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Chapter 2

Properties of topological
insulators

In this chapter, I will discuss the origin of the novel properties of topological insulators
that is based on topological band theory — the basis for understanding topological
insulators and topological superconductors. In the first section, the crystal structure
of the topological insulators used in this thesis will be discussed which is needed for
considerations in subsequent sections. After having identified the type of elements
and the symmetries in these crystals, an introduction to topological band theory will
be given through simple models of the quantum Hall effect, the Haldane model for
graphene, and the extension of the Haldane model by Kane and Mele. This picture
will then be extended to two-dimensional topological states in HgTe quantum wells
and three-dimensional Bi-based topological insulators where the Bi-based compounds
are of our main interest. Furthermore, I will look into the types of growth of these
materials. Additional theoretical concepts supporting the experiments will be treated
in every following chapter.



Properties of topological insulators

2.1 Crystal structure

The group of topological insulators that is studied in this thesis belongs to the class
of (V)–(VI)-semiconductors where (V)-elements Sb and Bi and (VI)-elements Se and
Te are considered with a stoichiometry (V)2(VI)3. This family of compounds is ar-
ranged in a rhombohedral crystal structure with space group R3̄m (D5

3d in Schönflies
notation) that is spanned by the translational vectors ai (see figure 2.1):
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where a and c are given in table 2.1. From the relation ai · bj = 2πδij between real
and reciprocal vectors the following reciprocal vectors bj are obtained:
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The unit cell of the crystal structure consists of 15 atomic layers where a basic
unit of five atomic layers, termed as a quintuple layer with a height of roughly 1 nm, is
stacked according to (VI)B-(V)C-(VI)A-(V)B-(VI)C where A, B, and C correspond to
the lattice sites that the atoms can occupy (see figure 2.1). It is important to realize
that a quintuple layer is always (VI)-terminated and therefore the interlayer spacing
is larger than the intralayer spacing, which gives rise to Van der Waals bonding be-
tween the quintuple layers and covalent bonding within a quintuple layer. Due to the
relatively weak Van der Waals bonding it is therefore possible to mechanically cleave
such materials at the Van der Waals gap, yielding pristine interfaces for investigation
(see section 2.4.2).

The supercell lattice with space group R3̄m has three symmetry operations, namely
inversion i, three-fold rotation c3z, and reflection σx. The presence of inversion sym-
metry in this crystal is important for a simplified determination of the topological
invariant as discussed in section 2.2. However, it is important to realize that the
inversion symmetry is broken at the (VI)-terminated surface which yields the reduced
symmetric group C5

3v and is important for surface sensitivity in optical experiments
(see chapter 4).

Compound a (Å) c (Å)

Sb2Te3 4.250 30.35
Bi2Te3 4.383 30.49
Bi2Se3 4.138 28.64
Sb2Se3 4.076 29.83

Table 2.1: Overview of the lattice constants a and c for the discussed (V)2(VI)3 compounds
[1,2]. It has been observed for Sb2Te3 and Bi2Se3 that the lattice constants a and c change
between 0.2 and 0.4% with temperatures changing from 10 to 270 K [3].
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Figure 2.1: Crystal structure of the studied (V)2(VI)3 family of compounds. The structure
consists of (V)-atoms (blue) and (VI)-atoms (red) located in A, B, and C planes within a
supercell of 15 atomic layers (∼3 nm) with inverted-repeating quintuple layer basic units
(∼1 nm) that are separated by a Van der Waals gap (VdW gap), as indicated by the dashed
lines. The crystal is spanned by translational vectors ai. Figure inspired by [1].

2.2 Topological band theory

In this section, I provide a treatment along the lines of a very instructive paper by
Hasan and Kane [4] with additional insights from online course material provided by
the Technical University of Delft [5]. I have tried to introduce the most important
physical concepts for the reader without going into lengthy mathematical details.

Topological band theory studies similarities between gapped electronic band struc-
tures of different systems based on the topology of the occupied bands. These simi-
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Properties of topological insulators

larities are characterized by integer topological invariants, the applicability of which
depends on the symmetries of the system. By their topological invariants, insulators
(including vacuum) are for example termed as topologically trivial whereas systems
with a different topology as topologically nontrivial. Differences in topological char-
acter yield interesting phenomena at the interface of such combined systems.

The first example of such a nontrivial system is the quantum Hall state where
the Hall conductivity of a two-dimensional (2D) electron gas is quantized in integer
steps of e2/h under an applied magnetic field [6], see figure 2.2a. In a quantum-
mechanical picture, the bands are Landau quantized and further Zeeman split under
large magnetic fields with the Fermi level located in between two of such Landau levels
[figure 2.2b, case (i)]. In the bulk, there are no states at the Fermi level such that
transport is impossible. Classically, the electron’s orbit can be completed and the
electrons get localized. However, at the edges a local potential is present (otherwise
the electrons are not confined to the material slab) that bends up the bands that cross
the Fermi level. This leads to edge state transport with a linear dispersion close the
Fermi level [7]. Such edge states can be visualized as skipping orbits with an opposite
group velocity at both edges of the sample, which can be seen from the opposite
slopes at the edges in figure 2.2b. It is important to realize that these edge states do
not have any states to backscatter to and thus are channels with each a maximum
possible conductivity bound by quantum mechanics, e2/h per channel1. Since charge
transport only occurs via these ‘chiral’ edge states, the longitudinal conductivity is
zero, i.e. the same number of electrons reach both probe contacts yielding a zero
potential difference. However, due to the applied potential difference the number of
electrons leaving each source contact is different and therefore the edge states carry
a different number of electrons. This leads to a measurable Hall conductivity that
is dependent on the number of edge states crossing the Fermi level. By now varying
the magnetic field, the Landau-level spacing can be changed, leading to a change
in the number of involved edge states. Upon crossing a Landau level at the Fermi
energy [figure 2.2b, case (ii)], the bulk participates in the transport and a longitudinal
resistance can be measured shortly and then vanishes again.

As already can be seen from this ‘classical’ picture, it is expected that the Hall
conductivity is quantized because it depends on the integer number of edge states
that are crossed by the Fermi level. This quantization is rooted in the topology of
the quantum Hall state that can be characterized by the Chern number, as realized
by Thouless et al. [8]. The Chern number can be evaluated from the Berry phase [9],
which is a geometrical phase factor that is obtained by a quantum-mechanical state
under cyclic adiabatic evolution of a state, i.e. the phase that is picked up while
traversing a closed loop through momentum space. The acquired Berry phase γn(C)
for the nth state over a closed path C that defines a surface S can be calculated by
taking the surface integral over the Berry curvature Vn:

γn(C) = −
∫∫

C

dS · Vn(R) = −
∫∫

C

dS · [∇R ×A(R)] , (2.3)

1In contrast to quantum point contact measurements, where 2e2/h per channel is measured due
to spin degeneracy, the Landau levels are spin split by the Zeeman interaction and thus leading to
e2/h per channel.
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Figure 2.2: (a) Schematics of magnetic-field-dependence of Hall resistivity ρxy (units of h/e2)
and longitudinal resistivity ρxx [arbitrary units (a.u.)]. (b) Landau level spectrum over a
quantum Hall state slab defined in the x direction for cases (i) and (ii) as depicted in (a).

where R is the parameter to describe the path C, and A is the Berry potential (or
Berry connection). The integer Chern invariant is then obtained by integrating over
the full Brillouin zone in momentum space [8]. Summing these invariants over all
occupied bands will yield the total Chern number nC that is locked to the particular
band structure, i.e. this number cannot be changed by smoothly varying the Hamil-
tonian unless the band gap is closed. For the quantum Hall state, the Chern number
is nonzero and therefore this system is topologically different from its environment
(say vacuum). The difference in Chern number requires a crossover state at the edge.
In this case, the state can be depicted as the potential difference at the edges between
the bulk Landau levels and the vacuum’s conduction band2. Notably, a bulk is needed
that accommodates states at both edges, since a single edge state would yield loss of
charge, which is compensated for by the other edge state via the bulk.

The quantum Hall state requires a magnetic field to break time-reversal symmetry
[Ĥ(k) = Ĥ(−k), with Ĥ the Hamiltonian], but there are other systems where time-
reversal symmetry can be broken without application of a magnetic field. An example
of such a system has been hypothesized by Haldane [10] where graphene is subject to
a magnetic field that is zero on average3 and complex next-nearest-neighbor hopping
is present, which together break time-reversal symmetry in the system. The breaking
of this symmetry introduces a mass term that leads to opening of a band gap with a
negative mass (inverted bands) at one of the high symmetry points K and K′ due to
preservation of inversion symmetry [Ĥ(k) = −Ĥ(−k)]. At the interface with a trivial
system that does not have an inverted mass at one of those points, a crossover state is

2One can visualize this as the lowest occupied bulk Landau level, which normally has a conduction-
band character, now looks like the maximum of the valence band.

3Haldane imagined to generate such a magnetic field by introducing a ferromagnetic atom inside
every hexagonal unit cell. The net flux is zero because fields from neighboring cells cancel out the
fields of the atom in the actual unit cell. A similar approach has been used to realize the quantum
anomalous Hall effect in topological insulators [11,12] where an inverted band gap is opened at one
of the surfaces by adding a mass term through magnetic doping.
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Properties of topological insulators

required that is very similar to the chiral edge state as observed for the quantum Hall
state. The existence of such a state can again be related to integration of the Berry
phase over the Brillouin zone. Both Dirac points in the Brillouin zone contribute a
Chern number of 1

2 and depending on whether the masses are equal or opposite to
each other, a Chern number of 0 or 1 will be obtained. This edge state (or Chern
number) cannot be removed (turn zero) unless the band gap is closed in order to
obtain equal masses or noninverted bands at the K and K′ points and therefore
these edge states are topologically protected. In the same toy model, Haldane has
further discussed that a ‘zero-energy’ Landau level that is half filled at eachK andK′

is present when the system is subject to a magnetic field, such that a Hall conductivity
of e2/h is obtained again (similar to the shared contribution to the Chern number
of every Dirac point in the Brillouin zone). Such Landau levels are characteristic for
Dirac surface states with linear dispersion, such as present in graphene and three-
dimensional (3D) topological insulators. Furthermore, these Landau levels change
the filling-factor labeling for Shubnikov–de Haas oscillations with respect to trivial
systems, as will be discussed shortly in chapter 5.

For generation of the quantum Hall state in Haldane’s model a complex next-
nearest-neighbor hopping term has to be included to break time-reversal symmetry in
the material, but there is an intrinsic effect that can cause a similar nontrivial state
while preserving the symmetry. In 2005, Kane and Mele investigated the effect of spin–
orbit coupling in graphene (expanding the work of Haldane) that was ignored before
because of its relatively small size [13]. Instead of a gap opening by breaking time-
reversal symmetry, spin–orbit coupling yields a finite energy gap with again opposite
masses at the K and K′ points. As a result of including the spin degree of freedom,
a quantum spin Hall state is observed where a spin-filtered (spin current Js 6= 0),
counterpropagating (charge current Jc = 0) edge-state pair is present (see figure 2.4a).
Taking both edges into account a two-terminal conductance of 2e2/h is expected,
whereas the Hall conductivity is zero now since there are counterpropagating states
at each edge. Due to the spin texture of these one-dimensional (1D) states that is
present due to the conservation of time-reversal symmetry, elastic backscattering is
not allowed since it would have to include a spin flip. The importance of spin–orbit
coupling for topological distinction requires expansion of the topological invariants
since the Chern number nC is zero in a time-reversal invariant system. Therefore,
the new topological invariant ν0 was introduced for this new class of ‘Z2 topological
insulators’ [14]4.

Upon conservation of time-reversal symmetry, Bloch Hamiltonians should be time-
reversal invariant and this poses an important constraint for band structures which
is known as Kramers’ theorem. The theorem tells that the eigenstates of the Hamil-
tonian must be degenerate at the time-reversal-invariant momenta k = 0, π/a. Away
from these special points, spin–orbit coupling lifts this degeneracy as in the case of
graphene including spin–orbit coupling. Now, there are two configurations in which
the crossover (edge) states between the time-reversal-invariant momentum points in
such a system can connect (see figure 2.3): in the first case the same pair of states

4In three dimensions, a time-reversal invariant band structure is actually characterized by four
Z2 invariants ν0, ν1, ν2, and ν3 where the latter three are not robust against disorder and classify
weak topological insulators [15,16].
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Figure 2.3: Dispersion of spin-textured edge states (blue and red colors indicate spin species)
with (a) topologically trivial and (b) topologically nontrivial character. The gray bands
indicate the bulk bands and EF the Fermi level. As depicted in (a), the spin–orbit coupling
(SO) gives rise to the spin splitting of the bands, whereas the time-reversal symmetry T
forms pairs located at k and −k.

are shared between the time-reversal-invariant points whereas for the second case the
pairs are ‘split’. For the first case, the states can be pushed out of the band gap by
tuning the Hamiltonian smoothly and therefore will yield ν0 = 0. In the second case,
it is not possible to remove the states completely out of the band gap without closing
it, i.e. there will always be a pair of states crossing the Fermi level, and therefore ν0

= 1. The odd number of crossing pairs with the Fermi level EF compared to an even
number of crossing pairs in the first case, is secured and gives rise again to topological
protection of these edge states5. The number of crossing pairs gives rise to ν0 = 1.
The calculation of ν0 can be performed in various ways of which an overview has
been given in [4]; one of them is integrating the phase of the Pfaffian over the Bril-
louin zone [14]. Such a calculation shows similarities with that of the Chern number,
integrating the Berry phase, as introduced earlier.

Since graphene is a light-element material, the gap opening due to spin–orbit
coupling is calculated to be rather small and the quantum spin Hall state will therefore
be difficult to detect experimentally [18, 19]. Therefore, it is logical to investigate
materials with a much stronger spin–orbit coupling. In 2006, Bernevig, Hughes,
and Zhang proposed such a 2D topologically nontrivial system in a HgTe quantum
well beyond a certain critical thickness of the HgTe layer [20]. Around this critical
thickness the bands closest to the Fermi level exchange position, changing the total
parity of the system (see below for a more detailed discussion on the classification
by parity). Experimental evidence of a quantized conductance that can be related to
the topologically protected edge states (as in figure 2.4a) followed a year later [21].
The mobility of the charge carriers in the quantum wells turned out to play a decisive

5One can visualize this protection when the material is connected to a trivial substrate (or vac-
uum). This trivial substrate can only push out an even number of states crossing the Fermi energy
such that for the topologically nontrivial case not all the states can be removed [17].
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Figure 2.4: (a) Schematic depiction of the topological, spin-textured 1D edge state disper-
sion in 2D systems such as the Kane–Mele graphene model and HgTe quantum wells. (b)
Topological, spin-textured 2D surface state dispersion for 3D systems. The dispersions are
shown only for a single material boundary.

role6. Later on, the nonlocal character of the edge states and the spin-filtering of
those states were reported [22, 23], making this quantum spin Hall insulator suitable
for spintronic applications.

The picture in two dimensions can be extended to a 3D picture where surface
states exist that must be Kramers degenerate at the four time-reversal invariant mo-
mentum points in the surface Brillouin zone. At any other momentum point the
degeneracy is lifted again by the spin–orbit coupling. In the case of strong 3D topo-
logical insulators (ν0 = 1) an odd number of Dirac points are enclosed by the surface
Fermi circle and this gives rise to the topological protection. Due to the time-reversal
symmetry in these materials opposite spins are present at momenta k and −k and
this leads to a spin orientation s rotating along the circle (see figure 2.4b). It is
important to remember how spin–orbit coupling and time-reversal symmetry change
the band structure picture of the surface states. Spin–orbit coupling leads to spin
splitting away from the time-reversal-invariant momentum points in half of the Bril-
louin zone (+k) and time-reversal symmetry copies these split states to the other half
of the Brillouin zone while inverting the spin (reflecting states at +k onto −k, recall
figure 2.3). Integrating the phase around a Dirac point, where the spin orientation is
fully revolving, gives rise to a Berry phase of π [16] and has important consequences
for weak antilocalization effects and elastic backscattering in this material [24]; this
can be seen from the spin texture. When a charge carrier with momentum k has
to elastically scatter into a state with opposite momentum −k then the spin should
invert correspondingly which is generally not the case for such scattering events. The
scattering probability scales with (1 + cos θ) where θ denotes the scattering angle,
yielding a finite scattering probability away from 180◦ scattering, but the reduced
backscattering will still enhance the mobility [25].

Instead of looking into the odd or even number of crossings between Kramers pairs,
the topological invariant ν0 can be determined by looking at the parity of the occupied

6A clear summary on the theoretical and experimental work on topological states in HgTe quan-
tum wells is given in [17].
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Topological band theory

bands at the time-reversal invariant momenta. This method is only valid when the
crystal has inversion symmetry [16] and is related to a vanishing Berry curvature
thereby simplifying the calculation of the invariant7. As discussed in section 2.1, it
can be seen that the crystal structure of (V)2(VI)3 has indeed inversion symmetry
which simplifies the topological classification of this group of materials. In three
dimensions, four nonequivalent time-reversal-invariant momenta Γi are present in the
Brillouin zone [4]. The Z2 invariant ν0 at these points can now be calculated by
introducing the following quantity δi [16]:

δi =

N∏
m=1

ξ2m (Γi) , (2.4)

where ξ2m (Γi) = ±1 is the parity eigenvalue of the 2mth occupied band at time-
reversal-invariant momentum point Γi. Here, ξ2m = ξ2m−1 which comes from the
Kramers’ degeneracy at the special points. If now the δi’s are multiplied for all time-
reversal-invariant momenta Γi, the Z2 invariant ν0 is obtained:

(−1)
ν0 =

∏
i

δi. (2.5)

Since parity eigenvalues for band structures are well known, it is easy to determine
the Z2 topological class for crystals with inversion symmetry. In the work by Zhang
et al., this method has been employed on the (V)2(VI)3 materials, where it has been
determined that Bi2Se3, Bi2Te3, and Sb2Te3 are topological insulators due to the
inversion of the bands (with p orbital character) close to the Fermi level by strong
spin–orbit coupling [1], similar as that observed for HgTe quantum wells. For Sb2Se3,
the spin–orbit coupling is not strong enough to facilitate such a band inversion8. The
change in the overall parity of the occupied bands leads to a topologically nontrivial
material with ν0 = 1. When this material is in connection with a trivial insulator (ν0

= 0), ∆ν0 = 1 yields one Kramers pair of surface states, known as the bulk–boundary
correspondence.

One has to realize that such states exist at both top and bottom surfaces. The
presence of such a pair will lead to a single chiral edge state at the side surface with a
Hall conductance of e2/h when the system is subject to a large magnetic field. This
edge state is shared between the two half-filled Landau levels running oppositely at
both surfaces (since the magnetic field is opposite with respect to the surface normal at
both surfaces). As shortly touched upon before, the quantum anomalous Hall effect
can be realized upon introducing ferromagnetism in the 3D topological insulator,
which breaks time-reversal symmetry and opens up a gap that has an opposite sign
at top and bottom surface. The different character of the bands at both surfaces
requires again a crossover state at the boundary between top and bottom surface that
leads to a maximum conductance of e2/h again. Another important consequence of

7In a system where both inversion symmetry and time-reversal symmetry are present both Vn(k)
= Vn(−k) and Vn(−k) = –Vn(k) should hold which is only valid if Vn(k) = 0. This makes that
the Bloch states are also parity eigenstates [1, 4].

8A feeling for as to why Sb2Se3 is a topologically trivial material can be realized from comparing
the spin–orbit coupling constants of the separate elements [26].
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considering both top and bottom surface is that of size effects where at thicknesses
lower than ∼6 nm the surface states can hybridize [27–29]. Such finite-size effects are
more easily observable in the HgTe quantum well systems where the critical thickness
is on the order of several hundreds of nm [30,31].

2.3 Bi-based topological insulators

The first experimentally realized 3D topological insulator is Bi1−xSbx. Upon substi-
tution of Sb into Bi, the lowest unoccupied conduction band and highest occupied
valence band invert and yield a gapped structure that is topologically nontrivial. At
higher concentrations of Sb, the system turns into a semimetal as it is the case for
pristine Bi, but with a nontrivial character in contrast to pure Bi. Using surface-
sensitive techniques such as angular-resolved photoemission spectroscopy (ARPES)
and scanning tunneling microscopy (STM) the surface states of this 3D topological
insulator have been shown. From ARPES experiments [32–34], it has been observed
that the surface state shows an odd number of crossings with the Fermi level and
that the spin orientation of each state rotates 360◦ around the Fermi surface (giving
a π Berry phase); both clear indicators for the topological nature of these states.
Furthermore, the topological character of Sb has been shown [33], but due to its
semimetallic character it will be difficult to solely access the topological surface states
in transport measurements. From STM measurements [35], the protection against
backscattering of charge carriers in the topological surface states has been observed.
However, the small band gap and the complicated surface state structure found for
this compound limit room-temperature applications since the bulk will contribute to
the charge transport in this material easily and masking of the surface states will
occur. Nevertheless, the bulk and surface states can be disentangled from quantum
oscillations [36].

Other 3D topological insulators were experimentally realized soon after: Bi2Se3

[37, 38], Bi2Te3 [39–41], and Sb2Te3 [41], showing a much simpler band structure
compared to Bi1−xSbx. The band structures are characterized by an indirect bulk
band gap of 0.11–0.3 eV at the Γ point where the topological surface is crossing that
gap, see figure 2.5. Having the Dirac point inside the band gap, Bi2Se3 (gap ∼0.3
eV) is the most suitable material for studying the topologically protected states at
room temperature, whereas the Dirac points for Sb2Te3 and Bi2Te3 lie close to or in
the valence band and are thus difficult to access separately from the bulk. Further-
more, it has been found that Bi2Te3 suffers from hexagonal warping effects related
to spin–orbit coupling that yield out-of-plane spin orientations and thus an increased
backscattering [40, 42, 43]. Another advantage over Bi1−xSbx is that these materials
are stoichiometric crystals and not alloys as is Bi1−xSbx, which in principle should
allow higher purity and a larger homogeneity of the material [4]. However, it turns
out that the canonical compound Bi2Se3, besides environmental effects (see refer-
ences in section 3.1), often suffers from Se vacancies that act as electron donors to
the system [44–47]. Additionally, antisite defects [48], i.e. atoms exchanging position
in the crystal lattice, seem to play a role [47,49] and contribute to the n-type charac-
ter [45, 46]. Growing in Bi-rich or Se-rich conditions can lead to lower charge-carrier
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Figure 2.5: Band structures for Bi2Se3, Sb2Te3, and Bi2Te3 through different momentum
points as adapted from [1]. The quoted values of the indirect band gap Eg are extracted
from calculations [1], whereas the values in brackets indicate the actual band gaps observed
in experiments [40,41].

densities [50,51], but will always lead to n-type Bi2Se3 where the Fermi level is usually
located in the bulk conduction band, yielding an intermixing of bulk and surface states
in non-surface-sensitive (transport) investigations (see chapter 5)9. Substitution of Bi
with Sb yields a reduction of defects (lowering the charge-carrier density) [52], while
preserving the relatively high mobility. p-type Bi2Se3 can be obtained by Ca substi-
tution of Bi [38, 49, 53], but introduction of Ca increases the scattering at the same
time and thus lowers the mobility (below 300 cm2/Vs [53]). An alternative is to use
Cd substitution, which preserves the mobilities but is very sensitive to the annealing
conditions [54].

As a solution, intermixing of Bi2Se3, Sb2Te3, and Bi2Te3 can yield systems with a
balanced charge-carrier density where the different types of defects compete and addi-
tional antisite effects can occur [45]. This does not only tune the Fermi level but also
the band structure which is a combination of those of the binary compounds [55]. This
gives rise to compounds including (Sn-doped) Bi2Te2Se [45, 56–62]10, Bi2Te2.5Se0.5

[45], Sb2Te2Se [56], (Bi1−xSbx)2Te3 [63–66]11, and Bi2−xSbxTe3−ySey [55,59,67–70].
The mobilities found in these systems are usually not that high, but due to a reduced
bulk contribution the surface states take a main role in the transport with the cost
of a relatively high resistivity.

2.4 Growth

Depending on the purpose one can apply different techniques for growing topological
insulators of which an overview will be given in this section. For this thesis, Bi2Se3

films have been mainly grown by molecular-beam epitaxy (MBE) by our collaborators
from Rutgers University [71], which will be the main focus of this section. In the
second part, other promising growth techniques to unravel the novel properties of

9Bi2Te3 can change from n type to p type by changing the growth conditions [45,47].
10An impurity band seems present that can change the charge-carrier type at lower temperatures.
11The insulating compounds show a strong hexagonal warping effect as observed for Bi2Te3.
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topological insulators are briefly discussed.

2.4.1 Thin films

Large-area thin films of chalcogenide-based topological insulators (containing S, Se,
Te; including the alloys (Bi1−xSbx)2Te3 [63] and Bi2Te2Se [72]) are usually grown by
MBE. MBE is a physical vapor deposition (PVD) technique where the separate ele-
ments are (thermally) co-evaporated from Knudsen cells. This separate evaporation,
rather than depositing from a single-composite target, yields a good control over the
stoichiometry and the growth rates of the layers, by tuning the temperature of the
respective cells, thereby tuning the vapor pressure of every element [71]12. Further-
more, the thermal type of evaporation yields low-energy particles (in contrast to for
example electron-beam evaporation) that can easier adsorb on the substrate. An-
other advantage of MBE over other PVD techniques is that the quality of the grown
layer does not depend on the target material but can be controlled by the fluxes from
high-purity (>99.999% [71]) element sources.

As already introduced in section 2.1, the topological insulators under consideration
consist of layers that have intralayer (in-plane) covalent bonding and interlayer (out-
of-plane) Van der Waals bonding. The growth of such materials (called Van der Waals
epitaxy) necessitates substrates that are chemically compatible rather than lattice
matched, because the interaction with the substrate will be weak [76]. The Bi2Se3

samples that we have used in this thesis are obtained from the group of Seongshik
Oh at Rutgers University. At Rutgers University, Si(111), Al2O3 (0001), amorphous
SiO2, and cubic SrTiO3 (001) substrates have been used to grow Bi2Se3, which will be
discussed so as to get an understanding of the growth mechanisms of these materials
and how this can be related to their charge-transport properties.

Our collaborators started out with growing Bi2Se3 on Si(111) because of the rel-
atively good lattice mismatch of +7%. These substrates were passivated by a mono-
layer of Se that was grown at low temperatures [77]. Subsequently, 3 QL of Bi2Se3

were grown as a seed layer at the same temperature, whereafter the temperature was
raised to increase the surface mobility of the atoms and thus improve Bi2Se3 growth.
Triangular features have been observed in the resulting films, which are the structures
with the lowest surface free energy and indicators of the high-quality growth. This
implies that some order of lattice matching is desired. Upon finding substrates with
a lower lattice mismatch than Si(111), In terminated InP(111) (–0.2%) seems to be a
good candidate. Using these substrates, a considerable lowering of the charge carrier
density (defect density) has been observed relative to samples grown on Si(111) [78].

Growth of Bi2Se3 on Al2O3(0001) having a larger mismatch of –14% has several
advantages: the substrate is much more chemically stable, is able to better withstand
higher temperatures (without having any reactions with the grown material), and is
insulating. However, one cannot directly grow at higher temperatures, because of
the poor sticking coefficient of Bi and Se to the substrate at such high temperatures.
Therefore, one has to adopt a two-temperature process as described for the Si(111)
substrates. It has been observed that triangular features appear that are much larger

12The high vapor pressure of Se under moderate temperatures makes a Se capping layer a good
candidate to preserve the top surface [73–75].
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in feature size [79]. This indicates the high quality of these films and can be related
to the lower density of nucleation sites due to the inertness of Al2O3. Furthermore,
grain boundaries have been observed in the first QL but such defects are not continued
in the subsequent layer because of the Van der Waals-type growth of these class of
materials. However, these interfacial defects have been found to introduce a significant
amount of charge carriers and pin the mobility due to the induced disorder [80]. The
disorder is especially apparent in transport measurements on films with thicknesses
below 100 nm. The influence of the interfacial defects is smaller for Si(111), which
is linked to a higher bulk-defect density dominating the charge-transport properties,
but casts doubts on the origin of the thickness-independent transport channels, as
reported earlier [79,80]. Furthermore, it has been observed that Se diffusion through
the material can play an important role in the thickness-dependent charge-transport
properties [81].

For that reason, In2Se3 (having a lattice mismatch of –3.3% with Bi2Se3) was
introduced as a buffer layer on top of the 3 QL Bi2Se3 seed layer to separate the inter-
facial defects from the transport channel. In order to obtain an insulating behavior,
annealing followed the In2Se3 buffer layer deposition which leads to intermixing of
seed and buffer layer where (Bi1−xInx)2Se3 is insulating (and topologically trivial)
when x > 30 [82]. However, on top of the buffer layer (still In2Se3) Bi2Se3 could not
be directly grown due to intermixing of In and Bi [83], which will lead to another
insulating phase [82]. Therefore, another layer of (Bi0.5In0.5)2Se3 was grown where
one can imagine that the Bi binds to the In such that intermixing is prevented. This
has led to Bi2Se3 layers with a record-high mobility of 15,000 cm2/Vs and observation
of the quantum Hall effect [84]13, where in the end the interfacial defect density still
dominates at smaller thicknesses.

Using amorphous SiO2 or cubic SrTiO3 [87] as substrate still yields a 2D growth
but because of a missing hexagonal crystalline phase at the substrate’s surface, the
layers are randomly oriented while preserving growth along the c axis (showing twin-
ning). One example of growth on SiO2 has been reported by Bansal et al. [88], where
it has been observed that SiO2 seems to outperform Si(111), related to the chemi-
cal reactivity of the Si(111) samples. Other substrates that have been used (outside
the work by Rutgers) are graphene-terminated SiC(0001) [28,89] (being conducting),
GaAs(111) [90] (not showing any preferential orientation of growth), and the promis-
ing CdS(0001) with a reasonably high charge-carrier mobility [91].

Another PVD technique that has been employed is pulsed laser deposition (PLD)
where a material from a target is laser ablated. The reports on PLD-grown topological
insulators are limited, but the grown films often show a very low mobility (on the order
of 10 cm2/Vs) [92–94]. Magnetron-sputtered Bi2Se3 shows a very large charge-carrier
density [95], yielding strong intermixing of bulk states.

13The quantum Hall effect was observed earlier for Bi2−xSbxTe3−ySey [85] and (Bi1−xSbx)2Te3
[86], relying on a tuning of the charge carrier density closer to the Dirac point rather than improve-
ment of mobility.
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2.4.2 Bulk crystals, nanoplatelets, and nanoribbons

Since the discussed topological insulators have a layered crystal structure with a weak
Van der Waals-bonding between the layers, such materials can be easily mechanically
exfoliated from bulk crystals and be placed on any arbitrary substrate. Bulk single
crystals are usually grown by the Bridgman method [96] where the element materials
are placed in a sealed quartz-glass tube, heated up to high temperatures (for mixing),
and then cooled down to solidify with a temperature gradient along the tube such
that the crystal grows at one end of the tube. Tuning the ratios of the elements,
one can get the compound Bi2−xSbxTe3−ySey for any x and y. Since this is a rather
straightforward technique and widely used in the community (and found in many
papers cited in this thesis), I will not further discuss this method here. Another
technique that has been used to obtain bulk crystals is chemical-vapor transport
(CVT) where gases containing the elements of interest, usually together with an I2

transport gas, are forming such crystals [97].

The method of CVT can also yield growth of nanoplatelets and nanoribbons which
are interesting because of their finite-size effects and enhanced surface-to-bulk ratio.
Such structures can be grown on an arbitrary substrate, either with or without cat-
alyst at the substrate [98–104]; sometimes with rather high mobilities [101]. Such
nanoplatelets can nucleate to form a larger network of topological insulator material.
However, the platelet growth initiates from random nucleation sites and this therefore
leads to a random orientation of the films. Without any chemical reaction, it has been
shown that Bi2Se3 nanoribbons can be formed by a catalyst-free PVD technique too
where gaseous Bi2Se3 yields growth on a substrate [105]. The growth techniques de-
scribed here are usually easy (no high-vacuum systems) and easy to employ. As with
the mechanical cleavage of crystals, the shape, size, and position of the nanostruc-
tures is undetermined beforehand, due to the sensitive growth parameters, and are
therefore more employed in an academic setting rather than (yet) being very suitable
for industrial implementation.
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