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Introduction

What does the sentence understanding the universe mean? It is a very broad
concept and the answer to this question can vary a lot, depending on who is
answering. For a physicist, understanding the universe means observing the
reality that surrounds us, expressing this observation in a mathematical lan-
guage (a theory), and then testing this interpretation by confronting it with the
reality again (performing an experiment). What makes the process fascinating
is that the purpose is never to find some ultimate answer but, rather, to grasp
the reasons behind physical effects through hypothesis, approximations, and
mistakes. In this sense, we can never be sure of the correctness of a theory but,
rather, can only be confident that it faithfully describes reality under a given
set of assumptions. The only certainty occurs when a theory is recognized as
wrong.

The past century was characterized by two major periods: the first half,
when revolutionary theories changed our understanding of Nature completely,
and the second half, when such theories were used to show an underlying ele-
gance in the fundamental interactions. This is, naturally, an over-simplification
of one of the most prolific periods (if not the most prolific period) in the his-
tory of physics. However, we can rephrase it as: exceptional minds developed
a series of concepts and theories that eventually formed a cornerstone of mod-
ern physics, that is quantum field theory, and, later, equally exceptional minds
used such cornerstone to explain a wide range of physical effects with a unified
description. This process made it possible to describe three fundamental inter-
actions (electromagnetic, weak, and strong) by using the same language or, if
you will, by encoding them in the same picture.

Motivated by the enthusiasm derived from observing an increasingly simpler
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10 INTRODUCTION

description for a wider and wider class of physical effects, we have been led to
attempt to unify the only fundamental interaction left outside of our picture:
gravity.

One may wonder if trying to describe the gravitational interaction with the
same language we used for the other three is the right thing to do, or even if it
makes any sense at all. The honest answer is that we don’t know; that’s why we
try, because, again, we can only be sure of being wrong and, to achieve that, we
need to explore every possibility. The hope is to find in the process, regardless
of its success, a deeper explanation regarding the nature of this mysterious
interaction.

In the search for a unifying theory, a central role has been played by the
study of black holes: regions of the spacetime where the gravitational field is so
strong that not even light can escape. In fact, thanks to the work of Stephen
Hawking [1,2] it is believed that, in those extreme regimes, we have to consider
both gravitational and quantum effects, making the construction of some sort
of unifying theory necessary.

Notwithstanding that every attempt of constructing such a theory still faces
major theoretical and technical problems, focusing our attention on black holes
has paved the way towards one of the biggest paradigm changes of recent years:
the formulation of the holographic principle.

This principle was first proposed by Gerard ’t Hooft [3] and interpreted as a
property of string theory by Leonard Susskind [4]. It states that we can describe
a volume of space by using the information encoded in its boundary. Very much
like the holograms, for example, on our bills, which are two-dimensional pictures
that look three-dimensional, we can describe a volume of space by observing a
geometrical object living in one dimension less.

The inspiration for this came precisely from studies of black hole thermody-
namics. Here, it was found that the entropy of a black hole is not proportional
to its volume but rather to the area of the surface enclosing the black hole (the
event horizon). It is then clear that, if we want to understand the nature of
gravity, we have to analyze the holographic principle. In other words, the an-
swer we are seeking may have to pass through the understanding of how these
two puzzles, the nature of gravity and the holographic principle, are connected.

The most remarkable realization of the holographic principle is a conjecture
called the AdS/CFT correspondence [5]. Also called gauge/gravity duality, it
conjectures a relationship between two very different theories. On one side of
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the correspondence, we have a gravity theory living in N dimensions, while,
on the other side, we find a conformal field theory in N − 1 dimensions. The
perspective of connecting a theory of gravity with the much better-understood
quantum field theory is a very fascinating one: this would allow us to describe
one in terms of the other and vice versa, thus making full use of the holography
mentioned above.

Regardless of the fact that a formal proof is still lacking, this correspondence
has been extensively studied over the past 20 years, making [5] the second most
cited paper in the history of high energy physics. The main reason is that it is a
great tool for studying strongly coupled systems. The fact of the matter is that
those regimes always represented a challenge due to the difficulties in applying
perturbation theory, and it’s here that the magic happens: the corresponding
theory turns out to be weakly coupled, thus mathematically more treatable.

We can thus find many applications of the gauge/gravity duality across all
the fields of physics, such as quantum chromodynamics or condensed matter
physics. What is highly interesting is that studying objects such as black holes
then became necessary not only for those trying to understand the nature of
gravity, but also to those working with particle accelerators or superconductors.

One of the most stimulating questions for a scientist confronting a new
fascinating theory is not only why? or how? but also can I break it?. In
other words, the correspondence has been applied extensively to a wide range
of systems, but what would happen if we step slightly outside of the comfort
zone of the original formulation, what limitations would we encounter, and what
message would be contained in these limitations? This thesis participating in
this quest because we will make use of holography in the context of a modified
theory of gravity (in particular, a theory of gravity with higher derivatives),
thus stepping outside of the AdS/CFT comfort zone.

Higher derivative gravity theories initially attracted attention since they
offer the possibility of extending Einstein’s theory by providing a description
of more general physical effects such as the propagation of massive gravitons.
Moreover, the quest for a renormalizable theory of gravity led to the idea that
Einstein’s theory as an effective theory was going to receive higher-order cor-
rections. Such corrections would have more and more importance as the energy
scales increases [6]. The enthusiasm around these theories grew when it was
shown that it was possible to obtain a renormalizable theory if we extend Ein-
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stein gravity with all possible curvature-squared terms [7]. The price to be paid
was the introduction of ghost-like modes. With the advent of string theory as a
potential candidate for a consistent theory of quantum gravity, they even found
a more specific use in theoretical physics. Indeed, one interesting result is that
perturbative string theory not only contains the pure Einstein-Hilbert action
but also terms of a higher order. For example, it was shown that such terms
provide a mechanism for supersymmetry breaking [8].

Supersymmetry is one of the pillars of string theory, establishing a symmetry
connecting bosons and fermions that, as we will see in Chapter 1, makes it
possible to combine spacetime and internal symmetries. It also represents an
interesting theoretical (and experimental) challenge because, since it is not
observed by the experiments, it should appear as a broken symmetry. Thus
the study of a mechanism of supersymmetry breaking by making use of higher
derivative terms sheds light on the importance of such theories.

In the context of holography, higher derivative gravities can be a useful
instrument for exploring the limitations of the AdS/CFT correspondence. By
providing different dynamics and different properties on one side of the duality,
one may hope to observe how this is reflected on the other side. Since the
long-term goal is to understand the nature of a connection between theories, a
broader, more general view may pave the way for a deeper understanding.

Another instrument that we will use in this thesis to reveal potential new
features hidden in the duality is Entanglement Entropy (EE). It is well known
that, if a group of particles interacts, we cannot describe the quantum states
separately but rather the system as a whole, no matter how much the particles
get separated. This phenomenon is called quantum entanglement and EE is a
measurement of it since it expresses the amount of information we lose if part
of the quantum system becomes inaccessible.

EE is an interesting quantity that appears in many different fields. For
example, this measure plays a crucial role as an order parameter for probing
the quantum phase transition in many physical contexts [9]. From a more
practical point of view, understanding the amount of correlations has proved
useful for efficiently representing a quantum ground state, thus helping our
classical computers in the description of quantum systems. Moreover, one can
even reverse the logic and thus be able to identify a quantum phase by looking
at how computationally complex it is to describe it.
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As we will see in Chapter 1, there are a lot of challenges in the practical
computation of EE. It is here that holography comes to help by relating this
quantum property of matter to a geometric object in a gravity theory, sig-
nificantly simplifying the computation. To be fair, we can say that EE and
holography help each other since EE is a universal quantity that can be defined
in any quantum system and thus may be an interesting object for studying
holography in different contexts.

The possibility of connecting a geometrical quantity to the quantum prop-
erties of matter is then only one of the fascinating aspects of studying the EE
of a system. We can also try to better define the edges of this possibility by ap-
plying the prescription to a more general context, such as the one provided by
higher derivative gravities. We will see that the presence of higher derivatives
will not only affect the numerical outcome (as is expected when you modify the
conditions of your study) but will also determine a change in the very nature
of the geometrical object holographically associated with the EE.

Outline of the thesis

During this introduction, we have already used several terms that may not be
in the everyday vocabulary of every reader. For this reason, before jumping
into a more technical discussion, we want to dedicate the first two chapters to
explaining the context of this thesis in a non-technical matter. Moreover, the
beginning of every chapter, including the more technical ones, will be dedicated
to providing a description of the strategies and the methods thereby contained
with the intention of being as accessible as possible.

Chapter 1 will be dedicated to introducing two recurrent protagonists of
this thesis: supersymmetry and entanglement entropy. These will be used as
tools to probe our models, to explore what new possibilities we might have,
and to get some idea of the limitations we might encounter. As mentioned, we
will not go into much detail but rather provide the basic ideas behind these
concepts.

Chapter 2 will conclude the introduction to this thesis by presenting the
higher derivative theory of gravity we will use as the playground for our explo-
ration, namely New Massive Gravity (NMG). This will be done by following
a path that goes from the principles of General Relativity, thus the modern
understanding of the gravitational interaction, to the possibilities of respecting
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such principles in a simpler model. Our path will lead us to simplify the prob-
lem by reducing the number of dimensions and then adding higher derivative
terms to describe, despite these simplifications, a broader range of physical ef-
fects. Only after that we will explore the feature of NMG and be ready to work
in this context for the rest of the thesis.

The first original material can be found in Chapter 3. Here, we will be
able to construct two supersymmetric extensions of New Massive Gravity. This
chapter will provide an overview of the method and extensive details through
to the final result. Reading this will be made easier by the fact that we will es-
sentially be following the blueprint of our method. Thus, the reader will be able
to see how every intermediate result actually contributes to the construction of
the theory.

Once that a new theory has been constructed, it is natural to want to
explore its solutions. This will be done in Chapter 4, where we will reveal
one technical advantage of working with supersymmetric theories. Instead of
directly solving the equations of motion, which can be challenging, one can
study other objects, called Killing spinors, that facilitate the classification of
the solutions. Therefore, we will first see how we can find such objects and thus
find the supersymmetric solutions of the theory constructed in Chapter 3. It
is here that we can start to appreciate how the presence of higher derivatives
introduces a certain richness into the solutions.

As anticipated, another interesting result of the presence of higher derivative
terms can be found by studying the entanglement entropy with a holographic
approach. Chapter 5 is dedicated to directly applying the concepts introduced
in Chapter 1 to the more complex context of NMG. Here, we will see holography
applied to a higher derivative theory, observe which new difficulties emerge from
this choice, and see what interesting results are brought about by being able to
work with the richer geometries that NMG allows as solutions.

Finally, we will summarize the conclusions of this thesis, keeping the possible
developments in our sights. Further details of the calculations presented in the
thesis will be provided in four appendices: two dedicated to the formalism
necessary for the supersymmetric construction of a theory, and two dedicated
to the explicit calculation of EE in two different geometries.



1
The Toolbox

Science is founded on theories and experiments to test those theo-
ries. Therefore, every scientist needs several tools to perform the
appropriate experiment. Such tools can be a simple screwdriver or
an elaborated precise machinery, a pencil or a sophisticated simu-
lation program.

For theoretical physicists, the tools can be physical quantities or
even entire theories. You test the model under consideration by
inserting different parameters to your equations. The goal is to ob-
serve new behaviors and, ultimately, find the edges of the potential
knowledge that your study can provide.

In this sense, a theoretical physicist is particularly lucky: the tools
themselves are interesting and fascinating. In this thesis, we will
use as tools concepts and physical quantities that attracted, and
well-deserved, a great volume of studies.

In this chapter, however, we will discuss our primary tools, super-
symmetry and entanglement entropy, by providing only the nec-
essary information we will need to perform the investigation here
presented.

15



16 CHAPTER 1. THE TOOLBOX

1.1 Supersymmetry and Supergravity

When, in the early 1960’s, scientists were constructing the theory to describe the
fundamental particles, the main question was: what are the possible symmetries
in particle physics?

Since we are in a regime where special relativity has to be taken into ac-
count, our theory has to respect the Poincaré symmetry in the four-dimensional
Minkowski spacetime, described by a group called ISO(1, 3). Here, we find:

• the space-time translation symmetries, forming an Abelian Lie group
whose generators are called Pa;

• the Lorentz symmetry, describing the invariance under (four-dimensional)
rotations and stating the equivalence of inertial reference frames. The
resulting non-Abelian group is generated by Mab.

These two groups are combined together to form the so-called Poincaré group,
governing the structure of a relativistic system.

In order to describe interactions between particles, we also need a certain
set of internal symmetries. Examples are the local U(1) of electromagnetism, or
the local SU(3) of quantum chromodynamics. Such symmetries are generated
by Ti and form a Lie algebra

[Ti , Tj ] = fij
k Tk . (1.1)

Therefore, a question arises: can these two sets of symmetries be combined in
a non-trivial way? The answer comes in the form of a no-go theorem named
after Sydney Coleman and Jeffrey Mandula [11]. It states that if we com-
bine the Poincaré and internal symmetries in a non-trivial way (i.e. [Ti , Pa] 6=
0, [Ti ,Mab] 6= 0), the S matrices for all processes will be zero.

In the search for exceptions to such a restrictive theorem, people came to
the conclusion that, in order to evade the theorem, they needed to generalize
the notion of Lie algebra to a graded Lie algebra. In this generalization, some
of the generators are allowed to not obey a commuting law, but rather an
anticommuting one.

We call the generators Pa, Mab, and Ti even generators, and the new set Qiα
odd generators. Thus, the graded Lie algebra is of the type

[even, even] = even, [even, odd] = odd, {odd, odd} = even.
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With this structure, the Coleman-Mandula theorem is evaded and we can com-
bine Poincaré and internal symmetries.

To observe what this algebra implies, let’s have a look to the following
commutator

[Q ,M ] ∼ Q . (1.2)

Therefore, Q is in a representation of the Lorentz group and, since we are
requiring it to be anticommuting, we have to choose the spinor representation.
It is well-known that a spinor field times a boson field gives a spinor field, thus
we observe that Q gives a symmetry between bosons and fermions

δ boson = fermion, δ fermion = boson,

and we call it supersymmetry [12].
It was shown by Haag, Lopuszanski and Sohnius that supersymmetry is the

only candidate to combine Poincaré and internal symmetries non-trivially [13].
Moreover, a supersymmetric model brings several advantages:

• Milder UV divergences due to the cancellations between the contributions
from bosonic and fermionic loops.

• Unification of couplings. Indeed, when extrapolated using the renormal-
ization group, the gauge coupling constants of the standard model ap-
proach the same value at high energies.

• It provides natural candidates for the particles constituting the cosmo-
logical dark matter.

However, supersymmetry requires a spectrum of particles where fermion-boson
pairs appear with the same mass. Since it is not observed by the experiments
we can conclude that, if such symmetry is realized in Nature, it should appear
as a broken symmetry. As of today, the detection of any hints on the validity
of such models escaped the experimental proof.

In this section, we will analyze the basic structures that emerge in a su-
persymmetric theory and see the implications of making such symmetry local.
These will be the instruments we will need in Chapter 3.
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1.1.1 Algebra and Supermultiplets

Supersymmetry is a spacetime symmetry connecting particles with different
spins, i.e. particles that behave differently under rotations.

If we were considering the Poincaré group alone, its irreducible representa-
tion would be a particle with a given mass and a given spin. Since a supersym-
metric transformation is changing the spin of the particle, we can conclude that
the irreducible representation of such group will be a set of particles, called a
multiplet (or supermultiplet).

To better understand this concept, we must have a look to the algebra
governing supersymmetry: an extension of the Poincaré algebra that includes
anticommuting elements.

The first step is to define what a spinor is. The spinor representation of the
Lorentz group SO(1, d−1) is defined by the existence of gamma matrices (γµ)α

β

satisfying the Clifford algebra

{γµ , γν} = 2gµν , (1.3)

where gµν is the metric of the d−dimensional Minkowski spacetime. Thanks
to these matrices we can map spinors into spinors via (γµ)α

βχβ = χ̃α. These
spinors have 2[d/2] complex components, but the representation is not irre-
ducible.

The most common representation used in supersymmetry makes use of the
so-called Majorana spinors. Such spinors satisfy the reality condition

χC ≡ χTC = χ̄ ≡ iχ† γ0 , (1.4)

where C is the charge conjugation matrix. This matrix can be used to raise
and lower indices but, since it is antisymmetric, we must define a convention
for the contraction of the indices to take into account that the order matters
(i.e. χα ψ

α = −χα ψα).
In order to not have particles with spin greater than 2, the maximum number

of supersymmetry generators N is constrained. This influences the dimension
of the spinor representation and depends on the dimension of the spacetime we
are using for out theory. Therefore, a general description of the algebra would
be rather heavy. In this section, we are going to explore the simplest example
with the promise of giving any necessary detail for the more complex structure
in Chapter 3. The more curious reader will find a comprehensive exposition
in [12].
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Let’s consider a superalgebra containing N = 1 spinor charge Qα in three
dimensions. The subalgebra of bosonic charges Pµ and Mµν = −Mνµ is the
Lie algebra of the Poincaré group, while the new relations are[

Pµ , Qα
]

= 0 ,[
Mµν , Qα

]
= −1

2
(γµν)α

βQβ ,

{Qα , Q̄β} = −1

2
(γµ)α

βPµ . (1.5)

We notice that, due to the first commutator, particles in the same multiplet
will have the same mass.

To construct a supermultiplet, the guiding principle is to match the number
of fermionic and bosonic degrees of freedom. The matching must happen both
on-shell and off-shell. To see that, let’s consider the off-shell counting for one of
the simplest supermultiplet: the scalar multiplet (in three dimensions). Here,
we find

• One scalar A, with 1 bosonic degree of freedom;

• One spinor χ, with spin 1/2 and 2 fermionic degrees of freedom;

• An auxiliary scalar F , providing the necessary extra bosonic degree of
freedom.

The auxiliary field has an algebraic equation of motion and will not contribute
to the counting in the on-shell matching. In this case, indeed, we find that the
spinor will lose half of his degrees of freedom due to the equations of motion
and it will thus match the number of bosonic degrees of freedom of the scalar A.

The presence of auxiliary fields is necessary to match the number of degrees
of freedom (and thus closing the algebra). In more complex cases, such as the
one presented in Chapter 3, we will have the possibility of choosing different sets
of auxiliary fields: the only requirement is to respect the algebra both off-shell
and on-shell.

From a more practical point of view, the multiplets are often presented by
giving the transformation rules of their components. The advantage is that it
is then possible to construct a supersymmetric invariant action. For example,
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in the case of the scalar multiplet we have

δA =
1√
2
ε̄ χ ,

δχ =
1√
2

(/∂A+ F ) ε ,

δF =
1√
2
ε̄ /∂ χ , /∂ = γµ∂µ . (1.6)

Presenting the multiplet with its transformation rules gives the opportunity to
see how supersymmetry maps bosons to fermions and vice versa. The spinor
parameter ε is a constant Majorana spinor. To have a full understanding of
what we are going to see in Chapter 3, we need to take another step further
and gauge this symmetry, i.e. sending ε→ ε(x).

1.1.2 Supergravity

The discoveries in the field of particle physics were mainly due to the use of
gauge symmetries: a symmetry that acts differently at any given point of the
spacetime. It was thus natural to extend this concept to supersymmetry. Since,
as we shall see in a moment, such gauging implies the inclusion of gravity, we
call supergravity the theory of local supersymmetry.

In the 80’s, the important results in the field of superstring theory led to
the idea that a consistent theory of quantum gravity should be a superstring
theory. In such a theory, particles are described as excitations of an extended
object called string. It is very interesting to notice that, in a low energy regime,
the theory reduces to a supergravity field theory.

There are many equivalent ways to look at supergravity. Most commonly
it is referred as the theory that combines general relativity and supersymmetry
(or a supersymmetric theory of gravity). Since we are talking about an alge-
braic structure, nothing could express this concept better than a commutator.
Looking at the anticommutator in (1.5), we notice that

{Q,Q} ∼ P . (1.7)

This indicates that having a general coordinate transformation is equivalent to
having a local supersymmetry. It is also true the converse: any supersymmetric
theory which includes gravity shall require a local realization of supersymmetry.
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More technically, in order to have transformation rules compatible with a theory
of gravity with fermions, we must require the spinor parameter to be local, ε(x).

When one constructs a gauge theory, we know that we must introduce gauge
fields in order to compensate the contributions coming from the derivatives of
the local parameter. In the case of supergravity, such gauge field is a spin 3/2
vector-spinor called gravitino and it is the superpartner of the graviton (spin 2).

In the context of supergravity, due to the presence of spinors, it is more
convenient to use the vierbein formulation of Einstein gravity. Since it is a gauge
theory, we also need the gauge field corresponding to the local rotations Mab

and the local translations Pa. These are, respectively, the spin connection ωabµ
and the vierbein eaµ, where a, b are the Lorentz gauge group indices, and µ, ν are
the spacetime indices. The corresponding field strengths are the torsion Caµν
and the Riemann curvature tensor Rabµν . In Chapter 3, we will use this kind of
curvature invariants to construct the desired supersymmetric theory.

Conformal Symmetry and a Strategy

The construction of a supergravity theory can be, however, rather challenging,
especially if one wants to include matter multiplets. The systematic approach
we will use in this thesis is called superconformal method. Here, we will briefly
see its underlying strategy and then see an explicit example in Chapter 3.

The idea is to build a theory with a larger symmetry, which gives us more
control on the construction, and then eliminate the extra symmetries by im-
posing the appropriate constraints.

In particular, we first formulate a theory governed by the superconformal al-
gebra, this is done with the help of so-called compensating matter fields. Then,
we eliminate the compensating fields to obtain the desired theory respecting
the Poincaré supersymmetric subalgebra. The cancellation of such fields will
happen by gauge-fixing the extra symmetries.

Thanks to this method, it is easier to construct a matter-coupled supergrav-
ity theory because we are supported by the structure coming from the conformal
symmetry. Although this symmetry will be a simple tool for the construction
of the theory, it deserves a small description.

The conformal symmetry is an extension of the Poincaré group including
dilatations and the so-called special conformal transformations. The transfor-
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mations are respectively defined by

xµ → λxµ, xµ → xµ − aµx2

1− 2a · x+ a2x2
, (1.8)

where λ and aµ are the parameters describing the transformations.
We call D the generator of the dilatations and Kµ the one of the special

conformal transformations. Then, the commutation relations involving this
extension read [

D ,Pµ
]

= iPµ ,[
D ,Kµ

]
= −iKµ ,[

Pµ ,Kν

]
= 2i (Mµν − ηµνD),[

Kµ ,Mνρ

]
= i (ηµνKρ − ηµρKν), (1.9)

and the other commutators vanish. We thus conclude that D is a scalar and Kµ

is a vector under Lorentz transformations.
The superconformal algebra [14] combines this symmetry with the algebra

given in (1.5). In this extension, a new fermionic generator Sα appears: the
special supersymmetry charge. The important anticommutators involving this
new generator are

{Q,S} ∼ 0 , {S, S} ∼ K , (1.10)

thus, in the same way as two supersymmetry transformations produce a trans-
lation, two special supersymmetry transformations produce a special conformal
transformation.

In general, the superconformal transformation will be a matrix of the form [12][
conformal algebra Q,S

Q, S R-symmetry

]
where the R-symmetry rotates the supercharges and contributes to the closure
of the algebra. We will first construct a theory invariant under this kind of
transformations and then remove the conformal symmetry by gauge-fixing it.

We now have all the concepts to understand the procedure exposed in Chap-
ter 3, where this method will be explicitly applied to a matter-coupled theory
with extended supersymmetry, i.e. a theory with more than one supersymme-
try.
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1.2 Entanglement Entropy

Entanglement Entropy (EE) is the second tool we will need in this thesis. It
measures the quantum correlation between two systems since it encodes the
amount of information loss when one of the two systems becomes inaccessible.

This quantity fascinates a broad range of physicists since a good part of a
decade. It is used in condensed matter to guess the ground state wave func-
tions, it can be used as an order parameter to describe phase transitions and
thermalization. Moreover, and this is the main interest of this thesis, it is re-
lated to an area law and thus to the geometry of a specific surface, as we will
see later in this section and more extensively in Chapter 5.

In this section, we will take every necessary step to define EE, observe
the difficulties in its computation, and finally explore the holographic method
introduced to overcome such difficulties. A comprehensive review of the topic
can be found in [17].

In order to define entanglement entropy, let us consider a bipartite system
described by a well-defined Hilbert space Htot such that it can be factorized
into two disjoint Hilbert spaces of the subsystems A and B as,

Htot = HA ⊗HB. (1.11)

Let us characterize the full system with the density matrix ρtot. For the observer
who has access only to the region A, the system is effectively represented by
the reduced density matrix ρA,

ρA = TrB ρtot, (1.12)

where the partial trace is performed over HB. Analogously, you can define ρB.
Since the reduced density matrix doesn’t keep track of the correlations be-
tween A and B, some information is lost and, in general, we will have ρtot 6=
ρA ⊗ ρB.

The entanglement entropy of the subsystem A is defined after the von Neu-
mann entropy of the reduced density matrix ρA,

SA = −TrA ρA log ρA. (1.13)

It is called entropy because if you take ρ to be a thermal state (i.e. ρ ∼
exp(−βH), where H is the Hamiltonian and β = T−1) you have the usual
formula for the thermal entropy.
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This quantity has several properties:

• if ρ is a pure state on the total system AB, then SA = SB. This shows
that EE is not an extensive quantity1. The relation doesn’t hold at finite
temperature.

• Subadditivity, i.e. SAB 6 SA + SB, where SAB is the EE of the system
given by unifying A and B. Moreover, we can define another interesting
quantities: the mutual information

I(A : B) ≡ SA + SB − SAB > 0 , (1.14)

which focuses more on the correlations between the two systems.

• Strong subadditivity, i.e. SA +SC 6 SAB +SBC , where the systems A, B
and C do not intersect each other.

However, as we can see in eq. (1.13), we notice that the actual computation
of entanglement entropy involves a logarithm of a matrix that can be, in prin-
ciple, arbitrarily complicated. For this reason, in order to make the calculation
easier (or even doable at all), we can define a new object called Rényi entropy

SnA =
1

n− 1
log Tr ρnA , lim

n→1
SnA = SA , (1.15)

where the limit makes use of the fact that Tr ρA = 1. This quantity plays a
crucial role in the calculation of EE in the context of quantum field theories.

1An extensive quantity is additive. For example, the volume, the energy, the mass, and
the thermal entropy are extensive quantities.
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1.2.1 EE in Quantum Field Theories

Despite the simplicity of the formula and its successful application to simple
quantum mechanical systems, it is extremely difficult to generalize the prescrip-
tion (1.13) to perturbative quantum field theories in arbitrary dimensions. In
this case, we have an infinite amount of degrees of freedom and hence we ex-
pect the EE to present UV divergences. Therefore, we regularize our result by
introducing a UV cut-off [9, 10].

Interestingly, since the leading term of the divergence will come from the
short-distance correlations, we notice that the degrees of freedom contributing
the most to the EE are going to be those near the boundary of the entangling
regions. Thus, we can expect the leading term to be proportional to the area
of this boundary, paving the way for the area law we will see at the end of this
section.

However, this area law does not describe the scaling of EE in general: as we
will see in this section and, more precisely, in Chapter 5, for two-dimensional
CFT the scaling happens to be logarithmic.

For two-dimensional conformal field theories, the symmetry structure of the
theory encourages us to apply the replica trick [9]. Here, instead of focusing
only on the system, we can compute the Rényi entropy (1.15) of n copies of the
system and then take the limit n→ 1 to obtain the EE.

Although for higher dimensional conformal field theories the replica method
can be applicable only for certain topologies of the entangling region, it is
instructive to see how the method is implemented. Our main obstacle is to
evaluate the term TrA ρ

n
A, appearing in the equation (1.15), in the context of

quantum field theory. To do so, we rely on the path-integral formalism.

First, we need to define the density matrix in the Euclidean plane (tE , x)
where our 2D QFT is defined; the region A of our interest is going to be an
interval x ∈ [x1, x2] at tE = 0. The ground state wave functional can be found
by performing a path integral from tE = −∞ to tE = 0 in the Euclidean
formalism

Ψ(ϕ0(x)) =

∫ ϕ0(x)

ϕ(tE=−∞,x)
Dϕe−S(ϕ), (1.16)

where ϕ(tE , x) is the field which defines the QFT. Moreover, we indicate with
ϕ0(x) the values of the field at the time tE = 0 where we the region A is defined.
Clearly, those values depend only on the coordinate x. The total density matrix
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is given by two copies of the wave functional, with fields ϕ0 and ϕ′0 respectively,

ρ|ϕ0 ϕ′0
= Ψ(ϕ0(x))Ψ̄(ϕ′0(x)) (1.17)

where the complex conjugate Ψ̄(ϕ′0(x)) is obtained by path-integrating from
tE =∞ to tE = 0.

To obtain the reduced density matrix ρA, we have to integrate ϕ0 on the
complement of A with the condition ϕ0(x) = ϕ′0(x) if x /∈ A.

ρA|ϕ0 ϕ′0
= Z−1

∫ tE=∞

tE=−∞
Dϕe−S(ϕ)

∏
x∈A

δ(ϕ(0+, x)−ϕ+(x)) δ(ϕ(0−, x)−ϕ−(x)) ,

(1.18)
where Z is the vacuum partition function introduced to normalize ρA, and ϕ±
are boundary conditions.

Finally, to compute TrA ρ
n
A, we prepare n copies of the system described

by (1.18) as shown in Fig. 1

ρA|ϕ1+ ϕ1− ρA|ϕ2+ ϕ2− . . . ρA|ϕn+ ϕn− , (1.19)

and then take the trace. As shown in Figure 1, this is realized by properly

Figure 1
An example of replica trick with n = 3. The different replicas are glued together by matching
the boundary conditions ϕi±, the desired quantity is then obtained by integrating over them.

gluing together the multiple copies (i.e. imposing ϕi− = ϕ(i+1)+ as boundary
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conditions) and then integrating ϕi+(x). This means that the path integral is
now performed on an n-sheeted Riemann surface commonly referred to as Rn

TrA ρ
n
A = Z−n

∫
(tE ,x)∈Rn

Dϕe−S(ϕ) ≡ Zn
Zn

, (1.20)

where Zn is the partition function computed on Rn. If we generalize this
procedure to higher-dimensional spaces, Rn is going to be a singular space
obtained by gluing n copies of the original space along ∂A, the boundary of the
region under investigation.

The singularity of such a space can be seen already in the two-dimensional
case. Let’s imagine we wish to walk around x1, one of the extremes of the
interval A. Initially, when we rotate around x1 by an angle of 2π we come
back to the starting point. However, since we are taking multiple copies of the
system and gluing them together as described, after 2π we simply end on the
next copy. Therefore, we now need to rotate by an angle of 2πn to come back
to our original position. We call this singularity a conical singularity, located
along the surface ∂A with a deficit angle of 2π(1− n).

Let’s have a look at the curvature singularity of this spacetime. We define r
as the coordinate expressing the distance from the boundary ∂A (in our case,
it is the distance from x1), and 0 6 φ 6 2πn as the angle. To simplify the
calculation, we define φ = nψ so that the spacetime is described by

ds2 = dr2 + r2n2dψ2. (1.21)

We can now regularize the geometry by smoothing out the tip of the cone, such
that

ds2 = dr2 + f2(r)dψ2 , (1.22)

with f(r) ∼ r for r → 0, and f(r) ∼ nr for r →∞. It is easy to see that

R = −2f ′′

f
, and

∫
dr dψ

√
g R = −4π(n− 1). (1.23)

We thus observe that, regardless of the choice of f(r) (although we require it
to be linear away from the tip), the curvature singularity is completely located
at the tip of the cone, namely

R ∼ −4π δ2(x1) (n− 1) . (1.24)
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1.2.2 A Holographic Proposal

The analysis of entanglement entropy in strongly coupled quantum systems re-
quires techniques beyond the perturbative regime. However, these obstacles
can be overcome by considering a holographic realization of Entanglement En-
tropy (HEE) originally proposed by Ryu and Takayanagi (RT) in their seminal
work [15, 16]. According to their proposal, the entanglement entropy SA of a
region A in a d dimensional boundary theory corresponds holographically to a
geometrical quantity, i.e. the area of a co-dimension-2 spacelike minimal sur-
face γA in the (d + 1)-dimensional dual gravity theory. The minimal surface
is anchored to the boundary in such a way that it satisfies the homology con-
straint ∂γA = ∂A, as shown in Fig. 2. The exact statement of their proposal is
astonishingly simple and reads as

SA =
Area(γA)

4G
(d+1)
N

, (1.25)

where G
(d+1)
N is the (d+1)-dimensional Newton constant. The generalization of

this formula for asymptotically AdS static spacetimes has been achieved in [17].
Furthermore, the covariant version of the RT proposal for time-dependent back-
ground has been formulated in [18].

Figure 2
The Ryu-Takayanagi proposal: if we want to compute the EE of the region A living on a
time slice of the d-dimensional boundary, we need to compute the area of the surface γA
extending deeper in the bulk where a d+ 1-dimensional gravity theory is defined. The

surface is anchored to the boundary satisfying the constraint ∂γA = ∂A.
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We saw in (1.24) that, due to the replica trick, we have a geometry with a
singularity at the boundary. Following [19], we assume that the codimension-2
surface γA defined in the bulk is singular too, presenting the same deficit angle
of 2π(1− n). Therefore, the Ricci scalar will be of the form

R = −4π δ2(γA) (n− 1) +R(0), (1.26)

where R(0) is the one of the pure AdSd+1 spacetime. Looking now at the bulk
Einstein-Hilbert action, we observe that

SAdS = − 1

16πG
(d+1)
N

∫
dxd+1√g (R+ Λ)

= −nSvacAds −
1

16πG
(d+1)
N

(
4π(1− n)

) ∫
γ

√
g, (1.27)

where SvacAds is the vacuum contribution and it is simplified once that we nor-
malize in order to obtain Tr ρ = 1. Therefore, we easily compute that

Tr ρnA = exp

(
1

4G

∫
γ

√
g (1− n)

)
, (1.28)

which yields

lim
n→1

1

1− n
log Tr ρnA =

1

4G

∫
γ

√
g . (1.29)

The action principle in the gravity theory requires γA to be the surface that
minimizes the area, thus giving an intuitive proof of the validity of the for-
mula (1.25).

The assumptions here taken are valid in three-dimensional pure gravity since
a solution of the Einstein equation should be locally equivalent to AdS3 [20].
However, the generalization to higher dimensions or to more complicated the-
ories is not obvious.

Recently, a holographic proof of the RT proposal has been expounded by
Lewkowycz and Maldacena (LM) in [21]. The essence of the proof is established
by implementing the n-copy replica trick in the dual bulk geometry. The metric
of this replicated bulk geometry acquires a Zn singularity on the hypersurface.
The powerfulness of this method reveals that, by imposing the limit n→ 1, the
hypersurface converges to the usual minimal surface in the RT proposal.
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To sum up, we overcome the technical difficulties of computing the loga-
rithm of a matrix in equation (1.13) by implementing the replica trick (1.15).
Finding ourselves in trouble to analyze more complicated systems, we recur to
an holographic technique that simplifies the problem by reducing to the com-
putation of the area of a specific surface (1.25).

Simplicity is not the only wonderful feature of this proposal and not even
the most interesting one. Indeed, one can interpret the equation (1.25) as
an indication that the quantum properties of matter are deeply related to a
geometrical object on the other side of the correspondence. Such indication
yields a fascinating perspective in the context of emergent spacetimes [22,23].

In this thesis we will focus on theories of gravity in three dimensions. Here,
the procedure is facilitated even more by the fact that the quantity to be com-
puted will be just the length of a line. The peculiarity of this case is observed
also on the other side of the correspondence where a two-dimensional CFT lives.
As anticipated, the EE in such theories do not respect an area law and takes
the form

SA =
c

3
log

(
`

ε

)
, (1.30)

where c is the central charge, ` the size of the entangling region, and ε the UV
cut-off. Further details and an interesting extension of this result will be given
in chapter 5.

One more consideration before concluding this introductory chapter. It is
evident from eq. (1.25) that it is structurally very similar to the Bekenstein-
Hawking (BH) formula for the black hole entropy. Interestingly, this striking
similarity was one of the primary inspirations to the authors of [15]. However,
the fact that the EE is proportional to the number of matter fields and is ultra-
violet divergent substantially differentiates the nature of the RT proposal from
the BH formalism. Furthermore in [24], Jacobson gives a more comprehensive
connection between the two formalisms by stating that the entanglement en-
tropy describes the quantum correction to the black hole entropy in the presence
of matter fields.



2
The Laboratory:

New Massive Gravity

In Chapter 1, we have introduced the tools that we will use in this
thesis. The only thing left to be done before using them is to set
up a place where we can expect to observe something interesting:
a laboratory.

In our case, such place is not a room full of machinery, nor a tele-
scope in some exotic place. The laboratory we will need is a model
describing a theory of massive gravity called New Massive Gravity.

In this chapter, we will walk through the conceptual steps that led
to the formulation of New Massive Gravity (NMG). Then, we shall
present the theory and its properties, exploring the implications
that such theory brings with it, and thus completing the set up of
our laboratory.

31
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2.1 General Relativity

Gravity fascinates philosophers and scientists since the ancient times. Hu-
mankind is naturally inclined to wonder and question the reality that surrounds
us, in particular why some of the stars in the sky appear to be moving. The
search for the answer went through a series of twists and turns in our under-
standing of Nature, crushing, at times violently, with the existent knowledge
and the religious beliefs.

The first concrete attempt of grasping the nature of gravity can be found
in the revolutionary work of Sir Isaac Newton of 1687, Philosophiæ Naturalis
Principia Mathematica. His law of universal gravitation succeeded in describing
the motion of the planets observed with the technology available at that time.
Moreover, observing some changes in the orbit of Uranus, the predictions of this
law were crucial for the discovery of Neptune. However, two centuries later,
the technology allowed the astronomers to notice irregularities in the orbit of
Mercury, paving the way to questioning the range of validity of Newton’s law
predictions. Another issue that was not addressed by Newton and puzzled the
scientists for centuries (and it still does) is questioning the very nature of an
interaction affecting everything in the universe.

The history of our understanding of the gravitational interaction is the
perfect example of the natural conflict between the scientific method and the
principle of authority. Notwithstanding, the final steps that led to the modern
description of gravitation, namely General Relativity (GR), were not originated
by the necessity of challenging an existent theory to explain a new observation.

In 1905, Albert Einstein presented the theory of special relativity, providing
a theoretical framework where Maxwell’s equations of electromagnetism were
describing the same physics in every inertial frame. The theory was a radical
change of paradigm that revolutionized, among other things, our concepts of
time and space. Indeed, we can’t treat time and space separately anymore,
being them the interconnected parts of a spacetime with 3 spatial dimensions
and 1 time dimension.

Two years later, he began his attempt of extending the principle of relativity
to physical systems where you can’t define an inertial frame as everything is
accelerated by the gravitational force. The theory was finally presented in 1915
and shaped our modern understanding of gravitation: not an instantaneous
interaction violating the principles of special relativity anymore, but rather an
interplay between matter and the structure of spacetime. The presence and the
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motion of matter bend the spacetime, curving it and changing its geometry,
and the curvature of the spacetime determines the motion of matter.

The driving force of this theory is the equivalence principle that states that
effects of gravity and acceleration are indistinguishable. The mathematical
structure of GR is rather challenging and the most appropriate reference to
have a comprehensive understanding of the subject is [25]. Nevertheless, we
will try to have a glimpse of its elegance.

In Newtonian gravity, the dynamical variable is the gravitational potential.
On the other side, in GR the dynamical variable is the object encoding the
geometrical properties of the spacetime: the metric gµν . This object obeys a
set of second order differential equations called Einstein’s equations that, in
natural units, read

Gµν ≡ Rµν −
1

2
gµν R = Tµν . (2.1)

These equations represent the interplay between matter and geometry. On the
left-hand side, we find the Einstein tensor Gµν , expressing the geometry of the
spacetime and its dynamics. This is done through the particular, divergence-
free, combination of the metric and the Ricci tensor, which is composed of
derivatives of the metric. On the other side, we have the stress-energy tensor Tµν
that describes the distribution and the motion of matter. We thus observe how
geometry and matter are connected and influence each other.

Being constructed with tensors, GR is characterized by a manifest general
covariance: the physics described and its predictions do not depend on the
coordinate system. Furthermore, there is no reference to a preferred invariant
background structure. Therefore, the theory expresses the deep concept that
the laws of physics are the same for every observer. A local realization of this
concept is the equivalence principle mentioned before.

It is interesting to notice that in the small-curvature regime, thus for weak
gravitational fields and for speeds significantly smaller than the speed of light,
the predictions of the theory coincide with the ones given by Newton’s law.
Moreover, the predictions of the theory clarified the observations on Mercury’s
orbit, thus far unexplained by Newton’s law.

Another consequence of this theory is that, if the spacetime is in fact curved
by the presence of matter, we should observe that even a light ray has to be
deflected by a gravitational field. This is because light should cover the shortest
distance between two points and, in a curved spacetime, this path is described
by a geodesic that is not necessarily a straight line. Sir Arthur Eddington
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verified this prediction during a solar eclipse in 1919 by observing how the light
of stars was bent by the gravitational field of the Sun.

Once we admit that light is affected by the presence of matter due to the
curvature of spacetime, we can imagine regions of spacetime where the curvature
is so high that not even light can escape. In fact, this is arguably the most
fascinating prediction of GR that allow the existence of such regions, called black
holes. The name derives precisely from the impossibility of light to escape from
them. The surface confining this region is called event horizon and, according
to GR, everything crossing this surface is doomed to remain in the black hole.
Despite this unhappy fate, an infalling observer will never notice, from local
observations, if he or she is crossing the event horizon.

Black holes are also characterized by the presence of a gravitational singular-
ity, a region of the spacetime with infinite curvature. Although the appearance
of a singularity indicates a breakdown of the theory, this is actually the begin-
ning of the most exciting challenge for theoretical physics. At those distances
and energies, one cannot ignore the quantum effects anymore and we thus need
a theory that combines quantum and gravitational effects. This question is still
unanswered and encodes all the interest that these mysterious objects attracted
in the last sixty years.

The first example of a black hole1 came from Karl Schwarzschild a few
months after Einstein’s publication, while he was serving at the front in Russia
during WWI. It is a spherically symmetric solution of the form (in natural
units)

ds2 = −
(

1− rs
r

)
dt2 +

(
1− rs

r

)−1
dr2 + r2dΩ2 , (2.2)

where dΩ2 = dθ2 + sin2 θ dφ2 is the angular part of the metric, and rs = 2M
is the Schwarzschild radius of an object of mass M . It might appear that
the metric is singular at r = rs but, as Eddington showed in 1924 [26], the
singularity disappears by changing coordinates. The only physical singularity
is located at r = 0, where the curvature goes to infinity.

Another astonishing prediction of this elegant theory is the existence of
gravitational waves. Indeed, by studying how perturbations of the geometry
propagate, one observes that they obey a wave equation. If in Newtonian
gravity the interaction was transmitted instantaneously, in GR it propagates
at the speed of light as a wave in the very fabricate of the spacetime. Due to

1Actually, Schwarzschild’s solution is the first exact solution to Einstein’s equations.
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the fact that this physical effect is very small and difficult to be detected, we
had to wait till 2015 to have the first experimental evidence of the existence of
such waves [27].

Around the same time that Einstein developed and published his field equa-
tions for the metric, the mathematician David Hilbert got interested in Ein-
stein’s work and published almost simultaneously an action from which one
can derive those field equations. The action reads

S =

∫
d4x
√
g
(
αR+ β + Lmatter

)
, (2.3)

where g = det(gµν), the first term (now called Einstein-Hilbert term) gives
rise to Einstein’s equation, and Lmatter is the matter contribution. Hilbert,
respecting the postulates of GR, included also another term. The effect of this
term is to modify Einstein’s equations by introducing what nowadays we call
the cosmological constant Λ,

Gµν ≡ Rµν −
1

2
gµν R+ Λ gµν = Tµν . (2.4)

This constant is the value of the density of energy of vacuum. Therefore, its
presence curves the spacetime even in the absence of matter.

The history of this constant is linked with our knowledge of the structure of
the universe. Einstein initially gave it a physical interpretation and introduced
it because his equations did not allow a static universe as a solution since gravity
would have caused the universe to contract. He then rejected the possibility
and removed the constant when Hubble observed in 1929 that the universe
was expanding. However, with the observation of a distant supernova in 1998,
developments in the field of observational cosmology allowed (among other great
discoveries) to detect an acceleration in the expansion of the universe, a result
compatible with the presence of a positive cosmological constant in the field
equations.

Understanding the nature and the value of the cosmological constant is
one of the big open problems in cosmology. Observations seem to indicate a
small positive value for it, while theoretical predictions based on quantum field
theory give a much larger value. The discrepancies go from 40 to 100 orders of
magnitude, depending on the assumptions.

One recurrent spacetime in this thesis will be the Anti-de Sitter (AdS)
spacetime. It is a maximally symmetric solution of the Einstein’s equations
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with a negative cosmological constant. It can be expressed in the Poincaré
coordinate patch as

ds2 =
L2

r2

(
− dt2 + dr2 + dx2 + dy2

)
, (2.5)

where L is the AdS radius. If the de Sitter spacetime, the analogous solution
with a positive cosmological constant, has a curvature that induces an expan-
sion, the AdS spacetime describes a situation where two points will tend to
attract each other over time.

As we have seen in the introduction, this spacetime is of a great utility and
interest in the context of holography and will appear as a solution in Chapter 3
and as a starting point in Chapter 5.

To summarize, there are many open questions when gravity is involved in
our studies. There are difficulties related to the observational aspect: since
very precise measurements are required, we have to constantly develop our
technology accordingly and we saw that, in some cases, the wait can be even
a century long. Other issues address a more abstract level. The ability of a
theory in making verifiable predictions gives, in a sense, a measure of how good
the theory is and any discrepancy reveals how little we know about the history
of our universe, regardless the impressive amount and quality of the discoveries.

In particular, all these issues and questions are connected by the necessity
of finding an underlying fundamental theory that reveals the true nature of this
interaction. Any effort of overcoming the open issues is, directly or indirectly,
aimed towards the seeking of the answer to this fundamental question. One
possibility is to create theoretical models that simplify the problem and allow
us to have some insights and thus face such a big challenge.
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2.2 Three-Dimensional Gravity

Thus far we have seen a few aspects of GR and had a glimpse to some famous
solutions to the Einstein’s equations. It is easy to notice that such solutions
describe a four-dimensional world. This is because GR was created to describe
the universe as we perceive it: a four-dimensional spacetime, with three spatial
dimensions and one time dimension.

However, the principles of General Relativity do not refer to a specific di-
mensionality. Nothing forbids us to study spacetimes where we have at least a
spatial and a time dimension. The solutions will vary dramatically for different
dimensions and, in some cases, will describe intriguing physical situations.

To overcome some technical obstacle, deriving from the mathematical struc-
ture of differential equations in four dimensions, one can reduce the number
of dimensions and study a (2 + 1)-dimensional spacetime. The price to pay
for such simplification of the equations is that all the cosmological motivations
mentioned in the previous section are now removed since any model constructed
with a three-dimensional gravity theory will not be realistic. While for many
people this could be a reason to not analyze such models, there are several
advantages to be taken into consideration.

The first consequence of lowering the number of dimensions is that we now
have a nice playground to test ideas, face simpler equations, and thus perform
exact computations within the desired gravitational model. Although there
is no guarantee that a three-dimensional model will still be valid in the more
realistic four-dimensional case, the results can be used to extract insights on
what is worth trying, what kind of result one could expect, and potentially
reveal some fundamental information. The most direct example that can be
found in this thesis is the computation performed in Chapter 5 to find the
entanglement entropy that, in some cases, can be even performed by hand.

The second advantage of working with a three-dimensional gravity theory
is that, when the manifold admits a boundary, we can study a two-dimensional
conformal field theory on this boundary. This can be extremely useful in the
context of studying the validity and the limitation of the holographic principle,
as we have seen in the introduction.

Gravity in (2 + 1) dimensions is peculiar and this can be seen from the
symmetry properties of the Riemann tensor. This tensor can be decomposed,



38 CHAPTER 2. THE LABORATORY: NMG

in D dimension, in the following way

Rµνρσ = Cµνρσ +
2

D − 2

(
gµ[ρRσ]ν − gν[ρRσ]µ

)
− 2

(D − 1)(D − 2)
Rgµ[ρ gσ]ν , (2.6)

where Cµνρσ is the Weyl tensor that vanishes in three dimensions. Therefore,
setting D = 3, we are left with simply

Rµνρσ = 2
(
gµ[ρRσ]ν − gν[ρRσ]µ

)
−Rgµ[ρ gσ]ν . (2.7)

We thus see that the Riemann tensor is completely determined by the Ricci
tensor. Being a symmetric two tensor, we can conclude that the Riemann
tensor has the same amount of independent components as the Einstein tensor.
Those components are completely fixed by the Einstein’s equations and thus
we can say that gravity does not propagate any local degrees of freedom in three
dimensions.

This restriction seems to be too heavy to make three-dimensional gravity an
interesting theory. However, as soon as we allow the existence of a non-vanishing
cosmological constant, interesting geometries appear among the solutions of the
theory. In fact, local triviality does not forbid the theory to display surprising
properties when we look at the global structure of the spacetime.

An interesting example of that was first discovered by Bañados, Teitelboim,
and Zanelli (BTZ) [28]. If we consider GR with a negative cosmological con-
stant, the theory admits a black hole solution. The line element of a rotating
BTZ black hole is given by

ds2 = −
(
−M +

r2

L2
+
J2

4r2

)
dt2 +

(
−M +

r2

L2
+
J2

4r2

)−1

dr2

+ r2

(
dφ− J

2 r2
dt

)2

, (2.8)

where L2 = −1/Λ is the AdS radius, M is the mass of the black hole, and J is
its angular momentum. The BTZ black hole is locally isomorphic to the AdS
spacetime, but it exhibits the global properties of a black hole. Indeed, we can
identify the presence of an event horizon at r = r+ and of an inner horizon
at r = r−. The presence of two horizons is typical of a rotating black hole and
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their location can be found by looking for the singularities in the metric. A
simple calculation gives

r± = L

M
2

1±

√
1−

(
J

M L

)2
 1

2

, (2.9)

or, in other words, the mass and the angular momentum of the black hole
determine the size of the horizons as [28]

M =
r2

+ + r2
−

L2
, J =

2 r+ r−
L

. (2.10)

The condition for the existence of the two horizons is that |J | 6ML, where the
equality means that the two horizons merge and we have a so-called extremal
black hole. The constraint is imposed in order to avoid the presence of black
holes without any horizon, i.e. naked singularities. These objects represent a
conceptual challenge and it is conjectured (cosmic censorship hypothesis [29])
that no realistic process can produce such singularity, i.e. a horizon should form
to hide it. If we wish to study a non-rotating black hole, we can set J = 0 and
the inner horizon disappears.

Extremal black holes will appear as solutions of the theory constructed
in Chapter 3. In Chapter 4, we will have the opportunity of studying these
objects with a richer geometrical structure. In order to finally focus on our
laboratory, New Massive Gravity, we first need to briefly explore the field of
Massive Gravities.
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2.3 Massive Gravity

We have seen in the previous section that some of the challenges one encoun-
ters in the study of the gravitational interaction can be softened by lowering
the number of dimensions. The price to be paid in order to work with more
manageable equations is the loss of propagating local degrees of freedom.

Since one of the goals of studying such theories is to have insights on the four-
dimensional theory, which presents propagating local degrees of freedom, this
oversimplification makes the model rather irrelevant for this purpose. Instead
of discharging the model, we can modify it by adding degrees of freedom and
richness to our theory.

In particular, we want a theory that describes a massive graviton because
this will introduce extra degrees of freedom (see Table 1). We have already seen
in the introduction some physical reasons to consider a theory of massive gravity
but, for the purposes of this discussion, the main goal of this deformation of
GR is to introduce some richness in the dynamics that the theory describes.

Off-Shell On-shell

Massless D(D − 1)/2 D(D − 3)/2

Massive D(D + 1)/2 D(D − 1)/2− 1

Table 1
The counting of degrees of freedom of a spin-2 particle in D dimensions. Notice how a

massless spin-2 particle does not propagate any degree of freedom in three dimensions and
how the situation is improved by considering a massive particle.

We talk about a deformation of GR because, in the search of a more general
theory of gravity, any model should naturally maintain the good features of
GR. As General Relativity reduces to Newtonian gravity in the non-relativistic
regime, this kind of deformations should reduce to GR in the regimes where
it has been proven (via observations and experiments) to be correct. The pa-
rameter controlling the deformation is the mass parameter and we expect to
reproduce the results predicted by GR if we look at the regime where it is
arbitrarily small. This, as we will see, turns out to be not always the case.
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The difficulties in constructing a theory of massive gravity arise as soon
as one tries to introduce a mass term in the action. This can be done in two
ways: by introducing an explicit mass term with an extra two-tensor, or by
introducing terms containing higher derivatives of the metric. Although our
interest is the study of New Massive Gravity, a higher-derivative theory, we will
briefly explore the first possibility because it can clarify some issues related to
massive gravities.

2.3.1 Explicit Mass Term

A common term we are used to seeing in actions describing massive particles is
some kind of contraction of the fields describing them. For example, for a vector
field Aµ (spin 1) we usually take the contraction m2AµA

µ to obtain an explicit
mass term. In the case of a gravitational theory, however, the dynamical field
is the metric gµν and this approach does not work: the contraction gµνg

µν is
just a constant.

In 1939, Fierz and Pauli wrote down a theory for spin-2 particles with a
non-vanishing mass [30] in the flat Minkowski spacetime. If we start from the
action of GR

S =
1

16πG

∫
d4x
√
g R , (2.11)

and we consider small fluctuations hµν of the metric around the Minkowski
spacetime, i.e. gµν = ηµν + hµν , the same action will read, at second order, as

S =
1

16πG

∫
d4xL(2)

EH , (2.12)

where

L(2)
EH =

1

4

(
∂2hµν + 2 ∂ρ ∂(µhν)ρ + 2 ∂(µ∂ν)h− h ∂2h

)
hµν , (2.13)

and h is the trace of hµν . It is interesting to notice that this action inherits
from the full theory a linearized diffeomorphism invariance hµν → hµν + ∂(µξν)

that will reduce the number of degrees of freedom.
Taking this linearized version of the Einstein-Hilbert action, we can add an

explicit mass term to obtain the Fierz-Pauli (FP) action, namely

LFP = L(2)
EH −

1

4
m2 (hµνh

µν − h2). (2.14)
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The mass term breaks the gauge symmetry of linearized GR mentioned above,
thus altering the counting of degrees of freedom: in the four dimensional case,
the degrees of freedom goes from 2 (massless case) to 5 (massive case), as Table 1
shows.

The mass term in equation (2.14) is not the only possibility we have, a
priori. However, the relative factor between hµνh

µν and h2 is the result of a
fine tuning aimed to the description of a massive spin-two particle. A different
tuning, in fact, will influence the counting of degrees of freedom. To see that,
let us consider a generic tuning

LFP = L(2)
EH −

1

4
m2 (hµνh

µν − αh2), (2.15)

where α is a parameter governing the tuning. The equations of motion are

m2 (∂ν hµν − α∂ν h) = 0 , (2.16)

and, taking the divergence and its trace, we obtain the following two equations

m2 (∂ν∂µ hµν − α2h) = 0 , 2h− ∂µ∂ν hµν −
4α− 1

2
m2h = 0. (2.17)

When α = 1, thus in the case of the FP mass term, these three equations
constraint hµν to be traceless and divergence-free. In this way we reduce the
number of degrees of freedom to the right amount in order to describe a massive
spin-two particle (5 in the four-dimensional case). However, without impos-
ing α = 1 there is no way to impose the tracelessness condition, revealing the
presence of an extra degree of freedom, which turns out to be a scalar ghost,
i.e. a field with negative kinetic energy that leads to instabilities at classical
level and to non-unitarity at the quantum level.

As we mentioned before, we would expect the FP theory to reproduce the
results of GR in the limit where the mass parameter goes to zero. However, this
is not the case if you consider the predictions made by the two theories of the
light-bending angle: the disagreement is of about 25%. Moreover, taking the
massless limit of FP coupled to a conserved energy-momentum tensor does not
lead to GR, but rather to the linearized Einstein gravity with extra degrees of
freedom. This is the so-called vDVZ discontinuity, named after its discoverers
van Dam, Veltman, and Zakharov [31, 32], which is related to the difference in
the gauge symmetries that the two theories respect.
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This issue can be solved by considering nonlinear extensions of the theory,
which should cure the discontinuity. However, it was shown be Boulware and
Deser that any nonlinear completion of the FP theory leads to a ghost [33]. To
have a complete review of the models constructed to overcome this problem,
see for example [34].

2.3.2 3D Topologically Massive Gravity

The previous discussion on the emergence of ghost fields gives us a further
motivation for concentrating on three-dimensional theories. Since a massless
graviton does not propagate any degree of freedom (Table 1), any potential
ghost mode connected to such field would be harmless2.

We will focus on theories describing a massive graviton where the neces-
sary extra degrees of freedom are introduced using terms containing higher
derivatives of the metric. The main motivation to do so has to be searched
in the renormalizability properties of such theories. Since this discussion goes
beyond the scope of this thesis, the curious reader can further investigate this
motivation in [7].

The simplest example of such theories in three dimensions is the so-called
Topologically Massive Gravity (TMG) [35,36], where the name is coming from
the fact that the extra term is constructed entirely out of the connection Γσµν .
The theory has a third derivative, parity non-invariant action given as

I =
1

16πG

∫
d3x
√
−g
[
σ

(
R− 2Λ

)
+

1

2µ
ηµναΓβµσ

(
∂νΓσαβ +

2

3
ΓσνλΓλαβ

)]
, (2.18)

where σ is dimensionless and µ has the dimension of mass.
TMG has a single massive spin-2 excitation (with +2 helicity for µ > 0) in

the bulk with a mass-squared given as

m2
g = µ2σ2 + Λ. (2.19)

In the Λ → 0 limit, the single massive degree of freedom remains intact, with
a mass mg = |µσ| and a positive kinetic energy as long as σ < 0, which is
opposite to the one used in Einstein’s theory.

2This was, historically, the first reason to look at three-dimensional theories, rather than
the motivations here presented.
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Since one of the central topics of this thesis is holography, an interesting
analysis involves the study of the boundary theory dual to such theory. In
particular, we want a theory where unitarity in the bulk is compatible with
the unitarity conditions of the dual CFT on the boundary. To achieve that, a
necessary condition is the positivity of the central charge.

Imposing the Brown-Henneaux [37] boundary conditions3 for asymptotically
AdS3 spacetime leads to two copies of the Virasoro algebra with the left and
right central charges given as

cL,R =
3L

2G

(
σ ∓ 1

µL

)
, Λ ≡ − 1

L2
. (2.20)

In the µ→∞ limit, these reduce to the ones given in [37] for the pure cosmo-
logical Einstein’s theory with the choice σ = 1. It was shown in [38] that the
positivity of the energy of the bulk excitations with Brown-Henneaux boun-
dary conditions requires the theory to be in the so-called chiral limit, where
σ2µ2 = 1/L2. However, a closer investigation performed in [39] showed that
the theory in the chiral limit allows log-modes as solutions which have finite
but negative energy, albeit with weaker boundary conditions [40].

To summarize, TMG suffers from the so-called bulk-boundary clash: there
is no region of the parameter space where both the bulk energy excitations and
the boundary central charges are positive at the same time. The only exception
is the chiral point where one of the central charges vanishes. At this point, new
problematic modes with negative energy appear in the spectrum. This has led
to the conjecture that TMG at its chiral point is dual to a logarithmic conformal
field theory (LCFT) [41–43].

3The asymptotic symmetries are crucial for the definition of the global charges of a theory.
The authors of [37] showed that the global charges of a gauge theory may lead to nontrivial
extensions of the asymptotic symmetry algebra.
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2.4 New Massive Gravity

We finally have all the elements we need to set up our laboratory and thus
dedicate this section to the formulation of New Massive Gravity [44]. Follow-
ing [45], we begin by taking the Lagrangian of the Fierz-Pauli theory (2.14),
which leads to the equations of motion

(2−m2)hµν = 0 , (2.21)

and two conditions that constraint hµν to be traceless and divergence-free, i.e.

h = 0 , ∂µhµν = 0 . (2.22)

A key component of the FP Lagrangian (2.14) is the linearized Einstein tensor

G(1)
µν =

1

2

(
∂2hµν + 2 ∂ρ ∂(µhν)ρ + 2 ∂(µ∂ν)h− h ∂2h

)
, (2.23)

and we can use this object to solve for the constraint by increasing the number
of derivatives. Namely, we express hµν in terms of a new spin-two field h′µν by
substituting

hµν = G(1)
µν (h′) . (2.24)

An immediate consequence is that the divergence-free condition becomes re-
dundant, being it automatically implied, and we are left with the equations

(2−m2)G(1)
µν (h′) = 0 , G(1)(h′) = 0 , (2.25)

where G(1)(h′) is the trace of G
(1)
µν (h′). We can thus interpret these equations

as the equations of motion for a metric perturbation h′µν in a four-derivative
theory.

As we have seen in equation (2.7), the trace of the linearized Einstein tensor
is proportional to the linearized Ricci scalar R(1). Therefore, we can rewrite
both equations into a unique equation of motion given by

G(1)
µν (h′)− 1

m2

[
2G(1)

µν (h′)− 1

4
(∂µ ∂ν − ηµν 2)R(1)(h′)

]
= 0 . (2.26)

Such theories, as we have seen in the previous section, suffer of the vDVZ
discontinuity and we mentioned that the issue can be cured by considering
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nonlinear extensions of the theory. In other words, we want an action that
reproduces these equations of motion at the linear level. The action was found
in 2009 by Bergshoeff, Hohm and Townsend and takes the name of New Massive
Gravity (NMG)

SNMG =
1

κ2

∫
d3x
√
g

[
σR− 2λm2 +

1

m2
K

]
,

K = RµνR
µν − 3

8
R2 , (2.27)

where [κ] = −1/2 in fundamental units, and σ = ±1. In order to obtain
the equations of motion (2.26) at the linear level, we must set the parameters
σ = −1 and λ = 0.

In opposition to TMG (section 2.3.2), NMG is a parity-preserving theory
propagating two massive modes with helicites ±2. Being a four-derivative the-
ory, one may expect to see more modes propagating but the massless spin-two
mode does not propagate since we are in three dimensions. This is a fortunate
circumstance since, by choosing σ = −1, we have the Einstein-Hilbert term
with the ‘wrong’ sign. Moreover, the tuning of the relative coefficient in K has
the purpose of eliminating a massive spin-0 mode. All these features concur to
the result that this theory is remarkably ghost-free.

The equations of motion for NMG are

2m2Gµν +Kµν = 0 , (2.28)

where Kµν is the contribution coming from the higher derivatives and it is given
by

Kµν = 2 2R− 1

2
[∂µ∂νR+ gµν 2R ]− 8Rµ

ρRρν

+
9

2
RRµν + gµν

[
Rµ

ρRρν −
13

12
R2

]
. (2.29)

We can look for maximally symmetric solutions of this theory, i.e. vacua such
that

Gµν = −Λ gµν , (2.30)

for which we have the de Sitter spacetime if Λ > 0, and the anti-de Sitter
solution for Λ < 0. As it is shown in [44], such configurations solve the equations
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of motion if the following equation is satisfied

Λ2 + 4m2σΛ− 4λm4 = 0 , (2.31)

or, in other words, if

Λ = −2m2
[
σ ±
√

1 + λ
]
. (2.32)

In this way, we can find a range of parameters to have a Minkowsky, dS, or
AdS vacua.

The main reason why this theory is of a great interest for the purposes of
this thesis is that, although the theory is three dimensional and thus provides
a simplified scenario, it admits a great variety of solutions. In other words,
regardless of the fact that it lives in lower dimensions, it can still produce
rich geometries [45] that will be very useful for our purposes. We will see a
supersymmetric extension of the theory in Chapter 3, a classification of the
solutions of our interest in Chapter 4, and use some of those geometries in
Chapter 5 in the context of a holographic calculation of the Entanglement
Entropy.

2.4.1 Bulk Modes

We have the possibility of reducing the number of derivatives from four to two
by introducing an auxiliary symmetric tensor fµν [44]. The resulting second-
order action for NMG is then

S[g, f ] =
1

κ2

∫
d3x
√
g

[
σR− 2λm2 + fµνGµν −

m2

4

(
fµνfµν − f2

)]
. (2.33)

The action (2.27) is then recovered after eliminating f by using its algebraic
field equations

fµν =
2

m2
Sµν Sµν ≡ Rµν −

1

4
Rgµν , (2.34)

where Sµν is called Schouten tensor.
In order to study the holographic properties of this theory, we can ob-

serve what happens at the linearized level when we expand about a maximally-
symmetric vacuum of the theory. In other words, we write the metric as

gµν = ḡµν + ε hµν (2.35)
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where hµν is the small perturbation about the background metric ḡµν . The bar
quantities will always refer to the background metric and, to expand about a
maximally-symmetric background, we set

Ḡµν = −Λ ḡµν . (2.36)

We can also expand the auxiliary field by setting

fµν =
1

m2

[
Λ (ḡµν + ε hµν)− ε kµν

]
+O(ε2) , (2.37)

where kµν is an independent symmetric tensor expressing the fluctuation.
As we have seen in the previous section, it is important to not change the

set of gauge symmetries governing the theory. Indeed, the full nonlinear theory
is invariant under

δξgµν = 2D{µξν} ,

δξfµν = ξρ∂ρ fµν + 2 ∂{µξ
ρfν}ρ , (2.38)

where Dµ is the full covariant derivative. We can then expand the diffeomor-
phism parameter following ξµ = ξ̄µ + ε ζµ. Since the background metric is
non-dynamical and we want to keep ḡµν invariant, we constraint the diffeo-
morphisms such that they are also isometries of ḡµν . The constraint is thus
translated in the request that ξ̄µ has to be a background Killing vector field.
The expansion of the auxiliary field was constructed such that kµν is gauge
invariant. On the other hand, the metric fluctuations are affected by a gauge
transformation following

δζ hµν = 2∇{µ ζν} , (2.39)

where ∇µ is the covariant derivative with respect to the background metric.
Under these gauge transformations, the linearized Einstein tensor is not invari-
ant, but rather requires a combination of terms appearing in the linearized field
equations, namely

Gµν(h) ≡ G(1)
µν (h) + Λhµν = R(1)

µν −
1

2
R(1) ḡµν − 2Λhµν + Λh gµν (2.40)

We can finally write down the linearized action of NMG with this parametriza-
tion and obtain

L(2)
NMG =

(Λ− 2m2σ)

4m2
hµνGµν(k)

− 1

m2
kµνGµν(h)− 1

4m2
(kµνkµν − k2). (2.41)
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If Λ 6= 2m2σ we can decouple the fields h and k by a simple field redefinition

h̄µν = hµν −
2 kµν

Λ− 2m2σ
, (2.42)

which yields

L(2)
NMG =

(Λ− 2m2σ)

4m2
h̄µνGµν(h̄)

− kµν

m2(Λ− 2m2σ)
Gµν(k)− 1

4m2
(kµνkµν − k2). (2.43)

Here, the first term can be ignored since it is the Einstein-Hilbert action lin-
earized about the vacuum and does not propagate any degree of freedom.
The other terms, in the second line of the equation, are more interesting:
they constitute the Fierz-Pauli action describing a spin-two field with a mass
M2 = −σm2 + Λ/2 in AdS spacetime. In order to have positive energies and
avoid ghosts, we require that

m2 (Λ− 2m2σ) > 0 . (2.44)

The other request that we have is the non-existence of tachyons, i.e. particles
traveling faster than the speed of light that would compromise the causality
properties of the theory. If about the flat space we can just require that M2 > 0,
in the AdS case it was shown that unitarity allows scalar fields to have a negative
mass squared, provided that the Breitenlohner-Freedman (BF) bound [46] is
satisfied. Namely, we impose a constraint on the mass squared as follows

M2 > Λ , (2.45)

that is equivalent to asking Λ 6 −2m2σ. It has been argued that the same
bound holds for spin-2 fields [45].

If we consider Λ = 2m2σ instead, the fields h and k cannot be decoupled
anymore and we find ourself in the so-called critical point. The linearized
action (2.41) will then read

L(2)
NMG = − 1

m2
hµνGµν(k)− 1

4m2
(kµνkµν − k2). (2.46)

It is clear that the metric perturbation h has now the role of Lagrangian multi-
plier for the constraint Gµν(k) = 0. We can solve for this constraint by setting

kµν = 2∇(µAν) , (2.47)
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that leads to the linearized Lagrangian

L2 = −1

4
FµνFµν + 4σm2AµAµ , Fµν = 2∂(µAν) . (2.48)

Therefore, we see that the Lagrangian describes a massive spin 1 field A with
mass squared −8σm2.

2.4.2 Central Charges

We can now have a look at the degrees of freedom at the boundary of the AdS3

spacetime. As shown in [37], gravity theories with an AdS3 vacuum admit an
asymptotic symmetry group consisting of two copies of the Virasoro algebra.
This asymptotic symmetry corresponds to a conformal symmetry of a two-
dimensional dual field theory. The relative central charges can be expressed
in terms of the parameters characterizing the three-dimensional gravitational
theory in the bulk. For example, in the case of pure Einstein gravity we have

cL = cR = c =
3L

2G3
, (2.49)

where L is the AdS radius and G3 is the Newton constant in three dimensions.
These charges are relevant, among other reasons, because they can be used to
express the entropy of a black hole. Using the Cardy’s formula [47], the entropy
of the BTZ black hole is given by

S =
ABTZ

6L
c , (2.50)

where ABTZ is the area of the black hole.
We can apply the same method to determine the central charges for NMG

with an AdS3 background. Indeed, it was shown that for a parity-preserving
theory with an AdS vacuum, such as NMG, the value of the central charges can
be derived by the general formula [48–50]

c =
L

2G3
gµν

∂L3

∂Rµν
, (2.51)

where the higher derivative Lagrangian L3 is considered without the 1/κ2 factor.
Applying this formula to NMG yields

cR/L =
3L

2G3

(
σ ± Λ

2m2

)
. (2.52)
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In order to have a unitary CFT on the boundary, we need the central charges to
be positive. Therefore, we have to find a region in the parameter space where
this condition is satisfied that is compatible with the constraints coming from
the bulk modes. As we will shortly see, this is not an easy task.

2.4.3 The Bulk-Boundary Clash

We will now try to find a region in the parameter space where all the constraints
are satisfied. The parameters σ andm2 can be chosen to be independently either
positive or negative, we thus divide our search into four cases. The summary
of the analysis will be displayed in Table 2.

The requirements are to have an AdS (thus Λ < 0) vacuum without tachyons
or ghosts, and having positive central charges. Thus, for every choice of σ
and m2 we will use the constraints derived in sections 2.4.1 and 2.4.2 to restrict
the range of the other NMG parameter λ.

• σ = −1 and m2 > 0
The condition (2.44) yields Λ > −2m2 and, using the equation (2.31)
relating the NMG parameters, we find that the no-ghost and no-tachyon
conditions require

0 < λ < 3 . (2.53)

However, the positivity of the central charges requires Λ < −2m2 and thus
we can’t find a region where we the bulk graviton and the BTZ black hole
are both well-behaved.

• σ = −1 and m2 < 0
It is convenient to define the new mass parameter by m̃2 = −m2. In
this case, the BF bound (2.45) reads −2m̃2 > Λ. If we use the explicit
expression for Λ we obtain

±
√

1 + λ 6 0 , (2.54)

which is true if we choose the lower branch. However, this choice of
parameter leads to the manifest negativity of the central charges.

• σ = 1 and m2 > 0
This choice makes impossible to satisfy (2.44), thus allowing the presence
of ghost modes. On the other hand, both central charges are manifestly
positive.
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• σ = 1 and m2 < 0
The no-ghost condition implies 2m̃2 + Λ < 0 and, again in combination
with the explicit expression of Λ, we have ∓

√
1 + λ > 2. The AdS vacua

are then obtained by choosing the lower branch and the condition is thus

λ > 3 , (2.55)

while all the other constraints coming from the bulk physics are automa-
tically satisfied. On the other hand, the positivity of the central charges
imposes that

√
1 + λ < 2, which is true if

0 < λ < 3 . (2.56)

To summarize, we are not able to find a region in the parameter space where
we have unitary positive-energy modes in the bulk and a unitary dual CFT at
the boundary simultaneously. The problem is then analogous to the one we
encountered for TMG and can potentially be solved by looking at the chiral
limit λ = 3. In this limit, the central charges vanish and the bulk modes become
unitary massive spin-1 excitations. For further readings on the topic, the reader
can refer to [38,51,52].

Bulk Boundary

σ = −1
m2 > 0 0 < λ < 3 λ > 3
m2 < 0 Stable solution cR,L < 0

σ = 1
m2 > 0 Ghosts cR,L > 0
m2 < 0 λ > 3 0 < λ < 3

Table 2
A summary of the bulk-boundary clash. The conditions for the unitarity of the bulk and

boundary modes are displayed and the clash is thus visible: there is no region of the
parameter space where all the constraints are simultaneously satisfied. The only exception

would be to consider the chiral limit λ = 3.



3
Massive N = 2 Supergravity

in three dimensions

In this chapter, we will construct a supersymmetric extension of
General Massive Gravity, a model that combines NMG and TMG.
Following [53], we will see that we have two choices to do so.

The two supersymmetric models are constructed by using the so-
called superconformal method. Here, we will see explicit examples
of the construction whose strategy was introduced in Chapter 1.

Both cases will be first introduced by a recap of the steps needed,
followed by an exhaustive display of the details of the specific con-
struction.

In order to facilitate the reading of the technical details, we will
emphasize the key steps by putting them in a box.

53
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In the previous chapter, we have seen how useful it can be to consider a theory of
massive gravity in three dimensions. We have also encountered some obstacles
that emerge regardless the use of a simplified model. In particular, it was
shown in [54] that if we take a higher derivative theory with special relations
between the coefficients, such as NMG, we observe a worsening in the behavior
of the graviton’s propagator. On the other hand, we have seen in Chapter 1
that supersymmetry helps by softening the divergences, thus improving the
renormalizability properties of a theory.

The general principle that more symmetries give us more control over the
theory motivates us to construct higher-derivative supergravity theories with
extended supersymmetry in three dimensions. The method that will be used
can be implemented in multiple ways. The results will be two theories with two
different sets of symmetries.

If we consider supergravity theories that admit an anti-de Sitter spacetime as
a vacuum solution, the underlying supersymmetry algebra is OSp(p, q) whose
bosonic part is O(2, 2) ⊕ SO(p) × SO(q) [55–57]. We refer to these theories
as N = (p, q) supergravities. Our aim is to generalize the construction of
higher-derivative supergravity invariants to those with underlying N = (1, 1)
and N = (2, 0) supersymmetries and to look for their ghost-free combinations.

Conformal N = 2 supergravity and the two-derivative invariants were con-
sidered in [58–61]. Off-shell matter-coupled supergravity theories were investi-
gated in the superspace framework in [62–65]. The on-shell construction and
the matter couplings of the three dimensional N = 2 supergravity were studied
in [66–68].

Here, we will first define our strategy and then present all the details of the
calculation. Since we recognize the very technical character of this exposition,
the key steps will be emphasized by very convenient boxes in order to keep
track of the path leading to the invariant terms we are looking for.

Taking into account the new invariants we construct here, we end up with
seven parameter action with N = (1, 1) supersymmetry (see section 3.2.4) and
a six parameter action with N = (2, 0) supersymmetry (see section 3.3.4). We
find that the former, after choosing a four parameter subfamily, admits an AdS
vacuum solution around which the spectrum of small fluctuations is ghost-free.
In the latter case, however, we find that a ghost-free scenario does not exist.
This turns out to be due to the fact that a particular type of invariant that
exists for the N = (1, 1) model does not seem to exist for the N = (2, 0) model.
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3.1 Strategy and Main Ingredients

The strategy to achieve the supersymmetric version of a theory passes through
the construction of a model that respects a bigger symmetry. More concretely,
we will first construct a superconformal theory, which is governed by a com-
bination of supersymmetry and conformal symmetry, and then eliminate the
extra symmetries by applying the appropriate constraints.

The superconformal algebra is generated by elements with both commuting
and anticommuting components. In general, we can express these elements in
terms of matrices of the form [12][

conformal algebra Q,S
Q, S R-symmetry

]
As we have seen in section 1.1.2, the conformal algebra extends the Poincaré
symmetry with dilatation and special conformal transformations. When com-
bined with supersymmetry, it requires the introduction of a new fermionic gene-
rator, namely the special supersymmetry charge Sα. The R-symmetry rotates
the supercharges and its presence is essential in order to achieve the closure of
the algebra.

Our goal is to construct the N = 2 extension of a gravity model that
contains terms up to four derivatives in the metric such as R2. To achieve this
goal, we will first construct the superconformal extension of the theory and
then perform a gauge-fixing procedure to eliminate the undesired symmetries.
Therefore, we want to build actions that, after fixing the gauge, will reproduce
the terms originally present in the gravity model plus other terms coming from
the introduction of two local supersymmetries.

The main ingredient is the Weyl multiplet, which contains all the gauge
fields associated to the symmetries of the theory. In order to obtain the (su-
perconformal) actions, we will couple the Weyl multiplet with the appropri-
ate compensating multiplet: by choosing a scalar multiplet we will construct
the N = (1, 1) extension, while the N = (2, 0) will be obtained by using a
vector compensating multiplet. At last, we will impose conditions on the com-
pensating multiplet, thus gauge-fixing the extra symmetries.

As we have seen in Chapter 1, the driving principle to construct any multi-
plet is that it must contain the same number of bosonic and fermionic degrees
of freedom both on-shell and off-shell. Moreover, the presence of other sym-
metries, such as dilatation and R-symmetry, will guide us in the choice of the
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appropriate multiplet to obtain a specific term. For example, if we need a com-
ponent with a specific dilatation weight and R-symmetry charge, we can use
the transformation rules to trace down the multiplet from which it belongs and
thus construct it.

In Table 3, the reader will find a summary of all the multiplets that will
play a role in this chapter, with their behavior under the two symmetries we
mentioned. For both constructions, N = (1, 1) and N = (2, 0), we will need a
method to build multiplets with different weights. This will be done in detail,
thus introducing every supermultiplet we will need before using it. These will
be simply particular cases of the summary presented in Table 3.

Multiplet Field Type Off-shell w q

Weyl eµ
a dreibein 2 -1 0

ψµ gravitino 4 −1
2 1

Vµ U(1)R gauge field 2 0 0

Scalar A complex scalar 2 wA −wA
χ Dirac spinor 4 wA + 1

2 −wA + 1

F complex auxiliary 2 wA + 1 −wA + 2

Vector ρ real scalar 1 1 0

Cµ gauge field 2 0 0

λ Dirac spinor 4 3
2 1

D real auxiliary 1 2 0

Table 3
Properties of the 3D,N = 2 Weyl and compensating multiplets where (w, q) label the

dilatation weight and the U(1)R charge, respectively.
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3.1.1 The Weyl Multiplet.

The N = 2 Weyl multiplet in three dimensions is based on the conformal
superalgebra OSp(4|2) and consists of the fields

(eµ
a , ψµ , Vµ , bµ , ωµ

ab , fµ
a , φµ) , (3.1)

where eµ
a is the dreibein, ψµ is the gravitino represented by a Dirac vector-

spinor, Vµ is the U(1) R-symmetry gauge field, bµ is the dilatation gauge field,
ωµ

ab is the spin connection, fµ
a is the conformal boost gauge field and φµ is the

special supersymmetry gauge field represented by a Dirac vector-spinor. The
corresponding gauge parameters are

(ξa, ε ,Λ,ΛD ,Λ
ab,ΛaK , η) . (3.2)

The gauge fields ωµ
ab, φµ, fµ

a can be expressed in terms of the remaining fields
by imposing the constraints [58]

R̂aµν(P ) = 0 , R̂µν
ab(M) = 0 , R̂µν(Q) = 0 , (3.3)

where the supercovariant curvatures associated with translations, Lorentz ro-
tations, and supersymmetry are defined as

R̂µν
a(P ) = 2(∂[µ + b[µ) eν]

a + 2ω[µ
abeν]b −

1

2
(ψ̄[µγ

aψν] + h.c.) ,

R̂µν
ab(M) = 2∂[µων]

ab + 2ω[µ
ac ων]c

b + 8f[µ
[aeν]

b]

−1

2
ψ̄µγ

abφν −
1

2
φ̄µγ

abψν + h.c. ,

R̂µv(Q) = 2∂[µψν] +
1

2
ω[µ

abγab ψν] + b[µψν]

−2 γ[µφν] − 2iV[µψν] . (3.4)

These constraints together with the Bianchi identity for R̂µν(P ) also imply that

the curvature associated with dilatation vanishes, viz. R̂µν(D) = 0. Solving
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the constraints (3.3) gives

ωµ
ab = 2eν[a∂[µeν]

b] − eν[aeb]σeµc ∂νeσ
c + 2eµ

[abb] +
1

2
ψ̄µγ

[aψb]

+
1

2
ψ̄[aγb]ψµ +

1

2
ψ̄[aγµψ

b] ,

φµ = −γaR̂′µa(Q) +
1

4
γµγ

abR̂
′
ab(Q) ,

faµ = −1

2
R̂′µ

a(M) +
1

8
eµ
aR̂
′
(M) , (3.5)

where the prime in the curvatures used in (3.5) means that the term includ-
ing the field we are solving for is excluded. The transformation rules for the
independent fields are given by

δeµ
a = −Λab eµ

b − ΛDeµ
a +

1

2
ε̄ γaψµ + h.c. ,

δψµ = −1

4
Λabγabψµ −

1

2
ΛDψµ +Dµε− γµη + iΛψµ ,

δbµ = ∂µΛD + 2ΛKµ +
1

2
ε̄ φµ − 1

2 η̄ ψµ + h.c ,

δVµ = ∂µΛ +
i

2
ε̄ φµ +

i

2
η̄ ψµ + h.c. , (3.6)

where

Dµε =
(
∂µ +

1

2
bµ +

1

4
ωµ

abγab − iVµ

)
ε . (3.7)

Finally, we give the transformation rule for φµ for later convenience

δφµ = · · ·+ iγνF̂µνε−
i

4
γµγ · F̂µνε , (3.8)

where we have displayed the supercovariant terms and the ellipses refer to the
remaining terms implied by the OSp(4|2) algebra. F̂µν is given by

F̂µν = 2∂[µVν] − iψ̄[µφν] − iφ̄[µψν] . (3.9)

To summarize, the Weyl multiplet contains all the gauge fields associ-
ated with the symmetries of the theory. By imposing the appropriate
constraints (3.3) we can reduce the number of independent fields.
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3.1.2 The Blueprints

This subsection is dedicated to summarize the steps and the equations to con-
struct the supersymmetric extensions.

Compensating multiplet: Scalar multiplet (A,χ,F), eq. 3.10

Σ = (φ, ζ, S),
eq. 3.16

Σ′,
eq. 3.24

Σ4,
eq. 3.20

Σ×K,
eq. 3.21

(ξ, ϕ,M),
eq. 3.25

Combined,
eq. 3.23

Action for scalars LF , eq. 3.26

LΦ, eq. 3.30LK, eq. 3.27
LF (n) ,

eq. 3.28

Gauge-fixing conditions, eq. 3.33

LR2 ,
eq. 3.39

LC ,
eq. 3.38

EH,
eq. 3.37

LR2
µν

,
eq. 3.41

L(n),
eq. 3.42

N = (1, 1) General Massive Gravity, eq. 3.46

In this chart, we have omitted the Chern-Simons term, which will be taken
from the literature.
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Compensating multiplet: Vector multiplet (Cµ, ρ, λ,D), eq. 3.57

Multiplet
(Cµ, ρ, λ,D),

eq. 3.57

Composite
multiplet,
eq. 3.65

Composite
multiplet,
eq. 3.66

Action for vectors LDD′ , eq. 3.67

LD, eq. 3.68LV , eq. 3.69
LV V ′ ,

eq. 3.70

Gauge-fixing conditions, eq. 3.72

LRD,
eq. 3.79

LC ,
eq. 3.78

EH,
eq. 3.76

LR2 ,
eq. 3.80

LR2
µν

,
eq. 3.99

N = (2, 0) General Massive Gravity, eq. 3.103

In this case, not only the Chern-Simons term is omitted, but also the LR2
µν

term is obtained with a different method.
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3.2 N = (1, 1) Supergravity

The N = (1, 1) supersymmetric extension of the gravity model with terms up to
four derivatives is obtained by using a compensating scalar multiplet. For each
term in the Lagrangian, the goal will be to find the appropriate multiplet such
that its action reproduces those terms after gauge-fixing the extra symmetries.

As mentioned before, the charges under dilatation and U(1)R-symmetry,
i.e. (w, q), will play a central role to guide us in the construction. In fact, for
symmetry reasons that will be clear later on, we want to use a scalar multiplet
whose third component has weights (3, 0).

We will first introduce the structure of the scalar multiplet that has to
be thought as the blueprint for all the others. Indeed, we will then use this
blueprint to construct scalar multiplets with different weights. At this stage,
we will present a technique to build all these objects and try to keep track of
where we will need each one of them (section 3.2.2).

Once that we have all the fundamental objects, we will construct a super-
conformal action in section 3.2.3 and then perform the gauge-fixing procedure
leading to the final result in section 3.2.4.

3.2.1 The Scalar Multiplet

The off-shell N = 2 scalar multiplet with 4+4 degrees of freedom consists of a
physical complex scalar A, a Dirac fermion χ and an auxiliary complex scalar F
with the following transformation rules 1

δA =
1

2
ε̄ χ+ wΛDA− iwΛA ,

δχ = /DAε− 1

2
F (Bε)∗ + 2wAη +

(
w +

1

2

)
ΛDχ+ i(−w + 1)Λχ ,

δF = −ε̃ /Dχ+ 2

(
w − 1

2

)
η̃ χ+ (w + 1)ΛDF + i(−w + 2)ΛF , (3.10)

1See Appendix A for the definition of η̃ and the constant matrix B.
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where the supercovariant derivatives are given by

DµA = (∂µ − w bµ + iwVµ)A− 1

2
ψ̄µχ ,

Dµχ =

[
∂µ −

(
w +

1

2

)
bµ +

1

4
ωµ

ab γab + i(w − 1)Vµ

]
χ− /DAψµ

+
1

2
F(Bψµ)∗ − 2wAφµ . (3.11)

Note that the lowest component has Weyl weight w and U(1)R weight −w.
Another multiplet with its lowest component having Weyl weight w and U(1)R
weight w can be obtained by charge conjugation

δA∗ =
1

2
ε̃ (Bχ)∗ + wΛDA

∗ + iwΛA∗ ,

δ (Bχ)∗ = /DA∗ (Bε)∗ − 1

2
F ∗ε+ 2wA∗ (Bη)∗ +

(
w +

1

2

)
ΛD (Bχ)∗

+i (w − 1) Λ (Bχ)∗ ,

δF∗ = −ε̄ /D (Bχ)∗ + 2

(
w − 1

2

)
η̄(Bχ)∗ + (w + 1)ΛDF∗

+i(w − 2)ΛF∗ , (3.12)

where the supercovariant derivatives are

DµA∗ = (∂µ − wbµ − iwVµ)A∗ − 1

2
ψ̃µ(Bχ)∗ ,

Dµ(Bχ)∗ =

[
∂µ −

(
w +

1

2

)
bµ +

1

4
ωµ

abγab − i(w − 1)Vµ

]
(Bχ)∗

−/DA∗(Bψµ)∗ +
1

2
F∗ψµ − 2wA∗(Bφµ)∗ ,

DµP ∗ =

[
∂µ −

1

2
bµ − (w − 2)iVµ

]
P ∗ + ψ̄µ /D(Bχ)∗

−2

(
w − 1

2

)
φ̄µ(Bχ)∗ . (3.13)

In equation (3.10), we have constructed a scalar multiplet
(
A,χ,F

)
with 4 + 4 degrees of freedom and charges (w, q) = (w,−w). To obtain
a multiplet with opposite U(1)R charge, i.e. (w, q) = (w,w), we need to
take the conjugated multiplet

(
A∗, (Bχ)∗,F∗

)
.
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3.2.2 How to Obtain Other Multiplets

We will construct composite scalar multiplets using the multiplication rules for
scalar multiplets. The results of this section are summarized in Table 4. One
can start with two scalar multiplets (Ai, χi, Fi), i = 1, 2 and obtain a multiplet
whose lowest component has Weyl weight w = w1 + w2 and U(1)R weight
q = q1 + q2 as follows

A = A1A2 ,

χ = A1χ2 +A2χ1,

F = A1F2 +A2F1 + χ̃1χ2 . (3.14)

It is also possible to use the inverse of the multiplication rule (3.14) to obtain
a multiplet with Weyl weight w = w1 − w2 and U(1)R weight q = q1 − q2

A = A1A
−1
2 ,

χ = A−1
2 χ1 −A1A

−2
2 χ2 ,

F = A−1
2 F1 −A1A

−2
2 F2 −A−2

2 χ̃2χ1 +A1A
−3
2 χ̃2χ2 . (3.15)

Using the multiplication rules for scalar multiplets we can obtain new
multiplets whose lowest component has weights (w1 +w2, q1 +q2). Ana-
logously, we can reverse those rules to obtain a lowest component with
weights (w1 − w2, q1 − q2).

Given the scalar multiplet (see Table 3),

Σ = (φ, ζ, S) , (3.16)

the associated inverse multiplet has the components

Σ−1 ≡ (Φ,Ψ, P ) =
(
φ−1, −φ−2ζ, −φ−2S + φ−3ζ̃ ζ

)
. (3.17)

as can be seen by considering the multiplication of the unit multiplet (A1, χ1, F1) =
(1, 0, 0), which has weights (ω, c) = (0, 0), with the multiplet Σ = (A2, χ2, F2),
by means of the formula (3.15).

Next, we note that a scalar multiplet (φ, ζ, S) with weights (w, q) = (1
2 ,−

1
2)

has the corresponding kinetic multiplet with weights (w, q) = (3
2 ,−

3
2) given by

K =
(
S∗, −2/D(Bζ)∗, 42Cφ∗

)
, (3.18)
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Components w q

(ξ, ϕ,M) 5
2 −5

2

(Z,Ω, F ) 2 -2

(φ, ζ, S) 1
2 −1

2

(σ, ψ,N) 0 0

(Φ,Ψ, P ) −1
2

1
2

Table 4
The compensating scalar multiplets constructed in this section.

(w, q) denotes the Weyl weight and the U(1)R charge of the lowest component scalar field.

where

2Cφ∗ =

(
∂a − 3

2
ba − i

2
V a

)
Daφ∗ + ωa

abDb φ∗ + faa φ
∗

+
1

2
φ̃aγ

a(Bζ)∗ − 1

2
ψ̃aDa(Bζ)∗ . (3.19)

Using the above multiplets as building blocks and using the product formula
(3.14) we can construct a number of multiplets that will be useful in building
actions. First, we consider the four-fold product of Σ:

Σ4 : (Z,Ω, F ) =
(
φ4, 4φ3ζ, 4φ3S + 6φ2ζ̃ζ

)
. (3.20)

Note that the complex scalar Z has the weights (w, q) = (2,−2) and will be
useful to construct a cosmological constant invariant. Another multiplet with
the same weights (2,−2) can be obtained by multiplying Σ with the kinetic
multiplet K

Σ×K : Z ′ = φS∗ ,

Ω′ = ζ S∗ − 2φ /D(Bζ) ,

F ′ = 4φ2Cφ∗ + |S|2 − 2 ζ̃ /D(Bζ)∗ . (3.21)

We will use this multiplet to construct the Einstein-Hilbert action.
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We build two multiplets, see eqs. (3.20)–(3.21), where the lowest com-
ponent has weights (2, 2) and thus, as Table 3 shows, its highest com-
ponent has weights (3, 0).
This is a condition to have an invariant action.

A composite neutral multiplet with (w, q) = (0, 0) can be obtained as follows

K × Σ−3 :

σ = φ−1S∗ ,

ψ = −2φ−3 /D (Bζ)∗ − 3φ−4S∗ζ , (3.22)

N = 4φ−32Cφ− 3φ−4 |S|2 + 6φ−4ζ̃ /D (Bζ)∗ + 6φ−5S∗λ̃ ζ,

which can be used to produce new scalar multiplets without changing the
weights of the original multiplets

(σ, ψ,N)n × (Z,Ω, F ) :

Z(n) = σnZ ,

Ω(n) = nσn−1Z ψ + σn Ω ,

F (n) = σnF + nσn−1ZN + n(n− 1)σn−2Zψ̃ ψ

+nσn−1ψ̃Ω . (3.23)

(σ, ψ,N)× Σ : (φ′, ζ ′, S′) =
(
σφ , σζ + φψ , σS + φN + ζ̃ ψ

)
. (3.24)

Finally, we construct the multiplet (ξ, ϕ,M), with weights (5
2 ,−

5
2), in terms of

the elements of the multiplet (Φ,Ψ, P ) as follows:

ξ = 2cP ∗ ,

ϕ = −2 2c /D (BΨ)∗ − 2 iγνDµ F̂µν(Bλ)∗ + 2 iγνF̂µν Dν(Bλ)∗

+iγµν /D F̂µν(Bλ)∗ +
5

2
iγµνF̂µν /D(Bλ)∗ ,

M = 42c2cΦ∗ − 8 iDaF̂abDbΦ∗ − 2F̂ab F̂
abΦ∗ + fermions . (3.25)

Here we have omitted the complicated fermionic expressions in the composite
formula for M as we shall be interested in the bosonic part of an action formula
for which this multiplet will be used. With this multiplet we will produce a
Ricci tensor squared invariant.
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With the help of the neutral multiplet (3.23) we can increase the level
of complexity of the other multiplets without changing their weights.
We thus obtain the building blocks for the higher-derivative invariants.

3.2.3 Superconformal Actions

We start with the action for a scalar multiplet (Z,Ω, F )

e−1LF = Re
(
F − ψ̃µγµΩ− Zψ̃µγµνψν

)
, (3.26)

which is invariant under dilatations and U(1)R transformations since the highest
component field F has the weight (w, q) = (3, 0).

Next, we use the components of the composite scalar multiplet (3.21) in
the action formula (3.26) which yields the following action that will be used to
construct the supersymmetric completions of the Einstein-Hilbert term as well
as the R2 term

e−1LK = 4φ2Cφ∗ + |S|2 − 2 ζ̃ /D (Bζ)∗ + 2φ ψ̃µγ
µ /D (Bζ)∗

−S∗ψ̃µγµζ − φS∗ψ̃µγµνψν . (3.27)

The composite multiplet given in (3.23) can be used in the action formula
(3.26) to produce

e−1LF (n) = Re
(
σnF + nσn−1ZN + n(n− 1)σn−2Z ψ̃ ψ + nσn−1ψ̃Ω

−nσn−1Z ψ̃µγ
µψ − σnψ̃µγµ Ω− σnZ ψ̃µγµνψν

)
, (3.28)

which we shall use below to obtain an action providing a supersymmetric com-
pletion of RSn.

We next consider the scalar multiplets (ξ, ϕ,M) and (Φ,Ψ, P ). Using the
multiplication rule (3.14), the action describing the coupling of these multiplets
is given by

e−1LξΦ = Re
(
ξP + ΦM + Ψ̃ϕ− Φ ψ̃µγ

µϕ

− ξψ̃µγµΨ− Φ ξ ψ̃µγ
µνψν

)
. (3.29)
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Using the composite expressions (3.25), the bosonic part of the action that will
give rise to the R2

µν invariant is given by

e−1LΦ = Re
(

4Φ 2C2CΦ∗+P2CP ∗−8iΦDaF̂abDbΦ∗−2F̂ab F̂
abΦΦ∗

)
. (3.30)

Finally, there also exists an action that constitutes the superconformal com-
pletion of the Lorentz Chern-Simons term. It is given by [58]

LCS = −1

4
εµνρ

[
Rµν

ab(ω)ωρab +
2

3
ωµ

ab ωνb
c ωρca

]
+εµνρFµνVρ − R̄µ γνγµR

ν , (3.31)

where the Hodge dual of the gravitino curvature is defined by

Rµ = εµνρ(Dν(ω)− iVν)ψρ . (3.32)

The supersymmetric Chern-Simons action is invariant under the Weyl multiplet
transformation rules (3.6). Therefore, it can be used for both N = (1, 1) and
N = (2, 0) supergravities.

To summarize, we use the action for a generic scalar multiplet as a
blueprint. We then use different multiplets to obtain different invari-
ants. In particular

• LK, in eq. (3.27), will give us the EH and the R2 terms.

• LF (n) , in eq. (3.28), will give us the RSn term.

• LΦ, in eq. (3.30), will give us the R2
µν term.

• LCS, in eq. (3.31), is the supersymmetric Chern-Simons action.
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3.2.4 Gauge Fixing and Invariant Terms

The off-shell Poincaré supergravity action is readily obtained from the action
formula (3.27) by fixing the dilatation, conformal boost and special supersym-
metry transformation by imposing

φ = 1 , ζ = 0 , bµ = 0 . (3.33)

The first one fixes dilatation and U(1)R transformation, the second fixes the
S-supersymmetry and the last one fixes the special conformal transformations.
Maintaining these gauge conditions requires that

ΛD = iΛ = 0 ,

ΛKµ =
1

4
η̄ ψµ −

1

4
ε̄ φµ + h.c. ,

η = − i

2
γνVνε+

1

2
S (Bε)∗ . (3.34)

These constraints on the transformation parameters imply the supersymmetry
transformation rules

δeµ
a =

1

2
ε̄γaψµ + h.c. ,

δψµ = Dµ(ω) ε− 1

2
iVν γ

νγµ ε−
1

2
Sγµ (Bε)∗ ,

δVµ =
i

8
ε̄ γνργµ

(
ψνρ − iVσγ

σγν ψρ − Sγν
(
Bψρ

)∗)
+ h.c. ,

δS = −1

4
ε̃ γµν

(
ψµν − iVσ γ

σγµψν − Sγµ (Bψν)∗
)
, (3.35)

where

Dµ(ω)ε =

(
∂µ +

1

4
ωµ

ab γab

)
ε , ψµν = 2D[µ(ω)ψν] . (3.36)

We gauge-fixed the dilatation, conformal boost and special supersym-
metry transformations. Due to the fact that φ is complex, the constraint
we impose is actually translated into two conditions: one that fixes di-
latations and one that fixes the U(1)R symmetry. We can now see the
effects of this fixing on the superconformal actions constructed before.
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N = (1, 1) Cosmological Poincaré Supergravity

Using the gauge-fixing conditions (3.33) in the action (3.27) gives the action of
Poincaré supergravity

e−1LEH = R+ 2V 2 − 2 |S|2 −
(
ψ̄µ γ

µνρDν(ω)ψρ + h.c.
)
, (3.37)

where V 2 := VµV
µ. Next, we construct the supersymmetric cosmological term

by using the multiplet (Z,Ω, F ) given in (3.20) in the action formula (3.26),
imposing the gauge fixing conditions (3.33), and multiplying the action by 1/2.
The result is

e−1LC = S − 1

4
ψ̃µ γ

µν ψν + h.c. (3.38)

N = (1, 1) Higher-Dimensional Invariants

We begin with the construction of the R2 invariant. To this end, we employ
the composite scalar multiplet Σ′ from (3.24) in the action formula (3.27). In
the resulting action we use the composite neutral multiplet from (3.23). Sub-
sequently, we fix the extra gauge symmetries as in (3.33). These are straight-
forward manipulations which give the full R2 invariant whose bosonic part is
given by

e−1LR2 = R2 + 16 |S|4 + 4(V 2)2 + 6R |S|2 + 4RV 2 + 12 |S|2 V 2

−16∂µS ∂
µS∗ − 8iV µS∗

←→
∂µS + 16 (∇µV µ)2 , (3.39)

where S∗
←→
∂µS = S∗∂µS − S∂µS∗.

To construct the supersymmetric R2
µν invariant, we employ the action for-

mula (3.30). Substituting for the components of the multiplet (Φ,Ψ, P ), given
in (3.17), and imposing gauge-fixing conditions (3.33), give the supersymmetric
completion of the Ricci tensor squared as follows

e−1LR2
µν+R2 = RµνR

µν − 23

64
R2 − 1

32
R |S|2 −RµνV µV ν +

5

16
RV 2

+
1

16
(V 2)2 − 25

16
V 2 |S|2 − 1

4
∂µ S∂

µS∗ − 5

8
iV µS∗

←→
∂µS

+
1

4
(∇µV µ)2 − FµνFµν , (3.40)

where we have exhibited the bosonic part of the Lagrangian. The R2 dependent
part can be removed by adding 23

64LR2 to this Lagrangian, obtaining
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e−1LR2
µν

= RµνR
µν −RµνV µV ν +

7

4
RV 2 +

17

8
R |S|2 +

23

4
|S|4

−FµνFµν + 6 (∇µV µ)2 +
3

2
(V 2)2 +

11

4
V 2 |S|2

−6∂µS∂
µS∗ − 7

2
iV µS∗

←→
∂µS . (3.41)

Next, we construct the supersymmetric completion of the RSn term. To this
end, we employ the action formula (3.28), in which we substitute for the com-
ponents of the multiplets (σ, ψ,N) and (Z ′,Ω′, F ′) given in (3.23) and (3.21),
respectively. Imposing the gauge-fixing conditions (3.33) in the resulting La-
grangian, and dividing by an overall constant factor of −(n+ 1), we obtain

e−1L(n) =
1

2

[
R+

2(3n− 1)

n+ 1
|S|2 + 2V 2 − 4i∇µV µ

]
Sn + h.c. , (3.42)

where we have given the bosonic part of the result. Note that the n = 0 case
agrees with the Poincaré supergravity action (3.37) which we obtained by an
alternative procedure.

We now have all the ingredients, namely the invariant terms up to four
derivatives, and therefore we can combine them to obtain the desired
supersymmetric extension.
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N = (1, 1) Generalized Massive Supergravity

We consider a combination of the invariants up to dimension four, namely,

I =
1

κ2

∫
d3x

[
1

2
MLC + σLEH +

1

µ
LCS

+
1

ν
LRS +

1

m2
LR2

µν
+ c1LR2 + c2LRS2

]
, (3.43)

where (σ,M, µ, ν,m2, c1, c2) are arbitrary real constants. Defining

S = A+ iB , (3.44)

where A and B are real scalar fields, the N = (1, 0) supersymmetric truncation
is achieved by setting Vµ = 0 and B = 0. In that case, the so-called Generalized
Massive Gravity (GMG) model is defined by setting

ν =∞ , c1 = − 3

8m2
, c2 =

1

8m2
. (3.45)

With these choices of the coupling constants the model expanded around a
supersymmetric AdS3 vacuum propagates only helicity ± 2 and ± 3/2 states
with energies that respect perturbative unitarity. We shall define the N = (1, 1)
supersymmetric version of the GMG model by choosing the coupling constants
as in (3.45) as well, since the quadratic action obtained by expanding around the
supersymmetric AdS3 vacuum contains the N = (1, 0) sector as an independent
subsector. In this case, the total Lagrangian becomes

e−1LGMG = σ(R+ 2V 2 − 2|S|2) +MA

− 1

4µ

[
εµνρ

(
Rµν

ab ωρab +
2

3
ωµ

ab ωνb
c ωρca

)
− 8εµνρVµ∂νVρ

]
+

1

m2

[
RµνR

µν − 3

8
R2 −RµνV µV ν − FµνFµν

+
1

4
R(V 2 −B2) +

1

6
|S|2(A2 − 4B2)

−1

2
V 2(3A2 + 4B2)− 2V µB∂µA

]
. (3.46)

Remarkably, all terms proportional to |∂S|2, RA2, (∇µV µ)2 and (VµV
µ)2 have

cancelled. The cancellation of the |∂S|2 and RA2 require c1 and c2 to have
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the values given in (3.45), and it is crucial for having ghost-free propagation of
massive modes, as we shall see below.

Notwithstanding that the fields A and B do not propagate, their elimination
yields highly nonlinear interactions, including those which take the form of an
infinite power series in the Ricci curvature scalar R. In that sense, the notion
of a supersymmetric GMG model is extended here, compared to the case of
the N = (1, 0) supersymmetric version where the single auxiliary field, a real
scalar, can be eliminated from the action by means of its algebraic equation
of motion, yielding the standard bosonic GMG action. Nonetheless, in both
cases the action contains the combination (RµνR

µν − 3
8R

2), and if we take this
feature to be the defining one for an extended definition of super GMG models,
it is clear that such an extension is not unique. In such models, there is no
need for eliminating the auxiliary fields, even when they are non-propagating,
unless their field equations are algebraic ones [53].

We now turn to the model with parameters chosen as in (3.45), focus on
the maximally supersymmetric AdS vacuum, and determine the spectrum of
fluctuations around it. In view of the results of [69], the following background
is maximally supersymmetric

R̄µν = − 2

`2
ḡµν , Ā = −1

`
, V̄µ = 0 , B̄ = 0 , (3.47)

where ḡµν is the AdS3 metric, and ` is the AdS3 radius which must obey the
equation

4σ + `M +
2

3`2m2
= 0 . (3.48)

Let us define the fluctuation fields around this vacuum as

gµν = ḡµν

(
1 +

1

3
h

)
+Hµν , ḡµνHµν = 0 ,

A = Ā+ a , B = B̄ + b , Vµ = V̄µ + vµ , (3.49)

and choose the gauge condition

∇̄µHµν = 0 . (3.50)
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The linearized field equations then take the form

[D(1)D(−1)D(η+)D(η−)H]µν = − 1

3`2

(
∇̄µ∇̄ν −

1

3
ḡµν2̄

)
h ,

Ω

m2

(
`22̄− 3

)
h = 0 ,

Ω

m2
a = 0 ,

Ω

m2
b = 0 ,

Ω

m2
[D(η+)D(η−)v]µ = 0 , (3.51)

where

η± = Ω−1

(
−`m

2

2µ
±

√
`2m4

4µ2
− Ω

)
, Ω ≡ σ `2m2 − 1

2
, (3.52)

and D(η) is a first-order linear differential operator, parametrized by a dimen-
sionless constant η, that acts on a rank-s ≥ 1 totally symmetric, traceless and
divergence-free tensor as follows[

D(η)ϕ(s)
]
µ1···µs

= [D(η)]µ1

ρ ϕ
(s)
ρµ2···µs ,

[D (η)]µ
ν = `−1 δνµ +

η√
|ḡ|

εµ
τν∇̄τ . (3.53)

The equations for Hµν and h agree precisely with those arising in the N = (1, 0)
GMG model [70, 71] whose spectrum was studied in detail in [72], extending
earlier results of [73] for the bosonic model. For “non-critical” values of the
couplings summarized by the condition m−2Ω(η+− η−)(|η+|− 1)(|η−|− 1) 6= 0,
these equations describe the UIRs of SO(2, 2) with lowest weight (E0, s), and
where `−1E0 is the lowest energy, and s is the helicity, their values given by

(E0, s) : (2, 2), (2,−2),

(
1 +

1

|η+|
,

2η+

|η+|

)
,

(
1 +

1

|η−|
,

2η−
|η−|

)
. (3.54)

The new degrees of freedom arising here are generated by the field vµ. From
(3.51) it follows that the propagating modes have the representation content

(E0, s) :

(
1 +

1

|η+|
,
η+

|η+|

)
,

(
1 +

1

|η−|
,
η−
|η−|

)
. (3.55)
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Together with the spin-2 modes displayed in (3.54), these form the bosonic
content of a massive spin-2 supermultiplet of N = (1, 1) supersymmetry in
three dimensions. The structure of this multiplet is similar to the one studied
in [74]. The critical versions of our N = (1, 1) GMG model arises for

m−2Ω(η+ − η−)(|η+| − 1)(|η−| − 1) = 0 . (3.56)

We shall not examine these points here but we note that the spin-2 sector at
critical points has been analyzed in considerable detail in [70]. As for the spin-1
sector, it follows a pattern similar to the one discussed in [74], in the context of
a parent supergravity theory whose off-shell degrees of freedom coincide with
those of N = (1, 1) supergravity in three dimensions upon a circle reduction.

3.3 N = (2, 0) supergravity

In this section, we will follow the same procedure as before. The main difference
is that the compensating multiplet will be a vector multiplet instead of a scalar
one.

The construction of the invariants will follow the same strategy delineated
before with one difference: one of the invariants, the R2

µν term, will require a
different technique. This will be done in section 3.3.4 by presenting the new
method and its results.

3.3.1 The Vector Multiplet

The off-shell N = 2 vector multiplet with 4 + 4 degrees of freedom consists of
a gauge field Cµ, a real scalar ρ, a spinor λ and an auxiliary scalar D. Their
transformation rules are given by

δCµ =
1

2
ε̄ γµλ−

i

4
ρ ε̄ ψµ + h.c. ,

δρ = (i ε̄ λ+ h.c.) + ΛDρ ,

δλ = −1

4
γµνĜµν ε+

i

2
D ε− i

4
/Dρ ε− i

2
ρ η + iΛλ+

3

2
ΛDλ ,

δD =

(
− i

2
ε̄ /Dλ+

i

2
η̄ λ+ h.c.

)
+ 2 ΛDD , (3.57)
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where

Dµρ = (∂µ − bµ) ρ+
(
−iψ̄µλ+ h.c.

)
,

Dµλ =

(
∂µ −

3

2
bµ +

1

4
ωµ

abγab − iVµ

)
λ+

1

4
γρσĜρσ ψµ

− i

2
Dψµ +

i

4
/Dρψµ +

i

2
ρ φµ ,

Ĝµν = 2 ∂[µCν] +

(
−ψ̄[µγν]λ+

i

2
ρ ψ̄µψν + h.c.

)
. (3.58)

As we shall discuss in subsection 3.3.4, the nonabelian versions of (3.57) and
(3.58) can be obtained by taking the fields of the vector multiplet in the ad-
joint representation of a Lie group G, and imposing the closure of the algebra
accordingly.

In equation (3.57), we have constructed a vector multiplet
(
Cµ , ρ, λ,D

)
with 4 + 4 degrees of freedom.

3.3.2 How to Obtain Other Multiplets

For the construction of the n vector multiplet action, we first introduce a real
function CIJ(ρ), which is a function of the vector multiplet scalars ρI , and the
n vector multiplets are labeled by I, J, . . . = 1, 2, . . . , n. The lowest component
of a vector multiplet can then be composed as

ρI = CIJD
J + CIJK λ̄

JλK . (3.59)

The label I is fixed, and it differs from the indices that are being summed over.
We also define

CIJK =
∂CIJ
∂ρK

, CIJKL =
∂2CIJ
∂ρK ∂ρL

, CIJKLM =
∂3CIJ

∂ρK ∂ρL ∂ρM
. (3.60)

In order to ensure that the ρI is the scalar of a superconformal vector multiplet,
we impose that the conformal weight of CIJ is ω(CIJ) = −1, and the following
constraints are satisfied

CIJK = CI(JK) , CIJK ρ
K = −CIJ . (3.61)
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Furthermore, additional constraints are needed to ensure that λI , DI and ĜµνI
are also the elements of a superconformal vector multiplet

CIJKL ρ
L = −2CIJK , CIJKLM ρM = −3CIJKL . (3.62)

Applying a sequence of Q- and S-transformations, we find the elements of the
composite vector multiplet as

ρI = CIJ D
J + CIJK λ̄

JλK ,

λI =
1

2
CIJK D

JλK − 1

2
CIJ /DλJ −

i

4
CIJK γ

µνĜJµνλ
K

−1

4
CIJK /DρJλK + CIJKL λ

Lλ̄JλK ,

DI =
1

2
CIJK D

JDK +
1

4
CIJ 2CρJ − 1

4
CIJK Ĝ

J
µν Ĝ

µνK (3.63)

+
1

8
CIJK DµρJDµρK −

1

2
CIJK λ̄

J /DλK +
1

2
CIJK DµλJγµλK ,

− i

2
CIJKL λ̄

LγµνĜJµνλ
K + CIJKLD

J λ̄KλL + CIJKLM λ̄JλK λ̄LλM ,

ĜµνI =
1

2
Dσ
(
ελµν CIJ Ĝ

σλJ
)

+ 2 iD[µ

(
CIJK λ̄

Jγν]λ
K
)
− 1

4
CIJ ρ

J F̂µν ,

where the superconformal d’Alambertian for ρI is given by

2CρI =
(
∂a − 2ba + ωb

ba
)
DaρI + 2faaρ

I

+
(
−iψ̄aDaλI + iφ̄aγ

aλI + h.c.
)
. (3.64)

Note that ĜµνI satisfies the Bianchi identity due to the constraints (3.61).
The composition formula (3.64) can be truncated to a map between two

vector multiplets by choosing C21 = ρ−1, in which case one obtains, for the
bosonic fields,

ρ′ = ρ−1D − ρ−2λ̄λ ,

D′ = −1

2
ρ−2D2 +

1

4
ρ−12Cρ+

1

4
ρ−2Ĝµν Ĝ

µν − 1

8
ρ−2DµρDµρ

Ĝ′µν =
1

2
Dσ
(
ελµνρ

−1Ĝσλ
)
− 1

4
F̂µν , (3.65)

where 1 labels the multiplet (ρ, Cµ, λ,D), and 2 labels the multiplet (ρ′, C ′µ, λ
′, D′).

Another composite multiplet is obtained by choosing C31 = −ρ−2ρ′ and C32 =
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ρ−1 in the composition formula (3.64). The bosonic components of the com-
posite multiplet (ρ′′, λ′′, C ′′µ, D

′′), labeled by 3, can then be written as

ρ′′ = −ρ−2ρ′D + ρ−1D′ ,

D′′ = ρ−3ρ′D2 − ρ−2DD′ − 1

4
ρ−2ρ′2Cρ+

1

4
ρ−12Cρ′

−1

2
ρ−3ρ′Ĝµν Ĝ

µν +
1

2
ρ−2Ĝ′µνĜ

µν +
1

4
ρ−3ρ′DµρDµρ

−1

4
ρ−2Dµρ′Dµρ ,

Ĝ′′µν =
1

2
ελµνDσ

(
−ρ−2ρ′Ĝσλ + ρ−1Ĝ′σλ

)
. (3.66)

3.3.3 Superconformal Actions

Supersymmetric Lagrangians for the vector multiplet can be constructed start-
ing from an action formula which describes the coupling of two vector multiplets
as

e−1LDD′ = ρD′ + ρ′D + 2
(
λ̄λ′ + h.c.

)
− 2εµνρCµ∂νC

′
ρ

− i

2

(
ρ ψ̄µγ

µλ′ + ρ′ψ̄µγ
µλ+ h.c.

)
−1

8

(
ρρ′ψ̄µγ

µνψν + h.c.
)
. (3.67)

As a special case, one can set the primed and the un-primed multiplet equal to
each other, obtaining [64]

e−1LD = 2ρD − εµνρCµGνρ + 4λ̄ λ− i
(
ρ ψ̄µγ

µλ+ h.c.
)

−1

4
(ρ2ψ̄µγ

µνψν + h.c) . (3.68)

Using the composite multiplets (3.65) in this action formula, we also obtain
the conformal vector multiplet action

e−1LV =
1

4
2Cρ+

1

2
ρ−1D2 − 1

8
ρ−1∂µρ ∂

µρ

−1

4
ρ−1Gµν G

µν +
1

2
εµνρCµ ∂νVρ + . . . , (3.69)

where the ellipses refer to the fermionic terms.
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Considering the coupling of a primed and double-primed multiplets in accor-
dance with the action formula (3.67), and employing the composite expressions
(3.66) result into an action that will be used in the construction of a supersym-
metric completion of the R2 term,

e−1LV V ′ = ρ−3(ρ′)2D2 − 2ρ−2ρ′DD′ + ρ−1(D′)2 +
1

4
ρ−1ρ′2cρ′

−1

4
ρ−2ρ′22cρ+

1

4
ρ−3ρ′2DµρDµρ−

1

4
ρ′ρ−2Dµρ′Dµρ

−1

2
ρ−3(ρ′)2Ĝµν Ĝ

µν + ρ′ρ−2Ĝ′µν Ĝ
µν − 1

2
ρ−1Ĝ′µν Ĝ

′µν(3.70)

Here we have provided the terms that contributes to the bosonic part of the ac-
tion. More generally, we obtain the most general 2−derivative vector multiplet
coupling, by using the action formula (3.67), as follows

e−1LVI =
1

4
CIJ ρ

I2cρJ +
1

8
CIJK ρ

IDµρJDµρK −
1

2
CIJ Ĝ

I
µνĜ

µνJ

−1

4
CIJK ρ

IĜJµνĜ
µνK + CIJ D

IDJ +
1

2
CIJK ρ

IDJDK

+
1

4
CIJ ρ

JεµνρCIµ Fνρ . (3.71)

Note that the index I is fixed to represent a certain multiplet by construction
due to (3.64), and summing over I indices correspond to summing different
off-shell invariants.

To summarize, we use the action (3.67) describing the coupling of two
vector multiplets as a blueprint. We then use different multiplets to
obtain different invariants. In particular

• LV , in eq. (3.69), will give us the EH term.

• LD, in eq. (3.68), will give us the RD term.

• LV V ′ , in eq. (3.70), will give us the R2 term.

• The R2
µν term is going to be obtained later with a different tech-

nique.

• LCS, in eq. (3.31), is the supersymmetric Chern-Simons action.
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3.3.4 Gauge Fixing and Invariant Terms

The off-shell Poincaré supergravity is obtained from the action formula (3.69)
and gauge-fixing the superconformal transformations by imposing the following
gauge conditions

ρ = 1, λ = 0, bµ = 0 , (3.72)

where the first choice fixes dilatations, the second fixes the S-supersymmetry
and the third fixes the special conformal symmetry. These gauge choices are
maintained provided that

ΛD = 0 ,

ΛKµ = −1

4
ε̄ φµ +

1

4
η̄ ψµ + h.c. ,

η =
i

2
γ · Ĝ ε+Dε . (3.73)

We therefore end up with the new minimal Poincaré multiplet consisting of a
dreibein eaµ, a gravitino ψµ, a U(1)R symmetry gauge field Vµ, a vector gauge
field Cµ, and an auxiliary scalar D. The resulting local supersymmetry trans-
formation rules are

δeµ
a =

1

2
ε̄ γa ψµ + h.c. ,

δψµ =

(
∂µ +

1

4
ωµ

ab γab − iVµ

)
ε− 1

2
i γµγ · Ĝε− γµDε ,

δCµ = − i

4
ε̄ ψµ + h.c. ,

δVµ = − i

2
ε̄ γνψ̂µν +

1

8
i ε̄ γµγ · ψ̂ −

1

2
ε̄ γ · Ĝ ψµ + iD ε̄ψµ + h.c. ,

δD = − 1

16
ε̄ γ · ψ̂ + h.c. , (3.74)

where the U(1)R covariant gravitino field strength is given by

ψ̂µν = 2

(
∂[µ +

1

4
ω[µ|

ab γab − iV[µ

)
ψν] − i γ[µγ · Ĝψν] − 2Dγ[µψν] . (3.75)
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Similarly to the N = (1, 1) case, we gauge-fix the dilatation, conformal
boos and special supersymmetry transformations. The conditions are
not the same because the compensating multiplet is different, thus we
do not “accidentally” fix the U(1)R gauge symmetry.

N = (2, 0) Cosmological Poincaré Supergravity

Substituting the gauge-fixing conditions (3.72) into the Lagrangian (3.69), and
rescaling with a factor of −16, we obtain the following Poincaré supergravity
Lagrangian

e−1LEH = R− 2G2 − 8D2 − 8εµνρCµ ∂νVρ , (3.76)

where we have defined

Gµ := εµνρG
νρ , G2 := GµG

µ . (3.77)

Consequently, Gµ is a covariantly conserved tensor ∇µGµ = 0. A supersym-
metric cosmological constant can be added to the Poincaré supergravity La-
grangian (3.76), which can be obtained from the action formula (3.68), imposing
the gauge-fixing choices (3.72), and thus obtaining

e−1LC = 2D − εµνρCµGνρ −
(

1

8
ψ̄µ γ

µν ψν + h.c.

)
. (3.78)

The N = (2, 0) RD and R2 Invariants

For the construction of theRD invariant, we consider the vector multiplet action
(3.68) for the primed vector multiplet (ρ′, C ′µ, λ

′, D′). Using the composite
expressions given in (3.65) and fixing the redundant superconformal symmetries
by using the gauge-fixing choices (3.72), give the supersymmetric completion of
the RD action

e−1LRD = RD + 8D3 − 2Gµν (Fµν +∇µGν + 2DGµν) +
1

2
εµνρ Vµ Fνρ , (3.79)

where we have rescaled the Lagrangian with an overall factor of −8. Note
that although the RD invariant and the Lorentz-Chern-Simons invariant (3.31)
have the same conformal εµνρVµFνρ term, the RD invariant is not conformally
invariant as can be understood from the presence of the Ricci scalar. Such
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non-conformal invariants are studied in detail in the context of Chern-Simons
contact terms in three dimensions [75–77].

Next, we construct the supersymmetric completion of R2. Using the com-
position formula (3.65) and employing the gauge-fixing conditions (3.72) in the
action formula (3.70), we obtain

e−1LR2 = (R+24D2+2G2)2−8
(
Fµν + 2∇[µGν] + 4DGµν

)2
+64D2D . (3.80)

The N = (2, 0) R2
µν Invariant

The supersymmetric completion of the Ricci tensor-squared term is most con-
veniently obtained by establishing a map between Yang-Mills and supergravity
multiplets. To do so, we begin by gauge fixing the nonabelian version of the
transformation rules (3.57) in accordance with (3.72), obtaining

δCIµ =
1

2
ε̄ γµλ

I − 1

4
iρI ε̄ ψµ + h.c. ,

δρI = iε̄λI + h.c. , (3.81)

δλI = −1

4
γµνĜIµνε+

1

2
iDIε− 1

4
i /̂DρIε− 1

2
iρIDε+

1

4
ρIγ · Ĝε ,

δDI = − i

2
ε̄ /̂DλI +

i

2
Dε̄λI − 1

4
ε̄ γ · ĜλI +

1

4
g ε̄ fJK

I ρJλK + h.c.

where

D̂µρ
I = ∂µρ

I +
(
−i ψ̄µ λ

I + h.c.
)

+ g fJK
I CJµ ρ

K ,

D̂µλ
I = (∂µ +

1

4
ωµ

ab γab − iVµ)λI +
1

4
γρσĜIρσ ψµ −

i

2
DIψµ +

i

4
/̂DρIψµ

+
i

2
ρIDψµ −

1

4
ρIγ · Ĝψµ + g fJK

ICJµ λ
K , (3.82)

ĜIµν = 2∂[µC
I
ν] −

(
ψ̄[µγν]λ

I − i

2
ρI ψ̄µ ψν + h.c.

)
+ g fJK

I CJµ C
K
ν .

We will next show that the following set of fields

(Ωµ
−ab , Ĝab , ψ̂ab , F̂ ab(V+, ω,Ω

−)) (3.83)

transforms as a Yang-Mills multiplet (CIµ , ρ
I , λI , DI), where the ab index pair

plays the role of Yang-Mills index. The definitions of the torsionful spin con-
nection Ωµ

−ab, the gravitino field strength ψ̂ab, and the modified U(1)R gauge
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field are given by

Ωµ
ab± = ωµ

ab ± 2 εµ
abD , (3.84)

ψ̂ab = 2∇[a(ω,Ω
+, V )ψb] − i γ[aγ · Ĝψb] , (3.85)

Va+ = Va +
1

2
εa
bcĜbc , (3.86)

where in the definition of ψ̂ab, the connection ω rotates the Lorentz vector index
while the connection Ω+ rotates the Lorentz spinor index.

First, we calculate the transformation rules for ωµ
ab, D and Ĝab

δωµ
ab = −1

4
ε̄ γµψ̂ab +

1

2
ε̄ γ[aψ̂b]µ +D ε̄ γab ψµ − i ε̄ ψµĜ

ab + h.c. ,(3.87)

δD = − 1

16
ε̄ γ · ψ̂ + h.c. , (3.88)

δĜab = − i

4
ε̄ ψ̂ab + h.c. . (3.89)

From the first two transformation rules, we observe that

δΩµ
−ab = −1

2
ε̄ γµψ̂

ab − i ε̄ ψµĜ
ab + h.c. . (3.90)

Next, we compute the transformation rule for the gravitino curvature

δψ̂ab =
1

4
γcd R̂abcd(Ω

+)ε− iF̂ab(V )ε− 2 i∇[a(ω)Ĝb]cγ
cε

−i∇[a(ω) Ĝcdεb]cd + 2 iD Ĝabε− Ĝabγ · Ĝε

+i Ĝγab γ · Ĝε , (3.91)

where R̂abcd(Ω
+) represents a torsionful supercovariant Riemann tensor. Using

the definition of Va+ given in (3.86), the Bianchi identity ∇[aĜbc] = 0 and

R̂abcd(Ω
+) = R̂cdab(Ω

−), we rewrite the transformation rule for the gravitino
curvature as

δψ̂ab =
1

4
γcd R̂cdab(Ω

−)ε− iF̂ab(V+)ε

+i /∇(Ω−)Ĝab ε− Ĝab γ · Ĝε , (3.92)

where in ∇µ(Ω−)Ĝab, the connection Ω− rotates both a and b indices. Finally,

defining F̂ab(V+, ω,Ω
−) where ω rotates the Lorentz vector index b, whereas the
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connection Ω− rotates the index c in the covariant derivative acting on Ĝbc, we
have

δψ̂ab =
1

4
γcd R̂cdab(Ω

−)ε− i F̂ab(V+, ω,Ω
−)ε+ i /∇(Ω−)Ĝab ε

−Ĝab γ · Ĝ ε+ 2 iDGab ε . (3.93)

Finally, we consider the transformation rule for F̂ab(V+, ω,Ω
−),

δF̂ab(V+, ω,Ω
−) =

i

4
ε̄ /∇(ω,Ω−)ψ̂ab −

i

4
D ε̄ ψ̂ab

+
1

8
ε̄ γ · Ĝ ψ̂ab − i ε̄ Ĝc[aψ̂b]

c + h.c. , (3.94)

where in ∇c(ω,Ω−)ψ̂ab the connection ω acts on the spinor index, whereas Ω−

acts on both a and b indices.
Comparing the transformation rules (3.89), (3.90), (3.93) and (3.94) with

those of the nonabelian vector multiplet, we find the following correspondence

Ωµ
−ab ↔ CIµ , 4 Ĝab ↔ ρI ,

−ψ̂ab ↔ λI , 2F̂ ab(V+, ω,Ω
−)↔ DI . (3.95)

We now turn to the supersymmetric completion of the Ricci squared term.
To this end, we first construct the following Lagrangian

e−1LYM =
1

4

(
GIµν − ρIGµν

)(
GµνI − ρIGµν

)
−1

2
(DI − ρID)2 +

1

8
Dµρ

IDµρI , (3.96)

describing the bosonic sector of a Yang-Mills multiplet coupled to supergravity.
This is obtained by generalizing the superconformal invariant action (3.70) and
then gauge-fixing according to (3.72). It is now straightforward to use the map
(3.95) which gives the bosonic part of the supersymmetric completion of the
Riemann squared action

e−1LRiem2 =
1

4

(
Rµνab(Ω

−)− 4GabGµν

)(
Rµνab(Ω−)− 4GabGµν

)
−2
(
Fab(V+, ω,Ω

−)− 2DGab

)(
F ab(V+, ω,Ω

−)− 2DGab
)

+2∇µ(Ω−)Gab∇µ(Ω−)Gab . (3.97)
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Finally, expanding the torsion terms and using the definition of three-dimensional
Riemann tensor

Rµνab = εµνρ εabc

(
Rρc − 1

2
eρcR

)
, (3.98)

we obtain the supersymmetric completion of the Ricci squared action

e−1LR2
µν

= Rµν R
µν − 1

4
R2 + 4RD2 +RG2 − 2Rµν G

µGν + 48D4

+8D2D + 8D2G2 + (G2)2 − 2(Fµν +∇[µGν])
2

− (∇µGν + 4DGµν)2 , (3.99)

where we recall that Gµ := εµνρG
νρ. If desired, a term proportional to LR2

from (3.80) can be added to this result to obtain the invariant in which the
only curvature squared term is that of the Ricci tensor.

We conclude this subsection with a few comments on the existence of an
off-shell RD2 invariant. Considering the vector multiplet action (3.71) and the
composite formulæ (3.65)–(3.66), we find the following choices for CIJ to obtain
a supersymmetric completion for the RD2 term:

1. The supersymmetric completion of the RD2 term can be obtained by su-
persymmetrizing the 2c(ρ−3D2) term. In order to do so, we can consider
two vector multiplets: (ρ, Cµ, λ,D) labeled by 1, and (ρ′′, C ′′µ, λ

′′, D′′) la-
beled by 3, and set C13 = ρ−1. Making this choice, we find that all the
terms in the Lagrangian (3.71) cancel each other out, thus not giving rise
to an RD2 invariant.

2. Alternatively, one can consider the supersymmetric completion of the
term ρ−2D22cρ which gives rise to an RD2 term after fixing the gauge.
Such a model can be obtained by considering two vector multiplets:
(ρ, Cµ, λ,D) labeled by 1, and (ρ′, C ′µ, λ

′, D′) labeled by 2, and set C22 =
ρ−1. With this choice, however, we find that the resulting action is the
R2 action given in (3.80).

3. Another alternative is the supersymmetric completion of ρ−2D2c(ρ−1D).
This construction also corresponds to the choice C22 = ρ−1, and coincides
with the R2 action given in (3.80)
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In view of these arguments, it is not clear to us how the supersymmetric comple-
tion of RD2 as an off-shell invariant independent of the R2 and R2

µν invariants
can be obtained within the tensor calculus framework presented in section 3.3.3.

N = (2, 0) Generalized Massive Supergravity

We now consider a combination of the invariants up to dimension four, namely,

I =
1

κ2

∫
d3x

[
MLC + σLEH +

1

µ
LCS

+
1

ν
LRD +

1

m2
LR2

µν
+ cLR2

]
, (3.100)

where (σ,M, µ, ν,m2, c) are arbitrary real constants. This action is invariant
under the off-shell supersymmetry transformation rules given in (3.74). If we
consider the defining feature of a super GMG model to be that it contains
the term RµνR

µν − 3
8R

2, such an extension is clearly not unique, as discussed
earlier. Focusing on maximally supersymmetric backgrounds and ghost-free
fluctuations around it, we begin by noting that the metric for such backgrounds
is AdS or Minkowski. In the former case, D must be non-vanishing, and this
is problematic for ghost-freedom due the presence of the RD2 term in the
action. Such a term is akin to the RA2 term in the N = (1, 1) model which we
were able to eliminate. In the case of a Minkowski background, the presence
of the RD2 term is harmless. Thus, to obtain a maximally supersymmetric
Minkowski background, we are led to consider the model with the following
choice of parameters

M = 0 , ν =∞ , c = − 1

8m2
. (3.101)

In this case, the total Lagrangian becomes

e−1LGMG = σ (R− 2GµG
µ − 8D2 − 4GµVµ)

− 1

4µ
εµνρ

[
Rµν

ab ωρab +
2

3
ωµ

ab ωνb
c ωρca − 8Vµ∂νVρ

]
+

1

m2

[
RµνR

µν − 3

8
R2 − 2RD2 −Rµν GµGν +

1

2
RG2 (3.102)

−24D4 +
1

2
(G2)2 − 4D2G2 − FµνFµν + 8DGµν (Fµν +∇µGν)

]
.
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For the maximally supersymmetric Minkowski background, the fields (D,Vµ, Cµ)
are vanishing. Therefore, the analysis of the linearized fluctuations for spin-2
modes around this background is the same as that of standard GMG model,
amounting to the purely gravitational part of the action above. Thus, we know
that the system describes two massive helicity ±2 modes with masses [78]

m2
± = −σm2 +

m4

2µ2

[
1±

√
1− 4σµ2

m2

]
. (3.103)

Ghosts are absent for m2 > 0 and σ ≤ 0 [44,71,78]. We note that the linearized
fluctuation of the field D vanishes. Denoting the linearized vector fluctuations
of (Vµ, Cµ) by the same symbols and choosing the Lorentz gauges ∂µV

µ = 0
and ∂µC

µ = 0, one finds that their linearized field equations are

1

m2
2V µ − 1

µ
εµνρ ∂νVρ + σGµ = 0 , Fµν + 2∂[µGν] = 0 . (3.104)

A simple manipulation of these equations gives[
(2 + σm2)δρµ δ

σ
ν −

σm2

µ
ε[µ

ρσ∂ν]

](
Fρσ
Gρσ

)
= 0 , (3.105)

Diagonalizing the mass matrix one finds that the masses for V µ and Cµ are
given by the formula (3.103). Thus, we have found the bosonic sector of two
massive spin-2 multiplets of N = (2, 0) supersymmetry.
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3.4 Summary

In this chapter, we have introduced and extensively applied the superconformal
tensor calculus as the technique that better suits our goal of constructing a
supersymmetric extension of a gravity model. We followed the same strategy
to achieve an explicit expression of the necessary supersymmetric invariants.
The only exception was the case of the supersymmetric completion of the Ricci
tensor squared invariant (3.99) with N = (2, 0) supersymmetry, where we have
employed a map between the Yang-Mills multiplet and the Poincaré multiplet.

Moreover, we have determined the relation between the parameters of the
resulting Lagrangians so that the spectrum of fluctuations about a maximally
symmetric vacuum solution is ghost-free. For ghost-free fluctuations about
AdS3 vacuum, certain type of off-diagonal invariants with mass dimension four,
namely RS2 for N = (1, 1) supersymmetry and RD2 for N = (2, 0) supersym-
metry, play a crucial role. We have constructed the former, but surprisingly we
have found that the latter does not seem to exist. Consequently, the N = (2, 0)
model does not seem to have a supersymmetric AdS3 vacuum with a ghost-free
spectrum, even though it does admit a supersymmetric Minkowski vacuum that
gives a ghost-free massive spin-2 multiplet.





4
Supersymmetric Solutions

and Black Holes

The construction performed in the previous chapter gave us two su-
persymmetric extensions of cosmological General Massive Gravity,
a model that combines NMG and TMG.

It is then natural to wonder which solutions of such theories preserve
supersymmetry.

Following [79], we will study the supersymmetric backgrounds and
black holes solutions of the N = (1, 1) cosmological NMG.

We shall provide a brief, non-technical, introduction to the methods
hereby implemented, followed by a detailed exposition of the results.
As in the previous chapter, the key steps will be empathized by a
box.

89
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In general, we find the solutions of a theory by solving its equations of motion,
which we derive from the action. When supersymmetry is involved, one may
also wonder if a given solution preserves the supersymmetries of the theory or
not.

Every background solution has vanishing value of fermions and can be fully
described by the values of the bosonic fields included in the theory. If the
solution is preserving a certain number of supersymmetries, the background is
invariant under a subset of local supersymmetries of the supergravity theory.

Schematically [12], we can write the local supersymmetric transformations
as

δB(x) = ε̄(x) f1[B(x)]F (x) +O(F 3),

δF (x) = f2[B(x)] ε(x) +O(F 2), (4.1)

where B denotes collectively the bosonic fields and F the fermionic ones. If we
require our solution to be invariant, we want both of these variations to vanish.
The first condition is automatically satisfied because the fermionic fields are
vanishing classically, while the second one will provide us a set of constraints
on the spinor ε(x). Moreover, in order to obtain this set of constraints, we only
need to solve the equation at the linear level in the fermionic fields, i.e.

δF (x)|lin = f2[B(x)] ε(x) = 0 , (4.2)

since any other term will vanish due to the vanishing value of the fermionic
fields.

The spinors that solve the last equation are called Killing spinors and they
are useful for three reasons. First, in determining which non-trivial configura-
tion is preserving supersymmetry we also determine how many supersymmetries
are preserved. Secondly, finding the Killing spinors also provides a lot of infor-
mation about the field configuration B(x), such that it gives us a solution for
the full set of equations of motion. Finally, often there is an interesting relation
between Killing spinors and Killing vectors.

The merit of the N = (1, 1) cosmological New Massive Gravity (CNMG),
as we have seen in the previous chapter, is that its spinors are Dirac instead
of Majorana. Therefore, we shall observe a larger variety of supersymmetric
solutions with respect to the N = 1 case.

The analysis presented in this chapter is performed for the off-shell super-
symmetric configurations. The method is particularly powerful because, once
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the conditions of the possible field configurations are obtained by using the off-
shell transformation rules, one can use them to study the solution of any model
that respects the same set of transformation rules.

In section 4.1, we will introduce the Killing spinor equation and study its
solutions. The existence of a Killing spinor will impose a series of algebraic
and differential identities on the metric and the other bosonic fields. These
identities are the backbone of our analysis.

An interesting consequence of the Killing spinor equation is that the back-
ground solution can be categorized according to the nature of the Killing vector
that is formed out of the Killing spinors. We will have two possibilities: a null
Killing vector (section 4.2) or a timelike one (section 4.3).

We will conclude the chapter with a study of the supersymmetric Black
Holes with AdS3 and Lifshitz backgrounds in section 4.4.

4.1 N = (1, 1) Cosmological NMG and Killing Spinors

As we have seen in section 3.2.4, the field content of the N = (1, 1) supergravity
theory consists of the dreibein eµ

a, the gravitino ψµ, a complex scalar S, and
a vector Vµ. For convenience, we shall re-write the Lagrangian of our interest.
Focusing on the bosonic part of the supersymmetric CNMG Lagrangian, we
obtain

e−1LCNMG = σ(R+ 2V 2 − 2|S|2) + 4MA

+
1

m2

[
RµνR

µν − 3

8
R2 −RµνV µV ν − FµνFµν

+
1

4
R(V 2 −B2) +

1

6
|S|2(A2 − 4B2)

−1

2
V 2(3A2 + 4B2)− 2V µB∂µA

]
, (4.3)

where (σ,M,m2) are arbitrary real constants and we have defined S = A+ iB.
The action corresponding to this Lagrangian is invariant under the following
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off-shell supersymmetry transformation rules 1

δeµ
a =

1

2
ε̄γaψµ + h.c. ,

δψµ = Dµ(ω̂) ε− 1

2
iVν γ

νγµ ε−
1

2
Sγµε

? ,

δVµ =
1

8
iε̄ γνργµ

(
ψνρ − iVσγ

σγν ψρ − Sγνψ?ρ
)

+ h.c. ,

δS = −1

4
ε̃ γµν (ψµν − iVσ γ

σγµψν − Sγµψ?ν) , (4.4)

where ε̃ = ε? , ω̂ is the super-covariant spin-connection (3.5) and

Dµ(ω̂)ε =

(
∂µ +

1

4
ω̂µ

ab γab

)
ε , ψµν = 2D[µ(ω̂)ψν] . (4.5)

The transformation rules (4.4) are off-shell as the algebra closes on these fields
without imposing the field equations corresponding to the Lagrangian (4.3).

In order to determine the supersymmetric backgrounds allowed by a model
with the transformation rules (4.4), one considers the Killing spinor equation

Dµ ε = ∂µ ε+
1

4
ω̂µ

ab γab ε−
1

2
iVν γ

νγµ ε−
1

2
Sγµε

? = 0 . (4.6)

Any Killing spinor ε satisfying this equation must also satisfy the integrability
condition

[Dµ,Dν ]ε =
1

4

(
Rµν

ρσ + 2δρµδ
σ
ν (A2 +B2) + 2δρµδ

σ
νV

2

−4iδσ[ν∇µ]V
ρ − 4δσ[νVµ]V

ρ
)
γρσε

−δσ[ν
(
∂µ]A+BVµ]

)
γσε
∗ − iδσ[ν

(
∂µ]B −AVµ]

)
γσε
∗

−1

2
iFµνε+ iεµνρV

ρ(A+ iB)ε∗ = 0 . (4.7)

1Here, we follow the conventions of [69], with the only difference being that the S we are
using here is replaced by S → −Z.
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Considering the field equations for A,B, Vµ and gµν ,

0 = 4M − 4σA+
1

m2

[
2

3
A3 −B2A− 3V 2A+ 2 (∇ · V )B + 2V µ∂µB

]
,

0 = 4σB +
1

m2

[
1

2
RB +A2B +

8

3
B3 + 4V 2B + 2V µ∂µA

]
,

0 = 4σVµ −
1

m2

[
2RµνV

ν + 4∇νFµν + Vµ

(
3A2 + 4B2 − R

2

)
+ 2B∂µA

]
,

0 = σ
(
Rµν + 2VµVν −

1

2
gµν [R+ 2V 2 − 2(A2 +B2)]

)
− 2gµνMA

+
1

m2

[
2Rµν −

1

4
∇µ∇νR+

9

4
RRµν − 4RρµRνρ − 2Fµ

ρFνρ

+
1

4
RVµVν − 2Rρ(µVν)Vρ −

1

2
2(VµVν) +∇ρ∇(µ(Vν)V

ρ)

+
1

4
Rµν(V 2 −B2)− 1

4
∇µ∇ν(V 2 −B2)− 1

2
VµVν(3A2 + 4B2)

−2BV(µ∂ν)A−
1

2
gµν

(13

8
R2 +

1

2
2R− 3R2

ρσ −RρσV ρV σ

+∇ρ∇σ(V ρV σ)− F 2
ρσ +

1

4
R(V 2 −B2)− 1

2
2(V 2 −B2)

+
1

6
(A2 +B2)(A2 − 4B2)− 1

2
V 2(3A2 + 4B2)− 2BV ρ∂ρA

)]
, (4.8)

it can be seen that, for cosmological Poincaré supergravity (i.e. m→∞), A,B
and Vµ can be eliminated algebraically. In this case, the integrability condition
(4.7) reduces to (

Rµν
ρσ + 2 δρµ δ

σ
ν M

2
)
γρσ ε = 0 , (4.9)

which implies that the maximally supersymmetric background is either Min-
kowski with M = 0, or AdS3 with radius 1/M2. More solutions, with less
supersymmetry, can be obtained by imposing projection conditions on ε.

Note that, even with the higher-derivative contributions, the maximally su-
persymmetric solution is still given by the same background solution with a
shifted value of the cosmological constant. The reason for this is can be seen
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from the integrability conditions (4.7) and the field equations (4.8): the expec-
tation value of A receives a contribution from the higher-derivative corrections
whereas B and Vµ do not and, therefore, can still be set to zero.

In the case of cosmological Poincaré supergravity, the auxiliary fields can
be eliminated from the theory, resulting in an on-shell supergravity theory with
the field content (eµ

a, ψµ). However, with the higher-derivative contributions
added, the massive vector and the real scalars become dynamical and hence
cannot be solved algebraically. These ‘auxiliary’ fields play a crucial role in de-
termining the supersymmetric backgrounds allowed by the CNMG Lagrangian
(4.3).

The Killing spinor equation (4.6) and the integrability condition (4.7)
allow us to find the maximally supersymmetric background solutions.
More solutions can be obtained by preserving less supersymmetries
thanks to the higher-derivative contribution and the consequent role
of the auxiliary fields.

Now that we have clarified the maximally supersymmetric backgrounds, let
us proceed to the case where we have at least one unbroken supersymmetry.
In order to do so, we will briefly review the implications of an off-shell Killing
spinor following the discussion of [69]. From the symmetries of the gamma
matrices, one finds the following identities for a commuting Killing spinor ε

ε̄ ε? = ε̃ ε = 0 . (4.10)

Thus, non-vanishing spinor bilinears can be defined as follows

ε̄ ε = −ε̃ ε? ≡ if , ε̄ γµ ε = ε̃ γµ ε
? ≡ Kµ , ε̄ γµ ε

? ≡ Lµ = Sµ + iTµ , (4.11)

where f is a real function and Kµ (Lµ) is a real (complex) vector. Using the
Fierz identities for commuting spinors, one can show that

KµK
µ = −f2 , Kµγ

µε = ifε . (4.12)

The first equation implies that the vector is either null or timelike. Using the
Killing spinor equation (4.6) one finds that

∇(µKν) = 0 , (4.13)
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showing that Kµ is a Killing vector. Finally, we may derive the following
differential identities following from the Killing spinor equation (4.6)

∂[µKν] = εµνρ

(
− fV ρ − 1

2
(SLρ + S?(L?)ρ)

)
, (4.14)

∂µf = −εµνρV νKρ − 1

2
i
(
SLµ − S?L?µ

)
. (4.15)

We refer to [69] for the readers interested in the derivation of these Killing
spinor identities and of other implications of the existence of a Killing spinor.

We are able to construct spinor bilinears out of the Killing spinor, i.e.
ε̄ γµ ε = ε̃ γµ ε

? ≡ Kµ, which turns out to be a Killing vector that can
be either null or timelike. We will explore these two possibilities in the
next two sections.

4.2 The Null Killing Vector

We first consider the case that the function f introduced in eq. (4.11) is zero
everywhere, i.e. f = 0. This implies that Kµ is a null Killing vector. In our
conventions, a Majorana spinor field has all real components.

The first spinor bilinear equation in (4.11) leads to a Dirac spinor ε that is
proportional to a real spinor ε0 up to a phase factor characterized by an angle
θ [69],

ε = e−i
θ
2 ε0 , (4.16)

which implies that Lµ = eiθKµ. Taking this into account, the differential equa-
tion (4.14) reads

∂[µKν] = −Re(Seiθ) εµνρ Kρ . (4.17)

Contracting this equation with Kµ we find that

Kµ∇µKν = 0 . (4.18)

The same equation also implies that K ∧ dK = 0, i.e. K is hypersurface ortho-
gonal. Thus, there exist functions u and P of the three-dimensional spacetime
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coordinates such that

Kµ dx
µ = Pdu . (4.19)

Eq. (4.18) implies that that K is tangent to affinely parameterized geodesics in
the surface of constant P . One can, then, choose coordinates (u, v, x) such that
v is an affine parameter along these geodesics, i.e.

Kµ ∂µ =
∂

∂v
. (4.20)

By virtue of our choice for Kµ the metric components further simplify to

guv = P (u, x), gvv = gxv = 0 , (4.21)

where P = P (u, x) since we demand the null direction to be along the v direc-
tion. All these choices yield a metric of the following generic form

ds2 = hij(x, u) dxi dxj + 2P (x, u) du dv , (4.22)

where xi = (x, u). Without loss of generality, this metric can be cast in the
following form by a coordinate transformation [71,80]

ds2 = dx2 + 2P (x, u) du dv +Q(x, u) du2 , (4.23)

with
√
|g| = P . With these results in hand, the auxiliary fields of the theory

should satisfy the following constraints [69]

Vµ = −1

2
∂µ θ(x, u) ,

Seiθ + S?e−iθ = ∂x logP (x, u) . (4.24)

Setting f = 0 leads to a Dirac spinor of the form (4.16). As a conse-
quence, the vector Kµ is hypersuface orthogonal, a result that allows
us to find the constraints (4.24) on the auxiliary fields.

In the next subsection we will investigate the solutions of CNMG under the
assumption that f = 0.
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4.2.1 The General Solution

To find the general solution with f = 0, we set S to be a constant. To be
precise we set A = −1

l , and B = 0. Using (4.15) we obtain

εµνρ V
νKρ = −1

l
Kµ sin θ(u, x) . (4.25)

The u component of this equation reads

1

l
Ku sin θ(u, x) = P (u, x)Vx , (4.26)

where we have used that εxuv = 1. Provided that the function P (u, x) is
nowhere vanishing, it is straightforward to integrate the first (vector) equation
in (4.24) and obtain

θ(u, x) = arctan
( 2 c(u) e−2x/l

1− c2(u) e−4x/l

)
, (4.27)

for arbitrary c(u). From the second (scalar) equation in (4.24) we deduce that

−2

l
cos θ(u, x) = ∂x logP (u, x) , (4.28)

which, upon using eq. (4.27), yields

P (x, u) = P (u)[ e2x/l + e−2x/lc2(u)] , (4.29)

where P (u) is an arbitrary function of u. We may set P (u) to unity without loss
of generality [71]. Using eqs. (4.28)–(4.29) in the vector field equation (4.27),
we deduce that c(u) = 0 and θ(u, x) = nπ. In order to fix n we use the trace
of the gravity equation and find that θ(u, x) = π. We thus find that the metric
(4.23) takes the following final form

ds2 = dx2 + 2 e2x/l du dv +Q(x, u) du2 . (4.30)

This is the general form of a pp-wave metric. Taking the limit l → ∞ gives
rise to the pp-wave in a Minkowski background. Setting l = 1 and substituting
A = −1, B = 0, Vx = Vu = Vv = 0 into the metric field equation, we find that
Q(x, u) satisfies the following differential equation

(2 + 4σm2)Q′ − (9 + 2σm2)Q′′ + 8Q′′′ − 2Q′′′′ = 0 , (4.31)
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where the prime denotes a derivative with respect to x. The most general
solution of this differential equation is given by

Q(x, u) = e(1−
√

1
2−σm

2)xC1(u) + e(1+

√
1
2−σm

2)xC2(u)

+e2xC3(u) + C4(u) , (4.32)

where the functions Ci(u) , i = 1, · · · , 4, are arbitrary functions of u. We note
that this expression for Q(x, u) matches with that of [70,81]. It differs, however,
from the expression given in [71]. This is due to the fact that the off-diagonal
coupling of gravity to the scalar A was included in the supersymmetric New
Massive Gravity model studied in [71], whereas such a term is absent in our
case, see eq. (4.3).

The solution for Q(x, u) given in (4.32) has a redundancy represented by the
functions C3(u) and C4(u) [80]. To make this redundancy manifest we consider
the following coordinate transformation

x = x̃− 1
2 log a′ , u = a(ũ) , v = ṽ − 1

4e
−2x̃ a

′′

a′
+ b(ũ) , (4.33)

where a(ũ) and b(ũ) are arbitrary functions of ũ and the prime denotes a deriva-
tive with respect to ũ. By choosing the function a(ũ) and b(ũ) such that the
differential equations(a′′

a′

)′
− 1

2

(a′′
a′

)2
− 2(a′)2 C̃4(ũ) = 0 , b′ +

1

2
a′ C̃3(ũ) = 0 , (4.34)

are satisfied, the functions C̃3 and C̃4 can be set to zero. This implies that,
without loss of generality, we may set C3 = C4 = 0. In addition to this, we
obtain

C̃1(ũ) = C1(a(ũ)) [a′(ũ)]
1
2 (3+

√
1
2−σm

2) ,

C̃2(ũ) = C2(a(ũ)) [a′(ũ)]
1
2 (3−

√
1
2−σm

2) . (4.35)

There are two special values of parameters which must be handled sepa-
rately. These are the cases σm2 = ±1

2 . The reason is that, for the σm2 = 1
2

case, the function C1 degenerates with C2, whereas, for the σm2 = −1
2 case,

the function C1 degenerates with C4 while the function C2 degenerates with C3.
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Therefore, we solve the field equation (4.31) for these special cases and display
the solutions Q(x, u) for these special values of the parameters explicitly:

σm2 = 1
2 : Q(x, u) = exD1(u) + x exD2(u) + e2xD3(u) +D4(u) ,

σm2 = −1
2 : Q(x, u) = x e2xD1(u) + xD2(u) + e2xD3(u) +D4(u) . (4.36)

Here, Di(u) , i = 1, . . . , 4, are arbitrary functions of u. Setting D3 = D4 = 0,
we are led to the following cases:

σm2 6= ±1
2 : ds2 = dx2 + 2 e2x du dv

+
(
e(1−

√
1
2−σm

2)xD1(u) + e(1+

√
1
2−σm

2)xD2(u)
)
du2 ,

σm2 = 1
2 : ds2 = dx2 + 2 e2x du dv +

(
exD1(u) + x exD2(u)

)
du2 ,

σm2 = −1
2 : ds2 = dx2 + 2 e2x du dv +

(
x e2xD1(u) + xD2(u)

)
du2.(4.37)

The pp-wave solutions (4.37) coincide with the solutions of N = 1
CNMG [70].

Having found the most general solutions for the null case, we will continue
in the next subsection with determining the amount of supersymmetry that
these solutions preserve by working out the Killing spinor equation (4.6).
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4.2.2 Killing Spinor Analysis

In order to construct the Killing spinors for the pp-wave metric (4.30) we in-
troduce the following orthonormal frame [80]

e0 = e
2x
l −β dv, e1 = eβdu+ e

2x
l −β dv, e2 = dx , (4.38)

where Q(u, x) = e2β(u,x). It follows that the components of the spin connection
are given by

ω01 = −β̇ du−
(
β′ − 1

l

)
dx ,

ω02 = −
(
β′ − 1

l

)
eβ du− 1

l
e

2x
l −β dv ,

ω12 = β′ eβ du+
1

l
e

2x
l −β dv , (4.39)

where

β̇ ≡ ∂β

∂u
, β′ ≡ ∂β

∂x
. (4.40)

For the null case, the Killing spinor equation (4.6) reads

0 = dε+
1

4
ωab γ

abε+
1

2l
γa e

a ε? . (4.41)

We make the following choice of the γ matrices

γ0 = iσ2 , γ1 = σ1 , γ2 = σ3 , (4.42)

where σi’s are the standard Pauli matrices. With this choice the Killing spinor
equation reads

0 = dε + 1
2

(
β̇ σ3 ε− eββ′(σ1 + iσ2) ε+

1

l
eβσ1 (ε+ ε?)

)
du

− 1

2l
e

2x
l −β (σ1 + iσ2) (ε− ε?) dv

+
1

2

(
β′σ3 ε−

1

l
σ3 (ε− ε?)

)
dx . (4.43)
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Decomposing a Dirac spinor into two Majorana spinors as ε = ξ + iζ, i.e.

ε =

(
ξ1 + iζ1

ξ2 + iζ2

)
, (4.44)

we find the following equations for the components

0 = dξ1 +
1

2
β̇ ξ1 du− eβ(β′ − 1

l
) ξ2 du+

1

2
ξ1 β

′ dx ,

0 = dξ2 +
1

l
eβ ξ1 du−

1

2
β̇ ξ2 du−

1

2
β′ ξ2 dx ,

0 = dζ1 +
1

2
β̇ ζ1 du− eβ β′ ζ2 du−

2

l
e

2x
l −β ζ2 dv +

1

2
(β′ − 2

l
) ζ1 dx ,

0 = dζ2 −
1

2
β̇ ζ2 du−

1

2
(β′ − 2

l
) ζ2 dx . (4.45)

The first two equations are uniquely solved by ξ1 = ξ2 = 0. For the last two
equations, the solution for a generic function β(u, x) is given by

ζ1 = e−
1
2β+

x
l , ζ2 = 0 . (4.46)

There is an additional solution for the special case that β = x. It is given by

ζ1 = (u+ 2v)e
1
2
x , ζ2 = e−

1
2
x . (4.47)

This solution corresponds to the first case given in eq. (4.37) with D1(u) = 0
and D2(u) = 1. There is, however, a problem with this solution. One must
choose σm2 = −1

2 and this conflicts with the condition imposed on this pp-wave
solution when we classified the different solutions in the previous subsection.
Therefore, we conclude that the pp-wave Killing spinor equation is uniquely
solved by

ξ1 = ξ2 = ζ2 = 0 , ζ1 = e−
1
2β+

x
l . (4.48)

The pp-wave solutions all preserve 1/4 of the supersymmetries. Note
that in the Minkowski limit l → ∞, the equations for ξ and ζ degene-
rate. Thus, the number of Killing spinors are the same for both AdS
and Minkowski pp-wave solutions.
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We conclude this section by noting that when D1 = D2 = 0, the metric
reduces to

ds2 = dx2 + 2e2x/l du dv = dx2 + e2x/l (−dt2 + dφ2) , (4.49)

which is the AdS3 metric in a Poincaré patch. In this case, we have

e0 = ex/l dt , e1 = ex/l dφ , e2 = dx , (4.50)

which implies that

ω02 = −1

l
ex/l dt , ω12 =

1

l
ex/l dφ . (4.51)

The Killing spinor equation then turns into

dε− 1

2l
ex/l
(
σ1ε− iσ2ε

?
)
dt− 1

2l
ex/l
(

iσ2ε− σ1ε
?
)
dφ+

1

2l
σ3 ε

?dx = 0 . (4.52)

Decomposing the Dirac spinor into two Majorana spinors as ε = ξ + iζ, see
eq. (4.44), the Killing spinor equation gives rise to the following equations

0 = dξ1 + 1
2l ξ1dx ,

0 = dξ2 − 1
l e

x/l ξ1dt+ 1
l e

x/l ξ1dφ− 1
2l ξ2dx ,

0 = dζ1 − 1
l e

x/l ζ2 dt− 1
l e

x/l ζ2 dφ− 1
2l ζ1dx ,

0 = dζ2 + 1
2l ζ2 dx . (4.53)

Making use of the fact that that the ξ and ζ equations are decoupled from each
other, we find the following four independent solutions:

1. ξ1 = 0, ξ2 = e
x
2l , ζ1 = ζ2 = 0,

2. ξ1 = e−
x
2l , ξ2 = 1

l e
x
2l (t− φ), ζ1 = ζ2 = 0,

3. ξ1 = ξ2 = 0, ζ1 = e
x
2l , ζ2 = 0,

4. ξ1 = ξ2 = 0, ζ1 = 1
l e

x
2l (t+ φ), ζ2 = e−

x
2l ,

Therefore, the AdS3 solution has a supersymmetry enhancement with
four Killing spinors.
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4.3 The Timelike Killing Vector

In this section, we shall consider the case that f 6= 0 and hence that K is a
timelike Killing vector field. Introducing a coordinate t such that Kµ∂µ = ∂t,
the metric can be written as [69]

ds2 = −e2ϕ(x,y) (dt+Bα(x, y) dxα)2 + e2λ(x,y)(dx2 + dy2) , (4.54)

where λ(x, y) and ϕ(x, y) are arbitrary functions and Bα (α = x, y) is a vector
with two components. The dreibein corresponding to this metric is naturally
written as

et0 = f−1 , eti = −f2Wi , eα0 = 0 , eαi = e−λδαi , (4.55)

where we have defined f ≡ eϕ and Wα = e2ϕ−λBα. We write µ = (t, α) for the
curved indices and a = (0, i) for the flat ones, respectively. We also require that
all functions occurring in the metric (4.55) are independent of the coordinate
t. Taking everything into account, the components of the spin connection ωabc
in the flat basis read as follows,

ω00i = −e−λ f−1∂if ,

ω0ij = −ωij0 = f e−2λ ∂[i

(
Wj]e

σf−2
)
,

ωijk = 2e−λ δi[j∂k]λ . (4.56)

Following [69], it can be shown that the existence of a timelike Killing spinor
leads to the following relations between the auxiliary fields Vµ, S and the metric
functions

V0 =
1

2
εij ωij0 , (4.57)

V1 − iV2 = ie−λ ∂z (ϕ− λ+ ic) , (4.58)

S = ie−λ−ic ∂z (ϕ+ λ− ic) , (4.59)

εij∂iBj = −2V0 e
2λ−ϕ , (4.60)

where c(x, y) is an arbitrary time-independent real function and z = x + iy
denotes the complex coordinates.

At this stage we have paved the way for constructing supersymmetric back-
ground solutions by exploiting the Killing spinor identities. Making an ansatz
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for the vector field Vµ, we can now solve eqs. (4.57)–(4.60) and determine the
metric functions λ and ϕ. Following the same logic in [69], we now look for
solutions with the following field configuration

S = Λ , Va = const , V2 = 0 , c = 0 . (4.61)

With these choices, the non-vanishing components of the spin connection given
in eq. (4.56) in a flat basis read as follows

ω002 = −(Λ + V1) , ω112 = Λ− V1 ,

ω120 = ω201 = − ω012 = V0 . (4.62)

Note that, by setting V2 = c = 0, we can solve for λ and ϕ using eqs. (4.58)–
(4.59) and their integrability conditions (4.7). Furthermore, By can be set to
zero by a gauge choice. As a result, we obtain the following differential equations
for the functions ϕ, λ and Bx

e−λ∂yϕ = V1 + Λ, (4.63)

e−λ∂yλ = Λ− V1, (4.64)

∂yBx = 2V0 e
2λ−ϕ, (4.65)

with ∂xϕ = ∂xλ = 0.

So far we have not used the equations of motion, we have only consid-
ered the constraints that follow from supersymmetry. The solutions of
eqs. (4.63)–(4.65) will bifurcate depending on the value of the vector
component V1.

In the next subsection we will classify the supersymmetric solutions of the
CNMG Lagrangian (4.3) with respect to the value of this vector field component
by imposing the field equations.
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4.3.1 Classification of Supersymmetric Background Solutions

In this subsection, we first integrate the differential equations (4.63)–(4.65)
depending on the different values of the vector field components Va, which
yields the metric functions λ and ϕ. Next, we impose the field equations and
determine the couplings. The results for the different cases are given in three
subsubsections. For the convenience of the reader, we have summarized all
supersymmetric background solutions allowed by the theory described by the
Lagrangian (4.3) in Table 5.

V 2 V0 V1 Equation Sol. of STMG?

Round AdS3 0 0 0 4.68 3

AdS2 × R > 0 0 Λ 4.71 7

Null-Warped AdS3 0 ±Λ Λ 4.74 3

Spacelike Squashed AdS3 > 0 < Λ Λ 4.78 3

Timelike Streched AdS3 < 0 > Λ Λ 4.80 3

AdS3 pp-wave 0 V0 εV0 4.87 3

Lifshitz > 0 0 6= 0, Λ 4.92 7

Table 5
Classification of the supersymmetric background solutions of N = (1, 1) CNMG. The

solutions are classified with respect to the values of the components of the auxiliary vector
Va, and compared with the solutions of the N = (1, 1) TMG theory (STMG).

The case V1 = 0.

We start with the simplest case, i.e. V1 = 0. The supersymmetry constraint
equations (4.63)–(4.65) yield

λ = − log(−Λy), ϕ = log(− 1

Λy
), Bx = −2V0

Λ
log(−Λy). (4.66)

The vector equation (4.8) then implies V0 = 0 for Λ 6= 0. Finally, from the
scalar equation we fix M to be

M = − Λ3

6m2
+ Λσ. (4.67)
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Thus, the metric becomes

ds2 =
l2

y2
(−dt2 + dx2 + dy2) , (4.68)

which describes a round AdS3 spacetime with l = − 1
Λ , see Table 5.

The case V1 = Λ 6= 0.

For V1 = Λ, we obtain

λ = 0, ϕ = 2Λy, Bx = −V0

Λ
e−2Λy . (4.69)

The vector and the scalar field equation lead to the following subclasses A, B
and C which we describe below.

A. V0 = 0, Λ = −2

√
m2σ

7
, M =

7Λ3

12m2
+ Λσ.

With this choice of parameters the metric reads

ds2 = −e4Λydt2 + dx2 + dy2 . (4.70)

After a simple coordinate transformation y =
log r

2Λ
, x =

x′

2Λ
the metric is

brought into the following form

ds2 =
l2

4
(−r2dt2 +

dr2

r2
+ dx2) , (4.71)

which is AdS2 × R. This background also appeared in the bosonic version of
NMG, although given in different coordinates [45,82].

B. V0 = ±Λ, Λ = −
√
−2m2σ

7
, M = − Λ3

6m2
+ Λσ.

This choice of parameters leads to the metric

ds2 = −e4Λydt2 ± 2e2Λydtdx+ dy2 . (4.72)
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Performing a coordinate transformation

y = l log u, t = lx−, x = ± lx
+

2
, (4.73)

the metric (4.72) can be put into the more familiar form [83]

ds2 = l2

[
du2 + dx+dx−

u2
−
(
dx−

u2

)2
]
, (4.74)

which is null warped AdS3.

C. V0 = ±
√

7Λ2 − 4m2σ

21
, M = − Λ3

3m2
+

8Λσ

7
.

Using these values for the parameters and fixing the value of V0 we deduce from
the vector equation that

ds2 =
V 2

Λ2

(
dx+

V0Λ

V 2
e2Λy dt

)2
− Λ2

V 2
e4Λy dt2 + dy2 . (4.75)

After making a coordinate transformation
V0Λ

V 2
e2Λy =

1

z
, the metric reads

ds2 =
V 2

Λ2

(
dx+

dt

z

)2
− 1

z2

V 2

Λ2

dt2

ν2
+

dy2

4Λ2z2
, (4.76)

where ν2 = 1− V 2

Λ2 < 1.
This is not yet the end of the story for this subclass: provided that V 2 > 0,

which implies 7Λ2 + 2m2σ > 0, we have 1 > ν2 > 0. By making a coordinate
transformation

x =
x′ν

2V
, t =

t′ν

2V
, (4.77)

the metric (4.75) can be cast into the following form

ds2 =
l2

4

[−dt2 + dz2

z2
+ ν2

(
dx+

dt

z

)2]
, (4.78)

which is the metric of spacelike squashed AdS3 with squashing parameter
ν2.
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For V 2 < 0, i.e. 7Λ2 + 2m2σ < 0, we perform a coordinate transformation

x =
x′

2

√
−ν2

V 2
, t =

t′

2

√
−ν2

V 2
, (4.79)

after which the metric (4.75) can be written in the following form

ds2 =
l2

4

[dt2 + dz2

z2
− ν2

(
dx+

dt

z

)2]
, (4.80)

where ν2 > 1. The metric (4.80) is one of the incarnations of the timelike
stretched AdS3 background.

The case V1 6= Λ and V1 6= 0.

This class of solutions has V1 6= Λ and V1 6= 0. The calculation of the metric
functions follows the computations performed in the previous subsubsections
with the extra definitions

σ = − log(z), ϕ = log(zα), Bx = −V0

V1
z−(1+α), (4.81)

where

z ≡ (V1 − Λ)y, α ≡ V1 + Λ

V1 − Λ
. (4.82)

Using the components of the vector equation, we find

V0(V 2
0 − V 2

1 )(V1 − Λ) = 0 . (4.83)

From eq. (4.83) it is straightforward to see that this subclass has two different
branches, i.e. V0 = 0 and V1 = εV0 with ε2 = 1. We will discuss these two
branches as separate cases A and B below.

A. V1 = εV0 , ε = ±1 , V0 = −εΛ±
√

Λ2 − 2m2σ

2
.

With this choice of parameters the vector equation gives rise to

2V 2
0 + 4εV0 + Λ2 + 2m2σ = 0 . (4.84)
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The parameter M can be solved by using the field equation for A (4.8) as
follows,

M =
−Λ3

6m2
+ Λσ . (4.85)

Plugging in the metric functions, we obtain the following expression for the
metric

ds2 = −z2α(−dt+ 2εz−1−αdx)dt+
1

(V1 − Λ)2

dz2

z2
.

Performing the coordinate transformation [69]

z = u
(Λ−V1)

Λ , t = lx− , x =
εlx+

2
, (4.86)

this metric can be written as follows

ds2 = l2

[
du2 + dx+dx−

u2
− u2(

Λ−V1
Λ

)

(
dx−

u2

)2
]
. (4.87)

This is the metric of an AdS3 pp-wave. Note that the limit V1 → Λ is
well defined and gives rise to the minus branch of null warped AdS3 metric in
eq. (4.74), as expected.

B. V0 = 0, V1 =
α+ 1

α− 1
, M =

Λ(9V 2
1 −2Λ2)

12m2 + Λσ.

Finally, we consider the case in which V0 = 0. Rather than solving the vector

equation for V1, as we did in the previous cases, we set V1 =
α+ 1

α− 1
using

eq. (4.82). The field equations (4.8) further imply that

(1− 14α− 7α2)Λ2 + 4m2(−1 + α)2σ = 0, (4.88)

whose solution is given by

Λ = −

√
4m2σ(α− 1)2

(1− 14α− 7α2)
. (4.89)

Here, we would like to restrict our attention to α < 0, as α will be minus the
Lifshitz exponent, thus giving rise to spacetimes with positive Lifshitz exponent
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(1) α <
1

7
(−7− 2

√
14), then m2σ > 0,

(2)
1

7
(−7− 2

√
14) < α < 0, then m2σ < 0.

Provided that the vector field components are chosen as discussed, we obtain
the Lifshitz metric

ds2 = l2L

[
− y2αdt2 +

1

y2
(dx2 + dy2)

]
, (4.90)

where lL is the Lifshitz radius and it is defined as

l2L =
1

(V1 − Λ)2
. (4.91)

We have redefined t as t → (V1 − Λ)2α+2t. Note that, in the limit V1 → 0,
one obtains the round AdS3 metric given in eq. (4.68). Taking y = 1

r gives the
metric in the standard form

ds2 = l2L

(
− r−2αdt2 + r2dx2 +

1

r2
dr2
)
, (4.92)

where l2L and V1 are given in terms of α and Λ as 2

l2L =
(α− 1

2Λ

)2
. (4.93)

As shown in [69], all the supersymmetric backgrounds that we have found
in this section except the AdS3 metric preserve 1/4 of the supersymmetries.

In this section, we have classified the solutions summarized in Table 5.
With the exception of the AdS3 metric, all the solutions preserve 1/4
of the supersymmetries.

2Note that the standard Lifshitz exponent z in the literature is given by z = −α.
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4.4 Supersymmetric Black Holes

In this section, we discuss the supersymmetry aspects of black hole solutions of
CNMG in an AdS3 or Lifshitz background. The existence of a Killing spinor is
highly restricted due to the global requirement that the angular coordinate φ
should be periodic. As shown in [69], the spacelike squashed AdS3 solution can
be interpreted as an extremal black hole upon making a coordinate transforma-
tion. In this section, we will discuss three specific cases of black hole solutions.
We start our discussion in subsection 4.4.1 with a generalization of the BTZ
black hole, and show that the periodicity condition implies the extremality of
the black hole. In the subsection 4.4.2 we investigate the ‘logarithmic’ black
hole, given in [84], and show that it is supersymmetric. Finally, in a third
subsection we investigate the possible black holes in a Lifshitz background.

4.4.1 The Rotating Hairy BTZ Black Hole

The CNMG Lagrangian (4.3) admits the following rotating black hole solution
[85]

ds2 = −N2F 2dt2 +
dr2

F 2
+ r2

(
dφ+Nφdt

)2
, (4.94)

where N , Nφ and F are functions of the radial coordinate r, given by

N2 =

[
1 +

b

4H

(
1− Ξ

1
2

)]2

,

Nφ = − J
2Mr2

(M− bH) , (4.95)

F 2 =
H2

r2

[
H2 +

b

2

(
1 + Ξ

1
2

)
H +

b2

16

(
1− Ξ

1
2

)2
−M Ξ

1
2

]
,

and

H =

[
r2 − 1

2
M
(

1− Ξ
1
2

)
− b2

16

(
1− Ξ

1
2

)2
] 1

2

, (4.96)

where we have set the AdS3 radius l = 1. Here Ξ := 1 − J 2/M2, and the
rotation parameter J /M is bounded in terms of the AdS radius according to

− 1 ≤ J /M≤ 1 . (4.97)
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The parameter b is the gravitational hair and, for b = 0, one recovers the
BTZ black hole [28]. Since we impose the global requirement that φ should be
periodic, i.e. 0 ≤ φ ≤ 2π, the vacuum of the BTZ black hole with gravitational
hair, defined by M = J = b = 0, admits only two Killing spinors. In order to
see that, we consider the Killing spinor equations (4.53). Since the equations for
ξ1 and ζ2 enforce exponential solutions for ξ1 and ζ2, we cannot find a solution
for ξ2 and ζ1 that is periodic in φ. Therefore, finding a periodic solution requires
setting ξ1 = ζ2 = 0. This implies that only two of the solutions of equations
(4.53) are valid.

Introducing the following orthonormal frame for the metric

e0 = NFdt , e1 = rdφ+ rNφdt , e2 = F−1dr , (4.98)

the spin-connection components are given by

ω01 =
1

2

rNφ′

FN
dr , ω02 =

(
−FNF ′ + r2NφNφ′

2N
− F 2N ′

)
dt+

r2Nφ′

2N
dφ ,

ω12 =
1

2
F (2Nφ + rNφ′)dt+ Fdφ , (4.99)

and hence the Killing spinor equation reads

0 = dε +
1

2

(
− rNφ′

2FN
σ3ε+

1

F
σ3ε

?
)
dr +

1

2

(r2Nφ′

2N
σ1ε− iFσ2ε+ rσ1ε

?
)
dφ

+
1

2

[(
− FNF ′ + r2NφNφ′

2N
− F 2N ′

)
σ1ε− i

(
FNφ +

1

2
rFN ′

)
σ2ε

+iNFσ2ε
? + rNφσ1ε

?

]
dt . (4.100)
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Decomposing the Dirac spinor into two Majorana spinors like in eq. (4.44),
we obtain the following equations

0 = dξ1 +
1

4N

(
Nφ [2N(r − F ) + r2Nφ′]

−FN(−2N + 2rF ′ + rNφ′ + 2FN ′)
)
ξ2 dt

+
1

4N

(
2N(r − F ) + r2Nφ′

)
ξ2 dφ+

1

4FN

(
2N − rNφ′

)
ξ1 dr ,

0 = dξ2 +
1

4N

(
Nφ [2N(r + F ) + r2Nφ′]

+FN(−2N − 2rF ′ + rNφ′ − 2FN ′)
)
ξ1 dt

+
1

4N

(
2N(r + F ) + r2Nφ′

)
ξ1 dφ+

1

4FN

(
− 2N + rNφ′

)
ξ2 dr ,

0 = dζ1 +
1

4N

(
Nφ [−2N(r + F ) + r2Nφ′]

−FN(2N + 2rF ′ + rNφ′ + 2FN ′)
)
ζ2 dt

+
1

4N

(
− 2N(r + F ) + r2Nφ′

)
ζ2 dφ−

1

4FN

(
2N + rNφ′

)
ζ1 dr ,

0 = dζ2 +
1

4N

(
Nφ [−2N(r − F ) + r2Nφ′]

+FN(2N − 2rF ′ + rNφ′ − 2FN ′)
)
ζ1 dt (4.101)

+
1

4N

(
− 2N(r − F ) + r2Nφ′

)
ζ1 dφ+

1

4FN

(
2N + rNφ′

)
ζ2 dr .

From these equations it follows that for the generic case not all the dφ com-
ponents can be set to zero, which is the requirement for finding a periodic
Killing spinor. Therefore, we turn our attention to the extremal solutions with
M = |J |. For this case we find the following Killing spinors that are periodic
in φ

(1) M = −J

ξ1 = ζ1 = ζ2 = 0 , ξ2 =
b+
√
−b2 + 8J + 16r2

√
r

, (4.102)
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(2) M = J

ξ1 = ξ2 = ζ2 = 0 , ζ1 =
b+
√
−b2 − 8J + 16r2

√
r

. (4.103)

Note that for zero hair, i.e. b→ 0, one re-obtains the Killing spinors for a BTZ
black hole.

4.4.2 The ‘Logarithmic’ Black Hole

The supersymmetric CNMG Lagrangian (4.3) also admits the following so-
called ‘logarithmic’ black hole solution [84]

ds2 = − 4ρ2

l2f2(ρ)
dt2 + f2(ρ)

(
dφ− ε

q l ln[ ρρ0
]

f2(ρ)
dt
)2

+
l2

4ρ2
dρ2 , (4.104)

where q ≤ 0 and 0 < φ < 2π. The function f2(ρ) is defined by

f2(ρ) = 2ρ+ q l2 ln[
ρ

ρ0
] , (4.105)

and the parameter ε = ±1 determines the direction of the rotation since

M = 2q , J = 2 ε lq . (4.106)

Setting q = 0 and making the coordinate transformation ρ = r2/2, we obtain
an AdS3 background with φ being periodic. This implies that the background
of the ‘logarithmic’ black hole preserves only half of the supersymmetries like
in the case of the rotating hairy BTZ black hole in the previous subsection.

We now determine the explicit expressions for the Killing spinors. Intro-
ducing the following orthonormal frame for the metric

e0 =
2ρ

lf(ρ)
dt , e1 = f(ρ) dφ−

lq ε ln[ ρρ0
]

f(ρ)
dt , e2 =

l

2ρ
dρ , (4.107)
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we find the following expressions for the spin connection components

ω01 = − l2q ε

4ρ2f(ρ)

[
f(ρ)− 2ρ f ′(ρ) ln[

ρ

ρ0
]
]
dρ ,

ω12 = − q ε

f(ρ)
dt+

2ρ f ′(ρ)

l
dφ ,

ω02 = − 1

2l2 ρ f2(ρ)

(
f(ρ)

[
8ρ2 − l4q2 ln[

ρ

ρ0
]
]

+2ρf ′(ρ)
[
− 4ρ2 + l4q2 ln[

ρ

ρ0
]
])
dt

−lq ε
(f(ρ)

2ρ
+ ln[

ρ

ρ0
] f ′(ρ)

)
dφ . (4.108)

Using these expressions in the Killing spinor equation (4.6), we find that the
Killing spinors of the logarithmic black hole are given by

i. ε = 1

ξ1 = ξ2 = ζ2 = 0 , ζ1 =

√
ρ

ρ0

( 1

2r + l2q ln[ ρρ0
]

)1/4
, (4.109)

ii. ε = −1

ξ1 = ζ1 = ζ2 = 0 , ξ2 =

√
ρ

ρ0

( 1

2r + l2q ln[ ρρ0
]

)1/4
. (4.110)

The result may be somewhat surprising considering the expectation that
the only existing supersymmetric black hole in an AdS3 background is an ex-
tremal BTZ black hole [70]. However, unlinke the rotating BTZ black hole,
the ‘logarithmic’ black hole does not have a non-extremal limit J 6= M . Thus,
one cannot recover a static, non-supersymmetric black hole from the J → 0
limit of the ‘logarithmic’ black hole. Therefore, this particular case evades the
argument presented in [70].3

3We thank Paul Townsend for a clarifying discussion on this exceptional case.
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4.4.3 Searching For a Supersymmetric Lifshitz Black Hole

In this section, we briefly present our attempts to find a supersymmetric Lifshitz
black hole. Following [86], we first try to saturate the BPS bound using the
vector field Vµ, since it can, in principle, contribute as a massive vector hair.
In order to do so, we consider the following metric ansatz

ds2 = l2L

(
− adt2 + r2dx2 +

1

f
dr2
)
, (4.111)

where the functions a and f depend on the coordinate r only. With this ansatz
for the metric, one can show that the Killing spinor equation imposes the fol-
lowing constraint on these functions

a′
√
f

a
+

2
√
f

r
+ 2(α− 1) = 0 . (4.112)

Having obtained this constraint, we next turn to the vector equation (4.8). Us-
ing the metric ansatz (4.111), the V0 and V2 components of the vector equation
are automatically satisfied, while the V1 component reads

0 = (1 + α)
[
r2fa′ + 2a2

(
− 8f + r[2r(−1 + 5α+ α2) + 5f ′]

)
−ra

(
ra′f ′ + 2f(−5a′ + ra′′)

)]
. (4.113)

Imposing the Killing spinor constraint (4.112) to simplify the vector equation,
we obtain

−7r
√
f(α− 1)− 11f + r

(
r(7α− 2) + 3f ′

)
= 0 . (4.114)

Since we wish to find a solution for f that has a double root at r = r0, which is a
necessary condition for an extremal black hole, we need to be able to eliminate
the f terms in the vector equation. Using the fact that the Killing spinor
constraint (4.112) can be cast into the following form√

f(1− α) = −1

2

(a′
a

+
2

r

)
f , (4.115)

the vector equation can be written as

7

2
r
(a′
a
− 8

7r

)
f + r

(
r(7α− 2) + 3f ′

)
= 0 , (4.116)
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which has the following solution

a = r8/7 , f = r2 − r2
0 . (4.117)

However, using this equation in the Killing spinor constraint (4.112), we find
that r0 = 0. A further check with the metric equation also imposes r0 =
0. Therefore, although the Killing spinor equation allows the existence of a
supersymmetric black hole, we find that the vector and metric equations are
incompatible with that possibility.

Alternatively, one may try to start with a rotating Lifshitz black hole using
the following metric ansatz

ds2 = l2L

[
−r−2αF (r)dt2 +

(
rdx+ r−αG(r)dt

)2
+

1

r2F (r)
dr2

]
, (4.118)

where F (r) and G(r) are arbitrary functions that depend on the coordinate r
only. In this case, the Killing spinor equation constrains the function F (r) to
be of the form

F (r) = 1 + ar−2+2α , (4.119)

where a is a constant. Furthermore, the vector equation constraints the function
G(r) via the following differential equation

21r4G′2 − 42r3(α+ 1)GG′ + 21r2(1 + α)2G2 + 4ar2α(6α− 11) = 0 . (4.120)

Using the solutions of this differential equation, along with the expression
(4.119) in the gravity equation, we find that it takes us back to the Lifshitz
background, not allowing a rotating black hole solution.

The result of this subsection is somewhat expected, considering the fact that
for the rotating Lifshitz solution known to us [87], the couplings are determined
by using a stationary Lifshitz spacetime which has a rotation term. This is not
allowed by the given matter configuration of the N = (1, 1) CNMG theory.

Finally, we would like to comment that, although our attempts to find a
supersymmetric Lifshitz black hole were not successful with the parity-even
theory under our consideration (4.3), one may consider to modify the CNMG
by adding a parity violating Lorentz-Chern-Simons term, which gives rise to the
so-called N = (1, 1) Generaized Massive Gravity [53]. In that case, we found
that the vector equation is modified in such a way that the Lifshitz background
is no longer a solution with the field configuration given in (4.61).
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4.5 Summary

In this chapter, we have used the off-shell Killing spinor analysis to investigate
the supersymmetric backgrounds of the N = (1, 1) CNMG model given by
the Lagrangian (4.3). The background solutions are classified according to the
norm of the Killing vector constructed out of Killing spinors. There are only
two cases.

The first case provides for the possibility of having a null Killing vector,
see section 4.2. Here, the N = (1, 1) analysis reduces to that of the N = 1
CNMG model since the null choice forces the auxiliary massive vector Vµ and
the auxiliary pseudo-scalar B to vanish. Therefore, the solution is of the pp-
wave type which preserves 1/4 of the supersymmetries. In the AdS3 limit,
there is a supersymmetry enhancement, and the AdS3 solution is maximally
supersymmetric.

As a second case, in section 4.3 we have investigated the case where the
Killing vector is taken to be timelike. In particular, we did consider a special
class of solutions in which the pseudo-scalar B vanishes. In that case, all the
supersymmetric solutions can be classified in terms of the components Va of the
massive vector in the flat basis. A subclass of these solutions, with different
parameters, are also solutions of the supersymmetric TMG model, see Table 5.
In addition to these solutions, we have found that the N = (1, 1) CNMG model
possesses Lifshitz and AdS2 × R solutions. All these background solutions
preserve 1/4 of the supersymmetries.

We then dedicated our efforts to the investigation of three cases of black hole
solutions in a AdS3 or Lifshitz background. In the case of AdS3, we studied the
rotating hairy BTZ black hole and the logarithmic black hole. We have found
that in general the rotating hairy BTZ black hole is not supersymmetric due
to the fact that the periodicity condition on the φ coordinate and the periodic
Killing spinors only arise when the black hole is extremal. In the case of the
logarithmic black hole, we found that only the extremal black hole solution
exists, which is supersymmetric by its own nature. Finally, we analyzed the
conditions for the existence of a supersymmetric Lifshitz black hole and showed
that it does not exist given the field configuration of the N = (1, 1) CNMG
model.



5
Holographic Entanglement Entropy

This chapter will be dedicated to explore a different merit of New
Massive Gravity. As we have seen in the previous chapter, despite
the simplifications introduced by working in only three dimensions,
the theory admits a rich set of solutions.

Following [88], we will use a holographic method to compute En-
tanglement Entropy in the context of a higher-derivative theory of
gravity such as NMG.

We will thus observe that the presence of the higher-derivative terms
determines a change in the nature of the holographic surface de-
scribing this quantity.

This chapter will give us a chance to see a simple application of the
proposal introduced in Chapter 1. We will then be able to focus on
richer geometries.

119
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We have seen in section 1.2 how, despite the simplicity of the definition of
Entanglement Entropy (EE), we are often forced to use tricks and techniques
to practically perform the calculation. In particular, we have seen that the
computation of EE in quantum field theory often requires the use of the so-
called replica trick [9]. Here, we can compute the Rényi entropy of n copies of
the system and then take the limit n→ 1 to obtain the EE. However, for higher
dimensional conformal field theories, the replica method can be applicable only
for certain topologies of the entangling region. It is also important to note that,
although the presence of infinitely many degrees of freedom in field theory makes
this quantity divergent, it can be regularized by introducing a UV cut-off [9,10].
Finally, see section 1.2.2, these obstacles have been overcome by considering a
holographic realization of Entanglement Entropy (HEE) originally proposed
by Ryu and Takayanagi (RT) [15, 16]. To simplify the reading, let’s briefly
summarize the proposal.

The entanglement entropy SA of a region A in a d dimensional boundary
theory holographically corresponds to the area of a codimension-2 spacelike
minimal surface γA in the (d+1)-dimensional dual gravity theory. The minimal
surface is anchored to the boundary in such a way that it satisfies the homology
constraint ∂γA = ∂A. The EE is then computed by

SA =
Area(γA)

4G
(d+1)
N

, (5.1)

where G
(d+1)
N is the (d+ 1)-dimensional Newton constant.

The holographic proof of the RT proposal, presented by Lewkowycz and
Maldacena (LM) in [21], is based on the implementation of the n-copy replica
trick in the dual bulk geometry. In this way, the replicated bulk geometry
acquires a conical singularity on the hypersurface, as explained in section 1.2.2.
Once we impose the limit n→ 1, we notice that the hypersurface converges to
the usual minimal surface and, by collecting the leading divergences, we obtain
the desired EE.

It is a very appropriate question to ask whether the LM formalism remains
valid beyond the Einstein-Hilbert theory. The effective description of the UV
limit of the Einstein-Hilbert theory comprises higher-derivative terms and turns
out to be one of the most natural arenas for this investigation. The LM for-
malism encourages the generalized formulations of holographic entanglement
entropy for various higher-derivative theories [89–91]. These generalizations
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allow contributions coming from the Wald’s entropy [92] as well as from the
extrinsic curvature evaluated on the entangling surface. In particular, for our
present analysis we follow the prescription of [91] for the holographic computa-
tion.

The philosophy of the generalization proposed in [91] goes as follows. When
we take the n→ 1 limit, we are interested only in the O(n− 1) terms because
they will give the EE. In the case of Einstein gravity, the variation of the action
is purely a boundary term at this order due to the equations of motion. This is
not necessarily true for higher-derivative gravity. In other words, the number of
terms that can give a linear contribution is enhanced by the presence of higher
derivatives, thus modifying the functional describing the entanglement entropy.

We will investigate this prescription in the context of New Massive Gravity
(NMG) [44] due to its wide class of background solutions. In addition to that,
since such a theory lives in only three dimensions, the co-dimension 2 surface
is simply a line and thus the technical obstacles to carry out the actual holo-
graphic computations are drastically reduced. However, due to the presence
of higher-derivative terms, NMG provides a structure complex enough to ob-
serve nontrivial changes in the behavior of EE. For instance, we will show the
existence of new minimal surfaces.

Motivated along this line of research, we compute the holographic entan-
glement entropy for Lifshitz and Warped AdS backgrounds in New Massive
Gravity. Similarly to [93], we adopt the perturbative approach for our analysis.
We observe that a suitable perturbative ansatz for the entangling surface signi-
ficantly reduces the technical complexities of extremizing the higher-derivative
entropy functional. In particular, we study the nontrivial modification of the
AdS3 geodesic by introducing a suitable perturbation resulting from the higher-
derivative contribution in the NMG theory. The modified entangling surface
satisfies the equation of motion derived from the entropy functional order by
order with a certain set of appropriate boundary conditions. We also give an
interpretation of our holographic analysis consistent with the corresponding
boundary theory.

This chapter is organized as follows. In section 5.1, we briefly introduce
the necessary ingredients to determine the geometry of the entangling surface
and compute the entanglement entropy. In section 5.2, we reproduce the ana-
lysis presented in [94] in order to review the procedure in the simple example
provided by the Anti-de Sitter spacetime. We then apply the same technique
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to the Lifshitz spacetime in section 5.3. In this background, we will prove the
existence of a new entangling surface by deforming the geodesic. Consequently,
we establish that the existent analysis in this regard [95] requires further at-
tention. As a final example, in section 5.4 we investigate the deformation of
the entangling surface for the Warped AdS3 spacetime. Previous works on this
particular case can be found in [96–98], but our analysis will focus specifically
on the higher-derivative contribution.

5.1 NMG and Holographic Entanglement Entropy

We have seen in Chapter 2 how New Massive Gravity [44] is a modification of
the Einstein-Hilbert gravity theory realized by adding a combination of higher-
derivative terms. In particular, the action, in the Euclidean signature, takes
the following form

S = − 1

16πG

∫
d3x
√
g

[
R+

2

L2
+

1

m2

(
RµνR

µν − 3

8
R2

)]
. (5.2)

One of the merits of this theory is that, although it lives in three dimensions,
it presents a richer dynamics compared to Einstein gravity without introducing
many of the well-known pathologies that we can find in general four dimensional
higher-derivative theories.

Since New Massive Gravity is a higher derivative theory with curvature
squared terms, we need a reassessment of the Ryu-Takayanagi prescription. It
is known that the finite part of the holographic entanglement entropy evaluated
in a black hole background in Einstein gravity corresponds to the Bekenstein-
Hawking thermal entropy [17,99]. Therefore it is natural to expect the same in
gravity theories with higher derivatives, with the understanding that the ther-
mal entropy is now realized as Wald’s entropy [92]. Recently, motivated by the
analysis in [21], a general prescription for computing the holographic entangle-
ment entropy for a higher-derivative theory was proposed in [91]. When applied
to New Massive Gravity, the prescription [91] yields the entropy functional [100]

SEE =
1

4G

∫
Σ
dz
√
h

[
1 +

1

m2

(
R|| −

1

2
K2 − 3

4
R

)]
, (5.3)

where h is the induced metric on the entangling surface Σ. Such surface is
taken to be co-dimension two (thus it is just a line), anchored to the boundary
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and propagating deep in the bulk. The projected Ricci tensor R|| is given by

R|| = ηαβ(n(α))
µ(n(β))

νRµν , (5.4)

while (n(α))
µ are the orthogonal vectors defined on Σ. The extrinsic curvature

is given by
(K(α))µν = hλµh

ρ
ν∇ρ(n(α))λ , (5.5)

where ∇ is the covariant derivative with respect to the bulk metric. Conse-
quently, the contracted form of the extrinsic curvature entering the functional
can be written as

K2 = ηαβ(K(α))
µ
µ(K(β))

ν
ν . (5.6)

All these quantities are required to be evaluated on the appropriate en-
tangling surface, determined by minimizing the entropy functional (5.3) itself.
In three dimensional pure gravity this problem is easily solved by taking the
geodesic as entangling surface since it is, by definition, the curve with minimal
length. However, as we will see in the next sections, this is not necessarily the
case for a more general theory of gravity. Intuitively, due to the presence of
higher-derivative terms, the entropy functional given in (5.3) fails to be inter-
preted as a length anymore [101]. From a technical point of view, minimizing
such functionals leads to a higher-order differential equation that opens up the
possibility of finding different entangling surfaces as opposed to the one in the
context of Einstein-Hilbert gravity. In the next section, we elaborate upon this
issue further with a concrete example, i.e. the AdS3 spacetime as a background
geometry in New Massive Gravity.
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5.2 New Entangling Surfaces

In this section, we elaborate on the geometry of the entangling surface em-
bedded in a three dimensional background describing a more general theory of
gravity, in particular New Massive Gravity. Our principal aim is to achieve an
entangling surface by minimizing the entropy functional prescribed in [91] and
to compute the corresponding holographic entanglement entropy. The simplest
example to realize the richer behaviour of the geometry of the entangling sur-
face we are interested in is the AdS3 spacetime. Such a background is described
by the metric

ds2 = gµνdx
µdxν =

L̃2

z2
(dt2 + dz2 + dx2) , (5.7)

where L̃ is the AdS3 radius and is related to the cosmological parameter L
present in (5.2) by

L2 = FL̃2 , F 2 − 4m2L2F + 4m2L2 = 0 . (5.8)

With this background metric, we systematically reproduce the results presented
in [94] in order to give a clear overview of the general procedure.

The entangling region in the dual field theory is a one-dimensional line
located at the boundary of AdS3 (z = 0). Correspondingly, to obtain the co-
dimension 2 extremal hypersurface embedded in the constant time slice of the
AdS3 geometry, we choose the following ansatz consistent with the so-called
boundary parametrization

t = 0 , x = f(z) . (5.9)

With this AdS3 background metric and the prescribed profile ansatz for the
entangling surface, the computation of the entropy functional (5.3) (we refer
to [94] for the details of the calculation) leads to

SEE =
2π

`p

∫
dz

L̃

z

√
A

[
1 + 2

F − 1

F[
1− 1

A3

(
f ′(z)3 + f ′(z)− zf ′′(z)

)2]]
, (5.10)

where A = f ′(z)2 + 1. In order to minimize this functional, we consider the ex-
pression (5.10) as a one-dimensional action, so that the corresponding equation
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of motion is
∂2

∂z2

(
δL
δf ′′

)
− ∂

∂z

(
δL
δf ′

)
+
δL
δf

= 0 . (5.11)

Since (5.10) is independent of f(z), the last term in (5.11) identically vanishes.
The resultant fourth-order differential equation is of a highly nonlinear nature.
However, as mentioned in [100], there exists a very simple analytic solution
of (5.11), namely

f1(z) =
√
z2

0 − z2 . (5.12)

where z0 = f(z = 0) is a tunable parameter, expressing the length of the
region of interest. The turning point, that is how deep the surface goes into
the bulk, is located at zt = z0. Moreover, the corresponding extrinsic curvature
vanishes. It is very interesting to note that the same solution can be obtained
even without the higher-derivative terms, being a geodesic anchored to the
boundary region of interest. As mentioned before, the profile (5.12) is the only
possible solution in Einstein gravity, because it is the trajectory that minimizes
the length. However, there is no a priori reason to expect that no solution other
than (5.12) exists for a higher-derivative theory of gravity.

Indeed, the authors of [94] present a different entangling surface. Making
the ansatz f(z) =

√
z2

0 − z2 + az, and requiring that it solves the differential
equation (5.11), we obtain

f2(z) =
√
z2

0 − z2 + 2z0qz , q =

√
F − 2

F
. (5.13)

In this case, the turning point goes deeper into the bulk and it is located at

zt = z0

[
q +

√
q2 + 1

]
. (5.14)

Moreover, unlike the case for f1(z), the contracted form of the extrinsic curva-
ture evaluated on this new extremal surface

K2|f2(z) =
q2

L̃2 (q2 + 1)
=

F − 2

2L̃2 (F − 1)
, (5.15)

is non-vanishing.
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For both solutions we have the respective universal terms

S
(1)
EE =

c1

3
log
(z0

ε

)
,

c1

3
=

L

4G

3F − 2

F
3
2

,

S
(2)
EE =

c2

3
log
(z0

ε

)
,

c2

3
=

L

4G

√
8
F − 1

F 2
. (5.16)

It is easy to verify that as long as F > 2, the coefficients c1 and c2 follow the
inequalities c1 ≥ c2 > 0. Therefore, in contrast with the results previously
presented in the literature, the solution that minimizes the entropy is f2(z).
Both solutions coincide for F = 2, as can be verified from equation (5.13). There
exists another range of parameters (2 ≥ F ≥ 2

3) where only the first solution
is real valued and correspondingly c1 is a positive number. It is important to
notice that c1 can be interpreted as the central charge from the boundary theory
prospective [100]. Therefore, the boundary EE is expected to be reproduced by
the holographic computation performed by taking f1(z) as entangling surface.
Moreover, in [102] the authors used the field-redefinition invariance to restrict
the admissible entangling surfaces to those with vanishing trace of extrinsic
curvature, thus giving an argument in favor of the first type of solution.

We dedicate the next two sections to investigate what happens in the more
complex backgrounds that NMG provides us.
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5.3 HEE for Lifshitz spacetime in NMG

The next solution of New Massive Gravity that we want to consider is the
Lifshitz background. The isometry of the Lifshitz spacetime can be holographi-
cally mapped to the symmetry of the dual non-Lorentz invariant boundary the-
ories [103, 104]. It thus offers a substantial understanding of strongly coupled
nonrelativistic conformal field theories characterizing a large class of condensed
matter systems [105–107]. Moreover, for the purposes of our analysis, this case
presents a lot of technical similarities to the AdS spacetime. Therefore, it seems
that the Lifshitz spacetime is the natural choice to show the existence of new
entangling surfaces in a more general context.

It is important to notice that, being an asymptotically non-AdS background,
the Lifshitz spacetime needs special attentions for holographic computations.
In the context of the Einstein-Hilbert theory coupled to matter, the authors
of [108] have constructed the bulk-to-boundary dictionary for the Lifshitz space-
time by treating it as a deformation over AdS. In particular, the authors
have considered a perturbative expansion with respect to the Lifshitz expo-
nent around unity. In this scenario, the dual boundary theory is a deformed
conformal field theory consistent with the Lifshitz symmetry. In the following
analysis, with the similar spirit of [108], we perform the bulk analysis of the
entanglement entropy for the Lifshitz spacetime in the context of NMG. An-
other example of obtaining the holographic entanglement entropy for Lifshitz
spacetime in Lovelock gravity can be found in [109].

The metric of the Lifshitz background is given by

ds2 = gµνdx
µdxν =

L̃2ν

z2ν
dt2 +

L̃2

z2
(dz2 + dx2) , (5.17)

where L̃ is the Lifshitz radius and ν is the Lifshitz exponent. Note that the
limit ν → 1 leads to the AdS spacetime discussed in the previous section. As
explained in [110], the exponent ν and the NMG parameters are related by

m2L̃2 =
1

2

(
ν2 − 3ν + 1

)
,

L̃2

L2
=

1

2

(
ν2 + ν + 1

)
. (5.18)

The extremal surface, parametrized by the following relations

t = 0 , x = f(z) , (5.19)



128 CHAPTER 5. HOLOGRAPHIC ENTANGLEMENT ENTROPY

leads to the induced metric

ds2
h = hµνdx

µdxν =
L̃2

z2

(
f ′(z)2 + 1

)
dz2 . (5.20)

We note that the induced metric in the present context is structurally identical
to the one we find in the AdS3 spacetime. Although the timelike orthogonal
vectors, defined on the co-dimensional two entangling surface, posses an explicit
dependence on the Lifshitz exponent ν

nα 1 =

(
0,− L̃f

′(z)

z
√
A
,
L̃

z
√
A

)
, nα 2 =

(
L̃ν

zν
, 0, 0

)
, (5.21)

where A = f ′(z)2 +1, the components of the extrinsic curvature are the same as
before. As the metric is diagonal, we are only interested in the diagonal terms
of the extrinsic curvature. Since we have a Killing vector in the time direction,
the component of the extrinsic curvature in that direction, K2

αα, vanishes. On
the other hand, once we compute K1

αα, it is easy to verify that K1
tt = 0 and

K1
rr = f ′(z)2K1

zz. So the component we need to know is

K1
zz =

L̃

z2A5/2

[
f ′(z)3 + f ′(z)− zf ′′(z)

]
, (5.22)

leading to

K2 =
1

L̃A3

[
f ′(z)3 + f ′(z)− zf ′′(z)

]2
. (5.23)

Since the Lifshitz and the Anti-de Sitter spacetimes differ only in the gtt com-
ponent and we are working on a time slice, there is no difference in the induced
metric and in the extrinsic curvature of the two cases. However the intrinsic
curvature is a quantity that does not depend on the embedding, therefore it
presents differences with respect to the AdS3 case, namely

R = −
2
(
ν2 + ν + 1

)
L̃2

, R|| = −

[
ν
(
νf ′(z)2 + 1

)
L̃2A

+

(
ν2 + ν + 1

)
L̃2

]
. (5.24)

Collecting all these results together and plugging them back into (5.3), we
obtain the entropy functional for the Lifshitz spacetime

SEE =
1

4G

∫
dz
L̃

z

√
A

[
1 +

2

ν2 − 3ν + 1

[
−
ν
(
νf ′(z)2 + 1

)
A

+

(
ν2 + ν + 1

)
2

− 1

2A

(
f ′(z)3 + f ′(z)− zf ′′(z)

)2]]
.(5.25)
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Upon minimizing the functional (5.25) in the same way as described in sec-
tion 5.2, it leads to the following highly nonlinear differential equation

(2ν − 1)f ′(z)9 + (2ν(ν + 3)− 3)f ′(z)7 + (6ν(ν + 1)− 3)f ′(z)5

+
(
4ν2 − 6ν + 3

)
zf ′(z)6f ′′(z) + z

[
− 5z2f ′′(z)3 − 2ν2f ′′(z)

+2z
(
zf (4)(z) + 2f (3)(z)

)]
+f ′(z)3

(
−5z2f ′′(z)

(
4zf (3)(z) + 3f ′′(z)

)
+ 6ν2 + 2ν − 1

)
+f ′(z)

(
2ν2 − 5z2f ′′(z)

(
4zf (3)(z) + 3f ′′(z)

))
+zf ′(z)2

(
30z2f ′′(z)3 + (3− 6ν)f ′′(z) + 4z

(
zf (4)(z) + 2f (3)(z)

))
+2zf ′(z)4

(
3(ν − 1)2f ′′(z) + z

(
zf (4)(z) + 2f (3)(z)

))
= 0 . (5.26)

In [95], it is stated that this equation is solved by the geodesic, specifically

f(z) =
√
z2

0 − z2 , (5.27)

constrained by a causal boundary condition [111]. However, if we insert the
ansatz (5.27) in this nonlinear equation of motion (5.26), we obtain

− 4z6
0(ν − 1)νz3

(z2
0 − z2)9/2

= 0 . (5.28)

It is clear that for a generic non-zero ν, (5.27) is not a solution of (5.26) except
for the case ν = 1. For ν = 1 we recover the AdS3 spacetime as a special limit
of the Lifshitz spacetime (in Appendix C we reproduce the same result using
the notation of [95]).

Since obtaining an exact solution for a nonlinear fourth order differential
equation like (5.26) is generically difficult, we rather aim to solve the equation
using a perturbative technique. We already know that for ν = 1 we have an
exact solution (5.27) of the differential equation (5.26). We consider ν = 1 + δ,
where δ is a tiny positive deformation around unity and by following [93]1 we
introduce the ansatz function

ν = 1 + δ , f ′(z) = h′(z)
(

1 + δg(z) + δ2n(z) +O(δ3)
)
, (5.29)

1Another application of this method can be found in [112]
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where h(z) =
√
z2
t − z2 is the geodesic and zt is the turning point. We choose

the solution (5.12) for the AdS spacetime because, by taking the limit from
Lifshitz to AdS (i.e by setting δ = 0), we end up in a region of the parame-
ter space where the second solution (5.13) proposed in section 5.2 is not well
defined (F = 2/3 in the language of section 5.2). The downside of our choice
is that the AdS central charge and the extrinsic curvature (at 0th-order in δ)
are vanishing. After imposing our ansatz, we also notice that g(z) starts to
appear in the expansion of the differential equation at second order, while n(z)
starts to appear at third order, and so on. Consequently, by expanding the en-
tropy functional, the first nontrivial contribution to the entanglement entropy
is coming at second order.

This ansatz will simplify the differential equation whose solution is the de-
sired entangling surface. Following [93], we can easily determine the surface by
imposing a few boundary conditions. In particular, we require z0 to be finite
and real. Moreover, we require that our surface is anchored to the region of our
interest. To do so, the condition we employ is z0 =

∫ zt
0 f ′(z). Finally, we also

require that the turning point approaches to 0 when the size of the entangling
region z0 → 0.

Thanks to this approach, the differential equation becomes linear and is
solved by

f ′(z) = − z√
z2
t − z2

[
1 + δ

(
z2
t (1− 2 log zt)

2(z2
t − z2)

+
z2
t (2 log z − 1)

2(z2
t − z2)

)
+δ2 n(z) +O(δ3)

]
, (5.30)

where the contribution at the second order is given by,

n(z) =
z2
t

(
(z2
t−z2)

2
+z2((z2

t+2z2)(log(zt)−log(z))−z2
t+z2)(log(zt)−log(z))

)
2(z3−z z2

t )
2 . (5.31)

However, since (5.31) is not contributing at the leading order, we will not include
it in the present analysis. By integrating our result, we can obtain the form of
the entangling surface,

f(z) =
√
z2
t − z2 (5.32)

+2ztδ

[
log z − zt log(z/zt)√

z2
t − z2

− log

(
zt +

√
z2
t − z2

)]
+O(δ2) .
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Now we just need to determine our turning point zt as a function of z0, i.e. the
size of the entangling region of our interest. By requiring that z0 =

∫ zt
0 f ′(z),

we obtain
zt = z0(1 + 2δ log 2 ) +O(δ2) . (5.33)

It is then clear that the turning point zt is located deeper in the bulk with
respect to the one reached by the geodesic (see Fig. 3). Notice also that, as it
is expected, if we take the limit z0 → 0, the turning point zt → 0.

Figure 3
The entangling surface (in black) is going deeper in the bulk with respect to the geodesic (in

dashed red)

Substituting these results back into the functional (5.25), we obtain the
universal term of EE for the Lifshitz spacetime

SLifEE =
cLif

3
log
(z0

ε

)
,

cLif
3

=

[
0AdS − δ2

√
3

2

L

2G
+O(δ3)

]
. (5.34)

Since our expansion takes place around the chiral point of New Massive Gravity,
the leading contribution (indicated as 0AdS to keep track of it) is vanishing and
the equations are extremely simplified. However, we can see how the entangling
surface is necessarily deformed around the geodesic in order to extremize the
entropy functional.
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From the boundary field theory point of view, the difficulties in computing
the central charge for the asymptotic Lifshitz symmetry and arbitrary Lifshitz
exponent have been addressed in [113]. The technical reason behind this ob-
stacle is the appearance of infinities while integrating over the non-compact x
direction to obtain the conserved charge of the symmetry algebra2. It is beyond
the scope of our present analysis to check our holographic results for Lifshitz
spacetime from the point of view of the boundary theory. However, from our
holographic analysis, we are able to propose an approximate result of central
charge as a coefficient of the leading UV logarithmic divergent term in the HEE.

Interestingly, although the entangling surface reported in [95] does not ex-
tremize the entropy functional (see Appendix C), the expansion around ν = 1
of their result matches the one here derived. The reason is that in proximity
of the boundary (where the main contribution to EE is coming from) the two
entangling surfaces do not present relevant differences, as already commented
in [115].

Our analysis requires the existence of an exact solution at the zeroth order
in δ, that is only known for ν = 1, i.e. at the chiral point. In order to explore a
more complicated case, we now turn our attention to the Warped AdS spacetime
as a solution of New Massive Gravity.

5.4 HEE for Warped AdS3 Spacetime in NMG

We dedicate this section to study the effect of higher-derivative contributions
on the holographic entanglement entropy by exploring a WAdS geometry. Such
spacetime has received great attention in the context of a non-AdS extension of
holography that allows squashed and stretched deformations of the AdS geom-
etry as a dual gravity spacetime. In the present discussion we are particularly
interested in the timelike Warped AdS3 background having an asymptotic sym-
metry as SL(2, R)×U(1). The boundary theory of such a background has been
proposed to be a warped conformal field theory [116,117] describing a particular
class of non-Lorentzian physical systems.

The metric of the timelike WAdS3 can be characterized by the 3-dimensional

2A recent attempt can be found in [114].
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version of the Gödel spacetime

ds2 = −dt2 − 4ωrdtdφ+ 2(r(`−2 − ω2)r2)dφ2 +
dr2

2(r(`−2 + ω2)r2)
, (5.35)

that solves the NMG equations of motion, provided that

m2`2 = −19ω2`2 − 2

2
,

`2

L2
=

11ω4`4 + 28ω2`2 − 4

2(19ω2`2 − 2)
. (5.36)

In the particular case that ω2`2 = 1, we find again the AdS3 spacetime. In
order to simplify the discussion, following [118] and setting ` = 1, we perform
the following change of coordinates,

θ = t− φ , ρ2 = 2r . (5.37)

With this change of coordinates, the metric takes the following form

ds2 = −
(

1 + (2ω − 1)ρ2 − (1− ω2)
ρ4

2

)
dt2

+2

(
(ω − 1)ρ2 − (1− ω2)

ρ4

2

)
dtdθ

+

(
ρ2 + (1− ω2)

ρ4

2

)
dθ2 +

dρ2

1 + (1 + ω2)ρ
2

2

. (5.38)

We choose again the boundary parametrization to describe the entangling sur-
face

t = 0 , θ = f(ρ) . (5.39)

The curious reader will find the details of the calculation in Appendix D.
Intuitively, one can imagine that the complexity of the equations is forcing us
to look again only for approximate solutions. It is important to notice that our
choice of coordinates is made in order to recover the AdS results in the limit
ω → 1 at any given step of the calculation. Here we consider a particular ansatz
signifying a deformation of the entangling surface for pure AdS3 spacetime in
the global coordinate system, namely

ω = 1 + δ , f(ρ) = h(ρ) + δg(ρ) + δ2n(ρ) +O(δ3) , (5.40)
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where δ is a positive small deformation and

h(ρ) = tan−1

( √
ρ2 − ρ2

t

ρt
√
ρ2 + 1

)
, (5.41)

is the geodesic in the AdS3 background (in global coordinates), i.e the en-
tangling surface if we set ω = 1. Also in this case, we choose the geodesic of
the AdS3 spacetime since, by taking ω = 1, we fall down in a region of the NMG
parameter space where the second solution proposed in [94] is not well-defined.

Unlike the previous example, the function g(ρ) is contributing already at
the linear order in δ to the Entanglement Entropy and we are going to ignore
higher order contributions. However, in order to determine the profile of g(ρ),
we need to solve the differential equation at order δ2. The reason is again
that our ansatz, with the AdS3 geodesic at leading order, is simplifying a lot
the differential equation, forcing us to expand up to second order to find the
equation that constraints the profile g(ρ).

By imposing the same boundary conditions of the previous two sections, we
obtain

g(ρ) =
1

2

((ρ2 + 1
)((ρ2

t+1)
3

ρt
− ρt

(
4ρ2

t + 5
)
ρ2
∞

)
(
ρ2
t + 1

)2
ρ2
∞

+
ρt
(
4ρ2

t + 5
)
ρ2
∞ + 2ρt

(
ρ2
t + 1

)
ρ2
∞ log

(
ρ2
t + 1

)
− (ρ2

t+1)
3

ρt(
ρ2
t + 1

)
ρ2
∞

+
ρt
√
ρ2 − ρ2

t

(
ρ2
t

(
4ρ2 + 3

)
+ 5ρ2 + 4

)(
ρ2
t + 1

)2√
ρ2 + 1

−4ρt log

(√
ρ2 − ρ2

t +
√
ρ2 + 1

))
, (5.42)

where the turning point ρt is determined by solving the transcendental equation

∆θ

2
= tan−1 1

ρt
− 2δρt log ρ∞ . (5.43)

Here ∆θ is the size of the entangling region of our interest at the UV cut-off ρ∞
(in other words, it is the analogue of the z0 of previous sections).
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Now that we have all the ingredients, we can finally write down the universal
contribution of the warping parameter to the entanglement entropy. We find

SWEE =
cW
3

log
(ρ∞

∆θ

)
,

cW
3

=
4

17G
+ δ

52

289G
+O(δ2) . (5.44)

In [119], by exploring the asymptotic analysis of the WAdS3 spacetime in NMG,
the authors have conjectured a dual WCFT2. It is interesting to notice that, by
expanding their result around ω = 1, we can consistently reproduce the central
charge we obtain in eq. (5.44).

In this case, the leading term (the order δ0 in the expansion of the central
charge, corresponding to the AdS spacetime) is non-vanishing and we can ap-
preciate the contribution coming from the warping parameter already at first
order. The nature of the deformation of the entangling surface is different from
the one showed in section 5.3. Although in both cases we are studying a small
deformation around the exact solution of the AdS spacetime, in this case the
leading order is not coming from the geodesic of the spacetime under exami-
nation, therefore there is no reason to compare the turning points of the two
solutions.

5.5 Summary

In this chapter, we have explored the role of higher derivatives in the context
of a holographic computation of entanglement entropy (EE). In particular, we
showed the deformation in the geometry of the entangling surface due to the
presence of higher derivatives in the gravity theory. Within the perturbative ap-
proximation, we proved the existence of new entangling surfaces for the Lifshitz
and the timelike WAdS3 backgrounds in the NMG theory.

The main purpose of this holographic study in the Lifshitz background is
to show that, unlike the AdS3 case, the Lifshitz geodesic is not the correct
entangling surface that extremizes the entropy functional. Moreover, we have
applied the similar holographic technique to the case of timelike WAdS3 space-
time and found an entangling surface that extremizes the entropy functional.
Consequently, we compute the leading logarithmic term of holographic entan-
glement entropy and show that our result is consistent with the expectation of
the boundary Warped CFT2. In both analyses, we constructed new entangling
surfaces as perturbative deformations over the AdS3 geodesic.





Conclusions

We began this thesis by asking ourselves what it would mean to attempt to
gain a better understanding of the universe. We decided to tackle this problem
from the angle of a theoretical physicist who is trying to explore the nature of
the gravitational interaction. As briefly reviewed in Chapter 2, the study of
gravity has been characterized by several twists and turns, and it is still not
free of mystery. One of these twists was the formulation of the holographic
principle, born within the context of the study of the properties of black holes
and nowadays being applied in many different fields.

In our search for a better understanding of this principle, we have ended
up focusing on a fascinating correspondence between different theories. Our
approach was to study the effects of adding a specific set of (higher derivative)
terms, thus modifying the theory that lies on one side of the correspondence. In
doing so, it was inevitable that technical obstacles, as well as a richer range of
behaviors, would be encountered. Therefore, the main goals were to observe any
new feature our model may have introduced, to overcome any technical obstacle
to the best of our abilities, and, consequentially, provide potential hints for a
deeper understanding of this mystery.

In a way, we were performing experiments on a theoretical model by extend-
ing it and studying its new properties, or by using it as a playground to study
a specific physical quantity, thus eventually obtaining interesting hints about
the existence of new features characterizing the behavior of this quantity. Our
laboratory, our playground, was a theory called New Massive Gravity (NMG)
and the choice matched our needs because NMG maintains a certain richness
despite its simplifications, as we have seen in Chapter 2 and, more generally, in
the results presented in this thesis.
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Naturally, one should not think for a moment that this is the only path to
explore gravity supplemented with higher derivative terms. In the introduction,
for example, we saw how in the late 1970s these theories proved to be useful
in the study of quantum gravity, thus arousing the interest of the scientific
community. In more recent years, it has been suggested that infinite derivative
gravity theories might provide a solution to the cosmological singularity prob-
lem, thus contributing to achieving a better understanding of the inflationary
phase in the early universe [120,121] 3.

In Chapter 3, we followed [53] in the construction of all off-shell Poincaré
supergravity invariants up to mass dimension four and with N = (1, 1) and
N = (2, 0) supersymmetry. To achieve this result, we applied the supercon-
formal tensor calculus. This technique is the backbone of the strategy that we
have employed to obtain the supersymmetric extensions mentioned earlier. The
merit of this construction is that it can be performed almost mechanically by
following the prescribed steps. In addition to finding all the invariants needed
to supersymmetrically extend our model, we studied which combinations of pa-
rameters would allow a ghost-free spectrum about a maximally supersymmetric
vacuum. Due to the non-existence of a specific supersymmetric invariant, we
found that the N = (2, 0) model does not allow a supersymmetric AdS3 vacuum
with a ghost-free spectrum.

While the supersymmetric AdS vacuum solutions have been examined here,
it would be instructive to study the non-supersymmetric AdS vacuum solutions
as well. Moreover, a systematic study of the ghost-free vacua and their stability
under quantum corrections would shed light on the role of extended supersym-
metry and the differences between the two versions of the off-shell N = 2 theory
at the quantum level [53].

In our construction of the vector multiplet actions, we used an arbitrary
function of vector multiplet scalars, as given in (3.71). However, we did not
consider such constructions for the scalar multiplet in this chapter and it would
be interesting to consider the coupling of an arbitrary number of scalar multi-
plets and vector multiplets since that would enable us to construct a large class
of supergravity Lagrangians [123]. Moreover, as already pointed out in [53],
the composite expression we derived for both the scalar and vector multiplet
can also be used to construct matter-coupled higher derivative supergravity

3A more complete review of the topic can be found in [122]
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models. Such theories have attracted a considerable amount of attention in
the context of rigid supersymmetric theories on three-manifolds [75, 124]. The
compensating multiplet used in the construction of N = (1, 1) theory includes
a complex scalar and we have seen how the R-symmetry is fixed once we fix
the dilatations. However, in the case of the N = (2, 0) theory, we gauge fix
dilatations with a real scalar, thus not accidentally fixing the R-symmetry too.
Therefore, one can use this setup to obtain an Einstein-Maxwell theory where
the R-symmetry is dynamically gauged.

In Chapter 4, we have followed [79] and used the Killing spinor analysis
to classify the supersymmetric solutions of the N = (1, 1) extension of New
Massive Gravity with a cosmological constant (CNMG), a particular case of
the model constructed in Chapter 3.

An intriguing problem is to find a supersymmetric Lifshitz black hole. In-
deed, we provided a number of motivations to prove that no field configuration
allows such a solution for our model. However, one could attempt a different
approach. For instance, one could saturate the BPS bound with a U(1) charge
by coupling the N = (1, 1) CNMG model to an off-shell vector multiplet and
repeat the analysis presented in [79].

Moreover, the same procedure presented in this chapter could be applied to
the N = (2, 0) CNMG model introduced in Chapter 3. We have seen how the
model is characterized by a different field content consisting of two auxiliary
vectors and a real scalar as well as the graviton and the gravitino. Given that
the N = (2, 0) theory with matter couplings has new supersymmetric solutions
[57], we would expect that the N = (2, 0) CNMG model will exhibit different
supersymmetric solutions as well. Therefore, it would be interesting to see
what the consequences of the different field content are for the supersymmetric
solutions of the model.

In Chapter 5, we followed [88] and studied the effects of the presence of
higher derivative terms in a holographic computation. In particular, we com-
puted the entanglement entropy (EE) by using a holographic technique and
observed that, in the context of a higher derivative theory such as NMG, there
is a substantial change in the nature of the geometrical object encoding this
particular information. While in the case of pure gravity one must always study
a particular geodesic propagating into the bulk, when higher derivative terms
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are involved other surfaces appear as solutions to the problem.
One may be tempted to view the results presented in [88] as an indication

that the EE is increased or decreased as one turns on the higher derivative
contributions. We hereby present an argument for not making such comparison
in the context of our present holographic analysis.

• As pointed out at the end of section 5.2, the correct result is the one
obtained by the geodesic, further explanation of why the second result,
which was providing a lower entanglement entropy, should be discharged
can be found in [102].

• Regarding the Lifshitz case, it is not appropriate to interpret the result
as a reduction in the EE, since the 0th order, i.e. the geodesic (both
of the Lifshitz and the AdS spacetime), is not an admissible surface for
computing the EE in Lifshitz spacetime (see equation 5.28) 4.

• For the WAdS3 spacetime, we can interpret our result as a perturbative
enhancement of the holographic entanglement entropy due to warping
of the AdS spacetime. However, the comparison is not very meaningful
since the entangling at the zeroth order does not represent any particular
surface for the WAdS3 spacetime (being simply the AdS geodesic).

In [115], the authors showed how the presence of higher derivative terms
in the gravity theory does not change the structure of the divergences in the
entanglement entropy with respect to the Einstein gravity case. However, since
the backgrounds under examination are not solutions to pure Einstein gravity,
we find it more appropriate to show the shifts in the central charges explic-
itly. These changes in the shape of the entangling surface, as well as in the
coefficient of the leading divergence in the entanglement entropy, are present
exclusively because we are taking into account the higher derivative terms. For
this purpose, the Lifshitz case, presented in section 5.3, is a perfect example,
since the surface determined by ignoring the higher derivative terms (i.e. the
geodesic) is not extremizing the entropy functional.

As suggested in [101], the technical reason behind the emergence of multi-
ple entangling surfaces is that we are unable to impose a sufficient number of
boundary conditions to solve our differential equations. In [111], the authors

4Further studies on this case can be found in [114], where the authors approach the problem
from the field theory side
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proposed the so-called free-kick condition in order to solve the problem in the
context of hairy black holes as solutions of NMG. However, such a condition
constrains the entangling surface to be the geodesic at its turning point and we
can find counter examples both in [94] and in the analysis presented here.

We believe that the central question to be addressed in the near future is:
how can we give a physical reason that solves such a technical problem? We
are now providing explicit (although approximate) solutions and we hope, as
a result, that this work will pave the way for a discussion to find a rigorous
method to solve such problems.

In [125], the computation of the holographic entanglement entropy for WAdS
spacetime has been investigated in the light of non-AdS holography. It would
be very interesting to check whether the non-AdS correction considered in [125]
can be consistently implemented together with higher derivative contribution of
the NMG theory. Another interesting study on this topic is presented in [126].
Moreover, the same kind of analysis can be performed for geometries with a
horizon (i.e. black holes), which will impose a limit on how deep we can push
the entangling surface into the bulk, thus providing more hints on the nature
of this geometric object.

The question may now arise: have we arrived at a better understanding
of the universe after 150 pages of hypotheses, calculations, and discussions?
Understanding the universe is not a match against a problem that you may win
or lose. It is a relentless drive that has to push every step, every abstraction, and
every assumption. It is a quest that may take you far from everyday reality but
that has to remain true to it. Here, we provided a new theory and clarified an
effect of the presence of higher derivatives. Our results can be used in multiple
directions, as we have just seen, and thus will hopefully fit in with the quest
for understanding, or at least help to clarify, some deeper questions.
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Samenvatting

De afgelopen eeuw werd gekenmerkt door twee belangrijke periodes: de eerste
helft, waarin revolutionaire theorieën onze kijk op de natuur compleet veran-
derden, en de tweede helft, waarin men diezelfde theorieën gebruikte om de
verborgen elegantie van de fundamentele interacties bloot te leggen. Dit is natu-
urlijk een enigszins gesimplificeerde weergave van één van de meest (zo niet dé
meest) vruchtbare periodes in de geschiedenis van de natuurkunde. Echter, men
kan het als volgt beschrijven: uitzonderlijke geesten ontwikkelden allereerst een
reeks aan concepten en theorieën die uiteindelijk als hoeksteen voor de moderne
natuurkunde gingen fungeren (namelijk zogenaamde kwantumveldentheorieën),
waarna andere evenzo briljante geesten diezelfde hoeksteen gebruikten om een
breed scala aan fysische fenomenen op een eendrachtige manier te beschrijven.
Zo kon men uiteindelijk drie fundamentele krachten (namelijk de elektromag-
netische kracht, en de zwakke- en sterke kernkrachten) in dezelfde taal beschri-
jven.

Genspireerd door de mogelijkheid om steeds meer fysische fenomenen op
een al maar eenvoudigere wijze te beschrijven, is men gaan proberen hier de
nog als enige overgebleven kracht aan toe te voegen: de zwaartekracht.

Een belangrijke rol in de zoektocht naar zo’n allesomvattende theorie is
weggelegd voor zwarte gaten: regio’s in de ruimte waar de zwaartekracht zo
sterk is dat zelfs licht er niet aan kan ontsnappen. Inderdaad, dankzij het werk
van Stephen Hawking [1, 2], wordt geloofd dat in die extreme situaties men
zowel zwaartekracht- als kwantumeffecten dient te beschouwen, waardoor de
vervaardiging van een onderliggende alomvattende theorie noodzakelijk is.

Ook al loopt met bij elke tot nu toe ondernomen poging voor het formuleren
van zo’n theorie tegen grote theoretische en technische obstakels aan, heeft
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het onderzoek naar zwarte gaten geleid tot een van de grootste conceptuele
revoluties van de laatste jaren: de formulering van het holografische principe.

Dit principe werd als eerst geopperd door Gerard ’t Hooft [3] en ver-
volgens genterpreteerd als een eigenschap van de snaartheorie door Leonard
Susskind [4]. Het principe stelt dat men een volume in de ruimte kan beschri-
jven door slechts de informatie die bevat is in zijn rand te gebruiken. Zoals een
hologram op papiergeld een tweedimensionale weergave is maar niettemin dried-
imensionaal lijkt, kan met een driedimensionaal volume in de ruimte beschrijven
door een geometrisch object in een twee dimensies te beschouwen.

De meest in het oog springende verwezenlijking van het holografische principe
is een vermoeden dat bekend staat als de AdS/CFT correspondentie [5]. Dit ver-
moeden wordt ook wel ijk/zwaartekracht dualiteit genoemd en poneert een re-
latie tussen twee zeer verschillende theorieën. Aan de ene kant van de correspon-
dentie staat een zwaartekrachttheorie in N dimensies, met aan de andere kant
een hoekgetrouwe veldentheorie in N − 1 dimensies. De mogelijkheid om een
theorie van de zwaartekracht aan een veel beter begrepen kwantumveldentheo-
rie te koppelen is fascinerend: het stelt ons in staat om de n uit te drukken in de
ander, volledig gebruikmakend van het eerdergenoemde holografische principe.

Ondanks het feit dat er nog geen formeel bewijs van de correspondentie is,
is hij de afgelopen 20 jaar uitvoerig bestudeerd, met als gevolg dat [5] het op
n na vaakst geciteerde artikel is in de geschiedenis van de hoge energie fysica.
De voornaamste reden hiervoor is dat het een krachtig hulpmiddel kan zijn
bij het bestuderen van sterk gekoppelde systemen. Dergelijke systemen vor-
men normaal gesproken een uitdaging omdat men de standaard technieken als
storingsrekening er niet op kan toepassen. Het opmerkelijke is dat de correspon-
dentie zegt dat een sterk gekoppelde theorie duaal is aan een zwak gekoppelde
theorie die dus wiskundig gezien makkelijker te hanteren is.

De correspondentie is uitvoerig toegepast op allerlei systemen, maar men
kan zich afvragen wat precies de grenzen zijn van de correspondentie, welke
beperkingen men kan tegenkomen en wat men hier vervolgens uit kan opmaken.
Dit proefschrift houdt zich hier mee bezig aangezien we gebruik zullen maken
van holografie in de context van een gemodificeerde zwaartekrachttheorie (om
precies te zijn, een zwaartekrachttheorie met hogere orde afgeleiden), waarmee
we dus buiten de directe reikwijdte van de AdS/CFT correspondentie treden.

Zwaartekrachttheorieën met hogere afgeleiden is men gaan bestuderen om-
dat ze de mogelijkheid geven om Einstein’s theorie uit te breiden door een
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beschrijving te geven van meer algemene fysische effecten, zoals bijvoorbeeld de
voortplanting van gravitonen met massa. Daarbij komt dat de zoektocht naar
een renormaliseerbare zwaartekrachttheorie heeft geleid tot de gedachte dat
Einstein’s theorie opgevat dient te worden als een effectieve theorie en daarmee
gevoelig is voor hogere orde correcties. Dergelijke correcties zullen steeds belan-
grijker worden naarmate the energieschaal toeneemt [6]. De interesse in deze
theorieën nam toe nadat men had laten zien dat men een renormaliseerbare
theorie kan verkrijgen door alle mogelijke kwadratische krommingstermen toe
te voegen aan Einstein’s theorie [7]. Echter, de prijs die men hier voor betaalt
is dat men tegelijkertijd spookdeeltjes toevoegt.

Met de komst van snaartheorie als een mogelijke consistente kwantumzwaar-
tekrachttheorie, hebben dergelijke theorieën met hogere afgeleiden nog meer in
de theoretische natuurkunde. Eén interessante uitkomst is dat perturbatieve
snaartheorie niet alleen de Einstein-Hilbert actie bevat, maar ook termen van
hogere orde. Zo is bijvoorbeeld laten zien dat dergelijke termen een mechanisme
voor de breking van supersymmetrie leveren [8].

Supersymmetrie is één van de steunpilaren van snaartheorie en geeft een re-
latie tussen bosonen en fermionen die ons, zoals we in Hoofdstuk 1 zullen zien, in
staat stelt interne symmetrieën met die van de ruimte-tijd te combineren. Het
levert ook een interessante theoretische (en experimentele) uitdaging omdat de
symmetrie gebroken dient te zijn, aangezien men deze niet heeft geobserveerd
door middel van experimenten. Het bestuderen van mechanismes voor de brek-
ing van supersymmetrie door middel van termen met hogere afgeleiden kan licht
werpen op het belang van deze theorieën.

In de context van holografie kunnen zwaartekrachttheorieën met hogere
afgeleiden een nuttig instrument zijn om de grenzen van de AdS/CFT cor-
respondentie mee te onderzoeken. Door aan de ene kant van de dualiteit de dy-
namica en andere eigenschappen te veranderen, hoopt men te kunnen bepalen
hoe die verandering doorwerken aan de andere kant. Aangezien het langetermi-
jndoel is de aard van de connectie tussen theorieën te begrijpen, zou een meer
algemene kijk hierop een grondiger inzicht kunnen leveren.

Een ander hulpmiddel waar we in dit proefschrift gebruik van zullen maken
om mogelijke verborgen eigenschappen van de dualiteit te ontdekken, is de zoge-
naamde verstrengelingsentropie (VE). Het is welbekend dat als een verzameling
deeltjes met elkaar interacteert we hun kwantumstaten niet afzonderlijk kunnen
beschrijven maar alleen als geheel samengenomen, ongeacht hoever de deeltje
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van elkaar verwijderd zijn. Dit fenomeen noemt met kwantumverstrengeling en
de VE geeft de mate van verstrengeling weer daar het een uitdrukking is van
de hoeveelheid informatie die verloren gaat wanneer een deel van het kwantum-
systeem niet meer toegankelijk is.

VE is een interessante grootheid die in verscheidene velden optreedt. Zo
speelt het bijvoorbeeld een cruciale rol als ordeparameter bij kwantumfasetran-
sities in allerlei fysische situaties [9]. Vanuit een meer praktisch oogpunt is
duidelijk geworden dat een begrip van de mate van correlatie nuttig is om een
kwantumgrondtoestand efficiënnt weer te geven, wat onze klassieke comput-
ers helpt om kwantumsystemen te beschrijven. Omgekeerd kan men zelfs een
kwantumfase identificeren door te kijken naar hoe complex het is deze compu-
tationeel te beschrijven.

Zoals we in Hoofdstuk 1 zullen zien, zijn er nogal wat uitdagingen wat be-
treft het daadwerkelijk berekenen van de VE. Juist hier helpt holografie ons
door deze kwantumeigenschap van materie te koppelen aan een geometrisch
object in een zwaartekrachtstheorie die significant eenvoudiger te berekenen
is. Omgekeerd kan VE het idee van holografie helpen omdat VE een universele
grootheid is die in elk kwantumsysteem gedefinieerd kan worden en daarmee dus
een interessante grootheid is om holografie in verschillende situaties te bestud-
eren.

De mogelijk geometrische grootheden te relateren aan de kwantumeigen-
schappen van materie is slechts n van de fascinerende aspecten van het bestud-
eren van de VE van een systeem. We kunnen ook proberen de grenzen hier-
van beter te bepalen door het toe te passen in meer algemene situaties zoals
gegeven door zwaartekrachttheorieën met hogere afgeleiden. We zullen zien dat
de aanwezigheid van hogere afgeleiden niet alleen een effect heeft op numerieke
waarden (zoals natuurlijk te verwachten is wanneer men een aanpassing doet),
maar daarnaast de gehele aard van de geometrische grootheid veranderd die
men holografisch gezien associeert met de VE.

Hoofdstuk 1 introduceert de twee al eerder genoemde protagonisten van dit
proefschrift: supersymmetrie en verstrengelingsentropie. Deze zullen gebruikt
worden als hulpmiddelen om onze modellen te onderzoeken, uit te zoeken welke
nieuwe mogelijkheden we wellicht hebben, en om inzicht te bieden in de grenzen
die we mogelijk tegen kunnen komen. We zullen niet al te veel details geven
maar meer de nadruk leggen op de onderliggende ideeën.

In Hoofdstuk 2, het laatste introductiehoofdstuk, wordt een specifieke zwaar-
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tekrachttheorie met hogere afgeleiden, namelijk New Massive Gravity (NMG),
gëınntroduceerd die als speelveld zal dienen voor ons onderzoek. We zullen
hierbij een pad volgen dat begint bij de basisprincipes van de Algemene Rela-
tiviteitstheorie en leidt tot de mogelijkheid om deze principes te realiseren in
een simpeler model. Gaandeweg zullen we het probleem vereenvoudigen door
het aantal dimensies te verlagen alvorens termen met hogere afgeleiden toe te
voegen om, ondanks de simplificaties, een breder scala aan fysische effecten te
beschrijven. Pas daarna zullen we de eigenschappen van NMG bestuderen en
zijn we gereed om in het overige deel van het proefschrift binnen deze theorie
te werken.

Het eerste originele werk kan men vinden in Hoofdstuk 3. Hier zullen we
supersymmetrische uitbreidingen van New Massive Gravity construeren. Er zal
een overzicht van de methode worden gegeven alsook de details die leiden tot het
eindresultaat. Het lezen wordt vergemakkelijkt doordat we de blauwdruk van
onze methode zullen volgen, waardoor duidelijk wordt hoe elk tussenresultaat
bijdraagt aan het construeren van de theorie.

Zodra je een nieuwe theorie hebt geformuleerd ligt het voor de hand zijn
oplossingen te bestuderen. Dit zullen we doen in Hoofdstuk 4, waar we een aan-
tal voordelen van het werken met supersymmetrische theorieën aanstippen. In
plaats van de bewegingsvergelijking op te lossen en wat vaak nogal een uitdaging
is, kan men ook andere objecten bestuderen, namelijk de zogenaamde Killing
spinoren, die helpen bij het classificeren van de oplossingen. Vanuit dat oogpunt
zullen we eerst bekijken hoe men deze objecten kan vinden en daarmee dus ook
de supersymmetrische oplossingen van de theorie zoals geconstrueerd in Hoofd-
stuk 3. Hier zal ook duidelijk worden hoe de termen met hogere afgeleiden een
zekere rijkdom introduceren in de oplossingen.

Zoals verwacht kan men met de aanwezigheid van termen met hogere afgelei-
den nog een interessant resultaat verkrijgen door de verstrengelingsentropie via
een holografische benadering te bestuderen. Hoofdstuk 5 is gewijd aan het
toepassen van de concepten zoals gëınntroduceerd in Hoofdstuk 1 op de in-
gewikkeldere context van NMG. We zullen holografie toepassen op theorieën
met hogere afgeleiden, opmerken welke nieuwe moeilijkheden dit met zich mee-
brengt en tenslotte zien welke interessante resultaten verkregen kunnen wor-
den door de mogelijkheid om met rijkere geometrieën te werken dan NMG als
oplossingen toestaat.
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A
Complex Spinor Conventions

The metric signature is (−,+,+). The gamma matrices satisfy the Clifford
algebra {

γa, γb
}

= 2ηab, (A.1)

and the identities

(γµ)† = γ0γµγ0, (γµ)T = −CγµC−1, (γµ)∗ = BγµB−1 , (A.2)

where C is the charge conjugation matrix and B is a unitary matrix with the
following properties

CC† = 1 , CC∗ = −1 , CT = −C . (A.3)

C = iBγ0 , BB† = 1 , BB∗ = 1, BT = B . (A.4)

For Dirac spinors, there are two different definitions of the conjugate which are
given by [60]

ε̄ = iε†γ0, ε̃ = (Bε)∗ . (A.5)

For Majorana spinors, we impose the reality condition ε∗ = Bε and Majorana
conjugation ε̄ = εTC is equivalent to Dirac conjugation ε̄ = iε†γ0.

In order to obtain the flipping rules for bilinears formed by Dirac spinors,
it is useful to decompose a Dirac spinor into two Majorana spinors as εD =
εM1 + iεM2. As a result, we have

(BεD)∗ = εM1 − iεM2 , ε̄D = ε̄M1 − iε̄M2, ε̃D = ε̄M1 + iε̄M2 ,(A.6)
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from which one can obtain

ε̄1Γ (Bε2)∗ = α ε̄2Γ (Bε1)∗ , ε̃1Γε2 = α ε̃2Γε1 , (A.7)

where Γ is any element of the Clifford algebra and α is the corresponding
numerical factor in the Majorana flipping relations. Using the decomposition,
one also gets

ε̃1Γ (Bε2)∗ = α ε̄2Γε1 . (A.8)

Note that this time we get a different type of bilinear, which becomes an im-
portant issue in the closure of the algebra on the scalar multiplet. Namely, the
commutator between two supersymmetries (with parameters ε1 and ε2) leads
to a translation parameter

ξµ3 =
1

2
ε̃2γ

µ (Bε1)∗ − 1

2
ε̃1γ

µ (Bε2)∗ , (A.9)

which can be shown to be identical to the usual translation parameter

ξµ3 =
1

2
ε̄2γ

µε1 −
1

2
ε̄1γ

µε2 , (A.10)

by using (A.8).
The charge conjugation of a spinor is defined by

λC = B−1λ∗ = (Bλ)∗ , (A.11)

and the complex conjugation of bilinears are given by

(χ̄Γλ)∗ ≡ (χ̄Γλ)C = χCΓCλC = χ̃ΓC (Bλ)∗ , (A.12)

(χ̃Γλ)∗ ≡ (χ̃Γλ)C = χ̃CΓCλC = χ̄ΓC (Bλ)∗ , (A.13)

where the charge conjugation of matrices are determined by (Γ1Γ2)C = ΓC1 ΓC2
and γCµ = γµ.



B
Fierz Identities

The elements of the Clifford algebra in 3D are
{

ΓA = 1, γµ
}

with the orthogo-
nality relation Tr

(
ΓAΓB

)
= 2 δAB. Therefore, any 2-dimensional matrix can be

expanded in the basis
{

ΓA
}

as M = 1
2

∑
A Tr (MΓA) ΓA. As a result, the Fierz

identity in 3D is given by

χ̄1 χ2 ε = −1

2
(χ̄1 ε χ2 + χ̄1 γ

aε γaχ2) , (B.1)

from which one can also obtain the relations

χ̄1 γ
aχ2 γaε = −χ̄1 χ2 ε− 2χ̄1ε χ2 , (B.2)

χ̄1 γ
abχ2 γabε = 2χ̄1 χ2 ε+ 4χ̄1 ε χ2 . (B.3)

Whenever flipping relations are applicable, one can also obtain additional iden-
tities by antisymmetrizing eqs. (B.2)–(B.3) with respect to 1←→ 2

χ̃1 γ
aχ2 γaε = −χ̃1 ε χ2 + χ̃2 ε χ1 , (B.4)

χ̃1 γ
abχ2 γabε = 2χ̃1 ε χ2 − 2χ̃2 ε χ1 , (B.5)

which are also true for bilinears of type ε̄1Γ (Bε2)∗. Using (B.4) in (B.1) we
obtain

χ̃1 χ2 ε = −χ̃1 ε χ2 − χ̃2 ε χ1 . (B.6)
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C
Details of the Lifshitz case

We dedicate this appendix to review the calculation presented in [95], using
their notation to avoid confusion. The metric is given by

ds2 = gµνdx
µdxν = − r

2ν

L̃2ν
dt2 +

L̃2

r2
dr2 + r2dφ2 (C.1)

where

m2L̃2 =
1

2

(
ν2 − 3ν + 1

)
,

L̃2

L2
=

1

2

(
ν2 + ν + 1

)
. (C.2)

The determinant of the induced metric, the Ricci scalar and R|| (defined in
eq. (5.4)) are given by

h =
L̃2

r2
+ r2f ′(r)2 ,

R = −
2
(
ν2 + ν + 1

)
L̃2

,

R|| =
(ν − 1)ν

L̃2 + r4f ′(r)2
− 2ν2 + ν + 1

L̃2
. (C.3)

The last term we need is the squared of the extrinsic curvature

K2 =
r4
(
L̃2
(
rf ′′(r) + 3f ′(r)

)
+ r4f ′(r)3

)2

L̃2
(
L̃2 + r4f ′(r)2

)3 . (C.4)
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With this notation, the differential equation to be solved is

r12L̃2f ′(r)6
( (
−4ν2 + 6ν − 3

)
rf ′′(r)− 3(2(ν − 3)ν + 3)f ′(r)

)
−r8L̃4f ′(r)2

[
30r3f ′′(r)3 + (6(ν − 5)ν + 99)f ′(r)3

+5r2f ′(r)f ′′(r)
(

15f ′′(r)− 4rf (3)(r)
)

+2rf ′(r)2
(

3((ν − 2)ν + 19)f ′′(r) + r
(
rf (4)(r)− 10f (3)(r)

))]
+r4L̃6

[
5r3f ′′(r)3 + (2ν(3ν + 7) + 165)f ′(r)3

+rf ′(r)2
(

3(2ν + 87)f ′′(r)− 4r2f (4)(r)
)

+5r2f ′(r)f ′′(r)
(

4rf (3)(r) + 27f ′′(r)
)]

+2L̃8
[
3
(
ν2 − 4

)
f ′(r)− r

((
24− ν2

)
f ′′(r) + r

(
rf (4)(r) + 10f (3)(r)

))]
+(2ν − 1)r16f ′(r)9 = 0 . (C.5)

If we take the entangling surface to be the geodesic

f(r) =
L̃

√
r2L̃2 − r2

t

r rt
, (C.6)

we obtain
4 L̃15r3

t (ν − 1) ν r4(
L̃2r2 − r2

t

)9/2
= 0 . (C.7)

Therefore we can conclude that the geodesic cannot be taken as an entan-
gling surface in a Lifshitz background, since it doesn’t minimize the entropy
functional, except for the case ν = 1, which corresponds to the Anti-de Sitter
spacetime.



D
Details of the WAdS case

In this appendix, we present the details of our calculation of section 5.4. We
choose the boundary parametrization of the entangling surface to be t = 0
and θ = f(ρ). Thus the induced metric is given by

h = ρ2

(
1

2
ρ2
(
ω2 − 1

)
+ 1

)
f ′(ρ)2 +

1
1
2ρ

2 (ω2 + 1) + 1
. (D.1)

We compute the orthogonal vectors

nα 1 = C

(
−

(ω − 1)
(
ρ2(ω + 1) + 2

)
ρ2 (ω2 − 1)− 2

,−f ′(ρ), 1

)
,

nα 2 =

(
−

√∣∣∣∣(ω2 + 1) ρ2 + 2

2− ρ2 (ω2 − 1)

∣∣∣∣, 0, 0
)
,

C =

√
2 ρ√

ρ2 (ρ2 (ω2 + 1) + 2) f ′(ρ)2 + 4
2−ρ2(ω2−1)

, (D.2)

as well as the contributions of the intrinsic curvature (remember that we set
` = 1)

R = −2
(
ω2 + 2

)
, (D.3)

R|| =
2ρ2
(
ρ2(ω2−1)

2
+2(ω2+1)

)
(ρ2(ω2+1)+2)f ′(ρ)2+8(ω2+1)

ρ2(ρ4ω4−(ρ2+2)2)f ′(ρ)2−4
, (D.4)
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and the extrinsic curvature contraction

K2 =
2(

ρ2
(
ρ4ω4 − (ρ2 + 2)2

)
f ′(ρ)2 − 4

)3

[
4ρ2

(
ρ2
(
ω2 − 1

)
− 2
) (
ρ2
(
ω2 + 1

)
+ 2
)2
f ′′(ρ)2

+ρ4
(
ρ2
(
ω2 − 1

)
− 2
) (
ρ2
(
ω2 − 1

)
− 1
)2 (

ρ2
(
ω2 + 1

)
+ 2
)4
f ′(ρ)6

−4ρ2
(
ρ2
(
ω2 − 1

)
− 2
) (
ρ2
(
ω2 + 1

)
+ 2
)2 (

ρ4
(
3ω4 + 2ω2 − 5

)
+3r2

(
ω2 − 3

)
− 4
)
f ′(ρ)4 + 4

(
ρ6
(
ω4 − 1

) (
17ω2 + 25

)
+ρ4

(
38ω4 − 20ω2 − 90

)
− 96ρ2 − 32

)
f ′(ρ)2

+8ρ
(
ρ2
(
ω2 + 1

)
+ 2
) (

5ρ4
(
ω4 − 1

)
+ 2ρ2

(
ω2 − 7

)
− 8
)
f ′(ρ)f ′′(ρ)

−4ρ3
(
ρ2
(
ω2 − 1

)
− 2
) (
ρ2
(
ω2 − 1

)
− 1
)(

ρ2
(
ω2 + 1

)
+ 2
)3
f ′(ρ)3f ′′(ρ)

]
. (D.5)

The merit of our choice of coordinates is that all these quantities, in the
limit ω → 1, are precisely and smoothly the one that one obtain for the AdS3

case (in global coordinates). With these results we can write down the entropy
functional given in the equation (5.3) on the next page



165

SEE =
1

4G

∫
dρ
√
h

[
1− 2

19ω2 − 2

[
3

2

(
ω2 + 2

)
+

1(
ρ2
(
ρ4ω4 − (ρ2 + 2)2

)
f ′(ρ)2 − 4

)3

[
−4ρ2

(
ρ2
(
ω2 − 1

)
− 2
) (
ρ2
(
ω2 + 1

)
+ 2
)2
f ′′(ρ)2

+ρ4
(
ρ2
(
ω2 − 1

)
− 2
) (
ρ2
(
ω2 + 1

)
+ 2
)3 (

ρ2
(
ρ2
(
ω2 − 1

)(
ρ2
(
ω4 − 4ω2 + 3

)
+ 12

)
− 5ω2 − 13

)
− 2
)
f ′(ρ)6

+4ρ2
(
ρ2
(
ω2 − 1

)
− 2
) (
ρ2
(
ω2 + 1

)
+ 2
)2(

ρ4
(
ω4 + 10ω2 − 11

)
− 3ρ2

(
3ω2 + 7

)
− 4
)
f ′(ρ)4

−4
[
ρ6
(
ω4 − 1

) (
25ω2 + 49

)
+ 6ρ4

(
ω4 − 14ω2 − 31

)
−96ρ2

(
ω2 + 2

)
− 32

]
f ′(ρ)2

−8ρ
(
ρ2
(
ω2 + 1

)
+ 2
)(

5ρ4
(
ω4 − 1

)
+ 2ρ2

(
ω2 − 7

)
− 8
)
f ′(ρ)f ′′(ρ)

+4ρ3
(
ρ2
(
ω2 − 1

)
− 2
)(

ρ2
(
ω2 − 1

)
− 1
) (
ρ2
(
ω2 + 1

)
+ 2
)3
f ′(ρ)3f ′′(ρ)

+128
(
ω2 + 1

) ]]]
. (D.6)

To extremize the action, we need to solve the equation of motion derived from
this functional. However, as in the Lifshitz case, the resulting differential equa-
tion is highly non-linear. Therefore, we solve such a complex equation with the
perturbative techniques of section 5.4.
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