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Chapter 3

De novo construction of q-ploid
linkage maps using discrete graphical
models 1

Abstract

Linkage maps are important tools for genetic research. New sequencing techniques have
created opportunities to substantially increase the density of genetic markers. Such rev-
olutionary advances in technology have given rise to new challenges, such as creating
high-density linkage maps. Current multiple testing approaches based on pairwise recom-
bination fractions are underpowered in the high-dimensional setting and do not extend
easily to polyploid species. We propose to construct linkage maps using graphical models
either via a sparse Gaussian copula or a nonparanormal skeptic approach. Linkage groups
(LGs), typically chromosomes, and the order of markers in each LG are determined by
inferring the conditional independence relationships among large numbers of markers in
the genome. Through simulations, we illustrate the utility of our map constructionmethod
and compare its performance with other available methods, both when the data are clean
and contain no missing observations and when data contain genotyping errors and are
incomplete. We apply the proposed method to two genotype datasets: barley and potato
from diploid and polypoid populations, respectively. Whereas most tetraploid potato link-
age maps until now have been created either from diploid populations or from a subset
of marker types, our comprehensive map construction method will be able to deal with

1Behrouzi, P., and Wit, E. (2017a). De novo construction of q-ploid linkage maps using discrete graphical
models. arxiv preprint arxiv:1710.01063v3.
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realistic data settings for any biparental diploid and polyploid species containing arbitrary
marker types. We have implemented the method in the R package netgwas which is
freely available at https://CRAN.R-project.org/package=netgwas.
Key words: Linkage mapping; Diploid; Polyploid; Graphical models; Gaussian copula;
High-density genotype data.

3.1 Introduction

A linkage map provides a fundamental resource to understand the order of markers for
the vast majority of species whose genomes are yet to be sequenced. Furthermore, it is an
essential ingredient in the often used QTL mapping of genetic diseases, and particularly in
identifying genes responsible for heritable or other types of diseases in humans or traits
such as disease resistance in plants or animals.
Recent advances in sequencing technology make it possible to comprehensively sequence
huge numbers of markers, construct dense maps, and ultimately create a foundation for
studying genome structure and genome evolution, identifying quantitative trait loci (QTLs)
and understanding the inheritance of multi-factorial traits. Next–generation sequencing
(NGS) techniques offer massive and cost–effective sequencing throughput. However, they
also bring new challenges for constructing high–quality linkage maps. NGS data can suffer
from high rates of genotyping errors, as the observed genotype for an individual is not
necessarily identical to its true genotype. Under such circumstances, constructing high–
quality linkage maps can be difficult.
Each species is categorized as diploid or polyploid by comparing its chromosome num-
ber. Diploids have two copies of each chromosome. For diploid species many algorithms
for constructing linkage maps have been proposed. Some of them have been implemented
into user-friendly software, such as R/qtl (Broman et al., 2003), JOINMAP (Jansen et al., 2001),
OneMap (Margarido et al., 2007), and MSTMAP (Wu et al., 2008). Among the algorithms for
constructing genetic maps, R/qtl estimates genetic maps and identifies genotyping errors
in relatively small sets of markers. JOINMAP is a commercial software widely used in the sci-
entific genetics community. It uses twomethods to construct genetic maps: one is based on
regression (Stam, 1993) and the other uses a Monte Carlo multipoint maximum likelihood
(Jansen et al., 2001). OneMap has been reported to construct linkage maps in non-inbred
populations. However, it is computationally expensive. The MSTMap is a fast genetic map
algorithm that determines the order of markers by computing the minimum spanning tree
of an associated graph.

https://CRAN.R-project.org/package=netgwas
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Polyploid organisms have more than two chromosome sets. Polyploidy is very common
in flowering plants and in different crops such as watermelon, potato, and bread wheat,
which contain three (triploid), four (tetraploid), and six (hexaploid) sets of chromosomes,
respectively. Despite the importance of polyploid species, statistical tools for construc-
tion of their linkage map are underdeveloped. However, Grandke et al. (2017) recently
developed a method for this purpose. Their method is based on calculating recombina-
tion frequencies between marker pairs, then using hierarchical clustering and an optimal
leaf algorithm to detect chromosomes and order markers. Nevertheless, this method can
be computationally expensive even for a small numbers of markers. Furthermore, most
literature has focused on constructing genetic linkage maps for tetraploids, but these are
limited only to autotetraploid species. Only one, TetraploidMap, has been implemented in
a software (Preedy and Hackett, 2016), but because it needs manual interaction and visual
inspection its implementation is limited. Furthermore, current approaches to polyploid
map construction are based mainly on estimation of recombination frequency and LOD
scores (Wang et al., 2016), which does not use the full multivariate information in the data.

Different diploid and polyploid map construction methods have made substantial steps
toward building better–quality linkage maps. However, the existing methods still suffer
from low quality genetic mapping performance, in particular when ratios of genotyping
errors and missing observations are high. The main contribution of this chapter is to in-
troduce, for diploid and polyploid species, a novel linkage map algorithm to overcome the
difficulties arising routinely in NGS data. With the proposed method we aim to build high–
density and high–quality linkage maps using the statistical property called conditional de-
pendence relationships, which reveals direct relations among genetic markers. For diploid
scenarios, we evaluated the performance of the proposed method and the other methods in
several comprehensive simulation studies, both when the input data were clean and had
no missing observations and when the input data were very noisy and incomplete. We
measured the performance of the methods in accuracy scores of grouping and ordering. In
addition, we studied the performance of our method in constructing linkage maps for sim-
ulated polyploids, namely tetraploids and hexaploids. Furthermore, we applied the map
construction method in netgwas (Behrouzi and Wit, 2017b) to construct maps for two
genotype datasets: barley and potato from diploid and tetraploid populations, respectively.
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Fig. 3.1 General view of proposed linkage map estimation process. To illustrate, we use a diploid
population containing two copies of each chromosome. (a) Example of mating experiment of an
inbred F2 population. (b) Derived genotype data for 200 individuals which have genotyped for 500
markers. (c) Reconstruction of undirected graph between all 500 markers. (d) 10 linkage groups
(chromosomes) with markers ordered within each linkage group (LG).

3.2 Genetic background on linkage map

A linkage map is the linear order of genetic markers on a chromosome. Geneticists use
it to study the association between genes and traits. In this section we describe the rela-
tionship between a linkage map and single nucleotide polymorphism (SNP) markers. For
the moment, we assume that each allele can take only one of two values, A or a. This
assumption can be relaxed without requiring any methodological adjustments; more will
follow in the discussion. Here, we are dealing with markers from high–throughput data
such as NGS and SNP arrays.

3.2.1 Linkage map for diploids and polyploids

Diploid organisms contain two sets of chromosomes, one from each parent, whereas poly-
ploids contain more than two sets of chromosomes. In polyploids the number of chro-
mosome sets reflects their level of ploidy: triploids have three sets, tetraploids have four,
pentaploids have five, and so forth. Here, we refer to diploids and polyploids as q-ploid
q ≥ 2, where in diploids q = 2, triploids q = 3, tetraploids q = 4, and so on.
The genotype of any q-ploid organism can be homozygous or heterozygous at each single
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locus on the genome. Different genotype forms of the same gene are called alleles. Alleles
can lead to different traits. Alleles are commonly represented by letters; for example, for
the gene related to the trait, the allele could be called A and a. In q-ploid individuals there
are q copies of allele. If all q allele copies of an organism are identical, the organism is in
the homozygous state at that locus; otherwise it is in the heterozygous state. For instance,
a tetraploid individual is homozygous for two size alleles, A and a, if all 4 allele copies
are either A, or a, which correspond with the genotypes AAAA and aaaa, respectively. If
a tetraploid individual is heterozygous the following three genotypes would appear: one
copy of the A allele and three copies of a (e.g. Aaaa), two copies of A and two copies of a
(e.g. AAaa), or three copies of A and one copy of a (e.g. AAAa). Unlike existing methods,
our method works not only for diploid organisms but also for all polyploids. Obviously,
our method can also be used to analyze simple haploid organisms such as haploid yeast
cells.

3.2.2 Mapping population

Mating between two parental lines with recent common biological ancestors is called in-
breeding. Mating between parental lines with no common ancestors up to e.g. 4-6 genera-
tions is called outcrossing. In both cases, the genomes of the derived progenies are random
mosaics of the genomes of the parents. As a consequence of inbreeding parental alleles are
attributable to each parental line in the genome of the progeny, whereas in outcrossing
this is not the case.
Inbreeding progenies derive from two homozygous parents. Some inbreeding designs,
such as Backcrossing (BC), lead to a homozygous population where the derived genotype
data include only homozygous genotypes of the parents, namely AA and aa (conveniently
coded as 0 and 1). However, some other inbreeding designs such as F2 lead to a het-
erozygous population, where the derived genotype data contain both heterozygous and
homozygous genotypes, namely AA, Aa, and aa (conveniently coded as 0, 1 and 2; see Fig-
ures 3.1a and 3.1b for an example of a diploid species). Although many other experimental
designs are being used in genetic studies, not all existing methods for linkage mapping
support all inbreeding experimental designs. However, our proposed algorithm constructs
a linkage map for any type of biparental inbreeding experimental designs. In fact, un-
like other existing methods, our approach does not require specifying the population type
because it is broad and handles any population type that contains at least two distinct
genotype states.
Outcrossing or outbred experimental designs, such as full–sib families, derive from two
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Fig. 3.2 Cartoon example of conditional dependence pattern between neighboring markers in dif-
ferent population types: (a) homozygous, (b) inbred, (c) outcrossing (outbred) populations, where
ordered markers Y1, . . . , Y5 reside on chromosome 1, and Y6, . . . , Y10 on chromosome 2.

non–homozygous parents. Thus the genome of the progenies includes a mixed set of
many different marker types, including fully informative markers and partially informa-
tive markers (e.g. missing markers). Markers are called fully informative when all of the
resulting gamete types can be phenotypically distinguished on the basis of their genotypes;
they are called partially informative when the gamete types have identical phenotypes.

3.2.3 Meiosis and Markov dependence

During meiosis, chromosomes pair and exchange genetic material (crossover). In diploids,
pairing at meiosis occurs between two chromosomes. In polyploids the q chromosome
copies may form different types of multivalent pairing. For example, in tetraploids all
four chromosome copies may pair at meiosis. Assume a sequence of ordered SNP markers
Xc

1, X
c
2, . . . , X

c
d along chromosome c in a q-ploid species. We describe the Markov depen-

dence structure between markers for different population schemes. (i) During meiosis in
inbred populations, genetic material from one of the two parents is copied into the off-
spring in a sequential fashion, i.e. reading along the genome, until the copying switches
in a random fashion to the other parent. Thus, the genome of the offspring is a random
but piecewise continuous mosaic of the genomes of its parents. The genotype state at each
chromosomal region, or locus, of the offspring is either homozygous maternal, heterozy-
gous, or homozygous paternal. For instance, as a result of genetic linkage and crossover
a homozygous maternal genotype will typically be followed by a heterozygous genotype
before being able to be followed by a homozygous paternal genotype.
Genetic linkage means that markers located close to one another on a chromosome are
linked and tend to be inherited together during meiosis. Another key biological fact is that
during meiosis markers on different chromosomes segregate independently; this is called
the independent assortment law.
For example, in scheme (i) consisting of only a homozygous population, the random vari-
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able Yj which represents the genotype of an individual at location j can be defined as

Yj =

{
1 paternal marker at locus j on homologue k,
0 otherwise.

This scheme occurs in inbred homozygous populations that include only two genotype
states, namely homozygous maternal and homozygous paternal. Mapping populations,
such as backcrossing, are included in this scheme. Then, under the assumption of no
crossover interference – meaning when a crossover has formed, other crossovers are not
prevented from forming – the recombination frequency between the two locations j and
j + 1 is independent of recombination at the other locations on the genome. So, the fol-
lowing holds

Pr(Yj+1 = yj+1 | Yj = yj, Yj−1 = yj−1, . . . , Y1 = y1) = Pr(Yj+1 = yj+1 | Yj = yj) (3.1)

This equation indicates that the genotype of a marker at location j + 1 is conditionally
independent of genotypes at locations j − 1, j − 2, . . . , 1 given a genotype at location j.
This can be written as

Yj+1 (Y1, . . . , Yj−1) | Yj (3.2)

This defines a discrete graphicalmodelG = (V,E)which consists of verticesV = {1, . . . , p}
and edge setE ⊆ V ×V with a binary random variable Yj ∈ {0, 1}p. Given the above prop-
erty between neighboring markers, we construct linkage maps using conditional (in)de-
pendence models. Figure 3.2a shows a cartoon image of conditional (in)dependencies for
this scheme.

Scheme (ii): In inbred populations, one complication arises when in the genotype data we
cannot identify each homologue due to heterozygous genotypes. Q-ploid (q ≥ 2) het-
erozygous inbred populations, like F2, are examples of such cases, where we define Xjk

as

Xjk =

{
1 if marker j on homologue k is of type A,
0 otherwise

where A is one of the two possible alleles at that specific location. Here, Xjk represents
the allele at homologue k of a chromosome, where the genotype in that location can be
written as Xj. = {Xj1 . . . Xjq}. For example, at marker location j, Xj = Aaaa is one
possible genotype for a tetraploid species (q = 4); it includes one copy of the desirable
allele A where Xj1 = 1, Xj2 = 0, Xj3 = 0, and Xj4 = 0 represent the alleles in the first,
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second, third and fourth homologues, respectively. The other possible genotypes which
include one copy of the desired allele A are aAaa, aaAa, aaaA. Because it is typically
impossible to distinguish between genotypes with the same number of copies of a desired
allele (e.g. Aaaa, aAaa, aaAa, aaaA), we therefore take a random variable Yj as observed
in the number of A alleles at location j:

Yj =

q∑
k=1

Xjk. (3.3)

Table 3.1 shows an example of correspondence between Yj and Xj. for a q-ploid species
when q = 4. We note that a q-ploid species contains q + 1 genotype states at location j,
as shown in Table 3.1 for a tetraploid species.
Due to genetic linkage, the sequence of ordered SNPmarkers Y1, Y2, . . . , Yd forms aMarkov
chain as equation (3.1) with state space S which contains q + 1 states. Therefore, the
conditional (in)dependence relationship (3.2) between neighboring markers is held. Fig-
ure 3.2b presents a cartoon image of the conditional independence graph for this scheme.
Scheme (iii): In outcrossing (outbred) populations, unlike inbred populations, the mean-

Yj Xj.

0 aaaa
1 Aaaa, aAaa, aaAa, aaaA
2 AAaa, AaAa, AaAa, AaaA, aaAA
3 AAAa, AaAA, AAaA, AAAa, aAAA
4 AAAA

Table 3.1 Number of copies (dosage) of a reference allele. Relation between different genotypes,
Xj., and allele dosage, Yj , for a tetraploid individual, where A is the reference allele.

ing of “parental" is either unknown or not well defined. In other words, markers in the
genome of the progenies can not easily be assigned to their parental homologues. For ex-
ample, if both non-homozygous parents contain AjAjAjAj genotype at marker location
j, then offspring will also have AjAjAjAj genotype at marker location j. But we do not
know whether that genotype belongs to the paternal or maternal homologue, since both
parents have AjAjAjAj genotype at marker location j. So, in this case we define Xjk as
follows

Xjk =

{
1 if marker j on homologue k is of type Aj ,
0 otherwise

whereAj is one of the possible parental alleles at location j. So, random variable Yj which
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represents the dosage of alleles, can be defined as equation (3.3).

Furthermore, in polyploids the linkage depends on how a single chromosome pairs during
meiosis to generate gametes. In this regard, if both polyploid parents have an Aj allele in
all q haploids, then the offspring will also have it, and this will not co-vary with neighbor-
ing markers. The possibility of different pairing models during meiosis makes the situation
more complex. In diploids, the two homologue chromosomes pair up and form a bivalent,
then cross-over before recombinations occur. But polyploid meiosis can occur in various
ways; in tetraploids four homologue chromosomes can during meiosis form either two
separate bivalents, each of which contributes one haploid, like diploids, or, alternatively,
in a more complex situation, the four homologue chromosomes can form quadrivalents, so
that cross-over occurs between eight haploids. In both pairing models, bivalent or quadri-
valent, crossover events result in recombined haploids that are mosaics of parental chro-
mosomes. Outbred progenies are genetically diverse and highly heterozygous, whereas
inbred individuals have little or no genetic variation.

The term (3.1) partially holds for the scheme (iii), where a discrete graphical model can be
defined for a multinomial variable Yj = {0, 1, . . . , q}. We use conditional independence to
construct linkage maps in outbred populations. However, in this type of population, due to
a mixed set of different marker types, the conditional independence relationship between
neighboring markers may be more complicated. Many genetic assumptions made in tra-
ditional linkage analyses (e.g., known parental linkage phases throughout the genome) do
not hold here. For example, when both parents have Aj allele, then their offspring will
also have it; however this will not covary with neighboring markers. Figure 3.2c shows a
cartoon example of such conditional independence graphs.

To summarize, term (3.1) holds for schemes (i) and (ii), and partially (iii) because transition
probability from a genotype at location j to a genotype at location j + 1 depends on the
recombination frequency between the two locations j and j + 1, which is independent
of recombination in the other locations. This can be modeled by a discrete Markov pro-
cess {Yj}j=1,...,d with state space S which contains q + 1 genotype states and a transition
matrix, which, in case of polyploids (q ≥ 3), can be calculated with respect to the mode
of chromosomal pairing (e.g. bivalent or quadrivalent). The Markov structure of the SNP
markers in all three schemes yields a graphical model with as many nodes as markers in
a genome. The random variable Xj follows a discrete graphical model whereby the joint
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distribution P (X) can be factorized as,

P (X) =
C∏
c=1

pc−1∏
j=1

f
(c)
j,j+1(X

(c)
j , X

(c)
j+1), (3.4)

where C defines the number of chromosomes in a genome, and pc stands for the number
of markers in chromosome c (see Section 1.2.1). The outer multiplication of (3.4) shows
the independent assortment law, and the inner multiplication represents the genetic linkage
between markers within a chromosome, where the factor f (c)

j,j+1 indicates the conditional
dependence between adjacent markers, given the rest of the markers. Through this proba-
bilistic insight, the inferred conditional (in)dependence relationship between markers pro-
vides a high-dimensional space for the construction of a linkage map.

3.3 Algorithm to detect linkage map

We propose to build a linkage map in two steps; first, we reconstruct an undirected graph
for all SNP markers on a genome, and second, we determine the correct order of markers
in the obtained linkage groups from the first step. We also show how our method handles
genotyping errors and missing observations in reconstructing a linkage map.

3.3.1 Estimating marker-marker network

To reconstruct an undirected graph between SNP markers in a q-ploid species we pro-
pose two methods: the sparse ordinal glasso approach (Behrouzi and Wit, 2017a) and the
nonparanormal skeptic approach (Liu et al., 2012) (the latter discussed under Supplemen-
tary Materials). The former method can deal with missing values, whereas the latter is
computationally faster.
An undirected graphical model for the joint distribution (3.4) of a random vector Y =

(Y1, . . . , Yp) is associated with a graph G = (V,E), where each vertex j corresponds to a
variable Yj . The pair (j, l) is an element of the edge setE if and only if Yj is dependent of Yl,
given the rest of the variables. In the graph estimation problem, we have n samples of the
random vector Y , and it is our aim to estimate the edge set E. Depending on how various
mapping populations are produced, Y represents either binary variables Y = {0, 1}, as in
homozygous populations, or multinomial variables Y = {0, 1, . . . , q + 1} where q is the
ploidy level. For example in diploids q is 2 and in tetraploids 4.
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Sparse ordinal glasso A relatively straightforward approach to discover the condi-
tional (in)dependence relation among markers is to assume underlying continuous vari-
ables Z1, . . . , Zp for markers Y1, . . . , Yp, which can not be observed directly. In our model-
ing framework, Yj and Zj define observed rank and true latent value, respectively, where
each latent variable corresponds to one observed variable. The relationship between Yj

and Zj is expressed by a set of cut-points (−∞, C
(j)
1 ], (C

(j)
1 , C

(j)
2 ] . . . , (C

(j)
q ,∞), which is

obtained by partitioning the range of Zj into qj − 1 disjoint intervals. Thus, y(i)j , which
represents the genotype of the i-th sample for the j-th marker, can be written as follows

y
(i)
j =

q∑
k=1

k × 1{C(j)
q−1<z

(i)
j ≤C

(j)
q } i = 1, 2, . . . , n, (3.5)

where we define D = {z(i)j ∈ R | C(j)
q−1 < z

(i)
j ≤ C

(j)
q }. We use a high dimensional

Gaussian copula with discrete marginals. We assume

Z ∼ Np(0,Σ)

where the p × p precision matrix Θ = Σ−1 contains all the conditional independence
relationships between the latent variables. Given our parameter of interest Θ, we non-
parametrically estimate the cut-points for each j = 1, . . . , p as follows

Ĉ(j)
q =


−∞ if q = 0 ;
Φ−1(

∑n
i=1 I(y

(i)
j ≤ q)/n) if q = 1, . . . , qj − 1;

+∞ if q = qj .

PenalizedEMalgorithm In genotype datasetswe commonly encounter situationswhe-
re the number of genetic markers p exceeds the number of samples n. To solve this dimen-
sionality problem we propose to impose an l1 norm penalty on the likelihood consisting
of the absolute value of the elements of the precision matrix Θ. Furthermore, to be able to
deal with commonly occurring missing values in genotype data we implement an EM al-
gorithm (McLachlan and Krishnan, 2007), which iteratively finds the penalized maximum
likelihood estimate Θ̂λ. This algorithm proceeds by iteratively computing the conditional
expectation of complete log-likelihood and optimizing it. In the E-step we compute the
conditional expectation in the penalized log-likelihood
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Qλ(Θ | Θ̂(m)) =
n

2

[
log |Θ| − tr(

1

n

n∑
i=1

EZ(i)(Z(i)Z(i)t|y(i), Θ̂(m), D̂)Θ)− p log(2π)

]
− λ||Θ||1 (3.6)

where λ is a nonnegative tuning parameter. To calculate the conditional expectation R̄ =
1
n

∑n
i=1EZ(i)(Z(i)Z(i)t|y(i), Θ̂(m), D̂) we propose two different approaches, namely Gibbs

sampling and an approximation method (Behrouzi and Wit, 2017a). Further details on the
calculation of the conditional expectation are provided in the Supplementary Materials.
The M-step is a maximization problem which can be solved efficiently using either graph-
ical lasso (Friedman et al., 2008)

Θ̂
(m+1)
glasso = argmax

Θ

{
log |Θ| − tr(R̄Θ)− λ||Θ||1

}
or the CLIME estimator (Cai et al., 2011)

Θ̂(m+1)
CLIME = argmin

Θ
||Θ||1 subject to ||R̄Θ− Ip||∞ ≤ λ,

where Ip is a p-dimensional identity matrix.

In large-scale genotyping studies, it is common to have missing genotype data. Before
determining the number of linkage groups and ordering markers, we handle the missing
data within the E-step of the EM algorithm, where we calculate the conditional expectation
of true latent variables given the observed ranks. If an observed value, y(i)j is missing,
we take the unconditional expectation of the corresponding latent variable. In the EM
framework we can easily handle high ratios of missingness in the data.

3.3.2 Determining linkage groups

A group of loci that are correlated defines a linkage group (LG). Depending on the density
and proximity of the underlying markers each LG corresponds to a chromosome or part
of a chromosome. The number of discovered linkage groups is controlled by the tuning
parameter λ (section 3.3.1). We use the extended Bayesian criterion (eBIC), which has suc-
cessfully been applied by Yin and Li (2011) in selecting sparse Gaussian graphical models
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for genomic data to determine the number of linkage groups. The eBIC is defined as

eBIC(λ) = −2ℓ(Θ̂λ) + (log n+ 4γ log p)df(λ), (3.7)

where ℓ(Θ̂λ) is the non-penalized likelihood and γ ∈ [0, 1] is an additional parameter.
And df(λ) =

∑
1≤i<j≤p I(θ̂ij,λ ̸= 0) where θ̂ij,λ is (i, j)th entry of the estimated precision

matrix Θ̂λ and I is the indicator function. In case of γ = 0 the classical BIC is obtained.
Typical values for γ are 1/2 and 1. We select the value of λ that minimizes (3.7) for γ = 1

2
.

It is notable that in existing map construction methods the construction of linkage groups
is usually done bymanually specifying a threshold for pairwise recombination frequencies;
this, however, influences the output map, whereas our method detects LGs automatically
in a data–driven way.
Figure 3.1(c) shows an example of an estimated conditional independence graph between
markers. This graph includes 10 distinct sub–graphs, each of which corresponds to a link-
age group. In this graph, given all markers on a genome, markers within the linkage groups
are conditionally dependent, due to genetic linkage, and markers between linkage groups
are conditionally independent, due to the independent assortment law.
Some genotype studies suffer from low numbers of samples or they contain signatures of
epistatic selection (Behrouzi and Wit, 2017a), which may cause bias in determining the
linkage groups. To address this problem, besides the model selection step, we use the
fast-greedy algorithm to detect the linkage groups in the inferred graph. This community
detection algorithm reflects the two biological concepts of genetic linkage and independent
assortment in a sense that it defines communities which are highly connected within, and
have few links between communities.

3.3.3 Ordering markers

Assume that a set of dmarkers has been assigned to the same linkage group. LetG(V (d), E(d))

be a sub–graph on the set of unordered dmarkers, where V (d) = {1, . . . , d}, d ≤ p and the
edge setE(d) represents the estimated edges among dmarkers whereE(d) ⊆ E. We remark
that the precision matrix Θ̂(d)

λ , a submatrix of Θ̂λ, contains all conditional dependence rela-
tions between the set of dmarkers. Depending on the type of mating between the parental
lines we introduce two methods to order markers, one based on dimensionality reduction
and another based on bandwidth reduction. Both methods result in a one-dimensional
map.
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Inbred In inbred populations, markers in the genome of the progenies can be assigned
to their parental homologues, resulting in a simpler conditional independence pattern be-
tween neighboring markers. In the case of inbreeding, we use multidimensional scaling
(MDS) to represent the original high-dimensional space in a one-dimensional map while
attempting to maintain pairwise distances. We define the distance matrix D which is a
d × d symmetric matrix where Dii = 0 and Dij = − log(ρij) for i ̸= j. Here, the ma-
trix ρ represents the conditional correlation among d objects which can be obtained as
ρij = − θij√

θii
√

θjj
, where θij is the ij-th element of the precision matrix Θ.

We aim to construct a configuration of d data points in a one–dimensional Euclidean space
by using information about the distances between the d nodes. Given the distance matrix
D, we define a linear ordering L of d elements such that the distance D̂ between them is

similar toD. We consider ametricMDS,whichminimizes L̂ = argminL

d∑
i=1

d∑
j=1

(Dij−D̂ij)
2

across all linear orderings.

Outbred An outbred population derived from mating two non-homozygous parents re-
sults in markers in the genome of progenies that can not easily be assigned to their parental
homologues. Neighboring markers that vary only on different haploids will appear as in-
dependent, therefore requiring a different ordering algorithm [see Figure 3.2c]. In that
case, to order markers we use the reverse Cuthill-McKee (RCM) algorithm (Cuthill and
McKee, 1969). This algorithm is based on graph models. It reduces the bandwidth of the
associated adjacencymatrix,Ad×d, for the sparse matrix Θ̂(d)

λ . The bandwidth of the matrix
A is defined by β = maxθij ̸=0 |i− j|. The RCM algorithm produces a permutation matrix
P such that PAP T has a smaller bandwidth than does A. The bandwidth is decreased
by moving the non-zero elements of the matrix A closer to the main diagonal. The way
to move the non-zero elements is determined by relabeling the nodes in graph G(Vd, Ed)

in consecutive order. Moreover, all of the nonzero elements are clustered near the main
diagonal.

3.4 Simulation study

In this section, we study the performance of the proposed method for different diploids
and polyploids. In section 3.4.1 we perform a comprehensive simulation study to compare
the performance of the proposed algorithm with other available tools in diploid map con-
structions, namely JOINMAP (Jansen et al., 2001) and MSTMap (Wu et al., 2008). The former
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is based onMonte Carlo maximum likelihood and the latter uses a minimum spanning tree
of a graph.
In section 3.4.2 we perform a simulation study to examine the algorithm performance on
polyploids. At this moment the proposed method is the only one that constructs linkage
maps for polyploid species automatically without any manual adjustment. Thus, in this
case we can not compare the proposed method with other methods.

3.4.1 Diploid species

We simulate genotype data from an inbred F2 population. This population type gener-
ates discrete random variables with values Y = {0, 1, 2} associated with the three distinct
genotype states, AA, Aa, and aa at each marker. The procedure in generating genotype
data is as follows: first, two homozygous parental lines are simulated with genotypes AA
and aa at each locus. A given number of markers, p, are spaced along the predefined
chromosomes. Then, two parental lines are crossed to give an F1 population with all het-
erozygous genotypesAa at each marker location. Finally, a desired number of individuals,
n, are simulated from the gametes produced by the F1 population.
A genotyping error means that the observed genotype for an individual is not identical
to its true genotype, for example, observing genotype AA when Aa is the true genotype.
Genotyping errors can distort the final genetic map, especially by incorrectly ordering
markers and inflating map length. Therefore, to order markers that contain genotyping
errors is an essential task in constructing high-quality linkage maps. To investigate this,
we create genotyping errors in the simulated datasets [see Supplementary Materials] by
randomly flipping the heterozygous loci along the chromosomes to either one of the ho-
mozygous allele. We inserted missing observations randomly along chromosomes simply
by deleting genotypes.
For each simulated data, we compare the performance of the map construction in net-
gwas with two other models: JOINMAP, and MSTMap. We compute two criteria: group-
ing accuracy (GA) and ordering accuracy (OA), to assess the performance of the above
mentioned tools in estimating the correct map. The former measures the closeness of the
estimated number of linkage groups to the correct number, and the latter calculates the
ratio of markers that are correctly ordered. We define the grouping accuracy as follows:
GA = 1

1+(LG−L̂G)2
, where LG stands for actual number of linkage groups and L̂G is the

estimated number of linkage groups. The GA criterion is a positive value with a maximum
of 1. A high value of GA indicates good performance in determining the correct number
of linkage groups. To compute ordering accuracy, we calculate the Jaccard distance, dJ ,
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(a) (b)
Fig. 3.3 Comparison of performance between map construction in netgwas and MSTMAP for dif-
ferent missingness rates with no genotyping errors. Variables p and n represent numbers of mark-
ers and individuals in simulated diploid genotype datasets. (a) Reports grouping, and (b) shows
ordering accuracy scores for 50 independent runs

whichmeasures mismatches between the estimated order and the true order. We define the
ordering accuracy of the estimated map as OA = 1

1+dJ
. This measurement lies between 0

and 1, where 1 and 0 stand for a perfect and a poor ordering, respectively.
In terms of computation, netgwas runs in parallel. In the performed simulations, we ran
the map construction functions, both in netgwas and the MSTMAP on a Linux machine
with 24 2.5 GHz Intel Xeon processors and 128GBmemory. JOINMAP runs only onWindows.
We ran it on a Windows machine with 3.20 GHz Intel Xeon processors and 8 GB RAM
memory.

Evaluation of estimated maps in presence of missing genotypes We studied the
effect of different ratios of missingness in the accuracy of the estimated linkage maps using
two methods: netgwas andMSTMAP. The simulated data contained 300markers for both
n = 100 and n = 200 individuals where the missingness rates ranged from 0 to 0.45.
In these sets of simulations we assumed no genotyping error [More simulation sets are
performed in Supplementary Materials].
Figure 3.3 evaluates the accuracy of estimated maps in terms of grouping (Figure 3.3a)
and ordering accuracies (Figure 3.3b). In general, this figure shows that netgwas con-
structed significantly better maps than MSTMAP across the full range of missingness rates.
More specifically, for a moderate number of individuals, (n = 200), Figure 3.3a shows that
netgwas correctly estimated the actual number of linkage groups for missingness rates
up to 0.25; when rates were between 0.25 and 0.35, netgwas estimated with high accu-



3.4 Simulation study 65

True order of markers

E
st

im
at

ed
 o

rd
er

 o
f m

ar
ke

rs

Quantile

25%
50%
75%

True order of markers

E
st

im
at

ed
 o

rd
er

 o
f m

ar
ke

rs

Quantile

25%
50%
75%

(a) (b)
Fig. 3.4 Performance ofnetgwas on different polypoid simulated datasets. Median, lower quartile,
and upper quartile of estimated order versus true order for (a) tetraploids (q = 4), and (b) hexaploid
simulated datasets (q = 6). Solid lines indicate median and smoothed median. Blue dashed line
indicates ideal ordering.

racy (≥ 0.90) the actual number of linkage groups. Only when the missing rate was higher
than 35% did netgwas begin to estimate the actual number of linkage groups poorly.
For n = 100 netgwas correctly estimated the actual number of linkage groups up to
0.05 missingness, and very accurately (≥ 0.9) estimated the number of linkage groups for
missingness rates between 0.05 and 0.2. With more than 20% missingness the accuracy
diminished. MSTMAP always made significantly poorer estimates of the actual number of
linkage groups than did netgwas; its performance immediately began to drop as soon
as there was some level of missingness. Surprisingly, it estimated the number of linkage
groups better when n = 100 than n = 200, but this may have been a fluke.

Figure 3.3b shows the ordering accuracy within each correctly estimated linkage group.
Ordering quality in netgwas was significantly better than MSTMAP for both n = 100

and n = 200. More specifically, when n = 100 and the missing rate equaled zero, netg-
was ordered markers perfectly (100% accuracy) and MSTMAP orders markers with a high
accuracy (95%). In addition, with increased missingness rates, the map construction func-
tion in netgwas outperformed that of the MSTMAP in ordering markers within each LG.
Surprisingly, when the number of individuals increased, MSTMAP performed more poorly
in ordering markers.
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3.4.2 Polyploid species

We also applied netgwas to simulated outbred polyploid genotype datasets. We used
PedigreeSim (Voorrips and Maliepaard, 2012) to simulate F1 mapping populations in tet-
raploids (q = 4) and hexaploids (q = 6) with n = 200 individuals. PedigreeSim simulates
polyploid genotypes with different configurations, such as chromosomal pairing modes
during meiosis. The simulated tetraploids (q = 4) are motivated by autotetraploid potato
where Y = {0, 1, 2, 3, 4} corresponds to the five biallelic tetraploid genotype states (aaaa,
Aaaa, AAaa, AAAa, AAAA), which are created across 12 chromosomes. The simulated
hexaploids (q = 6) are motivated by allohexaploid peanut, a polyploid species that con-
tains 10 chromosomes, where Y = {0, 1, 2, 3, 4, 5, 6} corresponds to the seven genotype
states (aaaaaa, Aaaaaa, AAaaaa, AAAaaa, AAAAaa, AAAAAa, AAAAAA) across its
genome. In total, 50 populations, each consisting of p = 1000markers, were simulated for
each scenario.
We used the mean square error (MSE) as a measure for evaluating the performance of
the proposed method on detecting the true number of chromosomes. In the tetraploid
simulation the mean of MSE was 0.52, and for the hexaploid simulation it was 0.15. Figure
3.4 shows the performance of the proposed method in ordering markers for tetraploids
(Figure 3.4a) and hexaploids (Figure 3.4b). The solid line shows the median of estimated
order of each marker across a chromosome versus the true order, and the lower (25%) and
upper quartiles (75%) of the estimated marker order is shown as dashed lines. This figure
shows that, although ordering markers in outcrossing families is challenging [see section
3.2.3], the proposed method orders markers reasonably well.

3.5 Construction of linkage map for diploid barley

In the literature a barley genotyping dataset is used to compare different map construction
methods for real-world diploid data. This genotyping dataset is generated from a doubled
haploid population, which results in homozygous individual plants, Yij ∈ {0, 1}. Barley
genotype data are the result of crossing OregonWolfe Barley Dominant with OregonWolfe
Barley Recessive (see http://wheat.pw.usda.gov/ggpages/maps/OWB). The Oregon Wolfe
Barley (OWB) data include p = 1328markers that were genotyped on n = 175 individuals
of which 0.02% genotypes are missing. The barley dataset is expected to yield 7 linkage
groups, one for each of the 7 barley chromosomes.
As shown in Figure 3.5, through estimating Θ̂λ, which contains conditional (in)dependence
relationships between barley markers, we were able to correctly detect the 7 barley chro-

http://wheat.pw.usda.gov/ggpages/maps/OWB
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Fig. 3.5 Summary of comparison betweennetgwas andMSTMAP in barley data. Table summarizes
estimated number of LGs (chromosomes) and size of markers within each LG. Below, average or-
dering accuracy scores for the two methods. Right figure estimated undirected graph in netgwas
for the barley data. This consists of 7 sub–graphs, each showing a chromosome.

mosomes as sub–graphs in the estimated undirected graph. Furthermore, using the condi-
tional correlation matrix as distance in the multi-dimensional scaling approach helped us
to order markers with high accuracy. In addition, Figure 3.5 reports the result of applying
the two methods: netgwas and MSTMAP, to construct a linkage map for the barley data.
The top part of Figure 3.5 shows that our method correctly estimated the true number of
chromosomes. Also, the size of markers within each chromosome is consistent with the
number of markers that reported in Cistué et al. (2011). MSTMAP was not able to estimate
the true number of chromosomes and grouped all 1328markers as one linkage group. The
bottom of Figure 3.5 shows the accuracy of estimated marker order in 7 barley chromo-
somes. To be able to compare marker order in both methods we used the actual map to
cluster markers in the map resulting from MSTMAP. Thus, at the bottom of Figure 3.5 it
is assumed that the MSTMAP has estimated the correct number of chromosomes. Average
ordering of accuracy scores across the linkage groups in netgwas is higher than those
in MSTMAP except with chromosomes 1 and 3.
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Fig. 3.6 Construction linkage map in potato. (a) Estimated precision matrix for unordered genotype
data of tetraploid potato. (b) Estimated precision matrix after ordering markers. (c) True order of
markers across potato genome, versus estimated order. Each dashed line represents a chromosome.
All potato chromosomes detected correctly.

3.6 Construction of linkage map for tetraploid potato

World-wide, the potato is the third most important food crop (Bradshaw and Bonierbale,
2010). However, the complex genetic structure of tetraploid potatoe’s (Solanum tuberosum
L.) makes it difficult to improve important traits such as disease resistance in this crop.
Thus there is a great interest in constructing linkagemaps in the potato to identify markers
related to disease resistance genes.
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The full-sib mapping population MSL603 consists of 156 F1 plants resulting from a cross
between female parent “Jacqueline Lee” and male parent “MSG227-2”. The obtained geno-
type data contain 1972 SNP markers (Massa et al., 2015) with five allele dosages which are
associated with the random variables Yj ∈ {0, 1, . . . , 4} for j = 1, . . . , 1971.
Figure 3.6 represents the result of applying the proposed map construction method to the
unordered potato genotype data. Figure 3.6a shows the estimated sparse precision matrix
for the unordered genotype data. Figure 3.6b represents the estimated precision matrix
after ordering markers; it reveals the number of potato chromosomes as blocks across the
diagonal. The potato genome contains 12 chromosomes. The proposed method correctly
identifies the 12 chromosomes. The estimated linkage map contains 1957markers. Figure
3.6c compares the estimated order versus the true order ofmarkers. Each dashed line shows
the estimated linkage groups. The markers ordered with reasonable precision, given that
the ordering of markers has always been a challenging task in linkage map constructions,
and in particular for polyploid species.

3.7 Conclusion

Construction of linkage maps is a fundamental and necessary step for detailed genetic
study of diseases and traits. A high-quality linkage map provides opportunities for greater
throughput gene manipulation and phenotype improvement. Here we have introduced a
novel method for constructing linkage maps from high-throughput genotype data where
the number of genetic markers exceeds the number of individuals. The proposed method
constructs a linkage map for any biparental diploid or polyploid population. We proposed
to build linkage maps in two steps: (i) inferring conditional independence relationships
between markers on the genome; (ii) ordering markers in each linkage group, typically a
chromosome. In the first step of the proposed method we used the Markov properties of
adjacent markers: the genotype of an individual haploid at marker Yj given its genotype
at Yj−1 or Yj+1 is conditionally independent of the genotype at any other marker location.
This property defines a graphical model for discrete random variables.
We employed a Gaussian copula graphical model combined with a penalized EM algorithm
to estimate a sparse precision matrix Θ̂λ. This method iteratively computes the conditional
expectation of the complete penalized log-likelihood, and optimizes it to estimate Θ̂λ. The
method can also deal with missing values, which are very common in genotype datasets.
The nonparanormal skeptic is an alternative approach that is computationally faster but
can not deal with missing genotypes. Depending on the type of mapping population, in-
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bred or outbred, in step 2 of the proposed linkage map construction we use either a multi-
dimensional scaling approach or the Cuthill-McKee algorithm, respectively. Both ordering
algorithms result in a one-dimensional map. We noted that in outcrossing populations it
is difficult to order markers because a clear definition of the parental genotype is lacking.
We performed several simulation studies to compare the performance of the proposed
method with other commonly used diploid map construction tools. To address the chal-
lenges in the construction of a linkage map from genotype data, we studied the perfor-
mance of the proposed method on simulated data with high ratios of missingness and
genotyping error. As shown in our simulation studies, our method, called netgwas, out-
performed the commonly available linkage map tools, both when the input data were clean
with no missing observations and when the input data were noisy and incomplete.
As outlined in Cervantes-Flores et al. (2008), constructing linkage maps in polyploids, with
outcrossing behavior, is a challenging task. So far, based on our experience, no method has
been developed to construct polyploid linkage maps for a large number of different marker
types without any manual adjustment and/or visual inspection. Based on the simulated
polyploids with outcrossing behavior, the proposed method detected the true number of
linkage groups with high accuracy, and ordered markers with reasonable precision.
We applied the proposed method to two genotype studies involving barley and potato.
In the barley map construction, we correctly detected its 7 chromosomes, whereas other
method grouped all markers in one linkage group. The netgwas method ordered mark-
ers with higher accuracy in most of the chromosomes. The method detected all the potato
chromosomes, although it identified chromosome 10 as two linkage groups. Its ordering of
markers within each chromosome was a substantial improvement of what has been possi-
ble up until now. We remark that the proposed map construction method uses all possible
marker types, unlike the other map construction methods, which use a subset of markers
(Grandke et al., 2017).
We point out that netgwas also works for multi-allelic loci, which are locations in a
genome that contain three or more observed alleles. For example, assume that A, T, and G
are three possible alleles at location j on a genome, unlike the most usual cases whereby
only two alleles can be observed at a location (e.g. A and G). We propose to analyze either
separately or jointly a dataset containing multi-allelic loci. In the former case, observed
alleles count once as reference, and therefore allow for one separate dataset. In the above
example three datasets will be generated: the first dataset counts the number of A alleles
as a reference, the second dataset counts the number of T alleles as a reference, and the
third dataset counts the G allele as a reference. Each dataset can be analyzed separately;
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to control similarity between the estimated precision matrices the fused graphical lasso
can be used. The final map can be obtained through ordering markers in an estimated
precision matrix. In the latter case, in the example above, we combine all three datasets as
one dataset in such a way that it creates three replicates of n×p dimension. Moreover, we
analyze the obtained dataset and construct the final linkage map.

3.8 Supporting information

Computing conditional expectation

We calculate R̄ in equation (6) of this chapter as

E

[
Z(i)Z(i)t|Y (i), Θ̂(m)

]
= E

[
Z(i)|Y (i), Θ̂(m)

]
E

[
Z(i)|Y (i), Θ̂(m)

]t
+ cov

[
Z(i)|Y (i), Θ̂(m)

]
(3.8)

The conditional random variable Z|Y follows a truncated p-variate normal distribution.
Wilhelm and Manjunath, (2010) provided the analytical solution to compute moments of
truncated multivariate normal distribution. However, their approach is feasible for only
very few variables. Here, we propose instead to simulate a large number of samples from
the truncated p-variate normal distribution and compute the sample conditional covari-
ance matrix and sample conditional mean to estimate E

[
Z(i)Z(i)t|Y (i), Θ̂(m)

]
using the

equation (3.8).
Alternatively, we use an efficient approximate estimation algorithm, which is implemented
in Behrouzi and Wit, (2017). The variance elements in the conditional expectation matrix
can be calculated through the second moment of the conditional Z(i)

j | Y (i), and the rest
of the elements in this matrix can be approximated through E(Z

(i)
j Z

(i)
j′ | y(i); Θ̂, D̂) ≈

E(Z
(i)
j | y(i); Θ̂, D̂) E(Z

(i)
j′ | y(i); Θ̂, D̂) using mean field theory. The first and second mo-

ment of z(i)j |y(i) can be written as

E(Z
(i)
j | y(i), Θ̂, D̂) = E[E(Z

(i)
j | z

(i)
−j, y

(i)
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(i)
j )2 | y(i), Θ̂, D̂) = E[E((Z

(i)
j )2 | z(i)−j, y

(i)
j , Θ̂, D̂) | y(i), Θ̂, D̂], (3.10)

where z(i)−j = (z
(i)
1 , . . . , z

(i)
j−1, z

(i)
j+1, . . . , z

(i)
p ). The inner expectations in (3.9) and (3.10) are

relatively straightforward to calculate. z(i)j | z
(i)
−j, y

(i)
j follows a truncated Gaussian distri-
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In this way, an approximation for R̄ is obtained as follows:
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1
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The latent graphical model discussed in this chapter, though it is a natural approach, is
computationally expensive for a large number of variables (p > 2000). We therefore
describe here an alternative method to construct high–dimensional undirected graphical
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models.

Nonparanormal SKEPTIC

As alternative, we use the nonparanormal skeptic approach (Liu et al., 2012) to estimate
the penalized concentration matrix Θ. In this approach, instead of using the transformed
data to estimate precision matrix Θ, a sample correlation matrix Γ can be computed from
pairwise rank correlations, such as Kendall’s tau and Spearman’s rho which measure the
strength of association between two ranked variables. For the random vector y(1)j , . . . , y

(n)
j

the Kendall’s tau and Spearman’s rho are given, respectively, by
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2 sin(π

6
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1 j = l.
To estimate the sparse precision matrix and the graph, one can use either the graphical
lasso

Θ̂glasso = argmax
Θ

{
log |Θ| − tr(ΓΘ)− λ||Θ||1

}
(3.13)

or CLIME estimator, with Γ̂ as input

Θ̂CLIME = argmin
Θ
||Θ||1 subject to ||Γ̂Θ− Ip||∞ ≤ λ, (3.14)

Although both methods involve convex optimization problems, these can be efficiently
solved.
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(a) (b)
Fig. 3.7 Genotyping errors randomly distributed over genetic markers: comparison between map
construction in netgwas and MSTMAP in presence of different choices of error rates and no miss-
ing data. (a) Reports grouping, and (b) shows ordering accuracy scores for 50 independent runs.

Simulation study

Evaluation of estimated maps in presence of genotyping errors

We studied the accuracy of the estimated linkage maps where genotyping errors are ran-
domly distributed across the genetic markers. The simulated data contain a ratio of “bad
markers", ranging from 0 up to 0.45 genotyping errors. We activated the error-detection
feature in MSTMAP. Figure 3.7a shows that when datasets contain genotyping errors, net-
gwas perfectly estimates the correct number of LGs, in particular when the sample size is
sufficient, n > 100. In addition, the quality of the estimated linkage maps – in terms of
estimating the actual number of LGs and ordering of markers – is significantly better in
the netgwas than those in the MSTMAP, even with activation of its error-detection feature.

Based on our simulations, we remark that with both netgwas andMSTMAP erroneousmark-
ers remain in the estimated linkage map. However, netgwas orders them in the correct LG
(see Figure 3.7), whereas MSTMAP performs poorly in detecting LGs as well as in correctly
ordering markers.

In general, for moderate numbers of individuals, when data contain genotyping errors the
netgwas constructs a linkage map that is very close to the actual map in the accuracy
of both the estimation and the ordering of linkage groups. This is because conditional
independence is an effective way to recover relationships among genetic markers.
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Grouping Accuracy Ordering Accuracy

Missing rate Error rate netgwas MSTMap JOINMAP netgwas MSTMap JOINMAP

p=300 & n=200
0 0 1.00 (0.00) 0.70 (0.12) 0.00 (0.00) 1.00 (0.00) 0.94 (0.00) 0.00 (0.00)
0.05 0.05 1.00 (0.00) 0.30 (0.19) 0.00 (0.00) 0.91 (0.03) 0.77 (0.11) 0.00 (0.00)
0.10 0.10 1.00 (0.00) 0.04 (0.03) 0.00 (0.00) 0.73 (0.03) 0.46 (0.26) 0.00 (0.00)
0.15 0.15 1.00 (0.01) 0.01 (0.00) 0.00 (0.00) 0.65 (0.04) 0.00 (0.00) 0.00 (0.00)
0.20 0.20 1.00 (0.00) 0.01 (0.00) 0.00 (0.00) 0.59 (0.02) 0.00 (0.00) 0.00 (0.00)
0.25 0.25 0.95 (0.16) 0.01 (0.00) 0.00 (0.00) 0.53 (0.03) 0.00 (0.00) 0.00 (0.00)

p=500 & n=200
0 0 1.00 (0.00) 0.55 (0.34) 0.00 (0.00) 1.00 (0.00) 0.90 (0.09) 0.00 (0.00)
0.05 0.05 1.00 (0.00) 0.10 (0.07) 0.00 (0.00) 0.77 (0.04) 0.61 (0.12) 0.00 (0.00)
0.10 0.10 1.00 (0.00) 0.01 (0.00) 0.00 (0.00) 0.60 (0.03) 0.18 (0.23) 0.00 (0.00)
0.15 0.15 1.00 (0.00) 0.01 (0.00) 0.00 (0.00) 0.56 (0.01) 0.00 (0.00) 0.00 (0.00)
0.20 0.20 0.95 (0.16) 0.01 (0.00) 0.00 (0.00) 0.54 (0.01) 0.00 (0.00) 0.00 (0.00)
0.25 0.25 0.90 (0.21) 0.01 (0.00) 0.00 (0.00) 0.51 (0.03) 0.00 (0.00) 0.00 (0.00)

p=1000 & n=200
0 0 1.00 (0.00) 0.61 (0.36) 0.00 (0.00) 1.00 (0.00) 0.91 (0.06) 0.00 (0.00)
0.05 0.05 1.00 (0.00) 0.04 (0.03) 0.00 (0.00) 0.56 (0.00) 0.51 (0.09) 0.00 (0.00)
0.10 0.10 1.00 (0.00) 0.44 (0.16) 0.00 (0.00) 0.52 (0.00) 0.78(0.02) 0.00 (0.00)
0.15 0.15 1.00 (0.01) 0.05 (0.00) 0.00 (0.00) 0.52 (0.00) 0.60 (0.13) 0.00 (0.00)
0.20 0.20 0.95 (0.14) 0.01 (0.00) 0.00 (0.00) 0.51 (0.00) 0.00 (0.00) 0.00 (0.00)
0.25 0.25 0.95 (0.14) 0.01 (0.00) 0.00 (0.00) 0.51 (0.00) 0.00 (0.00) 0.00 (0.00)

p=300 & n=100
0 0 1.00 (0.00) 0.70 (0.12) 0.00 (0.00) 1.00 (0.00) 0.94 (0.00) 0.00 (0.00)
0.05 0.05 0.95 (0.16) 0.82 (0.30) 0.00 (0.00) 0.76(0.06) 0.94(0.09) 0.00 (0.00)
0.10 0.10 1.00 (0.00) 0.31 (0.31) 0.00 (0.00) 0.64 (0.05) 0.64 (0.07) 0.00 (0.00)
0.15 0.15 0.90 (0.21) 0.02 (0.01) 0.00 (0.00) 0.56 (0.07) 0.24 (0.18) 0.00 (0.00)
0.20 0.20 0.40 (0.44) 0.01 (0.00) 0.00 (0.00) 0.45 (0.10) 0.00 (0.00) 0.00 (0.00)
0.25 0.25 0.40 (0.35) 0.01 (0.00) 0.00 (0.00) 0.38 (0.11) 0.00 (0.00) 0.00 (0.00)

p=500 & n=100
0 0 1.00 (0.00) 0.80 (0.26) 0.00 (0.00) 1.00 (0.00) 0.93 (0.05) 0.00 (0.00)
0.05 0.05 1.00 (0.00) 0.34 (0.29) 0.00 (0.00) 0.62 (0.01) 0.67 (0.10) 0.00 (0.00)
0.10 0.10 1.00 (0.00) 0.08 (0.07) 0.00 (0.00) 0.55 (0.02) 0.41 (0.08) 0.00 (0.00)
0.15 0.15 0.87 (0.28) 0.05 (0.00) 0.00 (0.00) 0.50 (0.10) 0.60 (0.13) 0.00 (0.00)
0.20 0.20 0.51 (0.37) 0.01 (0.00) 0.00 (0.00) 0.50 (0.07) 0.00 (0.00) 0.00 (0.00)
0.25 0.25 0.21 (0.31) 0.01 (0.00) 0.00 (0.00) 0.46 (0.16) 0.00 (0.00) 0.00 (0.00)

p=1000 & n=100
0 0 1.00 (0.00) 0.74 (0.35) 0.00 (0.00) 1.00 (0.00) 0.82 (0.08) 0.00 (0.00)
0.05 0.05 1.00 (0.00) 0.13 (0.07) 0.00 (0.00) 0.53 (0.01) 0.50 (0.04) 0.00 (0.00)
0.10 0.10 0.95 (0.16) 0.01 (0.00) 0.00 (0.00) 0.52 (0.01) 0.13 (0.16) 0.00 (0.00)
0.15 0.15 0.95 (0.15) 0.00 (0.00) 0.00 (0.00) 0.49 (0.04) 0.00 (0.00) 0.00 (0.00)
0.20 0.20 0.85 (0.24) 0.00 (0.00) 0.00 (0.00) 0.46 (0.07) 0.00 (0.00) 0.00 (0.00)
0.25 0.25 0.82 (0.30) 0.00 (0.00) 0.00 (0.00) 0.44 (0.05) 0.00 (0.00) 0.00 (0.00)

Table 3.2 Summary of performance measures of linkage map construction in simulated F2 popula-
tions for netgwas, MSTMAP and JOINMAP at different rates of missingness and genotyping errors.
The table presents the grouping and ordering accuracy scores for 50 independent runs and the
standard deviation in parentheses. Best scores are boldfaced.



76 Construction of linkage maps using graphical models

Evaluation of estimated maps for incomplete and noisy data

The ordering accuracy scores in Table 3.2 should be interpreted carefully, as inverting
the order of flanking markers reduces the number of correct orderings and ultimately de-
creases ordering accuracy scores. In all scenarios, the netgwasmore accurately detected
linkage groups. Furthermore, this method performed well in ordering markers. Overall,
except in a few cases where MSTMAP performed better, given the various ratios of noisy
and incomplete data, netgwas estimated genetic linkage with greater accuracy than the
other two methods.
Finally, we remark that determining linkage groups in JOINMAP requires the user to specify
an input parameter, thereby influencing its output. However, our proposed method does
not depend on any manual threshold or manual determination of the linkage groups.
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Fig. 3.8 Visualizing the bandwidth reduction ordering algorithm in chromosome 1 of potato. (a)
Shows estimated concentration sub–matrix for chromosome 1; (b) Represents result of performing
reverse Cuthill-McKee algorithm on (a); (c) Evaluates estimated order resulting from (b) versus true
order for chromosome 1 in potato.
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