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ABSTRACT: α-Aminomethyl tetrazoles, recently made acces-
sible by an Ugi multicomponent reaction (MCR), were shown
to be excellent starting materials for a further Ugi MCR, yield-
ing substituted N-methyl-2-(((1-methyl-1H-tetrazol-5-yl)me-
thyl)amino)acetamides having four points of diversity in a
library-to-library approach. The scope and limitations of the
two-step sequence was explored by conducting more than 50
reactions. Irrespective of electron-rich and electron-deficient oxo-components and the nature of the isocyanide component, the
reactions give excellent yields. Sterically less hindered α-aminomethyl tetrazoles give better yields of in further Ugi MCR. The
target scaffold has four points of diversity and is finding applications to fill screening decks for high-throughput screening (HTS)
in the European Lead Factory and in structure-based drug design.
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High-throughput screening (HTS) often yields poor or no
results for difficult post-genomic targets, such protein−

protein interactions. One potential reason is the overpopulation
of certain types of molecular shapes in many pharmaceutical
screening libraries, which are often based on the preferential use
of certain reactions, such as Suzuki−Miyaura and Buchwald−
Hartwig coupling processes. In other words, libraries are often
designed with synthetic chemistry in mind rather than oriented
toward targets and properties.1 Library generation employs
familiar steps incorporating easy-to-functionalize groups (e.g.,
amine, OH,−CHO) addressed with standard commercial reagents
(e.g., acid chlorides, boronic acids, sulfonyl chlorides). Multi-
component reaction chemistry different from this standard
library approach in that MCRs build complex scaffolds in one
step after which no further functionalization is needed or per-
formed.2 We focus here on the tetrazole functional group, a
metabolically stable and drug-like fragment accessible by MCR
but largely underrepresented in screening libraries. Some MCR-
prepared tetrazole scaffolds are shown in Scheme 1 and have
been recently reviewed.3−19

We have recently introduced a Ugi tetrazole variation in which
ammonia can be used as an amine component and α-amino-
methyl tetrazoles are formed in good yields and diversity.20

To take advantage of the large scope of the reaction, we decided
to use the products of the Ugi tetrazole reaction as educts in
another Ugi-3CR (Scheme 2), thus perusing a library-to-library
approach.
α-Amino monosubstituted methyl tetrazoles can be obtained

from aldehydes, whereas α-amino disubstitutedmethyl tetrazoles
are derived from ketones.20,21 To initiate the study, we scaled up

fewα-aminomono or disubstitutedmethyl tetrazoleswith selected
aldehydes and ketone (Table 1). These reactions proceeded at
10−25mmol scale in the samemanner as the previously reported
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Scheme 1. Sixteen Recently Disclosed Mono-, Bi-, Tri-, and
Macrocyclic Tetrazole Scaffolds Accessible via
Multicomponent Reactions
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1−2mmol scale under identical reaction conditions (entry 1−10,
Table 1).
For the optimization of the reaction conditions, we tested the

Ugi three-component reaction (U-3CR) of tert-octyltetrazolo-
5-methylamine (A1), p-chlorobenzaldehyde (1b), and benzyl
isocyanide (1c) with various Lewis acids, such as Sc(OTf)3,
Al(OTf)3, Cu(OTf)3, Zn(OTf)3, ZnCl2, HClO4, TiCl4, ZrCl4,
BCl3, B(OH)3, CH3SO3H, p-TSA in 10 to 20 mol % and HCl
in methanol (1 equiv), in solvents, such as toluene, dichloro-
methane, and methanol. Disappointingly, all initial attempt failed
to provide good yield of product 1d. Then, we increasing the
reaction time with various temperature combinations from room
temperature to 55 °C, but again we did not obtain satisfactory
product 1d formation. Next, we following the procedures of
List22 and Li23 and we tested this reaction with 10% phenyl
phosphinic acid22 in toluene and 20% p-toluenesulfinic acid
(p-TSIA)23 in methanol. Encouragingly, p-toluenesulfinic acid
(20 mol %) in methanol stand out giving the desired product in
moderate yield (1d, 40%). Thus, we selected p-TSIA to optimize
the reaction conditions further with respect to solvent, tem-
perature, reaction time and ratio of p-TSIA (Table 2).
We observed that rising the reaction temperature (entry 3,

Table2) and using methanol−water as 9:1 mixture to promote
this reaction (entry 4, Table 2), also did not improve the yield. By
changing the solvent from methanol to dichloromethane we
found only trace product formation (entry 5, Table 2). Finally,
we decided to use p-TSIA in an (semi)stochiometric amounts
(entry 6−8, Table 2). Surprisingly, we observed the stochio-
metric use of p-TSIA at room temperature gave the product 1d in
excellent 96% yield, while rising the temperature again resulted in
lower yields.

With these optimized reaction conditions in hand we initiated
our study to explore the scope and limitations of the N-alkyl
tetrazolo-5-methylamines (A), oxo components (B), and iso-
cyanides (C) (Table 3).
First, the reaction of various oxo-components (aldehydes and

ketones) and isocyanides with N-tert-octyl tetrazolo-5-methyl-
amine (A1) as the amine component was studied (Table 3,
entries 1−22). Aromatic, substituted aromatic and heterocyclic
aldehydes, for example indole-3-carboxaldehyde (Table 3, 12b,
73%) gave good yields (Table 3, entries 1−12). The electronic
properties of aromatic aldehydes did not influence the yields of
the reactions (Table 3, entry 4−11). Aliphatic aldehydes and
ketones including sterically demanding cyclic ketones, simi-
larly, gave excellent yields (Table 3, entries 13−22). Moreover,
the reaction of A3 with bulky 1-adamantyl isocyanide (26c) also
gave good yield (26d, 71%). Use of hydrophilic 2-morpholi-
noethyl isocyanide resulted in lowering of the yield (23d, 63%),
presumably due to loss of material during workup.
Furthermore, we extend the scope and limitation analysis

toward the amine component using several otherN-alkyl tetrazolo-
5-α,α-disubstituted methylamines, such as A4−A10 (Table 3,
entries 28−52). For example, the gem-dimethyl moiety is
frequently used to improve PKPD and target engagement
properties of compounds.24 Use of N-tert-butyl tetrazolo-5-α,α-
dimethyl methylamine (A4) provided the product in 42−81%
yields (Table 3, entry 28−36). Aromatic aldehydes gave excellent
yields (Table 3, entry 33−35). When we used bulkier N-tert-octyl
tetrazolo-5-α,α-dimethyl methylamine (A5), yields dropped as
compared to N-tert-octyl tetrazolo-5-methylamine (A1). In this
case, aromatic heterocyclic aldehydes failed to give any products
(Table 3, entries 41−44).
Next, we investigated combinations of bulky α,α-disubstituted

methylamines with N-tetrazolyl side chains, such as phenylethyl,
benzyl, and cyclohexyl groups (Table 3, entry 45−52). Sur-
prisingly, excellent results were also obtained in these cases
(Table 3, entries 45−52).
The same reaction strategy was also applied to N-H-tetrazolo-

5-methylamine,25,26 as analogously to the report of Ley et al.27

(Scheme 3a) but no product could be isolated. However, we
could synthesize a similar product (5) by acidic cleavage of the
N-tert-octyl group of the intermediate Ugi adducts (14d). Usage
of 6N aqueous hydrochloric acid and stirring overnight accom-
plished the product 5 in excellent yield (Scheme 3b).

Scheme 2. Ugi-3CR Reaction Presented Herein

Table 1. Scale-up Synthesis of α-Aminomethyl Tetrazoles

*Isolated yield. aSynthesized according to the method reported in
ref 21. bSynthesized according to the method reported in ref 20.
cReaction run in 10 mmol scale. dReaction run at 25 mmol scale.

Table 2. Optimize the Reaction Conditions with p-TSIA

a% yield confirmed by SFC-MS. bIsolated yield.
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With these overall results, we propose a plausible reaction
mechanism (Scheme 4). Accordingly, the reaction proceeds with

N-alkyl tetrazolo-5-methylamines to form an imine (I-1), with
loss of one equivalent of water. Protonation with p-toluenesulfinic
acid activates the imine to yield the iminium ion (I-2), which then
undergoes nucleophilic addition to the isocyanide (C) to give the
intermediate nitrilium ion species (I-4). The nucleophilic trapping
of this intermediate by the p-toluenesulfinate counteranion affords
the p-toluenesulfinic imidoyl species (I-5). The final step is a
Mumm rearrangement with the transfer of the p-toluenesulfinate
group (I-3) from the oxygen atom to the nitrogen atom of the
former amine (Scheme 4) to form p-toluenesulfinic amide (I-6,
pathway A). Since p-toluenesulfinate is a good leaving group, it
is replaced by the nucleophile water which was generated
during the imine formation process. Alternatively, water attacks

Table 3. Ugi-3CR of Different Amino Methyl Tetrazoles with Different Oxo Components and Isocyanides

*Isolated yields. aCis/trans ratio 4:3. bCis/trans ratio 19:1. cCis/trans ratio 3:2. dCis/trans ratio 5:1.

Scheme 3. (a) Ugi-3CR Reaction of N-H-Tetrazolo-5-
methylamine and (b) Deprotection of N-tert-Octyl Group
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p-toluenesulfinic imidoyl species (I-5) to give productDwithout
Mumm rearrangement (pathway B).
To confirm the structures of the final Ugi 3-CR products we

could grow several crystals in ethanol for X-ray structure analysis.
The resulting structures of 1d, 2d, 17d, 18d, and 22d are shown
in Figure 1 and give some insight into the hydrogen bonding pat-
tern of the α-amino tetrazole moiety.

In summary, we introduced a powerful library-to-library approach
which can potentially span a large chemical space with four ele-
ments of diversity introduced by common building blocks, such as
isocyanides and oxo components. A detailed analysis of the scope
and limitations shows a great diversity of carbonyl components
(including electron-rich and electron-deficient aldehydes, cyclic
and acyclic ketones) to give mostly good to excellent yields,
irrespective of the nature of the isocyanide component. Sterically
less hindered N-alkyl tetrazolo-5-α,α-unsubstituted methylamines
gave significantly better yields compared to N-alkyl tetrazolo-5-
α,α-disubstituted methylamines. The scaffold is currently used in
the European Lead Factory to enhance the screening deck.28

Moreover, efforts are ongoing to explore this rich and novel
chemical space for islands of biological activity.
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