
tions, the clusters are more clearly separated than in the two-cluster conditions. Notice further that the larger mean z-ratio
for the solutions with four clusters is mainly due to the fourth cluster being clearly separated from the other three clusters
(with the z-ratios for the other three clusters being in the range of the z-ratios for the generated datasets with two and
three clusters).
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Table 2.
Cluster-specific regression weight pk

true

Y for each manipulated number of clusters.

Regression weights pk
true

Y for cluster k

k = 1 k = 2 k = 3 k = 4

2 Clusters
√

.01 and
√

.99
√

.80 and
√

.20
3 Clusters

√
.01 and

√
.99

√
.80 and

√
.20

√
.01 and −√

.99
4 Clusters

√
.01 and

√
.99

√
.80 and

√
.20

√
.01 and −√

.99 −√
.80 and

√
.20

All cluster-specific regression weights pk
true

Y are chosen such that
∥
∥
∥pk

true

Y

∥
∥
∥ = 1.

The design has 2 (number of irrelevant components) ×3 (amount of noise in X)× 3 (number
of clusters) = 18 conditions and 10 datasets were generated per condition, resulting in 180
datasets. To investigate how α influences the performance of PCCR, each of these datasets will be
analyzed with the following six α values: .35, .25, .15, .05, .01, and .001. We selected relatively
low α values, because based on results of the pilot simulation study, both PCCR and the sequential
strategy are predicted to perform equally well when α increases (i.e., when α increases, PCCR
approaches the sequential strategy, with both strategies being equivalent when α = 1). During
the analysis, the true number of clusters and two components were extracted. We used a tolerance
value of .0000001 and amultistart procedure with 100 runs (see Sect. 3.2). Each run started from a
different randomly generated initial clustering Cinitial in which each level-2 unit had a probability
of 1

K to be assigned to each cluster and in which empty clusters were avoided. From these 100
runs, the solution with the lowest loss function value (4) was retained, yielding the reconstructed
data matrix X̂ and data vector ŷ. To obtain results for the sequential strategy, standard PCA was
applied to each datasetX retaining R components, which yieldsW,T, and PX . Next a clusterwise
regression analysis with K clusters was conducted in which y was regressed on T, subject to the
constraint that all participants of specific level-2 units are assigned to the same cluster; this step
yields theC and pkY matrices. The computations were run inMATLAB (version 2013b and 2014a)
on a cluster of computers from the Flemish Supercomputer Center (VSC, https://vscentrum.be/
nl/en). Averaged over all simulated datasets, the computation time of a single PCCR run equals
38.7 s (1 h and a few minutes for 100 runs), whereas a run of the sequential strategy takes 1.4 s on
average (about 2.5 min for 100 runs). The computation time of a PCCR run is mostly influenced
by the number of clusters (i.e., mean computation time of 20.3, 36.6, and 59.1 s for two, three,
and four clusters, respectively) and the α-level (i.e., mean computation time of 23.6, 51.0, and
73.5 s for α equaling .001, .25, and .35, respectively).

4.3. Results

4.3.1. Local Minima To assess how often PCCR yields a local minimum, we computed the
following L2diff measure:

L2diff =
(

β

∥
∥
∥X − X̂

∥
∥
∥
2 + (1 − β)

∥
∥y − ŷ

∥
∥2

)

−
(

β

∥
∥
∥X − X̂

proxy
∥
∥
∥
2 + (1 − β)

∥
∥y − ŷproxy

∥
∥2

)

,

which compares the loss function value (4) of the estimated PCCR solution with the loss function
value of the PCCR solution with X̂

proxy
and ŷproxy, which is obtained by seeding the PCCR

algorithm with the true clusteringCtrue. When the computed L2diff -value is positive, the algorithm
ended in a local minimum for sure, in that at least one other solution exists (i.e., X̂

proxy
and ŷproxy)

that fits the data better. Note that a negative L2diff -value does not necessarily mean that the global

https://vscentrum.be/nl/en
https://vscentrum.be/nl/en
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Table 3.
Mean recovery results for PCCR (with α = .001, α = .35 and across all six α levels) and the sequential approach.

Recovery PCCR with
α = .001

PCCR with
α = .35

PCCR across
all six α levels

Sequential
approach

Clustering (ARI) .97 .97 .97 .62
Perfect clustering
(ARI = 1)

132/180 (73.33 %) 126/180 (70 %) 785/1080 (72.69 %) 8/180 (4.44 %)

Loadings (�PX ) .99 .97 .98 .59
Regression weights
(MADpY )

.20 .20 .20 .64

optimum of the loss function is reached, as

(

β

∥
∥
∥X − X̂

proxy
∥
∥
∥
2 + (1 − β)

∥
∥y − ŷproxy

∥
∥2

)

is only

a proxy (i.e., estimate) of the global minimum, which is always unknown when the data contain
noise. In general, PCCR appears not to have any problems with local minima (i.e., all L2diff -values
are negative).

A second way to get some idea whether or not the PCCR algorithm has a large problem with
locally optimal solutions is to check the number of runs of the algorithm that yielded the optimal
loss function value. Indeed, when most of the runs end in the retained solution, it can be assumed
that the algorithm does not suffer too much from local optima. On average, 96.8 (72.9 for the
sequential strategy) of the 100 PCCR runs per simulated dataset resulted in the same optimal loss
function value.

4.3.2. Goodness-of-Recovery

Recovery of the clustering. To assess the recovery of the clustering of the level-2 units, we made
use of the Adjusted Rand Index (ARI; Hubert & Arabie, 1985; Steinley, 2004). An ARI value of
one indicates perfect recovery and an ARI value of zero indicates that the obtained clustering does
not resemble the true clustering more than can be expected by chance. One can see in Table 3
that, on average (i.e., across all levels of α), PCCR clearly outperforms the sequential strategy in
terms of recovering the true clustering (i.e., a difference in ARI of .35 and in percentage perfect
recovery of 68.25 %). In Fig. 5, one can see that, in general, the PCCR recovery of the clustering
somewhat deteriorates when the amount of noise in the data increases. However, in the worst
case, recovery stays acceptable with mean ARI > .88. The effects of the other factors (and their
interactions) are even smaller and not univocal.

Recovery of the loadings. To check towhat extent PCCR is able to recover the relevant components,
the recovery of the corresponding loadings in PX was evaluated by calculating the Tucker Phi
coefficient (�; Tucker, 1951; Korth & Tucker, 1975) between the true and estimated loadings per
relevant component and averaging (the absolute value of) this coefficient over the components.
Before calculating �PX , the estimated loadings P̂X were orthogonally rotated (ten Berge, 1977)
toward the true loadings Ptrue

X . A �PX value of one indicates perfect recovery, whereas a �PX

value of zero implies no recovery at all. Across all 1080 analyses (i.e., 180 datasets analyzed
with six levels of α), the average difference in �PX between PCCR and the sequential strategy
equals .39 (see Table 3). In Fig. 6, one can see that PCCR recovers the loadings a bit better when
α becomes smaller (i.e., less influence of X when extracting the components) and slightly better
when the data contain less noise, whereas there is almost no effect of the number of irrelevant
components.
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Figure 5.
Mean ARI for PCCR solutions as a function of the number of irrelevant components (top part four irrelevant components;
bottom part six irrelevant components), the number of clusters (left panels two clusters;middle panels three clusters; right
panels four clusters), the amount of noise in the data and α.

Figure 6.
Mean�PX for PCCR solutions as a function of the number of irrelevant components (top part four irrelevant components;
bottom part six irrelevant components), the number of clusters (left panels two clusters;middle panels three clusters; right
panels four clusters), the amount of noise in the data and α.



100 PSYCHOMETRIKA

Figure 7.
Mean MADpY for PCCR solutions as a function of the number of irrelevant components (top part four irrelevant compo-
nents; bottom part six irrelevant components), number of clusters (left panels two clusters; middle panels three clusters;
right panels four clusters), the amount of noise in the data and α. Note that larger values on the Y -axis imply a worse
recovery.

Recovery of the regression weights. To investigate the recovery of the regression weights pkY of
the relevant components, the MADpY measure was used (Kiers & Smilde, 2007):

MADpY =
∑K

k=1
∑R

r=1

∣
∣
∣pk

true

Yr
− p̂kYr

∣
∣
∣

∑K
k=1

∑R
r=1

∣
∣
∣pk

true

Yr

∣
∣
∣

.

MADpY is zero in case of perfect recovery (i.e., P̂
k
Y equaling pk

true

Y for all k = 1, . . . , K ) and
higher values indicate worse recovery. Note that the cluster-specific regression weights were
rotated adopting the same rotation matrix that was used in the orthogonal target rotation of the
loadings PX (see earlier). Moreover, we matched the true and estimated clusters so as to obtain the
lowest MADpY -value. On average, PCCR recovers the true regression weights clearly better than
the sequential strategy. In particular, as can be seen in Table 3, PCCR has a good MADpY of .20,
whereas the MADpY of .64 for the sequential strategy is terrible. As one can see in Fig. 7, PCCR
better recovers the cluster-specific regression weights when there is less noise in the data. There
is hardly any effect of the number of irrelevant components and recovery seems to deteriorate a
little when α becomes larger than .25.

Analyses with more components. When performing analyses with three/four components (i.e., the
number of strong components in the four and six irrelevant components conditions) and the true
number of clusters, PCCR still clearly outperforms the sequential strategy (i.e., a mean ARI value
of .98 versus .56).

Conclusion. It can be concluded that, for our settings, PCCRwith 100 runs recovers the underlying
clustering, loadings, and cluster-specific regression weights excellently. Moreover, when the data
contain one or more strong but irrelevant components as well as a weak but relevant one, PCCR
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clearly outperforms the sequential approach in terms of recovering the underlying clustering,
component loadings, and cluster-specific regression weights. Extracting as many components as
there are strong ones is not a solution as PCCR still clearly outperforms the sequential strategy
in that case.

5. Application

To illustrate the usefulness of PCCR, we will analyze cross-cultural data on satisfaction with
life. Specifically, we will look for linear combinations of values, personality characteristics and
beliefs about happiness that have a differential predictive value for satisfaction with life. The
differences are assumed to be categorical in that we will look for clusters of countries (i.e., the
level-2 units in this application refer to countries) that are characterized by different regression
models.

The data that will be analyzed are part of the International College Survey (ICS) 2001
(Kuppens, Ceulemans, Timmerman, Diener, & Kim-Prieto, 2006), a large-scale paper-and-pencil
questionnaire-based study regarding subjective wellbeing and its determinants, in which 10,018
inhabitants from 48 different countries (see Table 6) took part. We used the satisfaction with life
score of each participant as the criterion variable and a set of 34 variables (see Table 4 for more
details) regarding which characteristics people value, people’s personality, and their beliefs on
happiness as the predictors. The satisfaction with life scores were obtained by summing partici-
pants’ answers (rated on a seven-point Likert scale) on five items (i.e., “In most ways my life is
close to my ideal”, “the conditions of my life are excellent”, “I am satisfied with my life”, “so
far I have gotten the important things I want in life”, and “if I could live my life over, I would
change almost nothing”). We list-wise deleted the participants with missing data, resulting in a
final sample of 9054 respondents.

Before the analysis, the datawere preprocessed as follows: First, between-country differences
in variable means were removed by centering the variables (criterion and predictors) per country.
Next, in order to remove arbitrary scale differences and give each variable the same weight in the
analysis, all variables were standardized (i.e., a variance of one) per country. As such, it is ensured
that the PCCR clustering is influenced only by between-country differences in the correlations
between the 34 predictors and the criterion (i.e., satisfaction with life). On the thus standardized
data, PCCR analyses were performed with the number of components (R) and the number of
clusters (K ) going from 2 to 4.9 For each (R, K ) combination, the analysis was performed using
.050, .010 and .001 as α-values. Note that these low α-values were chosen as the simulation
study demonstrated that low α-values yield the best results (see Sect. 4). For each (R, K , α)

combination, the PCCR algorithm was run 100 times to avoid local minima and the solution with
the best fit was retained.

Performing tenfold cross-validation (see Sect. 3.3) revealed, as can be seen in Table 5, that for
each considered (R, K , α) combination, the PCCR solution had a clearly smaller cross-validation
error than the associated sequential solution and that both solutions yielded a very different
clustering (as measured by means of the Adjusted Rand Index; Hubert & Arabie, 1985). We
decided to retain the PCCR solution with three components, three clusters, and an α-value of .05.
Although this solution only has the second lowest cross-validation error (see Table 5), compared
to the best solution, this solution yields cluster-specific regression weights that differ in a more
pronounced way and as such allows us to better illustrate the richness of the obtained results.

9 We believe that models with more than four clusters and/or four components are too complex for our data (i.e., 48
countries and 34 variables). In particular, the fit of these complex models is not substantially larger than the fit of less
complex models. Furthermore, we did not consider solutions with one cluster and/or one component as such models are
too simplistic.
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Table 4.
34 predictors and their keywords for the cross-cultural data regarding satisfaction with life.

Keyword Item

How much do you value (from 1 “do not value it at all” to 9 “value it extremely”)
Happiness Happiness
Intelligence and knowledge Intelligence and knowledge
Material wealth Material wealth
Physical attractiveness Physical attractiveness
Physical comforts Physical comforts
Excitement and arousa Excitement and arousal
Competition Competition
Getting to heaven Getting to heaven, achieving a happy afterlife
Self-sacrifice Self-sacrifice
Success Success
Fun Fun (personal enjoyment)

Describe yourself (from 1 “very inaccurate” to 5 “very accurate”)
Partylife Am the life of the party
No talk Don’t talk a lot
Background Keep in the background
Start conversation Start conversations
Talk people Talk to a lot of different people at parties
Quiet strangers Am quiet around strangers

How much do you agree (from 1 “strongly disagree” to 9 “strongly agree”)
Harmony It is important for me to maintain harmony within my group
Outperforming It is important for me that I do my job better than others
Aging parents We should keep our aging parents with us at home
Unique I am a unique individual
Competition Without competition it is not possible to have a good society
Competition friends I often feel like I am competing with my friends
Competition family I often feel like I am competing with my family members
Family success The success of my family is more important than my own pleasure
Enjoy present I would rather enjoy the present and not worry about the future
Work hard It is better to work hard now because happiness can be saved up and

enjoyed later
Family pessimism When I think about my friends and family, I think more about what

might go wrong than I think about rewards
School pessimism When I think about my school work, I think more about what might

go wrong than I think about rewards
Cycle Happiness and unhappiness are like night and day—one follows the

other in a regular cycle
Misfortune Talking about personal happiness will turn my fate to misfortune
Born happy Happiness is something you are born with—you are either happy or

unhappy and that can’t be changed
Resent happy If you talk about how happy you are, people will resent you
Create happiness A person has to create happiness for himself or herself

For the selected number of clusters and components and α-value, the computation time for an
average PCCR run equaled 209.5 s (and, hence, a little bit less than 6 h for 100 runs10) whereas
an average run of the sequential strategy took 1.5 s (and, hence, about 2 min and a half for 100

10 These computations are based on the use of a single core at the same time. Modern computers, however, are able
to use up to four cores simultaneously, reducing the computation time to 2 h.
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Table 5.
Cross-validation (CV) prediction error for the PCCR and the sequential solution for each considered model for the
cross-cultural data regarding satisfaction with life.

Number of
components

Number of
clusters

α-value CV error PCCR CV error sequential

3 2 .050 7986.5 8265.8
3 3 .050 7992.0 8287.9
4 2 .050 7992.3 8135.6
2 2 .050 7992.3 8261.1
3 2 .001 8000.7 8265.8
2 2 .010 8001.1 8263.1
4 2 .010 8001.2 8139.2
2 2 .001 8001.7 8262.6
4 2 .001 8001.7 8135.6
3 4 .050 8006.0 8230.9
3 4 .010 8007.2 8230.6
3 2 .010 8007.3 8265.8
2 3 .050 8008.4 8246.3
3 4 .001 8008.6 8230.6
2 3 .010 8009.8 8246.3
2 3 .001 8010.0 8246.3
4 3 .050 8022.8 8147.6
3 3 .010 8041.7 8283.6
4 4 .050 8042.0 8114.7
4 3 .001 8044.3 8147.6
3 3 .001 8044.4 8287.3
4 3 .010 8044.7 8150.5
2 4 .010 8054.3 8276.4
2 4 .050 8057.7 8276.4
2 4 .001 8064.7 8276.4
4 4 .001 8075.5 8114.7
4 4 .010 8078.1 8114.7

runs); 14 of the 100 PCCR runs resulted in the same optimal solution (with the same being true
for the sequential strategy).

The obtained clustering of the countries is presented in Table 6. To validate and interpret
this clustering, the clusters were related to a set of nation-level variables, including wealth and
development measures (e.g., GDP, human development index, and life expectancy), power dis-
tance, egalitarianism, etc. For each variable separately, we computed the ratio of the between
cluster variance to the total variance (i.e., the amount of explained variance). In Table 7, the
cluster-specific means are presented for all variables that yielded a ratio larger than .13 (Cohen,
1992). It can be concluded that the countries in the first cluster have more power distance (i.e., a
more hierarchical society), less individualism, a smaller IQ, smaller gender egalitarianism, lower
health expenditure, lower life expectancy, lower GDP, lower human development, and a lower
health life expectancy than the countries in the third cluster. The countries in the second cluster
take an intermediate position as their variable means are in between the means of the other two
groups. In sum, the first clustermainly groups less developed countries and the third clustermainly
well-developed countries, whereas the countries in the second cluster are situated somewhere in
between.
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Table 6.
Clustering of the countries in the PCCR solution (α = .05) with three components and three clusters for the cross-cultural
data regarding satisfaction with life.

Cluster 1 Cluster 2 Cluster 3

Nigeria Thailand United States
Uganda Philippines Canada
Ghana Indonesia Australia
Cameroon Hong Kong Singapore
Malaysia China Japan
Bangladesh Nepal Korea Republic
Greece India Chile
Bulgaria Switzerland Brazil

Turkey Mexico
Cyprus Colombia
Georgia Venezuela
Russia Germany

South Africa Belgium
Zimbabwe Netherlands
Egypt Austria

Portugal
Spain
Italy

Slovenia
Slovakia
Poland
Croatia
Hungary
Iran

Kuwait

Table 7.
Cluster-specific means on several nation-level variables for the three obtained clusters for the cross-cultural values data
regarding satisfaction with life.

Variable Cluster 1 Cluster 2 Cluster 3 Ratio

Power distance 78.00 71.18 58.45 .16
Individualism 25.16 33.70 49.37 .16
Gender egalitarianism 4.24 4.20 4.72 .29
IQ 79.87 87.33 95.80 .28
Health expenditure (% of GDP; 2002) 2.32 2.58 5.03 .36
Health expenditure per capita (US$; 2002) 372 561 1559 .23
GDP per capita (US$; 2003) 3067 6626 16723 .23
Life expectancy at birth (in years; 1998) 60.75 67.26 74.88 .37
Life expectancy index (1998) .60 .72 .83 .38
Human development index (1998) .60 .70 .86 .41
Length of life (in years) 62.88 60.91 74.50 .22
Health life expectancy 50.86 55.31 68.04 .30
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Table 8.
Loadings and cluster-specific regression weights (after Varimax rotation) of the PCCR (α = .05) and sequential solution
with three components and three clusters for the cross-cultural values data regarding satisfaction with life.

PCCR Sequential strategy

Comp 1 Comp 2 Comp 3 Comp 1 Comp 2 Comp 3

Happiness .24 .04 .38 .43 .17 −.02
Intelligence and knowledge −.03 −.03 .34 .15 .19 .15
Material wealth .31 −.05 −.04 .69 −.02 .00
Physical attractiveness .53 .04 −.15 .75 −.02 −.02
Physical comforts .28 .07 −.04 .73 −.05 −.02
Excitement and arousal .54 −.02 .02 .66 .08 −.06
Competition .45 .04 .11 .69 .05 .09
Getting to heaven .38 .16 .03 .57 −.01 .01
Self-sacrifice .50 .11 −.00 .54 .00 .09
Success .23 .02 .25 .45 .21 .22
Fun −.10 .09 .38 .07 .24 .14
Partylife −.05 .53 .20 .03 .62 .01
No talk .07 −.23 −.34 .01 −.64 .09
Background .11 −.43 −.32 −.03 −.64 .15
Start conversation .10 .46 .11 .04 .67 −.02
Talk people .05 .48 .07 .01 .69 .01
Quiet strangers −.06 −.36 −.07 .01 −.57 .15
Harmony .10 .27 .09 .23 .21 .12
Outperforming .35 −.19 .06 .25 .18 .40
Aging parents .19 .11 .01 .11 .07 .19
Unique .27 .16 .16 .15 .22 −.01
Competition .10 −.02 .12 .16 .20 .38
Competition friends .00 −.17 .00 .12 .12 .55
Competition family .12 −.19 −.18 .01 .05 .43
Family success .29 .01 .07 .09 .03 .30
Enjoy present .07 .54 −.37 −.04 .05 −.05
Work hard .29 −.17 .08 .12 .02 .43
Family pessimism −.21 −.33 −.44 −.08 −.19 .55
School pessimism −.13 −.26 −.41 −.03 −.19 .51
Cycle −.06 −.04 −.28 .01 −.03 .43
Misfortune −.12 −.12 −.28 −.10 −.09 .49
Born happy −.06 −.00 −.46 −.12 −.10 .39
Resent happy .10 −.15 −.22 −.06 −.08 .44
Create happiness .32 .01 .12 .19 .15 .08

Regression weights

PCCR Sequential strategy

Cluster 1 .28 .05 −.03 .09 .20 −.19
Cluster 2 .03 .38 .08 .08 .17 .04
Cluster 3 .15 .23 .31 .16 .35 −.14

Loadings (in absolute value) ≥ .30 are indicated in bold.

In Table 8, the Varimax rotated loadings PX and cluster-specific regression weights pkY for
the PCCR (α = .05) and sequential solution with three components and three clusters for the
cross-cultural dataset are displayed. From this table, one can see that the first PCCR component
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pertains to valuing external appearances (i.e., being rich and beautiful and outperforming others)
along with the notion that one has to create happiness for him/herself. The second component is
characterized by being extravert, living in the present, and not focusing on what can go wrong but
on possible rewards instead. The third component, finally, values intelligence and knowledge and
not hiding yourself (i.e., extraversion) along with focusing on rewards in the future and believing
that happiness is one’s own responsibility.

Table 8 also shows the regression weights for the three country clusters and reveals that the
relevance of the predictor components clearly differs across the clusters. In the cluster of least
developed countries (cluster 1), satisfaction with life is related to keeping up appearances, doing
it yourself and doing better than others (component 1). In the cluster of well-developed countries
(i.e., third cluster), the third component (valuing intelligence, extraversion) has the strongest
unique contribution. Finally, in the moderately developed countries (cluster 2), satisfaction with
life is predicted by extraversion and by focusingmore on immediate instead of anticipated rewards
(component 2).

When comparing the PCCR results with those of the sequential strategy, the advantages of
PCCR are nicely illustrated. First, while the components from the sequential solution correspond
with the three sets of variables included in the study (i.e., values, personality and beliefs regarding
happiness), the PCCR components better reveal the links between these variable sets and disclose
the more subtle differences between them. Second, the PCCR solution shows larger differences in
cluster-specific regression weights than the sequential solution. Moreover, in the latter solution,
the same component has the largest regression weight in each cluster. Third, PCCR yields a more
insightful clustering of the countries than the sequential strategy. In particular, when relating
the sequential clustering to the nation-level variables, the clusters only differ on a subset of
them, whereas the PCCR clusters show clear differences on all these variables. Finally, when
performing tenfold cross-validation, the PCCR solution better generalizes to other data from the
same population as the PCCR solution has a clearly lower cross-validation error than the sequential
one (i.e., 7990.9 vs 8283.1).

6. Discussion

In this discussion, we will reflect on technical choices that may influence the kind of solutions
that are obtained and, therefore, the conclusions that can be drawn. These choices are situated on
the level of the data (preprocessing), on the level of the model (which constraints are imposed)
and on the level of the data analysis (choice of the α weight in the loss function).

On the level of the data, let us consider the preprocessing options available to the user.
In the literature, preprocessing mostly refers to centering and scaling. Regarding centering, we
opt to center the data per level-2 unit. This choice was made because studies on clusterwise
regression have revealed that this method often yields a clustering that is dominated by differences
in intercepts rather than slopes (Brusco et al., 2008). Centering per level-2 unit is a straightforward
remedy, because it implies that the cluster-specific intercepts equal zero and can thus be omitted
from the model. Regarding scaling, we will discuss the pros and cons of three options: no scaling,
standardizing across level-2 units, or standardizing per level-2 unit. Of course, other scaling
options exist (see, e.g., van den Berg, Hoefsloot, Westerhuis, Smilde, & van der Werf, 2006),
but they are almost never used in behavioral research. Which option one selects should depend
among other reasons on the expected source of the (level-2 unit specific) differences in variance
between variables. If differences in variance are real and important, one should not rescale,
implying that variables with a larger variance will have more weight in the analysis. However,
if differences in variance (partly) reflect arbitrary differences in measurement scale, it might be
better to standardize, implying that each variable has the same weight in the analysis and with
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the additional advantage that the obtained loadings can be interpreted as correlations between the
variables and the components.

In case one chooses to standardize, one must decide whether it is better to standardize per
level-2 unit or across level-2 units. The advantage of standardizing across level-2 units is that
differences in variance between level-2 units, which may often be of interest, are retained in
the analysis. However, the disadvantage is that the clustering of the level-2 units is not only
determined by the correlations between the components and the criterion, but also by the level-2
unit-specific variance of the component scores and the criterion, as the regression weights depend
on both the correlations and the variances. As large inter-level-2 unit differences in the variance
of the predictors will imply large inter-level-2 unit differences in the variances of the component
scores, standardizing across level-2 units may thus yield a different clustering than standardizing
per level-2 unit. It can be concluded that researchers should carefully consider which aspects of
the data should influence the obtained clustering: is only the correlation structure between the
predictors and the criterion of interest or should variance differences also be taken into account.

On the model level, we imposed two constraints that influence the interpretation of PCCR
solutions. First, the PCCR model requires the dimensional reduction of the predictors to be
the same across clusters. In other words, the obtained clusters only differ with respect to the
underlying regression models, which make it relatively easy to compare the clusters. However,
for some datasets, one could argue that it would make sense to also allow the components to be
different across clusters, which implies that one would fit a separate PCovRmodel to each cluster.
Although such a model would be more general, the interpretation would be more difficult, as
the regression models of different clusters are not comparable anymore, since they are based on
different components.

Second, we imposed an orthogonality constraint on the component scores in order to avoid
multicollinearity issues. However, for now, we only managed to impose it across level-2 units
instead of for each level-2 unit separately, that is, we imposed T ′T = IN rather than T ′

iT i = INi .
Note that the latter constraint would completely rule out multicollinearity problems, whereas
the former constraint does not completely guarantee that none of the components are strongly
correlated within a level-2 unit. By means of the INDORT rotation (Kiers, 1989), orthogonality
per level-2 unit can be approximated but not imposed (see Sect. 2.2). Note, however, that rotating
toward orthogonality per level-2 unit may imply that the loadings become harder to interpret,
because one no longer aims for simple structure.

Regarding the data analysis, the PCCR loss function (L2) is a weighted sum of two other
loss functions, one for the predictor data and one for the criterion data. By means of the α

weight, the user may manipulate which part of the data is emphasized more. Yet, although several
methods have been proposed that imply such a weighted loss function in the context of clustering
and dimension reduction (Brusco, Cradit, & Tashchian, 2003; Van Deun, Smilde, van der Werf,
Kiers, & Van Mechelen, 2009), choosing an optimal weight is still an issue that has not been
fully resolved, with different ways of weighting sometimes leading to very different results (Van
Deun et al., 2009; Wilderjans, Ceulemans, & Van Mechelen, 2009; Wilderjans, Ceulemans, Van
Mechelen, & van den Berg, 2011; van den Berg, Van Mechelen, Wilderjans, Van Deun, Kiers, &
Smilde, 2009). We propose to use cross-validation to determine the optimal α weight for a dataset
at hand (see Sect. 3.3).

To conclude, we presented a new regression method that simultaneously handles three chal-
lenges: nested data, many predictors of which the underlying structure is unclear, and categorical
differences in underlying regressionmodels. As the regression data that are gathered by behavioral
scientists become increasingly complex, we believe this tool might be of great value.
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Appendix 1: INDORT Rotation Toward Orthogonality per Level-2 Unit

The aim of the INDORT rotation is to find the orthonormal rotation matrix U
(
U′U = UU′ = I

)

that minimizes the following loss function:

f =
I∑

i=1

∥
∥U′W ′X′

iXiWU − Di
∥
∥2 =

I∑

i=1

∥
∥U′T ′

iT iU − Di
∥
∥2 ,

where Di is a diagonal matrix containing the variances of the component scores for level-2 unit i .
This loss function equals zero when the component scores are at the same time orthogonal across
level-2 units (i.e., T ′T = IN ), which will always be the case since we imposed T to be orthogonal
(see Sect. 2.2), and orthogonal within each level-2 unit i (i.e., T ′

iTi = INi ). This function can be
rewritten as:

I∑

i=1

∥
∥U′T ′

iT iU − Di
∥
∥2 =

I∑

i=1

tr
[(
U′T ′

iT iU − Di
) (
U′T ′

iT iU − Di
)′]

=
I∑

i=1

tr
[(
U′T ′

iT iU − Di
)
U′U

(
U′T ′

iT iU − Di
)′ U′U

]

=
I∑

i=1

tr
[
U

(
U′T ′

iT iU − Di
)
U′U

(
U′T ′

iT iU − Di
)′ U′]

=
I∑

i=1

tr
[(
UU′T ′

iT iUU′ − UDiU′) (
UU′T ′

iT iUU′ − UD′
iU

′)]

=
I∑

i=1

tr
[(
T ′
iTi − UDiU′) (

T ′
iTi − UD′

iU
′)]

yielding the INDORT loss function, for which an alternating least squares estimation approach
exists (Kroonenberg, 1983; Kiers, 1989).

Appendix 2: Unconstrained Minimization of W

To update W (without any constraint), the loss function in (4) can be rewritten as follows:

L2 (W) = β

I∑

i=1

∥
∥Xi − XiWP′

X

∥
∥2 + (1 − β)

I∑

i=1

∥
∥
∥
∥
∥
yi −

K∑

k=1

cikXiWpk
′

Y

∥
∥
∥
∥
∥

2
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=
K∑

k=1

∥
∥
∥
√

βXk − √
βXkWP′

X

∥
∥
∥
2 +

K∑

k=1

∥
∥
∥
√
1 − βyk − √

1 − βXkWpk
′

Y

∥
∥
∥
2

=
K∑

k=1

∥
∥
∥vec

(√
βXk

)
− √

β (PX ⊗ Xk) vec (W)

∥
∥
∥
2

+
K∑

k=1

∥
∥
∥vec

(√
1 − βyk

)
− √

1 − β
(
pkY ⊗ Xk

)
vec (W)

∥
∥
∥
2

=
∥
∥
∥
∥
∥
∥

⎡

⎣
vec

(√
βX1

)

. . .

vec
(√

βXK

)

⎤

⎦ −
⎡

⎣

√
β (PX ⊗ X1)

. . .√
β (PX ⊗ XK )

⎤

⎦ vec (W)

∥
∥
∥
∥
∥
∥

2

+
∥
∥
∥
∥
∥
∥

⎡

⎣
vec

(√
1 − βy1

)

. . .

vec
(√

1 − βyK
)

⎤

⎦

−
⎡

⎣

√
1 − β

(
p1Y ⊗ X1

)

. . .√
1 − β

(
pKY ⊗ XK

)

⎤

⎦ vec (W)

∥
∥
∥
∥
∥
∥

2

=

∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

vec
(√

βX1
)

. . .

vec
(√

βXK

)

vec
(√

1 − βy1
)

. . .

vec
(√

1 − βyK
)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

−

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

√
β (PX ⊗ X1)

. . .√
β (PX ⊗ XK )√

1 − β
(
p1Y ⊗ X1

)

. . .√
1 − β

(
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)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

vec (W)

∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

2

= ∥
∥y∗ − Z∗vec (W)

∥
∥2 .

It appears that updating this loss function over W conditional on PX, pkY , and C boils down to
solving a multivariate multiple linear regression problem, for which the following closed-form
solution exists:

vec (W) =
(
Z∗′

Z∗)−1
Z∗′

y∗.

The matrixW can be obtained by devectorizing vec (W) into a matrix. Note that Z∗′
Z∗ and Z∗′

y∗
can be simplified as follows:

Z∗′
Z∗ =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

√
β (PX ⊗ X1)

. . .√
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1 − β
(
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)

. . .√
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(
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)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

′ ⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣
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. . .√
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(
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(
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)

⎤

⎥
⎥
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⎥
⎥
⎥
⎦
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X
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1X1
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X
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+
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′

Y
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Y

√
1 − βpKY ⊗ X′

KXK
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[(√
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X
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X
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Y
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=
K∑

k=1
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Y p
k
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]
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.
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