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Modeling Energy Consumption in the Mining and 
Milling of Uranium 

 
Emily Loree Tavrides, M.S.E. 

The University of Texas at Austin, 2010 

Supervisor: Erich Schneider 

 

A family of top-down statistical models describing energy consumption in 

the mining, milling, and refining of uranium are formulated. The purpose of the 

models is to estimate the energy-to-grade dependence for uranium extraction, 

while defining a minimum grade that can be feasibly mined and produced. The 

results serve as a basis for understanding the factors governing energy 

consumption in the production of U3O8. The models are applied to a considerably 

larger data set of operating mines than in any previous effort. In addition, the 

validity of the modeling approach is established by modeling energy for two other 
commodities, gold and copper, thereby showing it can be applied to other metals.  
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Statistical measures of explanatory power show that the models the 

energy-to-grade relationship is well-described for both uranium and gold. For 

copper, there was insufficient data over a broad range of ore grades to obtain a 

model that passed statistical confidence measures. The results show that mining 

of lower-grade deposits of uranium is likely to be less energy-intensive than 

previous investigators concluded. It is shown that the uncertainty in the results is 

dominated by the contribution of the grade-independent component of energy 
consumption.  
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Chapter 1  

Introduction 

 
 

As the nuclear industry enters a new era of growth, two hotly discussed 

topics are life cycle energy analysis and carbon emissions. These issues will help 

shape future choices for consistent and reliable base-load power sources. 

However, as a recent review [Sovacool 2008] of carbon emissions associated 

with the nuclear industry illustrated, great disagreement has been found between 

carbon emission estimates for nuclear fuel cycles. It is noteworthy that emissions 

are clearly strongly influenced by the front-end processes: the largest 

disagreement is found in front-end portion of Table 1.1, which includes mining, 

milling, conversion, enrichment, and fuel fabrication. The most energy intensive 

processes in the front-end are mining, milling, and enrichment. There is no doubt 

that the values for the frontend in Table 1.1 are based on the energy use in these 

steps. The vast difference in values for the front-end brought into question the 
methods behind the results reviewed in [Sovacool 2008] and led to this study.  
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Table 1.1. Summary of CO2 emissions arising from the nuclear fuel cycle, source: 
[Sovacool 2008] 

[kg CO2/ 

 MWh(e)] 
Frontend Construction Operation Backend Decommissioning Total 

Min 0.68 0.27 0.1 0.4 0.01 1.36 
Max 118 35 40 40.75 54.5 288.25 
Mean  

% of total 
25.1  

38% 
8.20  

12% 
11.6  

18% 
9.2 

14% 
12.0 

18% 
66.1 

100% 
N 17 19 9 15 13 — 
 
  

Consultation of the literature associated with Sovacool and others showed 

that values for the energy consumption in mining, milling, and refining were often 

not supported by consistent assumptions or primary data from operating mines. 
Chapter two covers the literature review in detail.  

While reviewing papers, it was seen that energy consumption from mining 

and milling was usually modeled as having an inversely proportional dependence 

on the grade of the uranium ore that is mined, but that the proportionality 

constants differed greatly. Grade is defined as the mass of commodity contained 

in a certain amount of ore. Therefore, a main objective of this report is to 

quantitatively study the energy-grade relationship for mining uranium and 

producing U3O8.. These processes become more energy intensive at lower grade 

ores because more waste rock must be removed to obtain the uranium ore. 

Likewise in milling, more energy is needed to separate the uranium ore from the 
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mined orebody because there is less uranium in a given rock formation. In order 

to model these processes, data would have to be collected. It was essential to 

gather as a full data set as possible from actual mining companies that included 

energy consumption, mass of waste rock removed, mass of ore milled, and mass 

of product. These data are fitted to linear least squares regression models to 
define energy intensity coefficients for each of the three throughputs mentioned.  

This approach to understanding fundamental dependencies of energy use 

in mining was first taken by [Chapman 1975], but the current study collects and 

applies a greatly expanded data set. To confirm the validity of the regression 

models applied to uranium, this report also collects mine data for other metal 

commodities and subjects them to the same statistical analysis. Although other 

metals use different mining and milling techniques, the energy to ore grade 

relationship should hold for all mined commodities. In this report gold and copper, 

both with similar mining and milling techniques to uranium, were selected for this 
comparative study. 

The following report should engage those persons interested in fuel cycle 

energy consumption. This report will first outline the review of useful literature 

that was studied prior to the production of this document. This will lay the 

foundation for chapter three, where the methods and approaches will be 

described in detail. The results obtained when these methods are applied to 

uranium, gold and copper will be shown and discussed in chapter four. 
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Conclusions will be drawn at the end of this report, and an appendix with all data 
used for the analysis can be found thereafter.  
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Chapter 2 

Literature review 

 

This chapter highlights the progress that has been made in the nuclear 

industry to understand energy consumption in the mining, milling, and refining of 

uranium. This chapter begins with an overview of historical ore grade trends and 

is then followed by the work done by previous investigators. The review of related 

work serves as a background and foundation on which this report is based and 

will be outlined in this chapter. 

 

2.1. 

 In the nuclear energy industry the question of sustainability is being raised 

in connection with the long-term supply of uranium. Assertions have been made 

as to how long the uranium supply will last, based on current reserves. A 

common theme in the discussion is the question of when will the mining of 

uranium become endothermic, that is when will more energy be expended in 
recovering uranium ore than energy that goes to the grid from the nuclear  
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reactor. This question entails a look at the past, current, and future ore grade of 
uranium.   

Historically, the highest-grade deposits have been exhausted first because 

these require the least amount of energy to mine, are easiest to find, 

correspondingly are the lowest costs to companies. For example, a commodity 

with global importance is gold and its historical world-averages for ore grade are 

given in Figure 2.1. The world averages are from countries for which the data 

was available: the US, Australia, Canada, Brazil, and South Africa.  This trend 

line clearly shows that ore-grade has been decreasing over time, and therefore 

motivates this reportʼs ultimate goal of understanding the energy-to-grade 

relationship. The peaks in Figure 2.1 describe gold rushes pertaining to different 
countries. 
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Figure 2.1. History of world-averages for gold grade (%) [Mudd 2010a] 

 

 

 

 



	   8	  

Likewise, Figure 2.2 shows the trends for copper, uranium, and nickel in percent 

grade versus time. The same key trends are noted for these three other 

commodities.  The following figure was taken from [Mudd 2009] and the peaks 

and valleys are noted on the top of the figure. It should be noted that ore grade is 
given in percent for copper and nickel, but as kg/t for uranium.  

 

 

Figure 2.2. History of world-averages for copper, uranium, and nickel grades, 
Source: [Mudd 2009] 
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2.2. 
The first attempt to create a generalized model of energy use in uranium 

mining was by Peter Chapman. Chapmanʼs primary study was done “to 

investigate the effect of the grade of uranium ore on the viability of thermal 

reactor systems. . .by an analysis of the energy to produce copper which showed 

that the energy required was inversely proportional to the grade of ore” 

[Chapman 1975]. Chapman was the first to notice the trend that decreasing ore 

grade has on energy consumption and exemplified this with theoretical energy 

numbers from copper mining, milling, and refining [Chapman 1974]. Chapmanʼs 

formulation of the energy required to produce a tonne of refined product 

incorporated contributions from the mining, milling and product refining steps.  

Since Earthʼs known resources are being slowly exhausted, Chapman 

wanted to answer at what point mining uranium would take more energy than the 

uranium ore would produce in a nuclear reactor. Chapman used real and 

hypothetical data to model energy consumption at the mine and mill. By including 

a 1/G term for the grade of the ore, Chapman depicts the relationship between 
grade and energy use as being inversely proportional.   

In order to quantitatively describe the reviewed models, it is necessary to 
identify all terms that will be used (Table 2.1).  
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Table 2.1. Quantities used in reviewed models  
Symbol Unit Description 

e (GJ(e) +GJ(t)) / tU Energy required to produce 1 tonne of refined U 
(as U3O8) 

emine (GJ(e) +GJ(t)) / (tonne of 
ore + overburden) 

Energy required to mine one tonne of material 

emill (GJ(e) +GJ(t)) / (tonne of 
ore) 

Energy required to mill one tonne of ore 

erefine (GJ(e) +GJ(t)) / tU  [Chapman 1975] interpretation: “energy 
required to convert beneficiated ore to required 
material” 

eproduct (GJ(e) +GJ(t)) / tU [Prasser 2008] and current document 
interpretation: As [Chapman 1975] above, plus 
other energy inputs not directly proportional to 
the masses of mined material or ore  

G % U3O8 Ore grade 
S kg overburden/kg ore Stripping ratio 
Y kg U in mill output / kg U 

in mill input 
Ore milling yield 

 

Chapmanʼs 1975 model was the following: 

 

 

 (2.1) 

Each of the coefficients in equation 2.1 is associated with a different mass 

flow that can be viewed in Figure 2.3. For example,  , is the mass flow 

proportional to the amount of ore. Similarly, the quantity (1+S)emine/G is the 

energy required to extract the necessary ore plus overburden in order to extract 
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one tonne of mill-able uranium from the mine. The factor 0.848 converts a tonne 

U3O8 to a tonne U. Chapman also included a term erefine, representing the energy 

needed to produce and purify yellowcake from milling product containing 1 tonne 

of uranium, but he did not estimate its value nor did he include it in his final 
formulation of the energy intensity of uranium production. 

 

 

 

Figure 2.3.  Mass flows in uranium mining and milling, Source: [Prasser 2008] 
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Due to the limiting factor of mine data availability, a problem still seen 

today, Chapman could only assemble two data points in order to define his 

energy coefficients. The data that he used from [Everett 1963] included four 

mines operating in Wyoming in the early 1960s with an average ore grade of 

.31% and stripping ratio of 24. Chapman weighted the mines proportional to their 

estimated reserves to acquire 1210 MJ(t) per tonne of ore for mining and 99 
MJ(e) + 828 MJ(t) per tonne of ore for milling.  

Often energy data is separated into thermal and electric carriers. At open 

pit mines, it is common for diesel fuel (thermal units) to run the equipment on site, 

whereas at the milling and refining facilities most of the energy comes from 

electricity (electric units). Chapman aggregated the thermal and electrical energy 

consumed when deriving his model coefficients. Reports to follow, as well as the 

body of this report, follow this method. At the mine, energy carriers may change 

over time (as technology for electric driven shovels etc advances), and thermal-to 

electric conversion efficiencies are difficult to identify, so common practice is to 

use aggregated energy when expressing consumption. 

The second data point that Chapman used was for mining and milling of 

Chattanooga shale at .007% ore grade using underground mines [Bieniewski 

1971]. The stripping ratio is assumed zero because for this hypothetical situation 
the ore body was considered the entire shale formation (no overburden).  

Although energy use for both data sets comes primarily from direct energy 

use from fuel and electricity, embodied energies, or energy from the consumption 
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of chemicals, machinery, and machine parts, were also considered in Chapmanʼs 

analysis [Chapman, 1975]. In practice embodied energy only constitutes about 

10-20% of energy, or 1-4% of total energy costs [Chapman 1974]. Analysis 

similar to what Chapman did for the US mines was again done for the 

Chattanooga shale mine to acquire energy inputs for mining and milling the ore 
compiled in Table 2.2.  

Table 2.2. Chattanooga shale data 

 GJ(e)/t U GJ(t)/t U 
Mining, S=0 32.7 36 
Milling 77.5 21.95 

 
 

At this point is unclear what Chapman did in his analysis. After 

aggregating the energy inputs for mining and milling from Chapmanʼs paper, 0.81 

TJ(t+e)/tU for the US mines and 30.2 TJ(t+e)/tU for the shale project, are found. 

However, Chapman fitted his model using 1.0 and 20.0 TJ(t+e)/t U for the 2 

mines. His reasoning is vague in the 1975 paper, but his coefficients based on 

equation 2.1 are summarized in Table 2.3. Using his model, the electrical energy 

yield from mining a tonne of uranium is 108 TJ(e)/tU. Using this, Chapman 

arrived at the cut-off grade, G=.002%., or the ore grade uranium would have to 

be in order for the energy input for mining and milling to equal the energy output 
from the uranium product. 
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Table 2.3. Coefficients of Chapman model  
 

emine 0.071 GJ(t+e)/t ore + overburden 
emill 1.329 GJ(t+e)/t ore 

 
 

Chapmanʼs model led to other attempts by following investigators to 

predict the ore grade at which the process would become endothermic. It is 

noteworthy that Chapman ended his 1975 paper with, “Clearly a lot more data on 

different uranium mines, with different ore grades, different rock hardness etc is 
needed to substantiate this estimate.”  

There were two modifications to Chapmanʼs model for metal extraction 

reported in [Rosa 2008] by Kellogg in 1977. Kellogg, as referred to in [Rosa 

2008] first stated that energy consumption depends on mining method and that 

milling will depend on ore hardness as well as leaching extraction agent at the 

mill. He then incorporated a yield function, Y, into the model. Ranging between 0 

and 1, Y describes the recovery efficiency of the product in the milling and 

refining processes. If the model is dependent on the type of mining method, emine 

and emill coefficients will vary by method. In practice, it is difficult to implement 

when operating data is limited. It can also be difficult to use in a predictive 

capacity, as it requires additional forecasting of the mining strategies, ores to be 

milled, and processes to be used to mill them. Nonetheless, data found for this 
study indicates that differences between mining methods cannot be neglected. 
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Chapman continues to consider the relationship between ore grade and 

metal extraction in [Chapman 1983] as he emphasizes the direct variation of 

energy use with ore grade. He stresses importance of this relationship because 

the history of metal mining has been one of declining ore grade. He introduces a 

model that not only predicts this declining ore grade, but also incorporates 

technological efficiency. He defines the quantity of fuel used as, ʻthe energy 

requirement divided by the efficiency with which the fuels are used to provide the 

energy”. He introduces the following model, which he originally made for copper 
extraction,  

            
 (2.2) 

Here eo/g [GJ(t+e)/tU] is the theoretical minimum energy required for mining and 

milling and ∆G (GJ(t)/tU) is the change in the Gibbs free energy from converting 
the mill concentrate to the final product. The terms η1 and η2 are the efficiencies 

of respective processes. For metal milling and refining recovery, efficiencies of 

.85 and .90 are used by [Chapman 1983] as industrial averages, while assuming 
stripping ratios of 2.0 for open pit and 0.1 for underground.  

For the first time in the literature, the refining step of the process is being 

accounted for. This approach is not appropriate for use as top-down approach, 

that which fits actual data to the model. Instead, eo is obtained from bottom-up 

simulations of model mines. No recent bottom-up simulations of uranium mines 

were found in the literature. 
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Chapman claims that although production technique and technology will 

vary by metal, technology is similar enough to be considered equal. Chapman 

states, “the energy of mining depends upon a large number of factors: mining 

method, rock hardness, equipment used, scale of operation, distance from mine 

to mill, and so on. However many studies have shown there are typical values for 

energy, one for open pit and one for underground.” Using theoretical minimum 
values from [Kellogg] and [Batelle] for the three energies, along with, 

               
(2.3) 

 

Chapman surmised, 

For open pit metal mining 

E= 400 MJ/tonne produced 

For underground metal mining 

E= 1000 MJ/tonne produced 

Chapman defines R as the quantity of metal in the output stream divided 

by the quantity of metal in the input stream. The quantities Em ,Ec ,and Es are the 

energies for mining(MJ/tonne rock), milling(MJ/tonne ore),  and refining(MJ/tonne 

produced), respectively. It should be noted that the aggregated energy here 
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assumes 11.25 MJ(t) is equal to 1 kWh(e), a 32% efficiency. Due to fuel use for 

mine ventilation, water removal, haulage, and explosives, underground mining is 

about an order of magnitude more energy intensive than open pit mining 
[Mortimer 1974]. 

Mudd [2007c] qualitatively assesses energy balances for uranium, copper 

and gold, plotting ore grade vs. energy use at gold mines and finds, “for energy 

consumption relative to gold ore grade and annual ore throughput, inverse 

exponential patterns are apparent.” Mudd in several cases considers 

technological advancements to improve energy efficiency at the mine and mill. 

Mudd [2007c] concludes, without basis for how he arrived at these numbers, that 

the energy input for gold rangers from 30-275 GJ/ kg Au product (0.85-7.8 in 

GJ/oz) or from 0.02 -1.6 GJ/t ore processed. It is assumed that Mudd arrived at 

these values by taking the range of values from the data he collected. Mudd 

states the importance in noticing this does not account for embodied energy, “the 

energy involved in mine and mill construction, machinery, chemicals, water 

supply and the energy required for rehabilitation and ongoing monitoring and 

maintenance.” It is typical currently for only direct (operational) energy 

consumption to be reported by mining companies. Muddʼs assessment will be 

compared with this report in Chapter 4.  

[Storm van Leeuwen 2005] used Chapmanʼs 1970s data to again look into 

metal extraction, particularly uranium extraction. They modified Equation 2.1 

slightly, by dropping the dependence on stripping ratio. It should be noted that 
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although they drop the S-term, they still quote Chapman in their paper, ʻThe 

varying amount of overburden to be removed per unit ore can make differences 

in the specific energy requirements of a factor of five with the same ore type.” 

Thus an average stripping ratio is indirectly assumed to be embedded within 
emine, although this isnʼt specified in the paper. Leeuwen and Smithʼs model is  

          
(2.4) 

Also differing from Chapmanʼs model, Leeuwen and Smith show that uranium 

milling is less efficient at lower ore grades (G =% U3O8)1. Therefore, they adopted 
a mill yield factor, Y, [kg U in mill product / kg U in ore] (equation 2.5).  

             

   (2.5) 

      

     

Rather than specifying mining strategies, Leeuwen and Smith include a 

dependence on milling energy with ore hardness, the term emill(o) changes with 

soft and hard ores.  Leeuwen and Smith define soft ores as those that are easy 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
1 A note regarding units: ore grades are typically expressed in weight percent of metal in the ore or weight 

parts per million. An example of this notation is the: 1.0 w/o U as U3O8 = 10,000 weight parts per 
million U are simply written as 1.0% U3O8 and 10,000 ppmU, respectively, and is conventional in the 
literature.  
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to mill, with typical grades ranging from more than 10% down to about 0.01% 

U3O8, and hard ores as quartz pebble conglomerates and granites, with grades 
varying typically from about 0.1% down to about 0.001% U3O8, or less. 

Leeuwen and Smithʼs data comes from one source, a paper published by 

Rotty [1975] which collected data reported by US mines to the US Bureau of 

Mines in 1973. The coefficients that Leeuwen and Smith found are in Table 2.4. 
Their estimate includes embodied energy. 

Table 2.4. Model coefficients for equation 2.4 
 
 

Coefficient Value & Units 
emine 1.06 GJ(t+e)/tonne ore 

emill(soft) 1.27 GJ(t+e)/tonne ore 

emill(hard) 4.49 GJ(t+e)/tonne ore 

 
 

Leeuwen and Smith compare their estimate to that of one they made 

specifically for the Ranger mine, but it doesnʼt appear that they used actual 

operating data from that mine because their estimate is almost double the direct 

energy consumption, 355 GJ(t+e)/tonne U3O8, compared to 191 GJ(t+e)/tonne 

U3O8  that is actually reported at Ranger, over the same time period, 2005-2006 

[Mudd 2008a],[ERA 2008]. They also estimate that direct energy consumption is 
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less on a per unit product basis than embodied energies, which has been 
disproved by other others namely, Chapman and Roberts.  

When compared to available data from mines operating at lower ore 

grades (Olympic Dam, Rossing), Equation 2.4 over predicts energy consumption 

by a factor of ten or more. Indeed, Storm van Leewenʼs model predicts that the 

Rossing mine (G = 0.03% U3O8) should consume twenty to fifty times more 

energy than was actually reported, depending on whether soft or hard ore is 

assumed. Even allowing for embodied energy, large disagreement from 

operational data is evident.  

Again in the literature the necessity to look at the effect of ore grade on 

energy dependence was seen in [Rosa 2008] which noted that the average grade 

of copper ore mined in the USA over the last century has declined drastically 

while production has grown. Rosa realized that this reduction in grade had a 

direct effect on the energy consumption in the production of copper as he stated, 

“More resources are available at lower grades and at less accessible deposits, 

but then mining and processing energy needs become higher and larger amounts 

of overburden and wastes impact more heavily on the environment”. [Rosa 2008] 

refers to a paper [Ruth 1995] considering the importance of not only the decline 

in average ore grades, but also the effects that technological improvements have 

in energy consumption of mining and milling. Rosa agreed with Smith and Storm 

van Leeuwen that the yields of mines show that the metal recovery rate 

decreases quickly at low ore grades while referring to equation 2.4. Rosa states 
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that for uranium, “the yield drops to below 70% for grades smaller than 0.01%”. 

Rosa brought into light the importance in defining a peak ore grade for uranium, 

in which the same amount of energy is used in mining and refining the uranium 

product as would be created in a nuclear power plant. Rosa refers again to Smith 

and Storm van Leeuwen by accepting their estimate of the cut-off grade being 

.05%, an estimate much higher than other authors. No notable changes were 

made to Chapmanʼs model by these authors. 

[Prasser 2008] expanded upon the model developed by Chapman and 
included a new term. The model is 

 

          
(2.6) 

 

Here, the erefine , has no dependence on ore grade. Prasser included this term 

because he found that the inverse relationship between energy and ore grade did 

not appear to hold given recent mine-reported operating data. Data in the late 

1990s started being published in company mining reports, mainly due to an 

impetus to include metrics relevant to atmospheric carbon dioxide and other 

environmental sustainability factors. Based upon this modern data, Prasser 

observed that the energy intensity of the entire production process  (including 

concentration, recovery by elution, precipitation, and drying, has a dependence 
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on the ore grade that is more complicated than simple inverse proportionality.  

Therefore, Prasser added a term to the energy intensity model that allows the 
energy consumption is also to be proportional to the amount of uranium product.   

Prasser used mining data from only one mine, the Rossing mine in Africa, 

years 1999-2006. The coefficients as well as their statistical quality are shown in 

Table 2.5. The statistical quality suffers due to the data all being from the same 
mine.  

 

Table 2.5. Regression coefficients reported in [Prasser 2008] 

 
Coefficient Value Statistical Uncertainty  

(1 Std. Dev.) 
emine 0.023 GJ(t+e)/t ore + 

overburden 
+/- 0.04 GJ(t+e)/t 

emill 0.045 GJ(t+e)/t ore +/- 0.33 GJ(t+e)/t 

erefine 52 GJ(t+e)/tU +/- 123 GJ(t+e)/t 

 
 

The statistic for erefine makes it impossible to state that energy consumption is 

related to this step.  The ore grade at Rossing is low, G= .03% U3O8 , and the 

model therefore doesnʼt show that with higher ore grades the first two terms have 

lower mass throughputs and energy is more dependent on the refining step. 

Prasser defines peak ore grade to be the grade at which the input energy equals 



	   23	  

10% of the energy produced at a nuclear power plant and finds the peak grade to 

be .0014%. Differing from Chapman, Prasserʼs model does not include embodied 

energy. Studies account differently for embodied energy of fuels, materials and 

chemical inputs. The varying accounting along with [Rotty 1975] implies that on-
site energy consumption is dominant.  

The conclusion from this literature review is that Prasserʼs model best 

captures the grade-to-energy trend over a wide range of grades reported at 

modern mines, while forecasting future trends at lower ore grades. However, 

Prasser did lack a sufficiently large enough data set to prove the certainty of his 

model and this was made evident by the uncertainties around his coefficients. It 

is also possible that he misunderstood the erefine term. The most likely case is that 

this coefficient is describing more than it is being given credit by Prasser, and this 

will be pursued in Chapter 3, while renaming erefine to eu. Prasserʼs model takes 

into account varying stripping ratios, ore grades, and yield, all of which influence 

the amount of energy consumed.  Figure 2.4 shows energy (GJ/kg u) with 

decreasing ore grade (%), employing both Prasser and Smith and Storm 

Leeuwenʼs models. Actual mine data discussed by the investigators are shown 

on the figure as points of reference.   
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Figure 2.4. Summary of Literature Review 

 

 

2.3. 

To perform a top-down energy model for metal extraction, solid operating 

data was imperative. Annual numbers had to be collected for the three mass 

flows shown in Figure 2.1, as well as direct energy consumption. Historically, it 

has not been company standard practice to report energy consumption nor mass 

throughputs for their individual extraction projects. Mining companies may report 
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annual totals for their entire company, but if not tied to individual deposits with 
known characteristics these are not useful to the present work.  

Given rising concern over environmental greenhouse gas emissions in the 

last decade, however, it has become more common for companies to be detailed 

and specific in their reporting of energy use. When data is reported, it common 

practice for companies to report aggregated energy consumption, GJ(t+e), if 

energy is reported by carrier the numbers have been aggregated for this reportsʼ 

purposes. Due to the crucial nature of proper data collection to the development 

of this report, this portion of the literature review is devoted specifically to the 
source data collected.  

Much data was taken from company reports to stakeholders in the past 

decade. Although these annual reports often focus on net-earnings and future 

changes, they more recently have begun including mass flows specific to each 

mine. An example is shown from Rio Tintoʼs Rossing Report to Stakeholders of a 

uranium mine in Figure 2.5. This is typically the way these data are reported by 

companies. It is not shown in the figure, but annual average ore grade pertaining 

to each mine is often given in the body of these reports. When not specified, the 

less optimal approach is taken of dividing ore produced by ore mined to get % 

U3O8  in the ore.  This requires that an approximation be made concerning mill 
efficiency (see chapter 3). 
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Figure 2.5. 2004-2008 Rossing Data 

 

Also in the past decade, companies have begun to release sustainability reports 

for each of their mines. These reports often give energy use, sometimes by 

carrier, but more usually aggregated as one number. Figure 2.6 shows data from 

a mine-specific company sustainability report. In this case, both energy use and 
mass throughputs were given for this gold producing mine.  
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Figure 2.6.  2005 Wharf Sustainability Report.  

 

In another specific case data was found in an annual social and environmental 

report that was published by Energy Resources of Australia [ERA 2008]. This 
gave ten years of mine performance.   

Gavin Mudd [Mudd 2007],[Mudd 2007a],[Mudd 2007c],[Mudd 

2008a],[Mudd 2010] has a series of publications related to the mining and milling 

of uranium, gold, and copper, with energy and ore grade reported. Data was 

extracted, in some cases, from his papers as well as from his references. His 

data was most useful in the case of gold, in which difficulty was found in tracking 
down company reporting.  
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The data in Appendix A made this report possible and should be referred 

to in order to understand variation in ore grade among metals as well as the 

details of the complete data set. A review of the literature returned no direct 

comparison of energy consumption between uranium mining and the mining of 

other minerals. Therefore, this study expands on the reviewed work by 

assembling recent mine performance data. 1960s and 1970s data will not 

properly model 21st century mining, due to advancements in technology and the 

improvement in company reporting standards. More validity will be given to the 

uranium mine energy intensity model by applying it to data for three different 
minerals to show its applicability over a wide span of ore grades.  
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Chapter 3 

Methodology 

 
This section first describes the model used for defining the energy-to-

grade relationship for uranium mines. The reasoning for comparing different 

commodities using the same model follows. Next the model will be broken down 

to discuss the interpretation of each coefficient. Lastly, the collected data will be 

presented numerically while graphically and qualitatively discussed.    

 

3.1 

Prasserʼs model for energy consumption is based on the mass flows 

through the mining and milling processes and his model is hereby adopted. It 

was seen in the literature review that his model best represented the energy-to-

grade relationship of a full range of grades at different mines. This top-down 

model is used to forecast energy consumption as well as depict declining ore 

grades among certain commodities. While a bottom up model would be ideal for 

studying a single mine, a top-down model is appropriate for long-term forecasting 
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and studying a range of mines. A top-down model uses a mathematical 

expression to represent the quantities dependent upon normalized energy 

consumption [GJ/ t product]. For metal extraction these quantities are ore grade, 

mill and/or leaching process yield, and the mass of waste rock relative to the 
mass of ore. 

 Prasser included a coefficient to his model that had no dependence on 

ore grade, and the justification of this will be explored in this section. The erefine 

coefficient added by Prasser is now renamed eproduct, because it is thought that 

the coefficient accounts for more than Prasser gave it credit for in his model. This 

model asserts that energy consumption is based on mining method and the three 

mass flows, mining, milling, and refining. The energy intensities for each will be 

calculated from the mining data in Appendix A using a linear regression analysis. 

The regression coefficients will then be applied directly to the model equation 

along with a wide range of ore grades (.002-20%) and associated yields based 

on equation 2.5, for uranium. This will show how energy consumption varies with 

ore grade using regression coefficients based on actual data. The coefficients 

can be compared to the mass-flow based energy coefficients from past studies 

for evaluation purposes. In addition, the coefficients can be applied directly to 

individual mine data to predict energy consumption at the mine. For example, 

multiplying the coefficients by their corresponding annual throughput and 

applying the mines average ore grade to 3.1, results in the energy consumption 

at that mine. This can be compared directly to actual mine reported energy 
consumption to show the goodness of fit of the regression analysis. 
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The expression for both open pit and underground mining, the terms of 
which are described in table 2.2, is as follows,  

           (3.1) 

 

if it is an underground mine, =1 

 

if it is an open pit mine,    =0 

 

where emine(UG-OP) 	  represents the difference in energy intensity between 

underground and open pit mining. The delta function allows for both open pit and 

underground mines to be modeled in a single regression, with the same milling 

and product refining energy intensity coefficients but allowing for different mining 
intensity coefficients.  

The data for uranium underground mines was limited, and had consistently low 

stripping ratios as expected for this mining technique. Due to the limited range of 

stripping ratios represented by the mines in the uranium data set, the regression 

analysis had difficulty in differentiating the energy consumption between mining 

and milling. This led to poor statistical confidence in these two parameters and it 

€ 

δUG
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was necessary, for uranium, to aggregate mining and milling, emm, for 
underground mining: 

 

          (underground uranium mining)           (3.2)      

      

It should be noted that emm is the energy (GJ(t+e) per tonne ore) to mill 

one tonne of ore plus the energy to mine the overburden with low stripping ratios 

comparable to the mines used in the regression analysis (S < 1). While this 

condition limits the scope of the underground model, the restriction is not as 

limiting as it may seem. Stripping ratios in underground metal mines are 

generally considerably lower than in open pit mines [IAEA 2000]. 

In addition to regressing the Appendix A data, it was also beneficial to 

regress the data after dropping the product term to observe the change in energy 

consumption. While there is an energy consumption associated with eproduct , it 

can be seen in equation 3.1 that this coefficient has no grade dependence. To 

better understand the role that eproduct plays in describing energy consumption, It 

was therefore beneficial also to explore the predictive power of the model in the 

absence of the eproduct term. In this case, equation 3.1 becomes,  

     (3.3) 
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and the same methods of evaluating the model as previously discussed are 

used. The model should predict a linear (1/G) relationship proportional to energy 

consumption for low ore grades. However, if the trends observed for uranium 

extend to other commodities the model will be seen to fail to predict energy 
consumption at higher ore grades. 

There are standard errors associated with each coefficient and these errors can 

be propagated over equation 3.1 and 3.3 to create error bars.  Equation 3.4 

shows he model for the error bars. When applied to equation 3.1 the sigma 

product term is withheld. The sigma term for mining can be varied according to 
what type of mining is under consideration.  

 

    (3.4) 
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3.2   

 

 Since the processes of metal extraction and refining are analogous among 

metals, it was useful to compare the model that was developed for uranium to 

other commodities. It should, however, be noted that not all metals are extracted 

or refined the same way, but the metals considered hereafter have a close 

enough analogue to base these comparisons [Chapman 1983]. The model was 

applied to a metal with higher and a metal with lower crustal abundance than 
uranium, see Table 3.1. 

Table 3.1 Crustal abundance of metals used, Source: [Wikipedia 2010] 

 Symbol Avg. Crustal 

abundance (ppm) 

Gold Au .004 

Uranium U 2.8 

Copper Cu 60 

 

Equation 3.1 was used model all data collected for gold and copper, and 

included data from both underground and open pit mines. When mining 

technique was not reported at the mine an assumption was made that grades 

above ~5 ppm were underground mines [Mudd 2007c]. More data was collected 

for the underground mining of gold, than uranium, and could be directly modeled 

by the equation 3.1, because of the variation in stripping ratio. It was found that 
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stripping ratios for underground gold mining are larger than that of uranium, 

possibly due to the lower crustal abundance and similarly lower ore grades. Due 

to lack of useful mining data, only open pit mining will be considered for copper. 

Because of the similarities among commodities reported in the literature, it is 

expected that the metals will follow a similar energy-to-grade relationship as is 

expected for uranium. The formula for yield that was introduced for uranium in 

Chapter 2, equation 2.5, of this report cannot be applied to copper and gold as it 

was made, by [Storm 2007], specifically for uranium. The yield is site specific 

while dependent on varying technologies and equipment, and it is impossible to 

know the exact yield for each project. However, companies will want to keep their 

yield as high as possible and for the purposes of this report an optimistic yield of 

0.98 will be used for gold and copper, while equation 2.5 will be used for 
uranium. 

The data sets used to define energy use can be found in Appendix A of 

this report. It was necessary, in some cases, to manipulate the data to have a 

uniform data set. This manipulation was done be aggregating energy 
consumption from thermal and electric carriers were to GJ(t+e).  

For example, when electrical energy is reported in units MWh(e) and thermal 

energy as liters(L) of diesel fuel, the following is used to develop uniform 
consumption units: [Supple 2010] 
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The other manipulation made to data was for the case of the copper co-

producing mines and the Olympic Dam mine, metrics (energy, waste, throughput) 

are calculated based on their revenue, derived from the amount of product. 

Companies reported the metrics as totals for their co-producing mines. Following 

the strategy of [Mudd 2010], for the Olympic Dam underground co-producing 

mine in which 20% of total reported metrics were assigned to uranium, we 

disaggregated the mineralsʼ metrics based on their annual value. Revenues were 

used from the US Geological Survey [USGS 2010] in dollars per tonne to allocate 
the metrics based on their annual worth.  

 

The strategy for copper is as follows: 

where, 

Xi	  =tonnes	  (any	  metal)	  ,	  X1	  =tonnes	  copper,	  and	  Xi$	  =annual	  revenue	  ($)	  from	  metal	  	  

Mtotal	  =metric total for mine, Mxi	  = metric for copper 
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The	  metrics,	  M,	  are	  either	  GJ,	  waste	  rock,	  or	  ore	  milled.	  	  

Using this method, at two of the copper mines the reported energy 

accounted for 90% of the energy based on copperʼs revenue against the other 

metal in production at the mine. In the third copper-nickel mine, copper 

accounted for 20% of the total energy consumption, because nickel is worth an 

order magnitude more than copper. It is true the inclusion of co-product mines is 

not ideal and introduces some double accounting, but limited data made this 
necessary. 

Mining data in Appendix A are broken up into companies and labeled as 

open pit, underground, and/or co-producing. There are a total of four copper, 

eight uranium, and 30 gold mines. All of the copper mines are open pit and 

several are co-producing. A single uranium mine and eight of the gold mines are 

underground. It should also be noted that the gold product has units of ounces, 

whereas copper and uranium are reported in tones; this notation is commonly 

found in the mining industry. Finally, for all mines, energy in the tables refers to 

direct energy use only. As described in Chapter 2, the energy pertaining to the 

consumption of chemicals, machinery, and machine parts (embodied energy) is 
not included.  

Figures 3.1, 3.2, and 3.3, give energy on per product basis versus ore 

grade for the data sets used in this report. These figures do not show the grade-

to-energy relationship strictly following the (1/G) behavior over all ore grades, as 



	   38	  

postulated by the models in Chapter 2. As described in the previous chapter it 

has been understood that the inverse grade-to-energy relationship would be 

expected to be apparent at lower ore grades, establishing a cut-off grade for any 
metal.  

The available data for uranium and gold spans several orders of 

magnitude in ore grade for each metal. The data points indicate that grade alone 

cannot explain the observed energy consumption trends. Evidently a substantial 

component of the energy consumption, especially at higher-grade mines, is not 

tied to the ore grade. It is most likely that this non-grade dependent consumption 

is tied to the refining step, where process mass flows are proportional to the 

product mass. This energy consumption may also be tied to inherent energies 

such as transportation from the mine to the mill. Although most mills are 

collocated with the mines, there is still transport involved and may be a hidden 

consumption that has no dependence on the grade of the ore. However, it is 

difficult to know exactly what is behind this non-grade dependent energy 

consumption. This is behind the reasoning for including the coefficient with no 

grade dependence, eproduct. This is also why the model is evaluated without this 

coefficient, in order to show itsʼ importance. The same is true for the figure 3.3, 

with copper data, however it is more difficult to draw a conclusion in this case 
because there are so few data points. 
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Figure 3.1 Energy consumption versus ore grade at gold mines, data from 
Appendix A. (open pit (OP) and underground (UG) mining) 
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Figure 3.2. Energy consumption versus ore grade at uranium mines, data from 
Appendix A. 
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Figure 3.3 Energy consumption versus ore grade at copper mines, data from 
Appendix A. 

 

The methods of this report have been developed from that of the 

investigators described in Chapter 2. A large data set, with varying ore grades, 

was compiled to define and forecast energy consumption. These data are used 

to evaluate the top down model presented earlier. In the next chapter, the 

regression results will be presented and the ability of this model to describe the 

commodities of gold and copper will be examined. Finally, the consequences of 
dropping the constant term, eproduct, from the model, will be explored.  
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Chapter 4 

Results 

 
This chapter presents the results of the uranium, gold, and copper 

regression analyses and draws conclusions regarding the applicability of the 

energy intensities to the other commodities. The data that the results are based 
upon is available in Appendix A of this report. 

 

4.1 Uranium 

 Table 4.1 shows the coefficients obtained for open pit (OP) and 

underground (UG) mining from regressing the uranium mine data from Appendix 

A, for the 28 OP and 7 UG data points, onto equations 3.1 and 3.2 using the 

statistical analysis toolkit in Microsoft Excel. The R-squared value for the fit was 

0.904. The statistical quality associated with this fit is acceptable, with the 

exception of the coefficient for mining emine where the t-statistic is low. This is 

where the regression falls short due to lack of data from mines operating at high 

stripping ratios.  
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Table 4.1. Energy intensity coefficients obtained from regression analysis. 
 

Coefficient Applies to Value Standard Error 
[GJ(t+e)/t] 

T Statistic 

eproduct OP, UG 178[GJ(t+e)/tU] 12.2 14.6 
emill OP 0.0236[GJ(t+e)/(t ore)] 0.0053 4.44 
emine OP 0.0125[GJ(t+e)/t(ore+ob)] 0.0119 1.04 
emine UG 0.291[GJ(t+e)/(t  ore)] 0.0340 8.55 

 
 

 

The current model improves upon Prasserʼs predictions for ore grades of 

greater than 0.1% U3O8 where the eproduct term governing uranium refining and 

other grade-insensitive energy inputs plays a much larger role in determining 

energy use. The current model agrees with Prasser at lower grades where ore 

milling and overburden haulage dominate the energy balance. Error bars are 

shown on Figure 4.1 for the current model. 
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Figure 4.1. Results of Prasser and current model 

 

 

Figure 4.2 shows actual mine report energy consumption verse energy 

consumption predicted by the intensity coefficients from the regression. The 

figure shows the results of the Rossing mine in Namibia, Africa, whose average 
ore grade is .03%. 
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Figure 4.2. Energy Consumption, actual versus predicted, data: Rossing uranium 
mine in Appendix A.	  
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4.2 Gold 

The coefficients are presented in Table 4.2 after the gold data was 

regressed on equation 3.1 using the 98 OP and UG 42 mining data points. The 

large data set benefitted the regression analysis and gave rise to high t-statistics, 

but the range of ore grades, specifically 0.3-16 ppm, was more limited than that 

seen for the operating uranium mines. In Table 4.3 the coefficient values are 

given for emine and emill, while the product term has been dropped. The 

coefficients have the same order of magnitude as the values when the constant 

is dropped, indicating that for the deposits and ore grades currently being tapped 

for gold recovery, a strict (1/G) model might describe energy consumption rather 
well.  

Table 4.2 Energy intensity coefficients obtained from regression analysis 
Coefficient Applies to Value  Standard Error 

[GJ(t+e)/oz or t] 
T 

Statistic 
eproduct OP, UG 0.77[GJ(t+e)/oz Au] 0.2 2.6 

emill OP, UG 0.0117 [GJ(t+e)/(t ore)] 0.0046 4.2 
emine,OP OP 0.02913[GJ(t+e)/t(ore+ob)] 0.0032 8.9 
emine_UG UG 0.0071[GJ(t+e)/t(ore+ob)] 0.0046 7.8 

 

Table 4.3. Energy intensity coefficients obtained from regression analysis, no 
constant 

Coefficient Applies to Value  Standard Error 
[GJ(t+e)/oz or t] 

T 
Statistic 

emill OP, UG 0.0114 [GJ(t+e)/(t ore)] 0.0039 7.6 
emine,OP OP 0.037[GJ(t+e)/t(ore+ob)] 0.0032 9.2 
emine_UG UG 0.00059[GJ(t+e)/t(ore+ob)] 0.0045 8.07 
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On the other hand, it should be noticed that the model provides poor predictions 

for higher-grade deposits when the grade-independent term is dropped. Figure 

4.3 shows the importance of having a product term included in the model. At 

larger ore grades this term evidently dominates the energy consumption directly 

associated with mining operations. In figure 4.3, the underground gold mine 
regression function was evaluated at a stripping ratio S=2.2. 

Figure 4.3. Results of current model 
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Figures 4.4 and 4.5 include the standard error after being propagated on the 
model equation for open pit and underground, respectively. 

 

 

Figure 4.4. Results of current model, Open Pit 
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Figure 4.5. Results of current model, Underground  
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Figure 4.6 and Figure 4.7 apply the model to specific mines. In this case the 

coefficients were applied to three open pit mines and four underground mines, 

respectively. The figures show actual company reporting direct energy and 
energy consumption predicted by the regression coefficients. 

	  

	  Figure 4.6. Energy Consumption, actual versus predicted, data:(from left to right) 
Bald Mountain (2006-2007), Ruby Hill(2007), and GoldStrike (2001-2007) open 
pit gold mines available in Appendix A.	  
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Figure 4.7. Energy Consumption, actual versus predicted, data:(from left 
to right) Hemio (2004-2007 ), Plutonic(2001), Lawlers(2004-2007), and Sunrise 
Dam(2002-2003) underground gold mines available in Appendix A. 

 

 

Figures 4.6 and 4.7 depict that in each case shown energy per unit product is the 

same order of magnitude for both actual and predicted consumption. 

The results from this analysis produce comparable results to that of [Mudd 

2007c] for gold, which got 0.85-7.8 in GJ/oz product. The current result, which 
also combined open pit and underground, was 0.90- 10 GJ/oz product.  
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4.3 Copper 

Regression coefficients for copper are given in Table 4.4 and Table 4.5, using 17 

open pit mining data points. Statistical measures indicated that the model 

provided a poor fit. This is most likely attributed to the small data set and small 

variation in ore grade for this commodity. It is also probable that the uncertainty is 

associated with three of the four mines being co-producing mines (to account co-

products a revenue based disaggregation described in chapter 2 was used, but it 

is impossible to know the true ʻshareʼ of energy consumption associated with 

copper at co-producing mines). This is apparent in the statistics from the 

regression analysis, as we see the t-statistics suffer for each coefficient but 
especially for the product, where the null hypothesis cannot be rejected.  

 
Table 4.4 Energy intensity coefficients obtained from regression analysis 
 

Coefficient Applies to Value Standard Error 
[GJ(t+e)/t ] 

T Statistic 

eproduct OP, UG 2.45[GJ(t+e)/t Cu] 2.6 0.91 
emill OP, UG 0.0484 [GJ(t+e)/(t ore)] 0.0203 3.2 
emine OP, UG 0.0151[GJ(t+e)/t(ore+ob)] 0.0061 2.4 

 
 

 



	   53	  

When the product term is removed the statistics still suffer and although the t 
statistic seems reasonable, the error for the milling term is four times that of the 
true value.  

 

 

Table 4.5. Energy intensity coefficients obtained from regression analysis, no 
constant 

 
Coefficient Applies to Value  Standard Error 

[GJ(t+e)/t] 
T Statistic 

emill OP, UG 0.0075 [GJ(t+e)/(t ore)] 0.029 1.2 
emine,OP OP 0.040 [GJ(t+e)/t(ore+ob)] 0.012 3.3 

 
 

 

Figure 4.8 graphically depicts the regression results. Again it is seen when the 

constant is dropped from equation 3.1, the model does not describe high ore 

grades. The significance of the large standard error is shown here through the 

error bars on the model. It is difficult to conclude the effect of removing the 

product term from the model here because the statistical uncertainties associated 
with the two models are seen to overlap. 
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Figure 4.8. Results of current model	  

 

All of the copper mines that were used for the analysis are seen in Figure 4.9, 

where the predicted energy consumption for almost half of the mines are twice as 

much as the actual reported energy consumption. Clearly, more data is needed 

to confirm the modelsʼ relevance to copper. It would be ideal to model a 

commodity, of higher ore grade, that is not co-produced, because of the difficulty 
in apportioning metrics to each commodity at the mine/mill. 
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Figure 4.9. Energy Consumption, actual versus predicted, data: all copper mines 
in Appendix A. 
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Chapter 5 

Conclusion 

 
This report was motivated by from the perceived uncertainties in the 

energy consumption of steps in the front-end nuclear fuel cycle. Large 

discrepancies were found in the magnitude of energy intensity in mining and 

milling of uranium. The goal here was to model how and where energy was being 

used in these processes while confirming the dependence of energy use on ore 

grade. In order to validate the model for uranium, it was beneficial to compare it 

to other metals of higher and lower ore grades. Copper and gold were chosen 

because of their crustal abundance as well as their seemingly adequate data 

sets. Energy consumption in the mining and milling of three different commodities 
has been presented and analyzed.  

In conclusion of this report, the model presented has confirmed that 

energy consumption will increase as ore grade decreases for uranium ore, but 

that a strict inverse-grade model cannot accurately depict energy use at both 

high- and low-grade mines. By using far more data than any investigator had 

previously, the quality of the statistics were increased. The model depicted the 
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energy-to-grade relationship for gold with good statistical accuracy. The 

reasonable results for modeling gold concluded that the model described for 

uranium could be applied to other commodities of different crustal abundances. 

However, it was found that the data set acquired for copper was not sufficient to 

describe the energy-to-grade relationship for the commodity. Unfortunately 

copper is usually co-mined and produced, making it difficult to apportion energy 

values to the individual extracted commodities. Due to this ascription inaccuracy, 

it is difficult to draw concrete conclusions on whether or not the model presented 

for uranium and gold can accurately describe copper as well. In continuing upon 

this research, it would be valuable to choose another, higher-abundant, 

commodity to use as a comparison to the model. In addition, the constant term, 

eproduct, should be addressed.  It was seen when the constant term for gold was 

dropped from the equation that the current data was reasonably explained by a 

strict (1/G) model. However, the higher-grade ores were better represented when 

the constant was kept in the equation but the statistics did not support definitive 

conclusions regarding the utility of this term. It seems more beneficial at this 

stage to keep the constant term in the equation in order to describe that energy 

consumption for eproduct that does not have grade dependence. The conclusion 
should be re-drawn when the data set has more variation in ore grade. 

Lastly, this report can inform the nuclear industry at large. Looking forward 

in the 21st century, there will be more and more concern placed on energy 

consumption due to its strict relationship with carbon dioxide emissions. While a 

new nuclear age is currently being defined, it is necessary for the industry to 
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competitively explore and explain ways in which nuclear compares and exceeds 

other base-load powers.  This study has taken an in-depth empirical approach to 

quantifying energy consumption in a critical step of the fuel cycle. Now energy 

consumption can be modeled for future mine generations as ore grade slowly 

declines, allowing meaningful comparison to the energy consumption of other 
commodities and fuel cycles. 
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Appendix A 

 

Complete Listing of Uranium Mine and Mill Data 
 

 
Table A.1. Rio Tinto (Open Pit)  
 
Year Energy 

Consumed 
(TJ) 

Waste(kt) Ore Milled 
(kt) 

U3O8 (t) Ore Grade (ppm U) 

Rossing 
1999 1248 15607 10463 3171 357 
2000 1133 9787 11039 3200 341 
2001 979 12033 9084 2643 342 
2002 999 13015 8969 2752 361 
2003 915 10434 8347 2374 335 
2004 1096 8139 10972 3582 384 
2005 1152 7483 12027 3711 363 
2006 1366 16835 12008 3617 354 
2007 1534 21396 12613 3046 284 
2008 1812 33899 12858 4108 376 

 
 
Source:  
Annual Report to Stakeholders, Rössing Uranium Ltd, Years 1999 to 2009, 
Swakopmund, Namibia, available: www.rossing.com, webpage accessed January 5, 
2010.  
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Table A.2. Energy Resources of Austraila (Open Pit) 

Year Energy 
Consumed 
(TJ) 

Waste(kt) Ore Milled 
(kt) 

U3O8 (t) Ore Grade (ppm U) 

Ranger 
1997 749 5871  4162  
1998 906 5343    
1999 808 4524 1827 4375 2700 
2000 922 5835 1550 4244 3000 
2001 916 3485 1510 6564 2900 
2002 810 2819 1784 4470 2800 
2003 873 4249 2068 5065 2800 
2004 1064 8500 2086 5137 2800 
2005 902 14910 2293 5910 2900 
2006 1205 9900 2072 4748 2600 
2007 1223  2900 5412 3100 
2008 1457  3500 5339 3000 

 
 
Sources: 
Mudd, G.M., The Sustainability of Mining in Australia: Key Production Trends and Their 
Environmental Implications for the Future, Research Report No RR5, Department of Civil 
Engineering, Monash University and Mineral Policy Institute, October 2007.   
Annual Social and Environment Report, Energy Resources of Australia Ltd (ERA), Years 
2001 to 2008, Sydney, NSW, available: www.energyres.com.au, webpage accessed 
January 2, 2010.
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Table A.3.  BHP Billiton (Underground) 
 
Year Energy 

Consumed 
(TJ) 

Waste(kt) Ore Milled 
(kt) 

U3O8 (t) Ore Grade (ppm U) 

Olympic Dam 
1998 604 54 681 1740 790 
1999 924 108 1349 3198 890 
2000 1037 142 1780 4500 740 
2001 1043 149 1867 4355 720 
2002 976 142 1775 2881 690 
2003 933 134 1677 3176 630 
2004 1089 142 1777 4370 640 
2005  154 1929 4362 620 
2006  145 1817  570 

 
 
Source:  
Mudd, G.M., The Sustainability of Mining in Australia: Key Production Trends and Their 
Environmental Implications for the Future, Research Report No RR5, Department of Civil 
Engineering, Monash University and Mineral Policy Institute, October 2007.
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Table A.5. Cameco/Areva (Open Pit) 
 
Year Energy 

Consumed 
(TJ) 

Waste(kt) Ore Milled 
(kt) 

U3O8 (t) Ore Grade (ppm U) 

McLean Lake 
2002 594 140 122 2761 22900 
2003 437 152 132 2733 20700 
2004 456 170 148 2681 18600 
2005 588 199 173 2451 14500 
2006 214 150 131 814 6800 
2007 146 196 170 864 5300 

 
 
Source:  

Mudd, G.M., M. Diesendorf, “Sustainability Aspects of Uranium Mining: Toward Accurate 
Accounting?” 2nd International Conference on Sustainability Engineering & Science, 
Auckland, New Zealand, 20- 23 February 2007. 



	   63	  

	  

Table A.6. Data for other mines (Open Pit) 
 
Year Energy 

Consumed 
(TJ) 

Waste(kt) Ore Milled 
(kt) 

U3O8 (t) Ore Grade (ppm U) 

McArthur River 
2007 586 51 44 8489 190000 

Key Lake 
2006  252 219 8462 39100 
2007 734 244 212 8483 40700 

Rabbit Lake 
2006 787 360 313 2359 7800 
2007 686 314 273 1825 6900 

Cluff Lake 
2002  82 72 1917 27000 

 
 
Source:  

Mudd, G.M., M. Diesendorf, “Sustainability Aspects of Uranium Mining: Toward Accurate 
Accounting?” 2nd International Conference on Sustainability Engineering & Science, 
Auckland, New Zealand, 20- 23 February 2007. 
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Complete Listing of Gold Mine and Mill Data 
 
Table A.7a. Barrick Gold Data (open pit) 
 

Year GJ(e+t) Waste(kt) Ore Milled 
(kt) 

Produced 
(oz) 

Grade 
(ppm) 

GJ/oz 
prod 

Bald Mountain 
2006 535259 12232 6475 304971 1.95 2 
2007 641714 17894 8688 134933 0.55 5 

Ruby Hill 
2007 484264 18704 3460 168941 2.02 3 

Goldstrike 
2001 5612277 131584 9582 2482552 8.57 2 
2002 5270220 120270 10850 2248887 6.86 2 
2003 4171614 119443 10581 2315806 7.54 2 
2004 4199887 107912 11199 2131507 6.17 2 
2005 4139882 112674 10510 2220365 6.86 2 
2006 4173190 109514 10825 2045939 6.10 2 
2007 4901551 114601 10745 1787043 5.45 3 

Round Mountain 
2001 2008671 10508 53216 819473 0.58 2.451 
2002 1969714 838 56448 828249 0.65 2.378 
2009 1205870 20040 30035 213946 0.64 5.636 
2008 1193820 20658 37368 246946 0.64 4.83 
2007 1189813 23717 36990 302971 0.64 3.927 
2006 1115748 19014 43436 335115 0.64 3.329 
2005 1085723 5807 61696 373115 0.64 2.910 
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Table A.7b. Barrick Gold Data (open pit) 
 

Year GJ(e+t) Waste(kt) Ore Milled 
(kt) 

Produced 
(oz) 

Grade 
(ppm) 

GJ/oz 
prod 

Granny Smith 
1995 1311739 29099 4034 240311 1.92 5.458 
1996 1484974 34138 3902 293250 2.40 5.064 
1997 1452635 32649 4200 324464 4.00 4.477 
1998 1399178 12128 4166 604670 4.63 2.314 
1999 1570049 22953 4138 573778 4.50 2.736 
2000 1687012 27800 4058 451975 3.50 3.733 
2001 1980839 18408 3633 380817 3.30 5.202 
2002 1772000 24677 4175 597615 4.30 2.965 
2003 1943743 25448 3955 307273 2.50 6.326 
1998 2044835 25761 5103 203930 1.30 10.0 
1999 2132561 32139 6243 217325 1.10 9.813 
2000 2156785 23432 6086 238863 1.20 9.029 
2001 1688852 2786 5738 182746 1.00 9.2 

Pierna 
2004 1161122 21300 15192 708595 1.028 1.335 
2005 1387899 28050 14483 688851 1.714 1.69 
2006 1847338 37426 15457 558321 1.166 2.894 
2007 1671368 28232 16209 559417 1.166 2.547 
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Table A.7.c Barrick Gold Data (open pit) 
 
 

Year GJ(e+t) Waste(kt) Ore Milled 
(kt) 

Produced 
(oz) 

Grade 
(ppm) 

GJ/oz 
prod 

Launas Norte 
2005 985854 8513 12945 603293 2.057 1.46 
2006 891847 5367 19448 1189036 2.263 0.588 
2007 935326 3385 19692 1191230 2.160 0.604 

Kidston 
1995 1056873 20907 6103 225869 1.29 4.679 
1996 1056244 31841 6093 191481 1.14 5.52 
1997 1199461 39750 6150 209821 1.17 5.717 
1998 1052466 24126 6845 206259 1.10 5.103 
1999 1051304 16958 7269 233790 1.10 4.497 
2000 1140849 9882 7354 267856 1.30 4.3 

Veladero 
2005 1883020 53526 4094 61426 0.72 30.65 
2006 2573117 60715 13672 560514 2.02 4.59 
2007 2732761 51640 17787 518832 0.93 5.27 
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Table A.7d. Barrick Gold Data (underground) 
 

Year GJ(e+t) Waste(kt) Ore Milled 
(kt) 

Produced 
(oz) 

Grade 
(ppm) 

GJ/oz 
prod 

Hemio 
2002 554146 4006 3458 590131 5.11 0.939 
2003 552976 4004 3576 587937 5.14 0.940 
2004 530758 4892 3663 541867 4.46 0.979 
2005 517581 4496 3504 504573 4.11 1.026 
2006 469026 4745 3355 449728 4.05 1.043 
2007 509836 5176 3035 370751 3.67 1.375 

Plutonic 
2000 1717575 8922 3036 278220 2.91 6.173 
2001 1347880 9098 3172 316301 3.12 4.261 
2002 1288946 10764 3204 336747 3.33 3.828 
2003 1387759 10612 2731 366305 4.22 3.789 
2004 1696416 891 2415 334554 4.46 5.071 
2005 1362265 10631 1818 275321 4.80 4.948 
2007 1344301 996 1852 228155 3.87 5.892 

Lawlers 
2003 150459 369 731 108593 4.4 1.386 
2004 191095 1325 786 120659 4.5 1.584 
2005 174005 2247 806 143694 5.1 1.211 
2006 213842 4061 826 120659 4 1.772 
2007 243648 513 791 126143 4.7 1.932 

Tuluwaka 
2006 646436 7004.88 500.256 153565 9.15 4.210 
2007 746200 7341.84 430.272 195874 13.7 3.810 
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Source:  
Mudd, G.M., Global trends in gold mining: Towards quantifying environmental and 
resource sustainability?, Energy Policy, 32, 42-56, 2007.  

Annual and Site Responsibility Reports. Barrick, TD Canada, available: 
http://www.barrick.com, webpage accessed October 20, 2010.  

 

 

 

Table A.8.a Anglo Ashanti Data (open pit) 
 

Year GJ(e+t) Waste(kt) Ore Milled 
(kt) 

Produced 
(oz) 

Grade 
(ppm) 

GJ/oz 
prod 

Navachab 
2005 227524 2522 1222 88528 2.1 2.570 
2006 299142 6339 1490 94876 1.8 3.153 
2007 320274 5786 1597 88034 1.6 1.784 

Cripple Creek/Victor JV 
2005 1328301 28482 19194 361628 0.62 3.673 
2006 1299069 31969 21795 311010 0.54 4.177 

Geita 
2005 1899936 48031 6078 672740 3.14 2.824 
2006 3276803 54033 5691 338169 1.68 9.69 
2007 3351884 58140 5066 358555 2.01 9.348 
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Table A.8.b Anglo Ashanti Data (underground) 
 

Year GJ(e+t) Waste(kt) Ore Milled 
(kt) 

Produced 
(oz) 

Grade 
(ppm) 

GJ/oz 
prod 

Sunrise Dam 
2002 2083928 39232 3407 419431 3.5 4.968 
2003 2248862 56739 3564 392273 3.1 5.733 
2004 2294075 29531 3673 449728 3.5 5.101 
2005 2149981 19321 3625 498683 3.7 4.311 
2006 2261654 16415 3967 509652 3.6 4.438 

 
Source:  

Mudd, G.M., Global trends in gold mining: Towards quantifying environmental and 
resource sustainability?, Energy Policy, 32, 42-56, 2007.  
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Table A.9. Newmont (open pit) 
 

Year GJ(e+t) Waste(kt) Ore Milled 
(kt) 

Produced 
(oz) 

Grade 
(ppm) 

GJ/oz 
prod 

Inti Raymi 
2005 471118 4046 11532 106838 0.446 0.673 

Yanacoocha 
2005 7228549 65580 133036 3656067 0.960 1.977 

 
 
Source:  

Mudd, G.M., Global trends in gold mining: Towards quantifying environmental and 
resource sustainability?, Energy Policy, 32, 42-56, 2007.  

 
 
Table A.10. Kinross (open pit) 
 

Year GJ(e+t) Waste(kt) Ore Milled 
(kt) 

Produced 
(oz) 

Grade 
(ppm) 

GJ/oz 
prod 

Fort Knox 
2009 2224303 36 16224 263260 0.45 8.449 
2008 2217271 1455 13769 329105 0.45 6.737 
2007 1,018,567 21700 12722 338459 0.45 5.690 
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2006 1941970 31751 13462 333383 0.45 5.825 
2005 1,049,708 40061 13050 329320 0.45 5.985 

Paracuta 
2009 2802322 2290 39744 354396 0.41 7.907 
2008 1183322 160 20307 188156 0.41 6.289 

Maricunga 
2009 981609 10988 15613 233585 0.57 4.202 
2008 852490 10793 15027 221882 0.57 3.842 

       
2005 405,575 6626 5800 67086 0.328 7.921 
2006 474,607 12009 14721 256384 0.494 2.924 
2007 467,958 11467 13691 246582 0.511 3.027 

 
 
Source: 

Kinross Corporate Responsibility Report, 2009, Toronto, ON, available : 
www.kinross.com, webpage accessed October 20, 2010. 

 

 

Table A.11a. Placer Dome (now Barrick Gold) (open pit) 
 
 

Year GJ(e+t) Waste(kt) Ore Milled 
(kt) 

Produced 
(oz) 

Grade 
(ppm) 

GJ/oz 
prod 

La Coipa 
2009 978448 10434 4907 231169 1.3 4.187 
2008 947397 7889 4918 226293 1.3 2.6 
2007 504233 5457 3546 197554 1.3 3.46 
2006 537247 877 5126 155180 1.3 4.39 
2009 553251 11826 6496 125991 1.3 1.636 

Misma 
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1997 2080958 24998 5357 235836 1.4 8.824 
1998 2044835 25761 5103 203930 1.3 10.0 
1999 2132561 32139 6243 217325 1.1 9.813 
2000 2156785 23432 6086 238863 1.2 9.029 
2001 1688852 2786 5738 182746 1.0 9.2 

 
Table A.11b. Placer Dome (now Barrick Gold) (underground) 
 

Year GJ(e+t) Waste(kt) Ore Milled 
(kt) 

Produced 
(oz) 

Grade 
(ppm) 

GJ/oz 
prod 

Porgera 
1997 3048238 60800 4382 781754 6.9 3.899 
1998 3961233 61700 5748 797234 5.3 4.969 
1999 4121420 56200 5604 827887 5.4 4.978 
2000 4137803 67700 6022 998652 5.8 4.143 
2001 4468322 68300 5762 834324 4.9 5.356 
2002 3501560 57200 4874 809003 5.2 4.328 
2003 4251143 61400 5656 934468 5.3 4.549 

Hently 
2001 44640 62.965 196.855 100967 15.1 0.442 
2002 60554 133.674 224.252 88919 12 0.681 
2003 51480 153.932 289 111960 11 0.460 
2004 39319 63 288 156926 16 0.251 
2005 38134 91.963 299 122055 12.4 0.312 
2006 40616 91.008 308.448 78977 7.9 0.514 
2007 48630 102.5 293.9328 76783 8.1 0.633 

 
 
 
Source:  

Mudd, G.M., Global trends in gold mining: Towards quantifying environmental and 
resource sustainability?, Energy Policy, 32, 42-56, 2007.  
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Table A.12. GoldCorp (open pit) 
 
 

Year GJ(e+t) Waste(kt) Ore Milled 
(kt) 

Produced 
(oz) 

Grade 
(ppm) 

GJ/oz 
prod 

Wharf 
2004 341260 9234 3036 83495 0.87 4.087 
2005 290884 11357 3006 68524 1.03 4.245 

 
 
Source: 
 
Warf Resources, INC. 2005 Sustainability Report, Lead, SD, 2005. 
 
 
 
 
Table A.13. GoldFields (open pit) 
 
 

Year GJ(e+t) Waste(kt) Ore Milled 
(kt) 

Produced 
(oz) 

Grade 
(ppm) 

GJ/oz 
prod 

Damang 
2004 880,300 9855 5236 338204 1.8 2.603 
2005 870,800 9050 5215 271685 1.5 3.205 
2006 1,048,522 21427 5328 257894 1.4 4.066 

       
2007 1,538,382 28110 5269 206083 1.1 7.465 
2008 1,325,361 29433 4516 213066 1.3 6.220 
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Source: 
 
Annual Report, Gold Fields Limited, Years 2008 and 2009, Johannesburg, Gauteng, 
available: www.goldfields.co.za, webpage accessed October 20, 2010. 

 
 
 
Table A.14. Rio Tinto (underground) 
 

Year GJ(e+t) Waste(kt) Ore Milled 
(kt) 

Produced 
(oz) 

Grade 
(ppm) 

GJ/oz 
prod 

Kelian 
2002 3204523 18087 7313 591227 3.0 5.420 
2003 2496795 2018 7853 514445 2.4 4.853 

 

Source: 

Mudd, G.M., Global trends in gold mining: Towards quantifying environmental and 
resource sustainability?, Energy Policy, 32, 42-56, 2007.  

 

Table A.15. Teck (underground) 
 

Year GJ(e+t) Waste(kt) Ore Milled 
(kt) 

Produced 
(oz) 

Grade 
(ppm) 

GJ/oz 
prod 

Pogo 
2006 514084 187 287 124349 14.5 4.134 
2007 616520 190 649 284996 15 2.163 

 
Source: 

Mudd, G.M., Global trends in gold mining: Towards quantifying environmental and 
resource sustainability?, Energy Policy, 32, 42-56, 2007.  
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Complete Listing of Copper Mine and Mill Data 
 
Table A.16. BHP Billiton  (open pit/co-producing) 
 
 
Year GJ(e+t) Waste(

kt) 
Ore Milled 
(kt) 

Produced       
(t) 

Grade 
(ppm)  

GJ/t 
produced 

Escondida 
2003 12543060 230035 84049 993,000 13700 12.63 
2004 13816085 294995 98021 1,207,600 14300 11.441 
2005 13910700 273515 102984 1,270,000 14200 10.953 
2006 14412709 254425 140222 1,313,000 10900 10.977 

 

Source: 

Mudd, G.M., Personal Communication. October, 2010. 
 
 
Table A.17. Teck  (open pit/co-producing) 
 
Year GJ(e+t) Waste

(kt) 
Ore 
Milled (kt) 

Produced 
(t) 

Grade 
(ppm) 

GJ/t produced 

Highland Valley 
2007 4972982 27901 42593 139500 3700 35.6486191 
2006 4772990 14905 45356 414230 4100 11.522561 
2005 4638969 12070 50666 459051 4000 10.1055640 
2004 4465965 15214 50623 453214 3800 9.853988 

 
 
Source: 
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2007 Sustainability Summary, Highland Valley Copper Operations-Teck Cominco, 
Vancouver, Canada, available: www.teck.com, webpage accessed October 20, 2010. 

 
 
 
Table A.18. Lundin Mining  (open pit/co-producing) 
 
Year GJ(e+t) Waste

(kt) 
Ore Milled 
(kt) 

Produced (t) Grade 
(ppm) 

GJ/t 
produced 

Aguablanca 
2009 135000 3520 561 6989 4000 19.316 
2008 117249 4435 396 7071 4000 16.582 
2007 37991 1220 143 6281 5000 6.049 

Neves Corvo 
2009 822273 2332 2570 86462 39000 9.510 
2008 786388 2344 2410 89026 43000 8.833 
2007 663199 1620 2181 90182 48000 7.354 

 
Source: 
Lundin Mining 2009 Sustainability Report, Toronto, ON, available: 
www.lundinmining.com webpage accessed October 20, 2010. 
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