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This thesis presents a method for fault detection and precedent-free iso-

lation for two types of channel flow systems, which were modeled with the fi-

nite element method. Unlike previous fault detection methods, this method re-

quires no a priori knowledge or training pertaining to any particular fault. The

basis for anomaly detection was the model of normal behavior obtained using

the recently introduced Growing Structure Multiple Model System (GSMMS).

Anomalous behavior is then detected as statistically significant departures of

the current modeling residuals away from the modeling residuals correspond-

ing to the normal system behavior. Distributed anomaly detection facilitated

by multiple anomaly detectors monitoring various parts of the thermal-fluid

system enabled localization of anomalous partitions of the system without the

need to train classifiers to recognize an underlying fault.
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Chapter 1

Introduction

1.1 Motivation

Thermal-fluid systems (i.e., heat exchangers, fuel cells, etc.) are host

to a variety of potential problems, such as fouling, overheating, leakage and

general wear and deterioration. Such faults will not only negatively affect

system performance but their effects develop slowly and may go unnoticed

until abrupt failure occurs. Besides the difficulty of detecting the presence of

a fault, localization of the source of the fault is also challenging because effects

of a fault can propagate throughout the system.

In the last two decades, fault detection methods developed for thermal-

fluid systems have used data-driven models, such as neural networks, to model

dynamic behavior of the monitored systems and use residual comparisons to

detect and isolate faults. The use of neural networks in thermal science has

been increasing in the recent years due to their robustness in dealing with more

complex phenomena compared with traditional, first-principle based methods,

where differential equations approximating the system dynamics are solved by

numerical techniques [1]. For example, fault detection methods were created

for a steam turbine [2], furnace [3] and a solar water heater [4]. In each method,
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the system was modeled using a neural network, and their modeling residuals

were analyzed and matched with residuals of a known fault. However, these

fault detection methods were precedent-based methods, which means that a

priori knowledge regarding the potential faults and their effects was needed for

detection and isolation. Therefore, such methods are limited to whether faulty

behavior data is readily available for training the neural network or if a priori

knowledge of the fault characteristics exists. Clearly, these constraints limit

the applicability of precedent-based methods because as system complexity

increases, it becomes infeasible to anticipate all possible faults at all possible

locations. Also, many existing fault detection methods are only capable of

detecting a single fault occurring. Thus, a more sophisticated fault detection

method is needed.

In this thesis, a precedent-free localization method based on distributed

anomaly detection is presented and is applied to simple, dynamic thermal-fluid

systems. The new approach requires only normal system behavior data to

detect and localize the source of abnormal behavior.

1.2 Objective and Challenges

Previously, the Growing Structure Multiple Model System (GSMMS)

based fault detection method, which was developed by [5], has been applied to

lumped parameter systems, such as an electronically controlled throttle system

[6], an exhaust gas recirculation (EGR) system [7] and a diesel power genera-

tor [8]. In the aforementioned systems, anomalies were detected and localized
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within the system using only normal behavior data. The GSMMS-based de-

tection method uses a self-organizing map (SOM) [9] to model the system

through a “divide and conquer” approach, where the operating space of the

system is decomposed into smaller regions within which analytically tractable,

dynamic models can be postulated. Simpler forms of dynamic models enable

the use of simple anomaly detection approaches in each region. Anomalous

behavior is detected when statistically significant departures away from the

normal modeling residual patterns are identified in sufficiently many regions

of the piecewise dynamic models.

The main goal of this thesis is to apply the GSMMS-based fault detec-

tion method and the ensuing precedent-free fault localization method based on

the distributed anomaly detection paradigm to a thermally dynamic, transient

channel flow system. Channel flow is a distributed system described by a set of

partial differential equations, and the aforementioned anomaly detection and

isolation approaches have never been applied to such systems. The objectives

of this thesis are to observe and evaluate the capabilities and limitations of

the fault detection method applied to a distributed system by investigating

• if the method can detect faults using only normal behavior data.

• if the method can localize the source of the faults using normal behavior

data.

• how different system models composed of different inputs and outputs

affect both detection and localization.

3



• how system complexity affects detection and localization sensitivity.

1.3 Organization of Thesis

The remainder of this thesis is as follows. Chapter 2 first gives a brief

background on general fault detection methods, emphasizing the use of data-

driven methods. Then, the use of neural networks for modeling thermal-fluid

systems is described, and finally, background on the use of neural networks in

thermal-fluid systems for fault detection and diagnosis is given. Chapter 3 de-

scribes the GSMMS-based anomaly detection and precedent-free localization.

Chapter 4 describes the two numerical models used in this study and their

verification. Chapter 5 presents the results of the fault detection and localiza-

tion method when applied to simple channel flow, and Chapter 6 presents the

results when the method is applied to channel flow with an obstacle. Chapter

7 presents the conclusions and suggests future work.
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Chapter 2

Background in Current Fault Detection

Methods in Thermal-fluid Systems

A fault is defined generally as a deviation from acceptable behavior of

a system, whereas a failure refers to a permanent inability of the system to

maintain its operating conditions [10, 11]. The goal of fault detection is to

simply decide whether a fault exists or not within a system. Fault isolation

follows fault detection whose goal is to determine the kind, location and time

of detection of the fault within the system. Once the fault is isolated, fault

identification can be accomplished by determining the dynamic model of the

behavior in the presence of that fault. Together, fault isolation and identifica-

tion, is referred to as fault diagnosis [10]. Fault detection and diagnosis (FDD)

are vital in engineering systems to maintain normal operating conditions and

prevent catastrophic failure.

Potential component faults can generally be categorized as hard faults

or soft faults. Hard faults are caused by abrupt malfunctions or component

damage, where the system stops functioning entirely. Soft faults encompass

any degradation, wear and tear, fouling, leaking, clogging or any other gradu-

ally evolving fault that could occur in a system.
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In this chapter, the different methodologies and strategies of FDD are

first reviewed,with emphasis on the use of neural networks in FDD. Secondly,

the validity of modeling of thermal-fluid systems using neural networks is dis-

cussed, which leads into the descriptions of the current FDD strategies that

detect soft faults in thermal-fluid systems using neural networks. Finally,

the Growing Structure Multiple Model System (GSMMS) approach to sys-

tem modeling is introduced and its advantages over the currently used neural

networks are discussed.

2.1 Classifications of Fault Detection and Isolation Meth-
ods

Generally, fault diagnosis methods can be classified into the following

three categories: quantitative model-based methods, qualitative model-based

methods and process history-based methods [11]. All these methods require

a priori knowledge or system data but differ in terms of how the methods

approach the problem of fault diagnosis. This section will briefly describe

these three general approaches.

Quantitative model-based approaches monitor residuals of the mea-

sured variables and compare them with those calculated from a mathematical

model. Residuals are the differences between the predicted output and the

actual output of a system. If an abnormality occurs, system parameters will

change, and this change will be reflected in the modeling residuals caused by

the inconsistencies that arise between the predicted and actual output. Typ-
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ically, quantitative models are general input-output or state-space models, as

well as first-principles models and frequency response models [11]. There are

a plethora of examples of quantitative-based methods in literature that en-

compass a variety of fields, including the automotive, aerospace and chemical

industries; more survey papers can be found in [12–15]. Several examples of

applications of quantitative-based methods to heat exchangers can be found

in literature. Wakui and Yokoyama [16] developed an on-line, model-based

method to monitor a shell-and-tube type heat exchanger where its accuracy

depended on calculating correct performance correction factors and heat trans-

fer coefficients. Shah et al. [17] created a dynamic, nonlinear model of the

lumped state space form of a cross-flow plate-and-fin heat exchanger to monitor

fouling by estimating state-dependent parameters. However, first-principles

models cannot generally be used due to the difficulty in modeling complex

behavior, such as transient phenomena and two-phase flow. Thermal phenom-

ena often represent nonlinear systems, which severely limits the applicability

of quantitative-based approaches to thermal-fluid systems. Also, many sim-

plifications are often assumed in the models, such as constant properties or

simplified geometries. Furthermore, potential faults must be known a priori

to be included in the model. If the fault is not included in the model, the

residuals may not recognize the fault.

Whereas quantitative model-based approaches express the models as

mathematical functional relationships, qualitative-based approaches express

the relationships in terms of qualitative functions, developed as either qual-
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itative causal models or abstraction hierarchies [18]. Qualitative-based ap-

proaches incorporate cause and effect logic, where generally, if-then-else rules

are used to create causal models, such as digraphs and signed digraphs, and

a priori knowledge is used to predict likely system faults. Clearly, the limi-

tations of these methods are that the designer must know all the causes and

effects between the chosen system parameters and must know how the inputs

affect the outputs. As a system becomes larger and more complex, this task

becomes increasingly difficult and infeasible.

Differently from quantitative and qualitative model-based approaches,

which both require specific knowledge about the process or system, history-

based methods only require large amounts of historical process data [19]. The

data is then transformed, known as feature extraction (methods differ in how

feature extraction is performed), to create the diagnostic system. The obvious

advantages of history-based methods are they require relatively little effort to

implement and little a priori knowledge.

Thus, history-based approaches have largely been used to advance FDD

for thermal-fluid systems. Because of the complexities involved in thermal-

fluid systems, quantitative and qualitative model-based approaches become

inherently inadequate as a system grows. In particular, neural networks are

often used in history-based methods, which assumes thermal-fluid systems can

be accurately be modeled by them. In the following section, the achievements

of modeling thermal-systems using neural networks are overviewed.
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2.2 Validity of Modeling Thermal-fluid Systems with
Neural Networks

Neural networks are part of the computer-based algorithms known as

soft-computing, which try to create simple models of human intelligence and

evolution. Other soft-computing models methodologies include metaheuristic

optimization algorithms (genetic algorithms), fuzzy-logic control, expert sys-

tems, data mining, etc. [1]. Traditional hard-computing methods, based on

solving first-principle differential equations through numerical solutions, are

not adequate or robust enough to deal with today’s increasingly more com-

plex thermal problems, which usually encompass transient systems, two-phase

flow, etc., and systems that require optimization and control. Also, the phe-

nomena may not be entirely understood and thus, cannot be modeled based

on first principles. For these reasons, neural networks, known as data-driven

models, have become popular as they can take advantage of the many process

measurements that can be monitored continuously. Furthermore, data-driven

approaches can model complex, dynamic phenomena without the common,

simplified assumptions that many first principle-based models must use.

The strength of neural networks is its powerful ability to accurately rec-

ognize the inherent relationships within an input-output data set of a physical

system despite complexities such as nonlinearity, multiple variables and param-

eters and noisy data [1]. Given sets of examples, neural networks essentially

“learn from experience”. From a data set consisting of inputs and outputs, the

neural network maps the inputs onto the outputs. In thermal-fluid literature,
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the most popular neural network used is the multi-layer perceptron (MLP)

neural network with the back-propagation learning algorithm [2–4, 20, 21]. An

MLP neural network consists of an input layer, one or more hidden layers

and an output layer. Each layer consists of neurons or nodes with weights

associated with each node. The output signal, y, can then be computed as

y = F (
M∑
i=0

wixi) (2.1)

where [x1, x2, . . . , xM ] represents the input signals, [w1, w2, . . . , wM ] are the

weights, and F is the activation or transfer function, where the hyperbolic

tangent and sigmoid functions are typically employed.

By iterating over and over again through the input-output data, the

neural network uses a learning algorithm to adjust the weights. The learn-

ing algorithm determines how and which weights are adjusted. With the

back-propagation learning algorithm, the output is estimated from a given

input, and the error between the predicted and the desired output is com-

puted; this error is then back-propagated back through the neural network,

and the weights are adjusted so as to decrease the error. Training consists of

many iterations through the training data. Since the desired output is known

and is used to adjust the weights, the learning is called supervised. After train-

ing, the neural network can be given testing data, different from the training

data, and will be capable of predicting the correct outputs.

Note that neural networks themselves are a current research area. Vari-
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ous types of neural networks can be characterized based on such characteristics

as their architecture, how they are trained and the direction of data flow [22].

However, the above description gives the general idea of how neural networks

are programmed. Also, despite the MLP being one of the simplest neural

networks, its use is widespread, particularly in the thermal-fluid literature.

The following examples illustrate the power and ease of neural networks

when applied to different systems that would otherwise be difficult and time

consuming to model with the governing equations.

Modeling transient or unsteady heat conduction requires a large amount

of computational power to solve such problems through numerical methods.

However, neural networks can quickly and accurately model unsteady systems.

Jambunathan et al. [23] used a neural network to model 1D transient heat

conduction. Heat transfer coefficients at different points were accurately pre-

dicted (average errors of up to 2.7%) in a duct that was being heated by the

flow of hot air. Kuroe and Kimura [24] used a neural network to model 2D

unsteady heat conduction and then predict temperatures throughout the field.

Mittal and Zhang [25] developed a neural network to predict food freezing time

with typical relative errors of less than 5% to ensure optimum food quality,

which would otherwise require tedious calculations.

Heat exchangers, which are ubiquitous in many thermal-fluid systems,

are difficult to model due to such complexities as moisture in the air con-

densing or freezing on the fins, which modify the flow field, partial refrigerant

evaporation, which may cause an inhomogeneous flow distribution, turbulence,

11



complex geometries, existence of hydrodynamic and thermal entrance regions,

vortices and temperature-dependent fluid properties. Correlations for heat

exchangers are often inadequate to address such issues. However, neural net-

works are able to model such phenomena without difficulty. For example,

using the limited amount of data provided by the heat exchanger manufac-

turer, Pacheco-Vega et al. [26] used a neural network to model a multi-row,

multi-column fin-plate type heat exchanger with staggered tubes where Freon

22 was used as the refrigerant. The neural network predicted the total heat

rate with a root-mean-square error (percentage difference between the predic-

tions and the experimental measurements) of less than 1.5%. Dynamic control

of heat exchangers is almost impossible using predictions from first principles

due to the difficulties stated earlier, and assumptions and simplifications re-

garding the model are usually made. Diaz et al. [27] used a neural network

to model the time-dependent behavior of a heat exchanger to control the air

temperature passing over it, where the neural network controller performed

better than when using traditional PI and PID controllers.

If the phenomena of the system are not understood, creating a model

from first principles is impossible. However, neural networks can model such

systems using only the available process data. Liu et al. [28] predicted the boil-

ing heat transfer enhancement due to additives, an enhancement mechanism

that is not well understood and thus, precludes the use of a mathematical

model. With parameters that describe the molecular characteristics of the

additive as the inputs, a model with an accuracy of over 90% was obtained.

12



The previous examples show that neural networks are able to accurately

capture complex phenomena without a mathematical model derived from the

governing equations and are much less time-consuming than other methods.

The recent growth of neural networks in thermal-fluid systems opens

up many possibilities and potential advancements. Obviously, in relation with

FDD, the strengths of neural networks, such as, their ease and flexibility in

modeling of complex, nonlinear behavior and ability to rapidly make predic-

tions, make its use in detecting faults in thermal-fluid systems promising. The

aforementioned examples justify modeling thermal-fluid systems with neural

networks.

In the next section, current fault detection and diagnosis methods for

various thermal-fluid systems that use neural networks are discussed, and their

strengths and limitations are highlighted.

2.3 Current Neural-network-based Fault Detection and
Diagnosis Methods in Thermal-fluid Systems

With condition-based maintenance, the natural degradation of equip-

ment is monitored in real time, whereas with periodic maintenance, equipment

is checked at regular intervals regardless of their state. Condition-based main-

tenance is therefore more cost-effective compared with periodic maintenance

because in condition-based maintenance, resources are only used to check the

equipment if a fault occurs. Neural networks can quickly predict system behav-

ior, which is required for on-line monitoring in condition-based maintenance
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and the reason why many FDD systems created for thermal-fluid systems use

neural networks. However, different techniques exist. The following examples

illustrate these differences.

The objective of many studies is to diagnose faults, i.e., to detect and

recognize known faults, by training a neural network from theoretical relation-

ships or an assumed mathematical model. Riveral and Napolitano [29] reduced

the impact of fouling in a plate heat exchanger by predicting the deposit thick-

ness, the overall heat transfer coefficient and the critical time (time before a

system must be stopped before cleaning) in a pasteurization process using heat

flux, pressure and temperature sensors. Their model was based on a set of heat

balances and a fouling model. Tian and Sun [30] proposed an FDD method to

detect chemical pipeline leakage by monitoring the fluid flow process. A neural

network was trained according to a pipeline leakage model that calculated flow

rates based on geometric characteristics, pressure, fluid properties and friction

factors. A leak was then detected by calculating the difference between the

simulated and measured value and comparing the resulting residual with a

threshold value. These methods are limited by the accuracy of the model and

assumptions. With more complex phenomena, assumptions, such as constant

properties, cannot be used and existing correlations for friction factors or heat

transfer coefficients will not be available.

In many FDD methods, the neural network is specifically trained to rec-

ognize different fault type patterns, which again focuses on diagnosing faults,

not detecting abnormal behavior. Karlsson et al. [2] investigated seven types
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of faults common in steam turbines where the neural network was trained to

memorize the fault patterns. Normal and faulty data were generated using a

steam cycle simulation. Calisto et al. [3] used computational fluid dynamics

(CFD) to model a ”virtual” furnace, and a neural network was trained to de-

tect and identify fouling and steam leaks. Sorsa et al. [20] studied FDD for a

heat exchanger-continuous stirred tank reactor system and were able to detect

and classify ten different faults using a neural network, which were simulated.

Though each study was able to detect and identify their respective faults, any

fault unanticipated by the designer would either go unnoticed or be incorrectly

identified. With any new fault, the neural network would have to be trained

again. Also, Karlsson et al. and Calisto et al. both highlighted that multiple

faults occurring simultaneously would not be correctly identified.

Not all neural network-based FDD methods require faulty data. Many

methods focus on detecting abnormal behavior by using a combination of

residuals to detect and isolate different faults. Kalogirou et al. [4] developed an

automatic solar water heater fault diagnosis system by training multiple neural

networks to predict different temperatures of a fault-free system. A residual

calculator was also developed that compares both the current measurement

data and the fault-free predictions, where the residuals are compared against

three constant threshold values. The magnitude of the residuals categorized

the current state as either being normal, low probability, high probability or

failure. Because false alarms are prone to occur due to noisy measurements,

a fault was detected when five consecutive failure states are shown. Cui and
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Wang [31] created a model-based FDD strategy for a steady-state centrifugal

chiller system based on six physical performance indexes, which were selected

so that different performance indexes were sensitive to different faults based

on basic thermo-physical principles. A neural network was trained using fault-

free data, and a set of rules for five different faults and how they impacted six

performance indices classified the fault. Again, residual thresholds were used

to detect faults. Setting adequate thresholds is key because setting thresholds

too low results in false alarms, whereas setting thresholds too high results

in missed detections. Also, to isolate faults, the designer must know how

different process measurements are affected by faults so that different residuals

are insensitive to some faults and not to others.

It is important here to emphasize the subtle difference between fault

diagnosis and fault detection approaches. Diagnosis aims to recognize and

classify particular faults, typically by matching residual patterns, whereas de-

tection recognizes abnormal behavior in the system, typically be analyzing the

residual patterns.

Rather than using only the residual value to detect faults, statistical

tests on the residuals can be performed. Chetouani [32] used a nonlinear auto-

regressive with eXogenous input (NARX) model, obtained through the use of

a neural network, and the well-known CUSUM test 1 (cumulative sums test)

to detect faults in a reactor-exchanger. According to the CUSUM test, any

1The CUSUM test is a well-known, powerful tool that detects changes in process dynam-
ics by estimating the mean of the residual signal [33]
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jump in the mean indicates a fault; however, the minimum jump magnitude

must be determined a priori [32]. Lalot and Palsson [21] detected fouling in a

cross-flow heat exchanger also using a neural network and the CUSUM test,

where the data was generated using the finite volume method. They found

that analysis of just the residuals would not have been as sensitive as their

developed technique.

2.4 Growing Structure Multiple Model System (GSMMS)
Modeling Approach

Despite the success that many researchers have achieved using MLP

neural networks, one drawback is that the structure of the neural network must

be determined. Many tests must be performed to find the best combination of

the number of layers and the number of nodes in each layer. Alternatively, the

Kohonen’s Self-Organizing Map (SOM) [9], a vector quantization technique,

uses a “divide and conquer” approach to modeling, where the operating space

is decomposed into smaller sub-regions, as opposed to the “global” models

that are constructed using MLP neural networks. Differently from MLP neural

networks, SOMs use an unsupervised learning algorithm, where the goal is to

determine how the data are clustered together, i.e., to recognize the underlying

organization and structure of the data. The weight vectors of an SOM define

a Voronoi Tessellation:

Vm = {x : ‖x− ξm‖ ≤ ‖x− ξj‖, ∀m 6= j} (2.2)
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In this way, the operating space is divided into sub-regions, Vm, of

“similar” input-output patterns. However, SOMs still require that the number

of nodes and the number of topological connections be determined.

To decrease the number of decisions and assumptions that must be

determined when using SOMs, addition and deletion mechanisms can be in-

corporated. These attributes are used in growing SOMs [34], which led to

the development of the Growing Structure Multiple Model System (GSMMS)

approach to dynamic system modeling [5]. With the GSMMS approach, the

operating space can be refined by inserting a new node near a poorly modeled

region; thus, the structure is allowed to “grow”, which allows the SOM to

determine its own appropriate size.

With the GSMMS modeling approach, less assumptions and decisions

on the size and structure of the neural network are needed compared with the

MLP neural network. Furthermore, with the “divide and conquer” approach,

residual analysis and interpretation can be performed on the simpler, regional

residuals, which eliminates the need to deal with non-stationary residual analy-

sis, enabling one to determine the anomaly detection thresholds in a tractable,

rigorous manner. The next chapter explains the fault detection methodology

based on GSMMS modeling and the residual analysis. Together, GSMMS

modeling and the residual analysis can detect and localize faults using only

normal behavior.
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Chapter 3

GSMMS-based Fault Detection and

Localization

This chapter will first explain the recently introduced Growing Struc-

ture Multiple Model System (GSMMS), followed by a description of how

the residuals are analyzed and interpreted so that abnormal behavior can

be detected. Later, a description will be given of how distributed GSMMS-

based anomaly detectors can be used to localize sources of abnormal behavior

precedent-free (without the need to a priori observe signatures of the fault

that generated the anomaly).

3.1 Introduction of the Growing Structure Multiple Model
System (GSMMS) Modeling Approach

The GSMMS uses a multiple model structure, where each local model

domain is defined by the self-organizing map (SOM) [9] induced Voronoi tes-

sellation of the state-space of the model [6]. Within each region, local models

are assumed to be of the linear form

Fm(s(k)) = aT
i s(k) + bi (3.1)
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where ai and bi denote the vectors of parameters of the local model i and

s(k) = [yT (k), . . .yT (k− na + 1),uT (k− nd), . . . ,u
T (k− nd− nb + 1)]T (3.2)

is the state vector, where y(k) = [y1(k), . . . , yp(k)]T is a vector of p outputs

and u(k) = [u1(k), . . . , um(k)]T is a vector of m inputs of the system, nd is

the time delay between when the input reaches the output, and na and nb are

respectively the autoregressive and external input orders of the local model.

Following Johansen and Foss [35], the global model is then defined as

ŷ(k + 1) =
M∑

m=1

ν(s(k))Fm(s(k)) (3.3)

where ν(s(k)) describes how the local models are interpolated into the global

model. Following Liu [5], ν(s(k)) is a simple gating function

νm(s(k)) =

{
1 s(k) ∈ Vm
0 s(k) otherwise

(3.4)

that says that each local model Fm(s(k)) is only valid in region m.

3.2 Training the GSMMS

The training process for the GSMMS yields the following:

1. The structural parameters or weight vectors of the model. The weight

vectors partition the operation space into regions of similar input-output

20



patterns and are obtained through unsupervised clustering of input/output

vectors, s(k) (state-vectors), in the training set.

2. The local model parameters for each sub-region.

Essentially, training consists of successive passes through the training

data (normal behavior data), which updates and adjusts the SOM weight

vectors (and thus the resulting state-space partition induced by the corre-

sponding Voronoi tessellation, as well as the local model parameters within

each Voronoi region). Unsupervised clustering of the SOM weight vectors,

ξm,m ∈ 1, 2, . . . ,M , is obtained via recursive adjustments.

ξm(k + 1) = ξm(k) + ζm(k)h(k, dis(m, b(k)))[̄sb − ξm(k)] (3.5)

where k is the index of the training item s(k), and s̄b is the sample mean of

the training vectors for which b is the Best Matching Unit (BMU), For each

training sample, a BMU, b(k), which is the index of the local model or the

weight vector who best matches the training sample, is defined as

b(k) = arg min
m
‖s(k)− ξm‖ (3.6)

The function, h(k, dis(m, b(k))), is the neighborhood function, which

describes how each vector is updated using training samples in neighboring

regions and defined as
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h(k, dis(m, k))) = exp
(−dis(m, b(k))2

2σ2(k)

)
(3.7)

The neighborhood function shrinks with increasing distance away from

the BMU and with increasing passes through the data.

The width parameter, σ2(k), defines the effective range of the weighting

function and decreases to zero as k → ∞ to achieve convergence and global

ordering of the SOM [9]. In other words, at the beginning of the training,

each training sample has an effect on the parameters of a wide area of local

models, but as k →∞, the affected area of local models narrows because the

further away a given region m is from the BMU, the less significant the effects

are of the current observation on the parameter estimates of the model in the

region m. Following [7], in this thesis, we adopt σ(k) = 1/k. Finally, the term,

dis(m, b(k)), is the shortest distance between the node m and the BMU and

is found using the Breadth-first procedure [36].

The penalty term, ζm(k) in Eq. 3.5 helps achieve a more accurate

model by balancing the effects of visiting frequencies 1 and modeling errors

across different regions. If a region is not frequently visited, the region could

be poorly approximated and in need of more local models. Furthermore, if

modeling errors in a given region are high, that region may need to be refined

and additional SOM models should move toward it. The weight vector updat-

ing Eq. 3.5 already ensures that the state space is partitioned according to

1Visiting frequency for a given region refers to the number of times the training data
samples are associated with that particular region.
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visitation frequencies (more nodes in more frequently visited regions). Thus,

the penalty term is described by

ζm(k) =
em(k)

M∑
m=1

em(k)

(3.8)

where em(k) is the root mean squared (RMS) modeling errors in the mth

region. As a result of the penalty term, weight vectors will tend to move

towards regions with higher modeling errors, resulting in a finer partition in

those areas.

The local model parameters in region m are determined by minimizing

the sum of the weighted squared output errors in each region using

Jm(θm) =
1

k

k∑
i=1

wm(s(i))‖y(i)− ŷm(i)‖m (3.9)

where θm denotes the model parameters for the mth region, y(i) is the training

output at time i, and ŷm(i) is the predicted output of model m at time i.

The weighting function, wm(s(i)), determines the effect of sample i on the

neighboring regional models estimates, as defined as

wm(s(i)) = exp
(−dis(m, b(k))2

2σ(k)2

)
, m = 1, 2, . . . ,M (3.10)

In this way, each training sample affects all the local models, with this effect

reducing as the distance from the model corresponding to the BMU grows.
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The self-organizing map is allowed to “grow” after a predetermined

number of passes through the training data by inserting a new node in a

poorly modeled region. This allows the underlying model structure to grow

and adapt to the data. Training ends when one of the two stopping criteria

was met, 1) the total RMS error was below a pre-determined tolerance or 2)

the number of nodes exceeded a pre-determined number.

3.3 Analysis of the Residuals

Once the training is finished, the statistical characteristics of the mod-

eling residuals during normal behavior are known, where the residuals are

defined as the differences between the actual system output and the GSMMS

predicted output. If any anomaly enters the system, i.e., if the system dy-

namics changes in any way, the modeling residuals behavior changes as well.

Thus, to detect an anomaly, one can compare the characteristics of the train-

ing residuals with that of the current residuals, and abnormal behavior can

be indicated when differences are detected. However, interpretation of the

residuals is not a trivial task.

The operating regions within the GSMMS all have different levels of

approximation accuracy. If the system inputs change and drives the system to

different a operation region, the modeling residuals will consequently change.

Thus, the modeling residuals can change, not only because of an anomaly. The

“divide and conquer” framework of the GSMMS models is able to work around

these potential false alarms because residual interpretation can be done based
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on the simpler, regional residuals.

Following [5], system deviation is quantified within each region m by

using the concept of regional confidence values (CVs), defined as

CV(m, k) =
|fm(e) · gm(e, k)|
‖fm(e)‖‖gm(e, k)‖

(3.11)

where fm(e) is the probability density function (PDF) of the modeling residuals

displayed during normal behavior and gm(e, k) is the PDF of the residuals

corresponding to the current behavior at time k, | · | denotes the inner product,

|fm(e) · gm(e, k)| =
∫ ∞
−∞

fm(e)gm(e, k)de (3.12)

and ‖ · ‖ is the L2 norm,

‖fm(e)‖ =

√∫ ∞
−∞

[fm(e)]2de (3.13)

The regional confidence value, CV (m, k), describes the normalized area

of the overlap of the PDFs in that region, as shown in Fig. 3.1. If CV (m, k) =

1, the current residual PDF matches with the residual PDF obtained during

training, which indicates normal behavior. The PDF fm(e) was approximated

using Gaussian Mixture Models due to their universal approximation capa-

bility [37], and gm(e, k) was calculated by updating fm(e) recursively during

operation [38]. A single, global CV is created as the geometric mean of the

regional CVs,
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Figure 3.1: The regional confidence value (CV) is the normalized area of the
overlap of the PDFs.

CVglobal(k) =
( M∏

m=1

CV(m, k)
)1/M

(3.14)

in order to emphasize departures of individual regional CVs away from one

[7].

3.4 Fault Isolation

Using only normal behavior data, fault isolation can be achieved using

the paradigm of distributed anomaly detection, where a set of anomaly detec-

tors (ADs) are used to monitor pertinent sub-systems. The following example

(taken from [7]) shows how precedent-free localization is achieved. Initially,

as shown in Fig. 3.2(a), an overall anomaly detector monitors an entire EGR

system based on the GSMMS model of its normal behavior. If an anomaly

is detected, five anomaly detectors are distributed, as shown in Fig. 3.2(b),
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where each use the GSMMS model of normal behavior specific to its sub-

system. Figure 3.3(a) shows the CV output from the five ADs when a fault

was occurring in the EGR valve, and Fig. 3.3(b) shows the CV output from the

five ADs when a fault was occurring in the PI controller. Clearly, since only

one AD for each fault dropped, the culprit subsystem can be identified. The

other four sub-systems each show that normal behavior was occurring since the

CVs were essentially one, i.e., the GSMMS modeling residuals observed during

normal behavior and the most recently observed modeling residuals matched.

Thus, precedent-free localization can be achieved through distributed anomaly

detection.

In this thesis, we will use a simpler distributed anomaly detection con-

cept to localize sources of abnormal behavior to different positions of a thermal-

fluid system.
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(a)

(b)

Figure 3.2: Distribution of anomaly detectors in a diesel engine EGR system.
Once an anomaly is detected, the overall AD (depicted in (a)) splits into five
ADs monitoring pertinent subsystems (depicted in (b)). Taken from [7].
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(a)

(b)

Figure 3.3: CVs output by subsystem-level ADs illustrated in Fig. 3.2(b).
Plot (a) illustrates CVs output when at t = 1350s, faults were simulated into
the EGR valve. Plot (b) shows the CVs output when at t = 1350s, when
faults were simulated into the PI controller. Since the only CV to drop was
the AD associated with the EGR valve and PI controller, respectively, the
culprit subsystem can be identified. Taken from [7].
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Chapter 4

Numerical Models and Verification

All training, testing and anomalous data for GSMMS-based anomaly

detectors were created by the finite element method using the commercial soft-

ware package, COMSOL Multiphysics [39]. Rather than using data obtained

from an experimental apparatus, data from simulations could be obtained rel-

atively quickly; thus, the focus could be on the performance and sensitivity of

the fault detection and localization method. As can be seen from the previous

chapter, the data-driven GSMMS approach to modeling and anomaly detec-

tion requires only input-output data to model the system, whose residuals are

then used in the fault detection and localization.

Two systems were modeled. For each model, the geometry and non-

dimenionalized variables were based from two separate studies [40, 41]. First,

a simple channel flow was chosen as the inaugural system to verify that the

GSMMS could model a thermal-fluid system, to confirm that faults could be

detected and localized in a simple setting and to observe how the positions of

the inputs and outputs affect the sensitivity and performance of the method.

Secondly, a channel flow with an obstacle was considered. Such a sys-

tem has a more complex hydrodynamic behavior than a simple channel flow.
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Figure 4.1: System model of 2-D channel flow.

The purpose of tests with this model was to observe if the same detection and

localization approach used in the simple channel flow could be applied to a

more complex system.

This chapter will present the numerical models and their verification.

4.1 Channel Flow Numerical Formulation

The first system was a transient, 2-D channel where laminar flow and

constant properties were assumed. Normal behavior was channel flow through

adiabatic walls with an inlet temperature that changed at random intervals.

Anomalous behavior was created by introducing a linearly increasing heat

flux through a small portion of the wall. By continuously changing the inlet

temperature, detecting a heat flux (the anomaly) through the wall becomes

more challenging than if the inlet temperature did not change, which would

have been trivial. Figure 4.1 illustrates the system model.

The geometry and variables were taken from [40]. The channel was of
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length L and width D, with fluid entering from the left with a free-stream

velocity of U∞. The width of the heater was Do at a length of So from the

entrance. An extension was placed downstream to simulate more realistic

outlet conditions. There was no slip at the walls and free slip at the fluid-fluid

interface.

The simplified mass, momentum and energy equations used are the

following:

∇ · v = 0 (4.1)

ρ
Dv

Dt
= -∇P + µ∇2v (4.2)

ρcp
DT

Dt
= k∇2T (4.3)

For convenience, the equations were non-dimensionlized with the following

dimensionless variables:

(x̃, ỹ, D̃o, S̃0) =
x, y,Do, So

L
, (ũ, ṽ) =

(u, v)

U∞
(4.4)

T̃ =
T − T∞
q′′oL/k

, P̃ =
P

ρU2
∞
, t̃ =

U∞
L
t (4.5)

Equations 4.1, 4.2 and 4.3 then become
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∇ · ṽ = 0 (4.6)

Dṽ

Dt̃
= −∇P̃ +

1

Re
∇2ṽ (4.7)

RePr
DT̃

Dt̃
= ∇2T̃ (4.8)

where

Re =
U∞D

ν
, Pr =

ν

α
(4.9)

The outlet conditions are

∂ũ

∂x̃
=
∂ṽ

∂x̃
=
∂T̃

∂x̃
= 0 (4.10)

and the boundary conditions at the fluid-fluid interface are

∂ũ

∂x̃
=
∂T̃

∂x̃
= 0 (4.11)

where D()/Dt = ∂()/∂t+ v · ∇(), ∇ = ∂/∂x+ ∂/∂y.

4.2 Verification of Channel Flow

The simulations were performed in COMSOL [39], where the Fluid-

Thermal Interaction mode with the Direct (PARDISO) linear solver was used.
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The time dependent simulations used the Backwards Differentiation formula

with a time step of 0.01. For all cases, the relative error was set as 1 · 10−5

and the absolute error was set as 1 · 10−6.

Mesh verification was performed in three phases. First, to verify the

accuracy of the mesh, global conductance values were calculated, where C is

defined as

C =
Q′

k(Tmax − T∞)
(4.12)

where C is the global conductance, Q′ is the total heat flow through the heat

source, and Tmax is the maximum temperature that may occur at any point

on the wall. The conditions were Re = 103, Pr = 0.7, D̃ = 0.3, D̃o =

0.1, and conductance values were calculated with heat fluxes positioned at

So = 0.1, 0.3, 0.5, 0.7, 0.9 at the steady-state condition. A mesh of 11,006

elements was simulated, and the conductance values were evaluated. Then,

the mesh was refined further to 25,253 elements, and the results changed less

than 1%. To ensure the accuracy of the mesh, results were compared with

[40], which studied heaters in channel flow. The only exception between the

two geometries is that in [40], a front extension was also used. The mesh of

11,006 elements agreed within 8% to the comparison values.

Second, the transient model was verified by first letting the model run

until it reached “steady-state” and comparing the same conductance values

for the mesh and the refined mesh. The results changed less than 1% between
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mesh refinements and agreed within 8% to the comparison values. To ensure

that the mesh could accurately model a changing inlet temperature, a sinu-

soidal temperature oscillating with a small amplitude was used. Again, the

results changed less than 1% between mesh refinements and agreed within 8%

of the comparison values.

Lastly, temperature measurements at various locations within the sys-

tem (five points spaced evenly along the centerline at ỹ = 0.5 and five points

spaced evenly at ỹ = 0.05) between refinements when the model was simu-

lated for two time units with an inlet temperature of T̃ = 2 and the system

temperature was initially set at T̃ = 1. There was less than 1% difference with

the same mesh refinements as before.

Thus, a model with 11,006 elements was chosen for the channel flow

study.

4.3 Verification of Channel Flow with an Obstacle

The geometry and variables of the channel flow with an obstacle was

based on the study by [41]. Figure 4.2 illustrates the model. Again, laminar,

incompressible fluid flow is assumed through the 2-D channel with adiabatic

walls. In this study, H = 1, Le = 2, Lo = 8 and w = h = 0.25.

The governing equations (Eqns. 4.1, 4.2 and 4.3) were non-dimensionlized

with the following dimensionless variables:
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Figure 4.2: Channel flow with an obstacle.

(x̃, ỹ, h̃, w̃, S̃o) =
x, y, h, w, So

H
, (ũ, ṽ) =

(u, v)

Um

(4.13)

T̃ =
T − T∞
q′′oH/kf

, P̃ =
PH

µfUm

, t̃ =
Um

H
t (4.14)

The non-dimensionlized governing equations then become

∇ · ṽ = 0 (4.15)

Dṽ

Dt̃
= -∇P̃ +

1

Re
∇2ṽ (4.16)

RePr
DT̃

Dt̃
= ∇2T̃ (4.17)

where
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Re =
UmH

νf
, P r =

νf
αf

(4.18)

The subscript ’f ’ refers to the fluid properties.

The mean velocity is given by um = 1
H

∫ H

0
u(y)dy. In this study, fluid

enters the channel at a specified inlet temperature with a fully, developed

parabolic profile given by

u = 6y(1− y), v = 0 (4.19)

The outlet conditions were

∂ũ

∂x̃
=
∂ṽ

∂x̃
=
∂T̃

∂x̃
= 0 (4.20)

The no-slip condition and adiabatic condition (u = 0, v = 0,∂T
∂y

= 0

were used at the upper and lower channel walls. At the solid obstacle and

fluid interface, the following conditions were used:

ũ = 0, ṽ = 0, T̃f = T̃s, kf
∂T̃f
∂n

= ks
∂T̃s
∂n

(4.21)

where the subscript ’f ’ represents the fluid, ’s’ represents the solid and ’n’

represents the direction normal to the surface.

To validate the mesh, the Nusselt number, defined as Nux = hH
kf

=

- 1
T̃w

∂T̃f

∂n
, was calculated along the obstacle wall and compared with the results
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from [41] for Re = 200 and Pr = 0.72 when ks/kf = 10. To compare the

results, a heat flux, q” = 1, was prescribed into the base of the solid, and the

temperature boundary condition at the entrance, T̃ = 0. First, a steady-state

comparison was conducted and a mesh of 227,475 elements was used. Then,

to test the grid independence, a finer mesh (471,742 elements) was tested with

a difference of less than 2% of the original values. Then the Nusselt numbers

were compared with [41] and the results agreed within 10% of the values,

except at locations extremely close to the two top corners (at distances of

0.002 from each corner) of the obstacle, which agreed within 36%. To verify

the transient model, a sinusoidal inlet temperature was used, and the results

agreed within 2% of the original values. Thus, a mesh of 227,475 elements was

chosen.
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Chapter 5

Anomaly Detection and Localization in

Channel Flow

This chapter will begin by describing the anomaly, which was a heat

flux through a portion of the wall, that was simulated for channel flow. Then,

the results of detecting and localizing anomalies in different parts of the sys-

tem and various combinations of inputs and outputs needed to accomplish

that will be discussed. It will be shown that both detection and localization

capabilities depend largely on the sensor configuration within the system. De-

tection and precedent-free localization was achieved for three anomalies that

were positioned at different locations in the system. Lastly, a more dynamic

system was created, and the results show that detection sensitivity decreased.

5.1 Description of Anomalies

A heat flux through a portion of the channel wall was simulated at three

different positions along the bottom wall, as shown in Fig. 5.1. The fault was

a heat flux that linearly increased with time (0 ≤ q̃” ≤ 1 from 50 ≤ t̃ ≤ 300)

through a small portion of the channel wall.

Anomalies 1, 2 and 3 each had a width of D̃o = 0.1 and were located
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Figure 5.1: Locations of Anomalies 1, 2 and 3.

at S̃o = 0.0, 0.3 and 0.9, respectively (see Fig. 4.1). When referring to

anomaly simulations, for example, Anomaly 1 will refer to a simulation where

normal behavior was first simulated, followed by anomalous behavior being

simulated (heat flux through the wall) at the Anomaly 1 position. The same

convention will be used from Anomaly 2 and Anomaly 3 at their respective

positions. The following sections explore the capabilities and limitations of

the GSMMS-based distributed anomaly detection method with different sensor

configurations providing inputs and outputs to the system.

5.2 Finding the Orders of the Model

Before fault detection can proceed, the orders of the model must be

chosen. To reiterate from Chapter 3, the GSMMS partitions the operating

space into regions, and in each region, local models of linear form

Fm(s(k)) = aT
i s(k) + bi (5.1)
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where ai and bi denote the vectors of parameters of the local model i and

s(k) = [yT (k), . . .yT (k− na + 1),uT (k− nd), . . . ,u
T (k− nd− nb + 1)]T (5.2)

are assumed, where y(k) = [y1(k), . . . , yp(k)]T and u(k) = [u1(k), . . . , um(k)]T

are respectively, vectors of outputs and inputs, nd is the time delay between

when the input reaches the output, and na and nb are the orders of the model.

The orders and the time delay were chosen based from the combination

that resulted in the lowest root mean square (RMS) error on the testing data.

Just like the training set, the testing data corresponded to the normal system

behavior, except that the inlet conditions were different from the training data.

The inlet conditions will be discussed in the next section.

For the rest of the study, all the input(s)/output orders and the time

delay were chosen in this manner, i.e., many combinations of the orders and

time delay were tried, and the combination with the lowest RMS was chosen for

each system model. A recent paper [42] showed that the model order and delay

parameters can be selected more systematically, but it was out of the scope

of this study. For all the input(s)/output data in this chapter, temperature

measurements were recorded in time increments of t̃ = 0.2. The data was

polluted with 0.5% noise to simulate sensor noise.
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5.3 Fault Detection in Simple Channel Flow with an
Inlet and Outlet Temperature Sensor

Intuitively, in the presence of an anomaly within a thermal-fluid system

where there are fluid flow and heat transfer phenomena, anomalous effects will

propagate throughout the system, thus complicating the localization of the

sources of the anomalies.

The “eyes” of the fault detection method are the inputs and the out-

put used by the anomaly detector. If the inputs and the output are not

significantly affected by the anomaly, the anomaly will go unnoticed. It was

expected that the anomaly, modeled as a heat flux through the wall, would

affect the temperature distribution in the channel, which would thereby result

in discrepancies between the GSMMS-predicted temperature outputs and the

actual temperature outputs.

In this section, it was assumed that the system behaves normally when

it is characterized by a constant Reynolds number (ReD = 100) flow with the

inlet temperature changing at random times for random time intervals. An

example of the inlet temperature in a short time interval is shown in Fig. 5.2.

The inlet temperature changed at random time intervals for a period

anywhere from t̃ = 4−7 and ranged between T̃ = 0−1 (as described in Chapter

4, both temperature and time were non-dimensionalized). Thermal inertia was

accounted for by smoothing the temperature transitions using COMSOL’s gen-

eral function type. Random intervals and temperatures were created in MAT-

LAB, which were then used to create the inlet conditions for each COMSOL
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Figure 5.2: Example of how the temperature changed with time (both non-
dimensionalized).
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Figure 5.3: Anomaly 3, input (x̃ = 0, ỹ = 0.05) and output (x̃ = 1, ỹ = 0.05)
positions.

simulation by using the ’constant’ extrapolation method where a ’continuous

first derivative’ smoothing of 0.2 was used.

First, to verify that the method could detect anomalous behavior, the

simplest configuration, shown in Fig. 5.3, was tested. In this configuration,

only one input placed at the beginning of the channel (x̃ = 0, ỹ = 0.05) was

used, while the output was obtained from a sensor placed at the very end of the

channel (x̃ = 1, ỹ = 0.05). Thus, the GSMMS model uses the input from the

beginning of the channel to predict the temperature at the end of the channel.

An anomaly was placed at the end of the channel, essentially directly below

the output temperature sensor. Therefore, one expected to achieve detection

relatively easily since the output was relatively close to the anomaly.

Figure 5.4 shows the confidence value (CV, defined by Eqn. 3.14) vs.

time plot. Between t̃ = 0−50, the system behaved normally, which is confirmed

by the high CVs over that period of time. At t̃ = 50, the heater was turned

on, beginning at q̃” = 0 and linearly increasing to q̃” = 1 by the end of the

simulation (t̃ = 300). Clearly, the CV dropped during that time, which clearly

indicates that abnormal behavior was occurring.
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Figure 5.4: CV plot for Anomaly 3 with 1 input (x̃ = 0, ỹ = 0.05) and 1
output (x̃ = 1, ỹ = 0.05).

However, let us now observe Figs. 5.5(a) and 5.5(b), which show the

CVs corresponding to the same input/output pair but with Anomalies 1 and

2 inserted into the system, respectively. There is obviously a detection lag

because the anomaly was moved further upstream from the output. 1

Furthermore, there is an obvious difference in the sensitivity of the

anomaly detection in the cases of Anomalies 2 and 3 since the CV drop is

less pronounced than in Fig. 5.4. For Anomaly 3, the overall CV drop was

approximately 0.7, whereas the overall CV drop for Anomalies 1 and 2 were

0.95 (hardly dropped) and 0.9, respectively. The reason for the differences is

that in the case of Anomaly 1 and 2, the anomaly’s effects have dissipated by

the time they have reached the temperature sensor at the end of the channel

(output sensor). Conversely, in the case of Anomaly 3, the anomaly’s effects

have not dissipated much because the anomaly is located close to the output.

1Note that the same inlet temperature conditions and the same linearly increasing heat
flux were used as before; only the location of the anomaly was simulated differently.
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(a) Anomaly 1
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(b) Anomaly 2

Figure 5.5: CV plots for Anomalies 1 and 2 with 1 input (x̃ = 0, ỹ = 0.05)
and 1 output (x̃ = 1, ỹ = 0.05).

The above results show that since anomalous effects dissipate, the

anomaly detection sensitivity will be different depending on where the anomaly

is located relative to the position of the output. Thus, a more refined approach

to sensor configuration placement is needed that can better detect a potential

fault located anywhere in the system.

5.4 Fault Detection in a Simple Channel Flow with Dis-
tributed Sensing

In this section, the effects of distributed sensing and the inclusion of

more inputs in the anomaly detection model is explored. In this way, we can

observe if adding more inputs to the underlying GSMMS will increase detection

sensitivity at a particular output location. Table 5.1 gives the x̃ positions for

the inputs that were tested. Figure 5.6 shows the input sensor configurations

that were tested, and Fig. 5.7 shows the effect of adding more inputs for the
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Table 5.1: The x̃ positions of the inputs tested. For all inputs, ỹ = 0.05.

x̃
1 input 0.0
3 inputs 0.0, 0.3, 0.7
5 inputs 0.0, 0.2, 0.4, 0.6, 0.8
10 inputs 0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9

three anomalies.

As seen in Figs. 5.7(a) and 5.7(b) the detection sensitivity was not

affected as the number of inputs increased for Anomalies 1 and 2, i.e., adding

more inputs did not increase the overall CV drop. In fact, for both Anomaly

1 and 2, when the anomaly was placed at the beginning and middle of the

channel, respectively, the CV dropped more with fewer inputs. The reason

for less detection sensitivity with more inputs is likely because the GSMMS

model included more inputs that were affected by the anomaly and thus, ends

up in the “unusual” (not well-trained) SOM regions where the local models

are not very reliable (and hence, not very sensitive either). Alternatively, with

less inputs affected by the anomaly, the GSMMS remains in the “usual” (well-

trained) SOM regions, where local models are reliable, accurate, and therefore

more sensitive to anomalies.

Differently, the results for Anomaly 3 indicate that generally, the greater

the number of inputs, the more the CV will drop; however, a limit does seem

to exist, i.e., as more inputs were added, there was less and less of an overall

drop in CV. The reason why we see this pattern with Anomaly 3 and not with
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Figure 5.6: The positions of inputs. The positions of the three anomalies are
also shown (note: for each simulation, only one anomaly was simulated).
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Figure 5.7: Anomalies 1, 2 and 3 with multiple inputs where the output is at
the outlet of the channel. Note that the CV scale is different for Anomaly 3.
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Anomalies 1 and 2 is that unlike the cases of Anomalies 1 and 2, the bulk of

the inputs are unaffected by Anomaly 3 and thus, the GSMMS is able to gain

additional information from the additional inputs without jumping into SOM

regions where local GSMMS models are unreliable.

From the aforementioned results, it is clear that the relative distance

between the output and the anomaly is important. Only if the output is close

to the anomaly will more inputs benefit fault detection sensitivity. However,

if an anomaly’s effects have dissipated, the anomaly can go undetected and

the use of more inputs will not significantly enhance the sensitivity.

Once an anomaly is detected, the next logical step is to localize its

source (or sources). Let us use distributed GSMMS-based anomaly detectors

to localize the source of anomalous behavior.

5.5 Fault Localization in a Simple Channel Flow using
Distributed Anomaly Detectors

In the previous section, it was shown that a single sensor configuration

will be prone to “blind spots” in which anomalies could not be detected and/or

localized. In this section, rather than changing the number of inputs, only the

position of the output will be changed. By inspecting the pattern of CV plots,

both detection and localization will be attempted.

Figure 5.8 shows the pattern of CVs output by distributed GSMMS

anomaly detectors for Anomalies 1, 2 and 3. Anomaly detectors were formed

based on the GSMMS using two inputs from the beginning of the channel
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(x̃ = 0, ỹ = 0.05 and 0.95) and an output located downstream of the input

2. The individual anomaly detectors (corresponding to individual CV plots)

differ according to the position of the output. The output position was moved

downstream from left to right. 3. There were ten output positions spaced

evenly from inlet to outlet, where the larger position number indicates a posi-

tion further downstream. The output positions used for each Fig. 5.8 subplot

is indicated in the channel drawing below the CV plots.

Figure 5.8(a) shows the results for Anomaly 1, the anomaly placed at

the beginning of the channel. Clearly, anomalous behavior is indicated by the

large overall CV drop for Positions 2 and 3. As the output was moved further

downstream, the overall CV dropped less and less. This result agrees with the

previous results: as the distance between the output and the anomaly becomes

larger, the anomalous effects dissipate, and the corresponding CV drops less.

Nevertheless, unlike what we had in the previous section where we only had

a single anomaly detector (a single CV profile), the pattern of CVs output by

the series of anomaly detectors we considered in Fig. 5.8(a) clearly indicates

that the anomaly’s point of origin is between the inlet and Position 2 or 3,

which is where the anomaly is indeed located.

Using the same approach, Anomalies 2 and 3 can be detected and local-

ized from using CV patterns shown in Figs. 5.8(b) and 5.8(c), respectively. For

2all at a height of ỹ = 0.05
3Note that each anomaly detector and corresponding CV plot is a result of a different

GSMMS model
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(a) Anomaly 1: Positions 2, 3, 4, 6, 10 correspond to x̃ = 0.1, 0.2, 0.3, 0.5, 0.9,
respectively.

(b) Anomaly 2: Positions 2, 4, 6, 8, 10 correspond to x̃ = 0.1, 0.3, 0.5, 0.7, 0.9, re-
spectively.

(c) Anomaly 3: Positions 4, 6, 8, 10, 11 correspond to x̃ = 0.3, 0.5, 0.7, 0.9, 1.0,
respectively.

Figure 5.8: Anomalies 1, 2 and 3 where different output positions were used
for each anomaly.
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Anomaly 2, as shown in Fig. 5.8(b), normal behavior is indicated at Position

2. At Position 4, the CV drops slightly, indicating anomalous behavior, which

is expected because Position 4 and the anomaly’s location overlap slightly. At

Position 6, the CV experienced the largest drop, and as the output is posi-

tioned further downstream, the overall CV drop decreases. Thus, an anomaly

is detected and from the pattern of CV plots, it can be localized between Po-

sitions 4 and 6. Similar analysis of CV patterns in Fig. 5.8(c), the CV plots

pinpoints Anomaly 3. Thus, the same sensor configuration approach was used

to detect and localize an anomaly occurring at three different locations in the

system.

In addition, the same approach can be used to detect and localize,

multiple anomalies occurring simultaneously in the system, which has been

a limitation of past fault detection methods. Figure 5.9 shows the CV plots

when both Anomaly 1 and 2 occur simultaneously. As expected, the CV

drops at Positions 2 and 3, which is the same as Fig. 5.8(a). However, at

Position 5, the CV drops more than the previous position’s CV. Downstream of

Position 5, the overall CV drop decreases with position. Knowing that effects

dissipate in a thermal-fluid system, this result indicates that two anomalies

are occurring, with the first one being at the beginning of the channel, and

the second anomaly being between Positions 4 and 6.

In this section, it was shown that distributed anomaly detectors can be

used to detect and localize anomalies in a thermal-fluid system. Conceivably,

only the number of sensors and their spacing limit the granularity of localiza-
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Figure 5.9: CV plots when both Anomaly 1 and 2 occur simultaneously. Notice
that at Position 5, the overall CV drop is greater than that at Position 4,
indicating a second anomaly is occurring.

tion, i.e., with more anomaly detectors, a higher resolution of localization can

be achieved.

5.6 Fault Detection and Localization in a More Dy-
namic System

In the previous sections, the system was characterized by ReD = 100,

which is a relatively “slow” system. The anomalous effects had time to prop-

agate before they reached the outlet, and fault detection and localization are

more likely to be achieved if phenomena occur slowly since effects will dissipate

at a slower rate. In this section, the results from a more dynamic system are

described and discussed.

The previous results were from a system where only the inlet tem-
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perature changed at random intervals, and the Reynolds number remained

constant. To create a more dynamic system, simulations were created where

both the inlet temperature and the Reynolds number changed simultaneously.

The range of the Reynolds number was between 100 and 1000, and it changed

at increments of 100 at random intervals between t̃ = 4−8. Figure 5.10 shows

an example of how the temperature and Reynolds number could change with

time. Note how the two parameters changed at different times for different

time intervals.

As was done previously, Anomalies 1, 2 and 3 were simulated. Normal

behavior was simulated from t̃ = 0 − 50, and the heat flux began at t̃ = 50,

linearly increasing from q̃” = 0−1. Figure 5.11 shows the results for the three

anomalies.

Figures 5.8 and Fig. 5.11 can be directly compared because the same

anomalies were simulated with the same inputs and output. The only differ-

ence is both temperature and Reynolds number were changing in the Fig. 5.11

simulations, whereas only temperature was changing in the Fig. 5.8 simula-

tions.

The most obvious difference between the two simulations is that with

the more dynamic system, the overall CV drop was much less (note that the

CV scale is different in Fig. 5.11). This is expected because with a “faster”

system, the anomalous effects will be harder to discern from normal behavior.

For example, for Anomaly 1, when q̃” = 1 at the end the simulation, the overall

CV drop from Fig. 5.8(a) was approximately 0.5, whereas in Fig. 5.11(a), the
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Figure 5.10: Example of changing temperature (non-dimensionalized) and
Reynolds number.
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overall CV drop was approximately 0.9.

Also, localization becomes less clear with a more dynamic system. For

each anomaly in Fig. 5.11, the position that corresponded to the CV that

dropped first was one position further downstream compared with those in

Fig. 5.8. For example, in Fig. 5.8(a) (Anomaly 1), the CV at Position 2 was

the first CV to drop, while for the same anomaly, in Fig. 5.11(a), the CV at

Position 3 dropped first, not Position 2. Also noticeably, for Anomaly 3, the

CV at Position 11 hardly dropped, as seen in Fig. 5.11(c), whereas the CV at

Position 11 dropped to approximately 0.7, as seen in Fig. 5.8(c).

The loss of detection sensitivity may not be entirely due to an inherently

more dynamic and “faster” system, where anomalous effects have less time to

reside in the system before exiting. The foundation of the fault detection

method is system modeling using the GSMMS. If the system is not accurately

modeled, fault detection will not be as sensitive to deviations away from normal

behavior. The results from Fig. 5.11 used two inputs positioned at the very

beginning of the channel. Intuitively, inputs located closer to the output would

more likely predict a more accurate output.

For the following results, the inputs were positioned close to the output,

normal behavior occurred between t̃ = 0− 50, and then the heater was turned

at t̃ = 50 and increased linearly from q̃” = 0−1 until the end of the simulation

(t̃ = 500). Figure 5.12 shows the results for a single input that is one position

upstream (a distance of x̃ = 0.1) of the output for Anomaly 2. Clearly, the

CV of Position 5 dropped, though the overall drop is approximately the same
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(a) Anomaly 1

(b) Anomaly 2

(c) Anomaly 3

Figure 5.11: Anomalies 1, 2 and 3 for a more dynamic system
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Figure 5.12: CV plots when an input directly upstream was used. Positions
4, 5, 6, 7 correspond to x̃ = 0.3, 0.4, 0.5, 0.6

as its counterpart in Fig. 5.11(b). However, differently from Fig. 5.11(b), the

downstream CVs indicate normal behavior. This is most likely because the

anomalous effects have already dissipated and thus, the downstream outputs

are not as affected by the anomaly. In this way, localization becomes more

definite as clearly seen in Fig. 5.12, the anomaly’s point of origin is between

Positions 4 and 5.

In this chapter, it was shown that fault detection and precedent-free

localization can be achieved when multiple anomaly detectors are used. A

single sensor configuration could be “blind” to different faults because the

anomalous effects could dissipate entirely by the time they reach the output.

Using multiple anomaly detectors ensures that more of the system can be

monitored. However, fault detection and localization greatly depend on the

dynamics of the system. The “faster” the anomalous effects travels through

and exits the system, the less sensitive detection becomes. Using inputs that

59



are close to the output can make localization clearer, though the CV plots

need to be interpreted carefully.

In the next chapter, a more complex system is simulated to observe if

the distributed anomaly detection approach is effective.
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Chapter 6

Anomaly Detection and Localization in

Channel Flow with an Obstacle

In the previous chapter, fault detection and precedent-free localization

was achieved in simple channel flow through distributed anomaly detection.

However, channel flow is characterized by relatively simple flow dynamics. In

this chapter, the distributed anomaly detection approach is applied to a more

dynamically complex system: a channel flow with a sharp obstacle.

6.1 Description of Anomalies and Normal Behavior

The system, shown in Fig. 4.1, is channel flow and contains an obstacle

that obstructs the flow. As was done in the previous chapter, a heat flux that

linearly increased with time (0 ≤ q̃” ≤ 1 from100 ≤ t̃ ≤ 200) through a portion

of the wall acted as the anomaly. For each anomaly, the heat flux began at

t̃ = 100. Three anomalies were simulated, as shown in Fig. 6.1. Anomaly 1

(positioned at S̃o = 1.7) was located upstream of the obstacle. Anomaly 2 was

located downstream of the obstacle (positioned at S̃o = 2.35), and Anomaly 3

was located on the channel wall above the obstacle (positioned at S̃o = 2.1).

Also, as was done previously in Chapter 5, the width of each heat flux was

61



Figure 6.1: Locations of Anomalies 1, 2 and 3.

D̃o = 0.1.

In the following simulations, normal system behavior was characterized

by a constant Reynolds number of 200 and a Prandtl number of 0.72. The inlet

temperature ranged from T̃ = 0− 1 and changed at random times for random

intervals (between t̃ = 4−6). Temperature measurements were sampled every

t̃ = 0.1, and 0.5% noise was added to each measurement.

6.2 Fault Detection and Localization Upstream of the
Obstacle

Similarly to what we did in Chapter 5, we will use distributed GSMMS-

based anomaly detection and interpretation of the CVs output and then lo-

calize an anomaly’s point of origin. The sensors were located a distance of

ỹ = 0.05 away from the walls, spaced a distance of x̃ = 0.1 apart along the
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Figure 6.2: Anomaly 1 is upstream of the obstacle. The position number in
the CV plots represents the output position.

channel walls and spaced a distance of x̃ = 0.025 along the obstacle wall. The

sensor configuration is shown in Fig. 6.1. For each sub-system, one input was

used, which was the sensor directly upstream of the output. Also, as was done

in Chapter 5, the orders of each model were chosen based on the lowest RMS.

Figure 6.2 shows the result for Anomaly 1, the anomaly upstream of

the obstacle. For clarity, only a portion of the wall is shown. The position

number shown in the title of each CV plot refers to the output position. The

corresponding input is always the previous Position number.

From Fig. 6.2, abnormal behavior is clearly indicated at Position 18,

where the overall CV dropped to approximately 0.73. Also, the CV at Positions

17, 19 and 20 dropped approximately 0.05, 0.05 and 0.02, respectively, by the

end of the simulation.
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However, localization is less clear. Anomalous behavior can be isolated

between Positions 16 and 21 since both the CVs at those locations indicate

normal behavior. Anomaly 1 was located between Positions 18 and 19, but

the first CV to drop was located at Position 17, which is slightly upstream

of the anomaly. However, the largest drop occurred at Position 18, which is

above the anomaly. This CV pattern differs from the results in Chapter 5,

where the first CV to drop was either the output above the upstream corner

(the CV at Position 18 in Fig. 6.2) or one of the two outputs downstream of

the anomaly (Positions 19 or 20).

The reason for this behavior can be explained by Fig. 6.3 (note that

the black lines above the obstacle are meshing boundaries since a finer mesh

was required above the obstacle due to the high gradients). Figure 6.3(a)

shows that no recirculation exists at Position 17 (x̃ = 1.6, ỹ = 0.05), but

the velocity is very small. Therefore, it is reasonable to assume that the heat

flux is propagating out in all directions and not being dissipated downstream.

Figure 6.3(b) shows a steady-state example when the heat flux at the Anomaly

1 position is q̃ = 1, and the inlet temperature is T̃ = 0. The results show that

the anomalous effects can affect the upstream sensor at Position 17, which is

why its CV dropped. Thus, it is difficult to localize the anomaly upstream of

the obstacle without knowing how the particular anomaly propagates outwards

into the system.
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(a) Velocity field upstream of the obstacle. The arrows show
that there is no recirculation.

(b) Temperature field upstream of the obstacle, which shows
a steady-state example when q̃” = 1. The figure shows that at
the highest heat flux, the temperature at (x̃ = 1.6, ỹ = 0.05)
is affected by the anomaly. Note that the heat flux from
Anomaly 1 is situated between 1.7 ≤ x̃ ≤ 1.8, and the output’s
CV to drop first, as seen in Fig. 6.2, is located at x̃ = 1.6.

Figure 6.3: Velocity and temperature field upstream of the obstacle.
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Figure 6.4: Anomaly 2 is downstream of the obstacle. The position number
indicated in the CV plots represents the output position.

6.3 Fault Detection and Localization Downstream of
the Obstacle

Figure 6.4 shows the CV plots for Anomaly 2, which is downstream of

the obstacle. The CVs along the obstacle wall drop slightly (Positions 47-55).

The first CV to substantially drop is at Position 56, while the largest overall

CV drop was at Position 58. However, the CVs at Positions 57, 58 and 59

all approximately dropped the same amount, which is different from previous

results. Typically, only a single, large CV drop was observed.
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(a) Velocity field downstream of the obstacle. The arrows show that there
is recirculation.

(b) Temperature field downstream of the obstacle, which shows a steady-
state example when q̃” = 1.

Figure 6.5: Velocity and temperature field downstream of the obstacle.
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The relatively large CV drop at the three adjacent positions indicate

an anomaly whose size is larger than what has been seen, i.e., a heat flux with

a larger D̃o (larger width along the channel wall). To explain this result, Fig.

6.5(a) shows the velocity field downstream of the obstacle, where a recircula-

tion pattern exists; the fluid is slowly rotating in the clockwise direction, from

upstream to downstream. Figure 6.5(b) shows the temperature field down-

stream of the obstacle. As seen previously in Fig. 6.3, since the velocity is so

low, the heat flux essentially propagates in all directions outwards.

However, the low velocities and the existence of recirculation does not

explain why the three adjacent CVs all dropped to approximately the same

level. Figure 6.6, which shows an example of the temperature gradient dur-

ing normal behavior, offers an explanation. Figure 6.6 shows that a higher

temperature gradient appears upstream of the obstacle compared with the

temperature gradient downstream of the obstacle. It is obvious from Figs.

6.3(b) and 6.5(b) that a heat flux results in relatively high temperature gra-

dients around the vicinity of its origin. Thus, upstream of the obstacle, the

outputs are not as “surprised” by the anomalous effects as the outputs down-

stream of the obstacle, which explains the single large CV drop in Fig. 6.2,

and several large CV drops in Fig. 6.4. Upstream of the obstacle, the dynam-

ics of a heat flux are similar to the dynamics during normal behavior but not

similar to the dynamics downstream of the obstacle. Thus, upstream of the

obstacle, the GSMMS predictions for each output will be closer to the actual

output compared with the predictions downstream of the obstacle.
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Figure 6.6: Example of the temperature gradient during normal behavior. To
better show the gradient near the wall, a maximum temperature gradient of
3 was set, which explains the white space. The highest gradients occur along
the top of the obstacle.
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Figure 6.7: Anomaly 3 is above the obstacle. The position number indicated
in the CV plots represents the output position.

6.4 Fault Detection and Localization Above the Obsta-
cle

Figure 6.7 shows the CV plots for Anomaly 3, the anomaly above the

obstacle. Since the dynamics above the obstacle are similar to simple channel

flow, the CV plot pattern is similar to the results from channel flow without

the obstacle.

The CV plot at Position 22 dropped first, and the CV plot at Position

23 exhibited the largest drop. Both Positions 24 and 25 only dropped slightly.

Thus, anomalous behavior was detected, and its origin can be determined to

be between Positions 21 and 23.

From the results of this chapter, it was found that anomalous behavior

can be detected in a more hydrodynamically complex system by dividing the

system into many sub-systems and monitoring the entire system with simple

one-input one-output models, where inputs are directly upstream of the out-
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put. With this approach, localization of the anomaly can also be achieved

through the multiple anomaly detectors. However, localization becomes less

clear because the anomalous effects can propagate upstream. Also, the same

type of anomaly can result in a different CV plot pattern, depending on the

dynamics in the system. Thus, as systems become more complex, knowledge

of the system dynamics may be increasingly needed to properly interpret the

CV plot patterns.
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Chapter 7

Conclusions and future work

7.1 Conclusions

Past fault detection and localization methods require extensive a priori

knowledge of the system and knowledge of the potential fault characteristics.

Therefore, such precedent-based methods are limited to whether this knowl-

edge exists. In this thesis, a precedent-free fault detection and localization

method was applied to selected channel flow systems. Using only normal-

behavior data, faults located at different positions were detected and then

localized.

The previously developed Growing Structure Multiple Model System

(GSMMS) based fault detection and localization method was used to accom-

plish this goal. Data-driven models, such as GSMMS models, are advantageous

compared with models based on first principles because they usually require

fewer assumptions, are less time consuming to create and enable one to utilize

process measurements that are readily available. Specifically, the GSMMS-

based method is a “divide and conquer” approach to system modeling that

uses a self-organizing map (SOM) to partition the operating space of the sys-

tem (state space of the system) into regions of similar input-output patterns,
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and a linear model is fit within each region. Thus, a highly complex, nonlinear

system can be accurately modeled using models that are locally tractable.

Just like in most other anomaly detection schemes, an abnormality

is detected when modeling residuals differences between system outputs and

those predicted by the model display abnormal dynamic patterns. Residuals

are the differences between the model-predicted output and the monitored

output. In the past anomaly detection methods, faults were detected when

residuals become greater than a pre-defined threshold. If the threshold is set

too low, numerous false alarms will result, and if the threshold is set too high,

faults can go undetected. In this thesis, a more refined residual analysis was

performed that eliminated the need to set pre-defined thresholds. Instead,

residual analysis was performed locally, within each GSMMS region, which

simplified the analysis. For each region within the system model, a confidence

value (CV) was calculated as the overlap of the probability density function

(PDF) of the modeling residuals corresponding to the normal system behavior

data and the currently observed GSMMS residuals. Thus, if no fault exists in

the system, the CV will be close to one, indicating that the current residual

behavior matches the normal residual behavior well and will be reduced when

the current system is deviating from normal behavior. For simplicity, a global

CV was created as the geometric mean of the regional CVs, indicating the

general deviation away from normal behavior that drops lower as soon as one

(or a few) regional CVs drop. Obviously, only normal behavior knowledge is

needed for a fault to be detected.
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Numerical verification of the GSMMS anomaly detection and fault lo-

calization based on distributed anomaly detectors was conducted on two sim-

ulated thermal-fluid systems. Data measurements for both systems were ob-

tained by simulating channel flow using the finite element method. The first

system was a single channel flow in which normal behavior was first defined by

a changing inlet temperature with a constant Reynolds number. The GSMMS

models used temperature measurements at various points in the channel as

the inputs and outputs. A heat flux through a portion of the channel wall,

which linearly increased from zero to one, was simulated as the anomaly, and

CV plots were created.

Three anomaly positions were separately simulated to compare the de-

gree of detection and localization: at the beginning, near the middle and

the end of the channel. It was found that the relative distance between the

anomaly and the output sensor was important. If the distance was too great,

the anomalous effects will have dissipated upon reaching the output and thus, a

single input/output configuration becomes “blind” to certain faults, depending

on the anomaly’s point of origin. Therefore, multiple anomaly detectors that

monitor different sub-systems (sections of the system) are needed to prevent

“blind spots”. Using distributed anomaly detection, the three anomalies were

detected by interpreting the CV plots pattern. Since anomalous effects dissi-

pate in channel flow, the sub-system with the largest overall CV drop indicates

the approximate point of origin of the anomaly. Thus, not only were the three

anomalies detected using the same input/output configuration, but they were
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also localized within the system using only normal system behavior. Further-

more, the same approach was able to detect and localize multiple anomalies

occurring simultaneously, which has been a major limitation in previous fault

detection methods.

Since channel flow is a relatively simple system, more complex systems

were tested. First, the channel flow system was made more dynamic by sim-

ulating normal behavior where both the inlet temperature and the Reynolds

number changed at different times for different time intervals. Using the same

anomalies and the same input/output configuration, the anomalies were de-

tected and localized but with less sensitivity than before, i.e., each sub-system’s

overall CV drop was less than when only the inlet temperature changed.

Secondly, a different channel flow system with a sharp obstacle was

created. Using the same paradigm of distributed anomaly detection, three

anomalies that were positioned upstream, downstream and above the obstacle

were detected. It was noted that anomaly localization was more challenging

to achieve than in the case of a smooth channel flow because of the interaction

of the heat flux (the anomaly) with the system. Upstream of the obstacle, the

velocities are very low, which allows anomalous effects to propagate upstream,

thereby affecting the output and consequently, the CV plot upstream of the

anomaly. Downstream of the obstacle, the velocities are also very low and be-

cause the anomaly has a larger effect on the dynamics in that area downstream

of the obstacle, the overall CV drop is greater than the same anomaly occurring

upstream. Thus, localization is not as clear in a more complex system.
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7.2 Future work

The main objective of this work was to verify that the GSMMS-based,

precedent-free fault detection and localization method could successfully be

applied, for the first time, to a distributed parameter system. Both detection

and localization was achieved in two channel flow systems of different com-

plexity using only normal behavior data. To further advance this work, the

following are recommendations for future work:

• In this study, only a single type of fault was simulated: a heat flux

through a portion of the wall. Other faults need to be simulated, such as

fouling or leaking, which are typical examples of faults in a thermal-fluid

system.

• In this study, the highest Reynolds number occurring in the system was

1000, which is still a laminar flow, whereas numerous practical systems

are characterized by turbulent flows. Therefore, a GSMMS-based model

of a turbulent flow system also needs to be obtained and its accuracy

verified. It is expected that with a higher Reynolds number, both fault

detection and localization will be more challenging because of the in-

crease in system complexity.

• Since anomalous effects tend to dissipate as they travel downstream, the

sensor configuration is of vital importance. A systematic way to opti-

mize the sensor configuration is needed to achieve good fault localization

(coverage of “blind spots”) with the lowest possible sensing costs.
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