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SUMMARY

In this paper, we study robust cooperative output regulation problems for a directed network of Lur’e systems
that consist of a nominal linear dynamics with an unknown static nonlinearity around it through negative
feedback. We assume that the linear part of each agent is identical, but the nonlinearities are allowed to be
different for distinct agents. In this sense, the network is heterogeneous. As is common in the context of
Lur’e systems, the unknown nonlinearities are assumed to be sector bounded within one given sector. The
interconnection graph among these agents is assumed to contain a directed spanning tree. Similar to classical
output regulation problems, there is a virtual exosystem generating a reference signal in which all the agents
are required to track cooperatively. Our designed distributed dynamic state/output feedback protocol makes
a copy of the reference signal at each agent asymptotically, and then the robust cooperative output regulation
problem becomes a robust tracking problem that can be handled by each agent via local information. It
turns out that our cooperative protocols are fully distributed. Sufficient conditions on the existence of output
synchronization protocols are given along with some discussions on these conditions. Finally, two simulation
examples illustrate our design. Copyright © 2016 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Synchronization of multi-agent networks has many potential applications and thus has attracted
many attention from multidisciplinary researchers over the past decade [1–3].

Multi-agent networks in the presence of model uncertainties, external disturbances, etc. are indeed
heterogeneous, and their synchronization problems can be usually handled by means of robust con-
trol techniques [4]. However, in practice, multi-agent networks are often intrinsically heterogeneous
because of non-identical agent dynamics. In this case, output regulation theory and particularly the
internal model principle has been explored to tackle synchronization problems, see, for example,
[5], where heterogeneous linear networks were studied. The main idea is that the models of the
individual agents together with their ‘local’ controllers must embed an internal model of the (vir-
tual) exosystem that generates the reference signal. In virtue of robust output regulation theory,
output synchronization of uncertain heterogeneous linear networks was also performed, see, for
example, [6]. In [7], the role of the internal model principle was discussed in the distributed
coordination of heterogeneous nonlinear networks as well. Recently, output synchronization in
diverse collective motion patterns has been studied for heterogeneous nonlinear networks [8].
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In this paper, we will study uncertain heterogeneous nonlinear networks, in which the model of
each agent is represented by a Lur’e system, that is, a nonlinear system consisting of a nominal linear
dynamics with an unknown static nonlinearity around it through negative feedback. A single Lur’e
system can represent many control systems such as flexible robotic arms and flight vehicles [9]. The
study on its absolute stability greatly promoted the development of Lyapunov theory and established
some well-known results, for example, Kalman–Yakubovich–Popov lemma. Synchronization of two
coupled chaotic circuits in the form of Lur’e systems can be applied to secure communication [10].
It is promising that a large scale of chaotic circuits can improve the communication security. Also,
biomedical oscillator networks are good applications.

In our setting, these Lur’e systems are assumed to be identical, in the sense that their linear parts
are identical and their unknown nonlinear parts are sector bounded within the same sector. The
problem formulation in this paper, however, allows the actual nonlinearities that occur to differ from
agent to agent. In other words, the network is heterogeneous in the sense that the nonlinearities
can be different for each agent. In our previous work [11–14], these nonlinearities were assumed
to be identical for each agent and satisfy the assumption of incremental passivity or incremental
sector boundedness. In our present paper, only the condition of sector boundedness is imposed.
For the passivity case, the reader is referred to the conference version [15], where only dynamic
state feedback protocols were designed. In the present paper, the dynamic output feedback protocol
design will be discussed as well. The case that both the nominal linear parts as well as the unknown
nonlinearities are non-identical can be considered in a similar, albeit technically more involved way
and is omitted from this paper.

We stress that this paper deals with agent dynamics with functional uncertainties. This setting
is more challenging than that of parametric uncertainties, which has been mostly considered in the
literature. A convergence-based controller for output regulation of Lur’e systems was designed in
[16]. The structure of the unknown nonlinearities in the present paper is more general. Besides, in
[16], the authors did not give an explicit description of the uncertainty involved, and robustness only
holds with respect to a certain neighborhood of the nominal system. Cooperative output regulation
of a class of nonidentical nonlinear systems in the form of a Lur’e system was also discussed in [17].
There, besides the special structure of the linear parts, the nonlinear parts are assumed to be known
precisely. Furthermore, in our opinion, it is not reasonable to assume that every agent is influenced
by the same exosystem.

The remainder of this paper is organized as follows. In Section 2, the robust cooperative out-
put regulation problems we deal with are formulated, and some preliminaries are provided. Our
solutions to the problems of robust cooperative output regulation by dynamic state feedback and
respectively dynamic output feedback are presented in Sections 3 and 4 along with some discussions
in Section 5. Two numerical simulation examples are given in Section 6. Some concluding remarks
and possible future work close the paper.

2. PRELIMINARIES AND PROBLEM FORMULATION

Let R and C denote the fields of real and complex numbers, respectively. Rn�m (Cn�m) denotes
the space of n � m real (complex) matrices. Matrices, if not explicitly stated, are assumed to have
compatible dimensions. The superscript .�/T denotes the transpose of a real matrix, and the super-
script .�/� denotes the conjugate transpose of a complex matrix. The Kronecker product of matrices
M1 and M2 is denoted by M1 ˝ M2. An important property of the Kronecker product is that
.M1˝M2/.M3˝M4/ D .M1M3/˝.M2M4/. We denote by 0 and I the zero and identity matrices,
respectively, of compatible dimensions.

In this paper, the interconnection topology of a network of unidirectionally interconnected dynam-
ical systems is described by a simple directed graph G that consists of a finite, nonempty node set
V D ¹1; 2; � � � ; N º, and an edge set E � V � V , where N > 2. The relevant algebraic graph theory
and particularly the concepts of adjacency matrix and Laplacian matrix can be found in [3]. It is well

Copyright © 2016 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2017; 27:3061–3078
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HETEROGENEOUS LUR’E NETWORKS 3063

known that the Laplacian matrix associated with a (directed) graph has a simple zero eigenvalue if
and only if the graph contains a directed spanning tree. The remaining Laplacian eigenvalues have
strictly positive real parts.

In the following, we give the definition of minimal left annihilator of a matrix.

Definition 1 ([18])
For a matrix B 2 Cn�m with rank r < min¹n;mº, we denote by B? any matrix in C.n�r/�n of full
row rank such that B?B D 0. Any such matrix B? is called a minimal left annihilator of B .

Note that the minimal left annihilator is only defined for matrices with linearly dependent rows.
The set of all such matrices is given by B? D UU �2 , where U is an arbitrary nonsingular matrix

and U2 is obtained from the singular value decomposition B D
�
U1 U2

� �† 0
0 0

� �
V1 V2

��
. Thus,

for a given B , B? is not unique. Throughout this paper, B? will denote any choice from such set
of matrices.

In this paper, we will consider a directed network of N (> 2) non-identical Lur’e systems
represented by 8<

:
Pxi D Axi C Bui CEdi
yi D Cxi ´i D Hxi
di D ��i .yi /

; i D 1; 2; � � � ; N; (1)

where xi .t/ 2 Rn, ui .t/ 2 Rm, yi .t/ 2 Rp and ´i .t/ 2 Rq are the system state, the diffusive
coupling input, the feedback loop input, and the system output to be regulated of agent i , respec-
tively. A, B , C , E, and H are known constant matrices of compatible dimensions. Without loss
of generality, we assume that the dimension m of the diffusive coupling inputs and the dimension
q of the system outputs are strictly less than the state space dimension n. In this case, the rows of
matrix B are linearly dependent, and thus, B? exists. Similarly,

�
HT

�?
exists as well. The equation

di D ��i .yi / represents a memoryless, nonlinear negative feedback loop (Figure 1). The function
�i .�/ W Rp ! Rp denotes an unknown static nonlinearity around the nominal linear dynamics. The
�i .�/’s are assumed to be sector bounded, that is,

.�i .y/ � S1y/
T .�i .y/ � S2y/ 6 0; 8 y 2 Rp; i D 1; 2; � � � ; N;

where the matrices S1, S2 2 Rp�p satisfy 0 6 S1 < S2. In the SISO case, y and �i .�/ are scalars,
and hence, S1 D ˛, S2 D ˇ with 0 6 ˛ < ˇ [19]. The interconnection topology among the agents
(1) is assumed to be described by a graph G that contains a directed spanning tree.

Remark 1
As stated in Section 1, in this paper, we consider networks of identical Lur’e systems, in the sense
that their nominal linear parts and the sector bounds are identical for all agents. In contrast to our
previous work (e.g., [11]), however, the nonlinearities that actually occur are allowed to differ from
agent to agent. For this reason, we use the notation �i .�/ to denote the nonlinearity in the dynamics
of agent i .

Figure 1. Lur’e system.

Copyright © 2016 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2017; 27:3061–3078
DOI: 10.1002/rnc



3064 F. ZHANG, H. L. TRENTELMAN AND J. M. A. SCHERPEN

Similar to classic output regulation problems [20], we assume that we have an exosystem
given by

Pw D Sw; ´ D Rw; (2)

where w.t/ 2 Rs and ´.t/ 2 Rq are its state and output, respectively. We assume that the matrix S
has all its eigenvalues on the imaginary axis. The pair .S;R/ is assumed to be detectable. For any
specified initial state of the exosystem, ´ is the reference signal that the outputs ´i ’s of the agents (1)
are required to track asymptotically. In this sense, the exosystem can be viewed as a virtual leader.

In order to proceed, we define an augmented graph OG as follows. We introduce a new node,
indexed by ‘0’. The dynamics associated with this new node is given by the exosystem (2). We
assume that one of the root nodes in the original graph G has direct access to the reference signal
´ generated by the exosystem. Without loss of generality, let ‘1’ be the index of this root node.
Then the augmented graph is given by OG WD ¹¹0º [ V; .0; 1/ [ Eº. The entry a10 of the associated
adjacency matrix is defined to be equal to 1. Note that the node 0 is now the unique root node of the
augmented graph OG.

Remark 2
Concerning the leader-following architecture, assumption 1 on network topologies in [21] is often
used, which sounds more general than that we use in this paper. However, it is easily checked that
technically, there are no big differences. Note that our assumption was also used in, for example,
[22]. On the other hand, our assumption is more suitable for the virtual leader case. The exosystem is
usually called a virtual leader. Physically, it can be only embedded in an agent and constructed using
embedded software together with the protocol for this agent. Assumption 1 in [21] in fact implies
that the neighboring agents of the root agent associated with the exosystem might have access to
the exosystem through this root agent, which can only happen over the original network topology
G. Clearly, the augmented graph in assumption 1 in [21] is in fact exactly the original one in the
presence of a virtual leader. Hence, it makes sense that we assume the exosystem to be connected to
one root agent.

In this paper, we first assume that the agents (1) can be interconnected by dynamic state feedback
protocols of the form ²

Pw1 D Sw1 C T .´ �Rw1/

Pwi D Swi C
PN
jD1 aij .wj � wi /; i D 2; � � � ; N;

(3a)

ui D Fxi CKwi ; i D 1; 2; � � � ; N; (3b)

where wi .t/ 2 Rs is the state of the dynamic protocol for agent i , T is a matrix such that S � TR
is Hurwitz, A D Œaij � is the adjacency matrix associated with the graph G, F and K are feedback,
and respectively, feedforward gain matrices to be determined.

Subsequently, we assume that the agents (1) can be interconnected by dynamic output feedback
protocols of the form ²

Pw1 D Sw1 C T .´ �Rw1/

Pwi D Swi C
PN
jD1 aij .wj � wi /; i D 2; � � � ; N;

(4a)

²
Pvi D Acvi C Bc.´i �Rwi /
ui D Ccvi CDc´i CKwi

; i D 1; 2; � � � ; N; (4b)

where wi .t/ 2 Rs and vi .t/ 2 Rnc are the states of the dynamic protocol for agent i , T is a matrix
such that S�TR is Hurwitz, A D Œaij � is the adjacency matrix associated with the graph G, and Ac ,
Bc , Cc ,Dc , andK are gain matrices to be determined. The dimension nc is also a crucial parameter
to be chosen. For the later dynamic output feedback protocol design, H is assumed to have full row
rank (Theorems 3 and 4).

Copyright © 2016 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2017; 27:3061–3078
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Remark 3
In the dynamic state feedback case, agent i uses the relative information wj � wi , the absolute
information wi , and its own state xi ; in the dynamic output feedback case, agent i uses the relative
information wj �wi , the absolute information wi , vi and its own output ´i . Note that (3a) (or (4a))
presents a distributed observer for the state w of the exosystem (2). In fact, the interconnections
among these agents only happen in the distributed observer network. Such framework is commonly
used to deal with heterogeneous networks, see, for example, figure 2 in [7]. In our design, agent 1
does not use the relative information with respect to its neighbors in order to reduce consumption of
communication and computation.

Remark 4
The internal states of the distributed observer (3a) (or (4a)) spread through the network, which
can be performed only by wireless communications. However, signal broadcasting could cause,
for example, quantized data and time delays. These will obtain the network performance down.
Therefore, only relative measurement-based coordination is advocated, which can be performed by
sensors [23]. It would be a possible future topic to design relative measurement-based synchroniza-
tion protocols for heterogeneous Lur’e networks. Here, we want to stress that the agent dynamics
we consider contains functional uncertainties, while parametric uncertainties are considered in [23].
Whereas output regulation with parametric uncertainties has been extensively studied, there are few
efforts on robust output regulation against functional uncertainties. In the presence of parametric
uncertainties, people usually assume that there exists a known nominal parameter and the real one is
away from it within a predefined radius. Then robust control techniques are competent. In contrast,
we do not assume there is a nominal linear or nonlinear function for unknown Lur’e-type nonlin-
earties. Without known nominal functions, it is not possible to solve regulation equations involving
unknown Lur’e-type nonlinearities. Furthermore, for specific nonlinear agent dynamics, the ‘local’
regulator design for each agent must be addressed case by case, as we did in this paper. In particular,
our studied nonlinearities are not allowed to be involved in the regulator design.

Under the earlier setting, we study the following robust cooperative output regulation problem:
Problem: The network of agents (1) with the protocol (3a)–(3b) and respectively (4a)–(4b) is
robustly output regulated if ´i .t/ � ´.t/ ! 0 as t ! 1 for all initial conditions on the
agents and the exosystem and all nonlinearities �i .�/, i D 1; 2; � � � ; N , satisfying the sector
boundedness condition.

Before moving on, a basic preliminary result will be given in the following.

Lemma 1
For all solutions w and wi , i D 1; 2; � � � ; N , of the interconnection of the exosystem (2) and the
distributed observer (3a) (or (4a)), we have wi .t/ � w.t/! 0 as t !1 exponentially.

Proof
Let Qwi D wi � w, i D 1; 2; � � � ; N . We have

PQw1 D .S � TR/ Qw1:

Because S � TR is Hurwitz, Qw1 converges to 0 exponentially. On the other hand, we have

PQwi D S Qwi C
XN

jD1
aij

�
Qwj � Qwi

�
; i D 2; � � � ; N;

that is,

PQw D
�
IN�1 ˝ S � QL˝ Is

�
Qw � l21 ˝ Qw1;

where Qw D
�
QwT2 ; � � � ; Qw

T
N

�T
, L D

�
l11 l12
l21 QL

�
. Here, L is the Laplacian matrix associated with

the graph G. Because agent 1 does not use the relative information with respect to its neigh-
bors, the Laplacian matrix describing the interconnection relations in our protocols is given by

Copyright © 2016 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2017; 27:3061–3078
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QL D
�
0 0
l21 QL

�
. It is easily seen that QL has a unique zero eigenvalue and its remaining eigenval-

ues have strictly positive real parts. Therefore, � QL is Hurwitz. Let v.t/ D
�
IN�1 ˝ e

�St
�
Qw.t/.

We obtain

Pv D �
�
IN�1 ˝ Se

�St
�
Qw C

�
IN�1 ˝ e

�St
� ��
IN�1 ˝ S � QL˝ Is

�
Qw � l21 ˝ Qw1

�
D �

�
QL˝ e�St

�
Qw � l21 ˝

�
e�St Qw1

�
D �

�
QL˝ Is

�
v � l21 ˝

�
e�St Qw1

�
:

Because S has all its eigenvalues on the imaginary axis and Qw1 vanishes exponentially, e�St Qw1
goes to zero exponentially. In addition, � QL ˝ Is is Hurwitz. Thus, Qw as well as v tends to zero
exponentially. This completes the proof. �

In the next two sections, we will discuss robust cooperative output regulation of the network of
agents (1) with the protocols (3a)–(3b) and (4a)–(4b), respectively. In Section 3, we will consider
the dynamic state feedback protocol design. Later on, in Section 4, the dynamic output feedback
case will be studied.

3. DYNAMIC STATE FEEDBACK

In this section, we will discuss the design of a dynamic state feedback protocol in the form of
(3a)–(3b).

Theorem 1
Let .…; �/ be a solution pair to the regulator equations8<

:
…S D A…C B�
0 D C…
0 D H… �R

: (5)

If there exists a positive definite matrix P , a matrix F , and a positive real number � such that

(6)

then the network of agents (1) with protocol (3a)–(3b), where K D � � F…, is robustly output
regulated.

Proof
Let Qxi D xi �…wi , i D 1; 2; � � � ; N , where … together with � satisfies (5). We obtain

PQx1 D .AC BF / Qx1 �E�1 .C Qx1/ �…T.´ �Rw1/; (7a)

PQxi D .AC BF / Qxi �E�i .C Qxi / �…
XN

jD1
aij .wj � wi /; i D 2; � � � ; N: (7b)

Denote †1 WD …T.´ � Rw1/ and †i WD …
PN
jD1 aij .wj � wi /, i D 2; � � � ; N . By Lemma 1,

†i .t/! 0 as t !1 exponentially, i D 1; 2; � � � ; N .
Choose a Lyapunov function candidate V1 . Qxi / D QxTi P Qxi , i D 1; 2; � � � ; N , where P > 0

together with F and � > 0 satisfies (6). Obviously, V1 . Qxi / is positive definite and radially
unbounded. Then the time derivative of V1 . Qxi / along the trajectories of Qxi governed by (7a)–(7b) is
given by

Copyright © 2016 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2017; 27:3061–3078
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On the other hand, we have�
Qxi

�i .C Qxi /

�T � 1
2
C T .S1S2 C S2S1/C �

1
2
C T .S1 C S2/

�1
2
.S1 C S2/C I

� �
Qxi

�i .C Qxi /

�
6 0

because of the property of sector boundedness. Thus, using (6), there always exists a positive real
number ˛ such that

PV1 . Qxi / 6 �˛ QxTi Qxi � ˛�i .C Qxi /T �i .C Qxi /C 2k QxikkP†ik

6 �˛ QxTi Qxi � ˛�i .C Qxi /T �i .C Qxi /C ˇk Qxik2 C
1

ˇ
kP†ik

2

D �.˛ � ˇ/ QxTi Qxi � ˛�i .C Qxi /
T �i .C Qxi /C

1

ˇ
kP†ik

2;

where 0 < ˇ < ˛. It follows that the systems (7a)–(7b) are globally input-to-state stable with †i ,
i D 1; 2; � � � ; N , as the inputs, respectively. Because †i .t/ ! 0 as t ! 1 exponentially, by
taking †i as the output of a stable linear time-invariant system with zero input, it is easily seen
that Qxi .t/ goes to zero as t ! 1. Together with wi .t/ � w.t/ ! 0 as t ! 1 exponentially,
the proof is completed. �

Remark 5
From the earlier analysis, it is clear how the case of non-identical nominal linear parts can be also
tackled. In this case, a set ofN non-identical regulator equations will be required to have a common
solution pair, see, for example, (6) in [5]. In addition, similar to classic output regulation prob-
lems, disturbance rejection at each agent can be considered, which just introduces more regulator
equations [7]. These problems are left to the reader.

Note that Theorem 1 does not tell us how to compute a suitable F for a given heterogeneous
Lur’e network, and consequently, a suitable K is unknown either. Referring to our previous work,
particularly lemma 3.3 in [11], the following result complements Theorem 1 by giving a suitable F
and subsequently a suitable K.

Lemma 2
There exists a positive definite matrix P , a matrix F , and a positive real number � such that (6)
holds if and only if there exists a positive definite matrix Q and a positive real number � such that
the following LMI holds:

(8)

In this case, a suitable P is given by P D Q�1, a suitable � is given by � D 1
�

, and a suitable F is
given by F D �BTQ�1, where the real number � is chosen to satisfy

(9)

Copyright © 2016 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2017; 27:3061–3078
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Because the earlier result is slightly different from theorem 2 in [11], its proof is given in
the following.

Proof
For the ‘only if’ part, by taking the Schur complement, (6) is equivalent to

(10)

Let Q D P�1 and � D 1
�

. Then we obtain

It is easily verified that �
B

0

�?
D

�
B? 0
0 I

�
: (11)

By premultiplying with (11) and postmultiplying with the transpose of (11), (8) is obtained.
For the ‘if’ part, again by taking the Schur complement, (8) implies

B?

"
Q

�
A �

1

2
E.S1 C S2/C

	T
C

�
A �

1

2
E.S1 C S2/C

	
Q

C
1

2
�EET C

1

2�
QC T .S2 � S1/

2CQ

� �
B?

�T
< 0:

By Finsler’s lemma [18], it follows that there exists a real number � such that

Q

�
A �

1

2
E.S1 C S2/C

	T
C

�
A �

1

2
E.S1 C S2/C

	
Q

C
1

2
�EET C

1

2�
QC T .S1 � S2/

2CQC 2�BBT < 0;

that is, (9). Let P D Q�1, � D 1
�

and F WD �BTP . Then we obtain

�
A �

1

2
E.S1 C S2/C

	T
P C P

�
A �

1

2
E.S1 C S2/C

	

C F TBTP C PBF C
1

2�
PEETP C

1

2
�C T .S2 � S1/

2C < 0;

that is, (10). This completes the proof. �
Hence, the computation of a dynamic state feedback protocol (3a)–(3b) can be performed as

follows:

� Compute a solution pair .…; �/ to (5);
� Compute a Q > 0 and a � > 0 such that (8) holds;
� Compute a � such that (9) holds;
� Compute F WD �BTQ�1;
� Compute K WD � � F….

Copyright © 2016 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2017; 27:3061–3078
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Remark 6
Note that in the earlier computation, the knowledge of the entire interconnection topology, which is
a kind of global information, is not required. This is in contrast to our work in [11] where we had
to employ an adaptive protocol to remove such requirement. In this sense, our designed protocol in
the present paper is naturally fully distributed thanks to the result of Lemma 1.

4. DYNAMIC OUTPUT FEEDBACK

In this section, we will discuss the design of a dynamic output feedback protocol in the form of
(4a)–(4b).

Theorem 2
Let .…; �/ be a solution pair to the regulator Eq. (5). If there exists a positive definite matrix P , a
matrix F and a positive real number � such that

(12)

where Af D

�
A 0
0 0

�
, Bf D

�
B 0
0 I

�
, Cf D

�
C 0

�
, Ef D

�
E

0

�
, Hf D

�
H 0
0 I

�
and F D�

Dc Cc
Bc Ac

�
, then the network of agents (1) with protocol (4a)–(4b), where K D � � DcH…, is

robustly output regulated.

Proof
Let Qxi D xi �…wi , i D 1; 2; � � � ; N , where … together with � satisfies (5). We obtain²

PQx1 D .AC BDcH/ Qx1 C BCcv1 �E�1 .C Qx1/ �…T.´ �Rw1/
Pv1 D BcH Qx1 C Acv1

; (13a)

²
PQxi D .AC BDcH/ Qxi C BCcvi �E�i .C Qxi / �…

PN
jD1 aij .wi � wj /

Pvi D BcH Qxi C Acvi ; i D 2; � � � ; N
: (13b)

Denote †1 WD …T.´ � Rw1/ and †i WD …
PN
jD1 aij .wj � wi /, i D 2; � � � ; N . By Lemma 1,

†i .t/! 0 as t !1 exponentially, i D 1; 2; � � � ; N .

Partition P > 0 in (12) appropriately as P D

�
P1 P2
P T2 P3

�
. Choose a Lyapunov function candi-

date V2 . Qxi ; vi / D

�
Qxi
vi

	T
P

�
Qxi
vi

	
; i D 1; 2; � � � ; N . Obviously, V2 . Qxi ; vi / is positive definite

and radially unbounded. Then the time derivative of V2 . Qxi ; vi / along the trajectories of Qxi and vi
governed by (13a)–(13b) is given by

PV2 . Qxi ; vi / D

�
Qxi
vi

	T �
P.Af C Bf FHf /C .Af C Bf FHf /

TP
� � Qxi

vi

	

� 2

�
Qxi
vi

	T �
P1E

P T2 E

�
�i .C Qxi / � 2 Qx

T
i P1†i � 2v

T
i P

T
2 †i

D

0
@ Qxi

vi
�i .C Qxi /

1
A
T�
P.Af C Bf FHf /C .Af C Bf FHf /

TP �PEf
�ET

f
P 0

�0@ Qxi
vi

�i .C Qxi /

1
A

� 2 QxTi P1†i � 2v
T
i P

T
2 †i :
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On the other hand, we have

0
@ Qxi

vi
�i .C Qxi /

1
A
T � 1

2
C T
f
.S1S2 C S2S1/Cf �

1
2
C T
f
.S1 C S2/

�1
2
.S1 C S2/Cf I

�0@ Qxi
vi

�i .C Qxi /

1
A 6 0

because of the property of sector boundedness. Thus, using (12), there always exists a positive real
number ˛ such that

PV2 . Qxi ; vi / 6 �˛ QxTi Qxi � ˛vTi vi � ˛�i .C Qxi /T �i .C Qxi / � 2 QxTi P1†i � 2vTi P T2 †i :

Following a similar analysis as in the proof of Theorem 1, this proof can be completed. �
Next, we will now move to the existence and computation of suitable P > 0, F and � > 0 such

that (12) holds.

Theorem 3
Assume that matrix H has full row rank. There exist P > 0, F and � > 0 such that (12) holds if
and only if there exist matrices X > 0, Y > 0 and positive real numbers ˛, ˇ such that XY D I

and ˛ˇ D 1,

(14)

(15)

In this case, a suitable P is given by P D X�1, a suitable � is given by � D ˛�1, and a suitable F is

given by F D �rBT
f
‚�1x XH

T
f



HfX‚

�1
x XH

T
f

��1
, where r and ‚x are determined as follows:

choose a positive real number r such that

‚x WD rBf B
T
f �QX �

1

2
˛EfE

T
f �

1

2˛
XC Tf .S2 � S1/

2CfX > 0; (16)

where QX WD
�
Af �

1
2
Ef .S1 C S2/Cf

�
X CX

�
Af �

1
2
Ef .S1 C S2/Cf

�T
.

Proof
The existence of solutions F , P > 0 and � > 0 to (12) is equivalent to the existence of F , X > 0
and ˛ > 0 to�

Bf FHfX C .Bf FHfX/
T CQX C

1
2
˛EfE

T
f

XC T
f

CfX �2˛.S2 � S1/
�2

�
< 0: (17)

This can be seen by taking X D P�1, ˛ D ��1 and considering appropriate Schur complements.
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(only if) Let X be a positive definite solution to (17). Define Y D X�1. Then X > 0, Y > 0 and
XY D I . Obviously, (14) holds. Equation (17) implies that"

YBf FHf C .YBf FHf /
T CQY C

1
2
ˇC T

f
.S2 � S1/

2Cf YEf

ET
f
Y �2ˇI

#
< 0;

where QY WD Y
�
Af �

1
2
Ef .S1 C S2/Cf

�
C
�
Af �

1
2
Ef .S1 C S2/Cf

�T
Y , ˇ D ˛�1, which

then implies (15).
(if) By Finsler’s lemma [18], (14) implies that there exists a r > 0 such that

�
rBf B

T
f
�QX �

1
2
˛EfE

T
f

�XC T
f

�CfX 2˛.S2 � S1/
�2

�
> 0;

equivalently, ‚x > 0. Similarly, (15) implies that there exists a matrix S > 0 such that"
HT
f
S�1Hf �QY �

1
2
ˇC T

f
.S2 � S1/

2Cf �YEf

�ET
f
Y 2ˇI

#
> 0;

equivalently, ‚y WD XHT
f
S�1HfX �QX �

1
2˛
XC T

f
.S2 � S1/

2CfX �
1
2
˛EfE

T
f
> 0.

Define „ WD rI � r2BT
f
‚�1x Bf C r

2BT
f
‚�1x XH

T
f



HfX‚

�1
x XH

T
f

��1
HfX‚

�1
x Bf , where

HfX‚
�1
x XH

T
f

is positive definite because ‚x > 0, X > 0 and Hf has full row rank. Obviously,
„ > 0 if and only if there exists a matrix Z > 0 such that

rI � r2BTf ‚
�1
x Bf C r

2BTf ‚
�1
x XH

T
f



HfX‚

�1
x XH

T
f CZ

��1
HfX‚

�1
x Bf > 0;

or equivalently, using the matrix inversion lemma [24], rI � r2BT
f



‚x CXH

T
f
Z�1HfX

��1
Bf > 0, equivalently, using the Schur complement lemma,

"
rI rBT

f

rBf ‚x CXH
T
f
Z�1HfX

#
> 0;

and equivalently,

‚x CXH
T
f Z
�1HfX � rBf B

T
f

D �QX �
1

2
˛EfE

T
f �

1

2˛
XC Tf .S2 � S1/

2CfX CXH
T
f Z
�1HfX > 0:

Earlier, it has been shown that this holds if we take Z D S , in this case, the earlier inequality is
exactly ‚y > 0. This shows that „ > 0.

Now, clearly, �
F C rBTf ‚

�1
x XH

T
f



HfX‚

�1
x XH

T
f

��1�
HfX‚

�1
x XH

T
f�

F C rBTf ‚
�1
x XH

T
f



HfX‚

�1
x XH

T
f

��1�T
D 0 < „

for the particular choice F D �rBT
f
‚�1x XH

T
f



HfX‚

�1
x XH

T
f

��1
. The latter inequality holds if

and only if


rBT

f
C FHfX

�
‚�1x



rBT

f
C FHfX

�T
< rI , which in turn is equivalent to
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2
4‚x 


rBT
f
C FHfX

�T
rBT

f
C FHfX rI

3
5 > 0;

and to

1

r



rBTf CFHfX

�T 

rBTf CFHfX

�
<‚x D rBf B

T
f �QX�

1

2
˛EfE

T
f

�
1

2˛
XC Tf .S2�S1/

2CfX:

It follows that

Bf FHfXC.Bf FHfX/
TC

1

r
XHT

f F
TFHfXCQxC

1

2
˛EfE

T
f C

1

2˛
XC Tf .S2�S1/

2CfX<0;

which yields (17) because 1
r
XHT

f
F TFHfX is always positive semi-definite. This completes

the proof. �

Note that Theorem 3 is not yet entirely satisfactory because it does not enable us to compute a
suitable protocol. The problem is that it does not tell us how to choose the dimension nc of the
protocol state space. The following result solves this problem.

Theorem 4
Assume that matrix H has full row rank. There exists a nonnegative integer nc , matrices X > 0,
Y > 0 of size .nC nc/ � .nC nc/ and ˛ > 0, ˇ > 0 such that the conditions in Theorem 3 hold if
and only if there exist matrices Xp > 0, Yp > 0 of size n � n and ˛ > 0, ˇ > 0 such that ˛ˇ D 1,�

B

0

�? �
Qx C

1
2
˛EET XpC

T

CXp �2˛.S2 � S1/
�2

� �
B

0

�?T
< 0; (18)

�
HT

0

�? �
Qy C

1
2
ˇC T .S2 � S1/

2C YpE

ET Yp �2ˇI

� �
HT

0

�?T
< 0; (19)

�
Xp I

I Yp

�
> 0; (20)

rank

�
Xp I

I Yp

�
6 nC nc ; (21)

where Qx WD
�
A � 1

2
E.S1 C S2/C

�
Xp C Xp

�
A � 1

2
E.S1 C S2/C

�T
, Qy WD Yp ŒA �

1
2
E.S1

CS2/C �C
�
A � 1

2
E.S1 C S2/C

�T
Yp .

Proof
(only if) Assume that there exists a nonnegative integer nc ,X > 0, Y > 0 of size .nCnc/�.nCnc/

and ˛ > 0, ˇ > 0 such that XY D I , ˛ˇ D 1, (14) and (15) hold. Partition X D

�
Xp Xpc
XTpc Xc

�

and Y D

�
Yp Ypc
Y Tpc Yc

�
appropriately. Note that B?

f
D
�
B? 0

�
, HT?

f
D
�
HT? 0

�
,

�
Bf
0

�?
D�

B?
f

0
0 I

�
,

�
HT
f

0

�?
D

�
HT?
f

0
0 I

�
. In this way, we obtain (18) and (19). XY D I implies that

XpYp CXpcY
T
pc D I and XpYpc CXpcYc D 0. Thus,

Yp �X
�1
p D YpcY

�1
c Y Tpc > 0: (22)

Copyright © 2016 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2017; 27:3061–3078
DOI: 10.1002/rnc



HETEROGENEOUS LUR’E NETWORKS 3073

Using the Schur complement, this is equivalent to (20). In addition,

rank

�
Xp I

I Yp

�
D rank.Xp/C rank

�
Yp �X

�1
p

�
D nC rank

�
YpcY

�1
c Y Tpc

�
6 nC nc :

So (21) holds.
(if) Let Ypc and Yc > 0 be any matrices satisfying (22), while Xp > 0, Yp > 0, ˛ > 0 and ˇ > 0

satisfy (18), (19), (20), and ˛ˇ D 1, respectively, and nc is chosen so that (21) is satisfied. It can be

verified that a matrix pair .X; Y / such that Y D

�
Yp Ypc
Y Tpc Yc

�
, X D Y �1 together with the earlier ˛

and ˇ satisfies the conditions in Theorem 3. This completes the proof. �

Hence, the computation of a dynamic output feedback protocol (4a)–(4b) can be performed as
follows:

� Compute a solution pair .…; �/ to (5);
� Compute Xp > 0, Yp > 0, ˛ > 0 and ˇ > 0 through (18), (19), (20), and ˛ˇ D 1;

� Choose nc as nc D rank

�
Xp I

I Yp

�
� n, then define Af , Bf , Cf , Ef , and Hf as introduced

before in Theorem 2;
� Choose Yc > 0 and Ypc satisfying (22), consequently, Y > 0 and X > 0 are obtained;
� Compute r > 0 such that ‚x > 0;

� Definite F by F D �rBT
f
‚�1x XH

T
f



HfX‚

�1
x XH

T
f

��1
;

� Partition F as

�
Dc Cc
Bc Ac

�
;

� Compute K D � �DcH….

Remark 7
We want to stress that the results in Theorems 2–4 can be used to attack robust output feedback
stabilization of Lur’e systems in the sense that output feedback controllers can be designed without
the precise knowledge of Lur’e-type nonlinearities. In the existing publications, for example, [25,
26], Lur’e-type nonlinearities were always assumed to be known precisely and used in the controller
design. We also leave this problem to the reader.

5. DISCUSSIONS

In this section, we will elaborate on some of the conditions obtained in the previous two sections.

1. Note that in (5), besides the conventional linear regulator equations, the condition 0 D C…

is imposed, which is in fact a necessary requirement in our robust output regulation problem.
This can be shown by contradiction. Suppose that C… ¤ 0 and take the closed-loop dynamics
of agent 1 as the example. By defining Qx1 D x1 �…w1, where … together with � only satis-
fies the first and third equations in (5), we obtain PQx1 D .ACBF / Qx1�E�1 .C Qx1 C C…w1/�
…T.´�Rw1/, which implies that E�1.C…w1/ D 0 as long as w1 and Qx1 reach w and zero,
respectively. However, because �1.�/ is sector bounded and w1 approaching w is a persistently
exciting signal, E�1.C…w1/ D 0 cannot always hold. We have the same argument for the
rest agents. In other words, the condition 0 D C… guarantees that the unknown nonlinearities
�i .�/’s, i D 1; 2; � � � ; N , vanish when the cooperative output regulation is achieved. Other-
wise, we have to solve nonlinear regulator equations involving these unknown nonlinearities,
which is impossible. This necessity as well as an example regarding output regulation of a
specific Lur’e system has been discussed in [16].

Again, there are few results on robust output regulation against functional uncertainties that
involves stringent conditions. Hence, it deserves more attention than robust output regulation
against parametric uncertainties that have been extensively studied.
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2. The feasibility of the regulator Eq. (5) is critical in our protocol design. By applying theorem
9.8 in [27], necessary and sufficient conditions for solvability of (5) are obtained subsequently.
For the sake of completeness, theorem 9.8 in [27] is recalled:

Lemma 3
Consider the linear matrix equation

kX
iD1

AiXqi .B/ D C; (23)

where Ai , B , and C are given matrices with B square, qi .s/’s are real polynomials, and X is

unknown. (23) has a solution X if and only if the polynomial matrices

�
A.s/ 0
0 sI � B

�
and�

A.s/ C

0 sI � B

�
have the same Smith form. Here, the polynomial matrix A.s/ is defined by

A.s/ D
Pk
iD1 qi .s/Ai .

By applying Lemma 3 with k D 2, B D S , q1.s/ D 1, q2.s/ D s, A1 D

2
4�A �BC 0
H 0

3
5,

A2 D

2
4 I 0

0 0
0 0

3
5, X D

�
…

�

�
, C D

2
4 0

0
R

3
5, and thus, A.s/ D

2
4 sI � A �BC 0
H 0

3
5, we obtain the

following result:

Corollary 1
The regulator Eq. (5) have a solution pair .…; �/ if and only if2

64
sI � A �B 0
C 0 0
H 0 0
0 0 sI � S

3
75 and

2
64
sI � A �B 0
C 0 0
H 0 R

0 0 sI � S

3
75

have the same Smith form.

Certainly, we could just leave this feasibility problem to some software solvers, for example,
Matlab.

3. The feasibility of (8) has been discussed in [11]. In general, it can only be checked numerically
whether it has solutions. This holds for other LMI’s (e.g., (14) and (15)) and matrix inequalities
as well.

6. SIMULATION EXAMPLES

In this section, we present two numerical simulations to illustrate the results obtained in this paper.
We consider the dynamics of agents described by the following nonlinear ordinary differential
equations: 8<

:
Px D Ax C BuCEd
y D Cx ´ D Hx
d D ��.y/

; (24)

where x D Œx.1/; x.2/; x.3/�T , A D Œ�3:2; 10; 0I 1;�1; 1I 0;�14:87; 0�, B D Œ1; 0I 1; 0I 0; 1�,
C D Œ1; 0; 0�, E D Œ�2:95I 0I 0�, and H D Œ0; 0; 1�. The nonlinearity �i .�/ for agent i is taken as
.0:4i � 0:1/atan.�/, i D 1; 2; 3; 4, where ‘atan’ denotes the arctangent function. It is easily checked
that .0:4i � 0:1/atan.�/, i D 1; 2; 3; 4 is sector bounded with S1 D 0 and S2 D 2 (Figure 2).

Consider a network of four such agents as shown in Figure 3, where the interconnection graph
contains a directed spanning tree and agent 1 has direct access to the exosystem. The dotted edge
.3; 1/ means that agent 1 can obtain the relative information with respect to agent 3 but will not use
it in its protocol.
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Figure 2. The nonlinearities. [Colour figure can be
viewed at wileyonlinelibrary.com]

Figure 3. The interconnection graph. [Colour
figure can be viewed at wileyonlinelibrary.com]

The exosystem is taken as Pw D Sw, ´ D Rw, where w D Œw.1/; w.2/�T , S D Œ0; 1I �1; 0� and
R D Œ1; 0�. A suitable T can be chosen as Œ2I 1� such that S � TR is Hurwitz.

Choose the initial conditions for w and wi as Œ1I 1� and Œi C 1I i C 1�, i D 1; 2; 3; 4, respectively.
Using Matlab, the trajectories of w and wi ’s are plotted in Figure 4. Clearly, all the wi ’s converge
to the state w of the exosystem.

Example 1
We first consider the dynamic state feedback case. In this case, we just need to obtain the
feedback and feedforward gain matrices. We refer to classic monographs on solving linear reg-
ulator equations, for example, [20]. The LMI’s (8) and (9) are standard and can be solved in
the Matlab LMI Control Toolbox successively. Using Matlab, we can easily find a solution pair

to (5): … D

2
4 0 0

0:0902 �0:0082
1 0

3
5 and � D

�
�0:9016 0:082

1:3407 0:8781

�
and obtain the design param-

eters in Lemma 2: Q D

2
4 35:9811 19:0388 �0:8627
19:0388 36:1012 0:8627

�0:8627 0:8627 55:08

3
5, � D 69:0989, � D �1497:4, F D

�
�27:2814 �27:089 �0:003
�1:383 1:38 �27:2283

�
and K D

�
1:5438 �0:1401
28:4447 0:8894

�
. Choosing the initial conditions

for agent i as .i C 1/ � Œ1I 1I 1�, i D 1; 2; 3; 4, their output trajectories are plotted in Figure 5. All the
outputs can asymptotically track the reference signal generated by the exosystem in the presence of
heterogeneous unknown nonlinearities.

Example 2
In this example, the dynamic output feedback case will be considered. By implementing the
computation procedure given after Theorem 4, all the design parameters can be obtained suc-
cessively. First, ˛ > 0 and Xp > 0 can be computed to be ˛ D 69:0989, and respectively,

Xp D

2
4 35:9811 19:0388 �0:8627
19:0388 36:1012 0:8627

�0:8627 0:8627 55:0800

3
5. Then ˇ D 1=˛ D 0:0145. Here, we enforce the left-hand

side of (20) being strictly positive definite. Thus, Yp determined by LMI (19) together with the strict
version of (20) can be computed in the Matlab LMI Control Toolbox as well. So Yp is computed

to be Yp D

2
4 0:0788 �1:0095 1:2935

�1:0095 41:6257 12:1358

1:2935 12:1358 291:9815

3
5. Then the state space dimension nc of a possible

dynamic protocol can be nc D 3. Without loss of generality, we choose Yc as Yc D I3. It follows
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Figure 4. The plots of w.t/ and wi .t/. [Colour figure can be viewed at wileyonlinelibrary.com]

Figure 5. The plots of ´.t/ and ´i .t/ in Example 1. [Colour figure can be viewed at wileyonlinelibrary.com]

that Ypc D

2
4 0:2006 0 0

�4:9316 4:1553 0

6:4449 10:5695 11:7776

3
5 from (22) by using Cholesky decomposition. Thus, a

suitable Y is

Y D

2
666664

0:0788 �1:0095 1:2935 0:2006 0 0

�1:0095 41:6257 12:1358 �4:9316 4:1553 0

1:2935 12:1358 291:9815 6:4449 10:5695 11:7776

0:2006 �4:9316 6:4449 1:0000 0 0

0 4:1553 10:5695 0 1:0000 0

0 0 11:7776 0 0 1:0000

3
777775 ;

and consequently, a suitable X is

X D 103

2
666664

0:0360 0:0190 �0:0009 0:0922 �0:0700 0:0102

0:0190 0:0361 0:0009 0:1687 �0:1591 �0:0102
�0:0009 0:0009 0:0551 �0:3506 �0:5858 �0:6487
0:0922 0:1687 �0:3506 3:0736 3:0044 4:1287

�0:0700 �0:1591 �0:5858 3:0044 6:8534 6:8988

0:0102 �0:0102 �0:6487 4:1287 6:8988 7:6412

3
777775 :
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Figure 6. The plots of ´.t/ and ´i .t/ in Example 2. [Colour figure can be viewed at wileyonlinelibrary.com]

Now, r is computed as r D 158480, and hence, ‚x is also known. By computing F and par-

titioning it appropriately, we obtain, finally, Ac D 105

2
4 0:0189 0:0234 1:0265

�0:0123 �0:0151 1:1271

0:0000 0:0000 �1:5848

3
5, Bc D

106

2
4 1:2461

1:3038

�1:8665

3
5, Cc D 104

�
0:0368 0:0454 0:4685

�0:0029 �0:0040 �1:2546

�
, and Dc D 105

�
0:6236

�1:4840

�
. Then,

K D � �DcH… is computed as K D 105
�
�0:6236 0:0000
1:4840 0:0000

�
.

By using the same initial conditions as in Example 1 and let the initial states of vi ’s, i D 1; 2; 3; 4,
be zeros, we obtain the output trajectories that are plotted in Figure 6. Here, we use two different
time scales in order to make the synchronization behavior be clear at the beginning as well. Its
synchronization progress is a little bit different from the dynamic state feedback case in Example 1,
which makes sense.

7. CONCLUSIONS

In this paper, we have studied the robust cooperative output regulation problems for directed Lur’e
networks. The networks are allowed to be heterogeneous in the sense that the Lur’e-type nonlin-
earities therein are allowed to differ for distinct agents. By designing a fully distributed observer, a
copy of the reference signal generated by a virtual exosystem is made asymptotically at each agent,
and thus, these agents can asymptotically track the reference signal via local information. Both
the dynamic state feedback and the dynamic output feedback cases have been considered. In the
near future, we will study the case that the linear part of a Lur’e system is uncertain as well as its
nonlinearity. Meanwhile, measurement feedback based protocols will be employed.
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