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Medial representations have been widely used for many shape analysis and processing tasks. Large and com- 

plex 3D shapes are, in this context, a challenging case. Recently, several methods have been proposed that 

extract point-based medial surfaces with high accuracy and computational scalability. However, the resulting 

medial clouds are of limited use for shape processing due to the difficulty of computing refined medial fea- 

tures from such clouds. In this paper, we show how to bridge the gap between having a raw medial cloud and 

enriching this cloud with feature points, medial-point classification, medial axis decomposition into sheets, 

robust regularization, and Y-network extraction. We further show how such properties can be used to sup- 

port several shape processing sample applications including edge detection and shape segmentation, for a 

wide range of complex 3D shapes. 

© 2015 Elsevier B.V. All rights reserved. 
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. Introduction 

3D shape processing is a topic of rising importance due to devel-

pments in 3D shape modeling and acquisition techniques, such as

tructured light scanners, time-of-flight cameras or surface extrac-

ion from 3D volumetric scans. Such shapes � ⊂ R 

3 are typically rep-

esented by boundary sampling, by polygonal meshes or dense point

louds. Processing such shapes is a vast research area encompassing

nalysis (detecting shape features like edges, flat areas, or thin re-

ions), shape matching and registration, fairing and denoising, and

egmentation. 

While the above-mentioned processing can be done by using the

hape’s surface or boundary ∂�, an alternative way is given by medial

epresentations [44] . Since their introduction by [4] , such represen-

ations have received increasing attention due to their potential to

implify and generalize many shape processing operations. 

Computing medial axes for 2D shapes is a well-understood topic,

ith efficient, robust, and easy-to-use methods [13,28,44,52] . The 2D

edial axis transform (MAT) full encodes a shape’s boundary ∂�

y its medial axis. In contrast, 3D shapes admit two kinds of me-

ial structures: Surface skeletons generalize 2D medial axes and their

ATs to fully capture the shape’s geometry and topology. Curve skele-

ons capture the shape topology as a set of 1D curves, but do not

rovide the full boundary encoding given by the MAT. Hence, curve
✩ This paper has been recommended for acceptance by Punam Kumar Saha. 
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keletons are good descriptors for tubular shapes such as vessel struc-

ures, but are less suited as analysis and processing tools for generic

D shapes. 

Recently, fast and accurate medial-surface computation was made

ossible for complex 3D models of millions of polygons [19,24] .

et, such methods provide only a medial point cloud , which is far

rom sufficient for shape analysis and processing. Indeed, medial sur-

aces have a complex structure, consisting of several so-called medial

heets , or manifolds. Medial points have several types , which describe

he kind of surface points they correspond to via the MAT [15] . Bound-

ries of these curves, mapped via the MAT to shape edges [33,44] ,

an be used for shape segmentation [36] . Curves where sheets meet,

lso called Y-intersection curves, help with shape reconstruction and

atching [7,10,22] . The individual sheets map to separate shape parts,

nabling shape simplification and segmentation. 

While the above medial features can be relatively easily computed

or voxel-based representations [35,36] , their computation for point-

loud medial surfaces is far from trivial [19,21,24,51] . Extracting fea-

ures such as endpoints, branches, and junctions from curve skele-

ons is much easier than for medial surfaces, making the former more

requently used in applications, even though they encode less infor-

ation than the latter. To become effectively useful for real-world ap-

lications, medial-surface point-cloud methods need enhancement

n the sense of classifying medial points, computing separate me-

ial sheets, extracting sheet boundaries and Y-intersection curves,

nd mapping all these higher-level medial features robustly and effi-

iently to the shape surface. 

In this paper, we show how to efficiently and robustly construct

ll above features from medial surface point-clouds, by combining

http://dx.doi.org/10.1016/j.patrec.2015.05.007
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patrec
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patrec.2015.05.007&domain=pdf
mailto:jacek.kustra@gmail.com
http://dx.doi.org/10.1016/j.patrec.2015.05.007
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several input-shape and medial properties. This makes 3D medial

clouds as easy to use as the more commonly used curve skeletons,

and opens the way for using such medial clouds for many shape anal-

ysis and processing applications. 

The structure of this paper is as follows. Section 2 reviews re-

lated work, with a focus on computing high-level features for me-

dial surfaces. Section 3 presents our methods to compute such

features from raw medial clouds. Section 4 illustrates the applicabil-

ity of our computed medial features for part-based and patch-based

shape segmentation and classification. Section 5 discusses our tech-

niques. Section 6 concludes the paper. 

2. Related work 

2.1. Basic definitions 

We first outline the definitions required to introduce and discuss

related work. Given a shape � ⊂ R 

3 with boundary ∂�, we first de-

fine its distance transform DT ∂� : R 

3 → R 

+ 

DT ∂�(x ∈ �) = min 

y ∈ ∂�
‖ x − y ‖ . (1)

The surface skeleton of � is next defined as 

S � = { x ∈ � | ∃ f 1 ∈ ∂�, f 2 ∈ ∂�, f 1 � = f 2 , 

‖ x − f 1 ‖ = ‖ x − f 2 ‖ = DT ∂�(x ) } , (2)

where f 1 and f 2 are two of the contact points with ∂� of the max-

imally inscribed ball in � centered at x , also called feature points

[17,34,48] . The vectors v 1 = f 1 − x and v 2 = f 2 − x are called feature

vectors or spoke vectors [ 9 ], and are locally parallel to ∇ DT ∂� [43] .

The tuple (S �, DT ∂�) is called the MAT of �, and provides a full de-

scription of the boundary ∂�, i.e. allows one to fully reconstruct ∂�

given the MAT. For 3D shapes, S � is a set of manifolds with boundaries

which meet along a set of so called Y-intersection curves [7,10,22] .

The set of all feature points of a skeleton point 

F (x ∈ S �) = { f ∈ ∂�|‖ x − f ‖ = DT ∂�(x ) } (3)

is called the feature transform (FT) of x [17,19] . The cardinality ‖ F ( x ) ‖
of F ( x ) is related to the location of x on skeletal manifolds [15,30]

(see also Fig. 3 ): In the continuous case, points x inside skeletal man-

ifolds, also called A 

1 
2 

points, have exactly two feature points; points

on Y-intersection curves of k ≥ 3 manifolds, also called A 

1 
k 

points,

have k feature points; and points on manifold boundaries, also called

A 3 points, have for F (x ) an entire circle sector or spherical segment,

whose size is proportional with DT ∂�(x ) . F and its inverse F −1 es-

tablish a bidirectional mapping between S � and ∂�, and are thereby

important shape analysis instruments [44] . 

Besides surface skeletons ( Eq. (2) ), 3D shapes also admit so-called

curve skeletons . These are curvilinear descriptors locally centered in

the shape, according to various definitions [46] . Curve skeletons are

effective in capturing the topology of tubular 3D shapes and also allow

a limited reconstruction and part-based segmentation of such shapes

[2,35] . However, they do not provide the full MAT given by surface

skeletons, nor do they capture features such as shape edges or en-

able patch-based segmentation, fairing, or simplification for the more

general non-tubular shape family [16,25,35] . A recent comparison of

curve and surface skeletons is given in [45] . Given the above, we focus

our discussion next on surface skeletons. 

A key component of any skeletonization method is regularization ,

i.e. removing (pruning) from S � all points which encode small-scale

surface features, such as noise. This is usually done by computing

an importance measure μ : S � → R 

+ and next upper-thresholding

it [10,41] . Both local and global measures exist. Local measures can-

not separate locally-identical, yet globally-different, contexts (see e.g.

Fig. 1 in [38] ). Thresholding local measures can disconnect skeletons

[30,43,49] and makes pruning less intuitive [41] . Local measures in-

clude the angle between feature vectors, the distance-to-boundary
1,14,49] , divergence metrics [5,43] , first-order moments [40] , and in-

icators of the multi-valueness of ∇ DT ∂� [ 9 , 47 ]. A good survey of

uch methods is given in [44] . Global measures monotonically increase

rom the skeleton boundary ∂S � inward. Thresholding them yields

onnected skeletons which capture details at a user-given scale.

iklos et al. [25] propose a measure based on the geometric prop-

rties of an union of balls (UoB) approximation of � [16] . Dey

nd Sun propose the medial geodesic function (MGF), equal to the

ength of the shortest geodesic between feature points [11,31] . Re-

iers et al. [38] extend the MGF for surface and curve skeletons using

eodesic lengths and surface areas between geodesics, respectively,

nspired by collapse metrics used to extract 2D multiscale skeletons

13,28,52] . 

.2. Computing medial surfaces and their features 

Many methods have been proposed in the last decade to com-

ute medial surfaces. These can be classified in thinning, field, and

eometric (mesh-based) methods [2,19,25] . Thinning removes ∂�

oxels while preserving homotopy [2,3,29,32] . Thinning is simple

nd fast, but can be sensitive to rigid Euclidean transformations.

ield methods find S � along singularities of DT ∂� or related fields

17,20,23,39,40,43,53] and can be efficiently implemented on GPUs

6,49] . Mesh methods use a surface sampling of ∂� only, which is

heaper and faster than the volumetric sampling of � used by field

nd thinning methods. They include Voronoi diagrams [1,12] and

nding maximally inscribed balls [19,22,24,25] . Given their scalabil-

ty, we focus next on mesh-based methods only. 

Recent mesh-based surface skeletonization methods [19,24] can

xtract highly accurate medial surfaces of complex meshed surfaces

f millions of polygons in subsecond time using GPU acceleration

echniques, and thereby make medial surfaces usable in interactive

ontexts. However, such methods deliver only a medial point cloud ,

.e. , an unorganized set of medial points with two corresponding fea-

ure points. The practical usefulness of such descriptors is quite lim-

ted, as mentioned already in [24] and [19] , since one cannot directly

eason about the relationships between several medial-cloud points

r the relationship of such points with the surface points. We identify

wo classes of challenges in this respect, as follows. 

Feature points: Computing the correct feature transform F

 Eq. (3) ) for each medial point is crucial for several subsequent op-

rations. For instance, any application that uses Giblin’s classifica-

ion [15] requires exactly estimating ‖ F ( x ) ‖ for all x ∈ S �. While this

s relatively easy for voxel-based skeletons [33,36] due to the regu-

ar sampling of both ∂� and S �, this is far from trivial for medial

louds. Incorrect or incomplete estimation of F creates challenges

or all regularization methods that use feature points or feature vec-

ors. Consider for instance the class of MGF methods, which measure

he geodesic distance μ between two given feature points f 1 ∈ F ( x )

nd f 2 ∈ F ( x ) of a medial point x [11,19,38] . A 3 and A 

1 
k,k � =2 

points, in

iblin’s terminology, have more than two feature points. Which pair

 f 1 , f 2 } ⊂ F ( x ) should we use here? Using any such pair breaks off the

ontinuity of μ over S �, which in turn means that we cannot obtain

oise-free and compact medial surfaces by simply thresholding μ. 

Skeleton decomposition: Decomposing the medial surface into

eparate sheets is a key step for using this descriptor for further

hape analysis or classification [44,47] . The same applies to finding

-intersection curves and sheet boundaries, i.e. , the medial scaffold

22] . This decomposition has been previously attempted by using lo-

al medial geometry properties. This is relatively easy to do for finely-

ampled voxel skeletons [37] , leading to using medial surfaces to cre-

te compelling multiscale shape segmentations [36] . Doing all above

or medial clouds is, however, far from trivial. As shown in [21] , us-

ng generic point-cloud segmentation methods for 3D skeletons is

oable, but extremely challenging, since medial surfaces consist of

umerous intersecting manifolds with boundaries, which are hard to
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Fig. 1. Refined skeletal features computed from medial point clouds (top row) and subsequently enabled applications (bottom row). 
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Fig. 2. Skeleton point classification based on fuzzy F τ analysis. The figure is drawn for 

a 2D skeleton, for illustration simplicity. (For interpretation of the references to color 

in this figure legend, the reader is referred to the web version of this article.) 
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apture even by very dense point clouds. In addition, the parameter

ettings in [21] are far from trivial, as they are related to local medial

eometrical properties, such as maximum local connectivity angle . This

dds difficulty in decomposing the medial axis, and requires a case-

y-case parameter followed by a visual check to ensure the medial

xis is decomposed in a satisfactory manner. In this paper, a different

pproach is taken to compute these abstractions. Rather than using

he local geometric properties, the relationships between the medial

oints x i feature vectors f 1 , f 2 and their correspondence to surface

roperties is used. The next sections address this method. 

. Computing refined medial features 

To address the challenges outlined in Section 2.2 , we next present

everal new methods for computing the above-mentioned higher-

evel features from skeletal point clouds. We start by showing

ow to robustly classify medial points following [15] , find skeletal

oundaries and Y-curves, and robustly regularize the medial surface

 Section 3.1 ). We next use these features to robustly segment the me-

ial surface into separate manifolds ( Section 3.2 ). Fig. 1 shows the

teps of our feature-computation pipeline and also the applications

nabled by it. As input for all these operations, we only assume a sur-

ace skeleton represented by an unstructured and unoriented point-

loud having exactly one skeleton point per surface point and exactly

wo feature-points per skeleton point, as computed e.g. by [17,19,24] . 

.1. Medial points classification 

.1.1. Estimating the feature transform 

To classify unstructured medial clouds following [15] , we first

eed to estimate the feature transform F ( x ∈ S �) ( Eq. (3) ). As ex-

lained earlier, F is not directly available in most skeletonization

ethods; in particular, our point-cloud methods [19,24] only com-

ute two feature points per skeleton point. To find all feature points,

e proceed as follows. Let DT x be next a shorthand for DT ∂�(x ) . For

ach skeleton point x ∈ S �, we first find the closest points F τ ( x ) ⊂
� in a radius DT x + τ, where τ is defined as a fraction of ερ∂�(x ) ,

here ρ∂ �( x ) is the average point density on ∂� in a small neigh-

orhood around f 1 ( x ) ∪ f 2 ( x ), and ε is a small constant set to 0.1. The

lightly increased radius determines that the set F τ ( x ) will conserva-

ively contain all feature points of x , i.e. F ( x ) ⊂ F τ ( x ). Setting τ to track

he local sampling density of ∂� allows us to conservatively estimate

 τ for non-uniformly sampled meshes without introducing too many

alse-positives, i.e. , minimizing the set F τ �F . 

Given the finite tolerance τ and the discrete sampling of ∂�, F τ ( x )

ill also contain surface points which are slightly further from x than

eature points; this is especially salient for points x of type A , that
3 
ap to circular or spherical sectors on ∂� via the feature transform.

owever, as we shall see next, the conservative estimation of F ( x )

iven by F τ ( x ) does not pose any problems to our medial attribute

omputation. 

.1.2. Classification of medial points 

Since F τ ( x ) is essentially a dilated, or fuzzy, version of F ( x ), it con-

ists of one or several point clusters centered around actual feature

oints. A cluster C i ( x ) ⊂ F τ ( x ) can be defined as 

 i (x ) = { f ∈ F τ (x ) | max 
f ∈ C i 

min 

g � = f ∈ C i 
‖ f − g ‖ < min 

f ∈ C i 
min 

h / ∈ C i 
‖ f − h ‖} (4)

.e. , all points which are closer to each other than to any point from

nother cluster C j � = i (x ) for the same skeleton-point x . 

We observed that the number of these clusters is a good indicator

f the type of the medial point x : For A 3 points, there is one such

luster, whose diameter is proportional to DT x ; for A 

1 
2 

points, we find

wo clusters; and for A 

1 
k,k ≥3 

points, we find k clusters. To compute

 , we cluster the point-set F τ ( x ) by a single-linkage hierarchical

gglomerative method based on the Euclidean distance between the

oints. Next, we cut the resulting dendrogram, or cluster-tree, at a

istance value equal to the average local sampling density ρ∂ �. This

esults in k clusters. The value of k gives us the type of point x , as

xplained above. 

Let us justify why k is a good point-type indicator. Fig. 2 a shows

n incorrect classification of medial point p which is on the skeleton

 � branch ended by point e . Since the intersection of ∂� with a ball

 p of radius DT p + τ and center p (dotted red circle) yields a single

luster (thick red line), p is incorrectly marked as A rather than as
3 
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Fig. 3. Medial cloud classification into different point types. 
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Fig. 4. Skeleton regularization. (a) Rounded spleen shape with feature vectors shown 

for A 3 points. (b) Skeleton regularized by filtering A 3 points. (For interpretation of the 

references to color in this figure legend, the reader is referred to the web version of this 

article.) 
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A 

1 
2 
. This is caused by (1) the value τ used to compute F τ being too

large; (2) p being close to e ; and (3) the bump on ∂� corresponding

to e being too shallow. Consider now the minimal distance d min from

p that we have to move on S � away from e to find a point q which is

correctly classified as A 

1 
2 

( Fig. 2 b). This happens when the intersection

of the ball B q of radius DT q + τ and center q (dotted blue circle) yields

two disconnected clusters on ∂� (marked thick blue). To find d min ,

note that the maximal ‘inward shift’ between the upper parts of B p 
and B q equals σ = DT p − DT q + d min . To cause the disconnection of

the compact cluster in Fig. 2 a, σ must be larger than the maximal

bump height on ∂� that fits in the sphere-shell of thickness τ , i.e. ,

DT p − DT q + d min > τ . Since DT q − DT p = d min cos α, where α is the

angle between a feature vector and the tangent plane to S �, it follows

that 

d min > 

τ

1 − cos α
. (5)

Separately, for a ∂� with local sampling density ρ∂ �, the correspond-

ing skeleton sampling density is 

ρS = 

ρ∂�

sin α
. (6)

A correct classification should mark only a one sampling-point-thin

‘band’ of skeleton points as A 3 (skeleton boundary). If ρS is smaller

than the minimal ball-shift d min needed to change point type from

A 3 to A 

1 
2 
, this band gets thicker, leading to the incorrect classification

in Fig. 2 a. Substituting our value of τ = ερ∂� ( Section 3.1.1 ) in Eq. (5) ,

and next the values of d min and ρS from Eqs. (5) and (6) in the inequal-

ity ρS < d min , it follows that incorrect classification can only appear

if ε ≥ 1 −cos α
sin α . For our chosen value of ε = 0 . 1 , this implies α � 11.4 °.

In other words, for any medial sheets except those corresponding to

highly obtuse angles on ∂�, our method finds skeleton boundaries

( A 3 points) which are precisely one sample-point thick. 

Following the above, if k = 1 or k = 2 , we can confidently say

that we have found an A 3 , respectively A 

1 
2 
, skeleton point. As k in-

creases, the spatial separation of the clusters decreases too, so k does

not reflect accurately the skeleton point type. We have empirically

verified that the cluster count k accurately finds A 

1 
3 

up to A 

1 
4 

points

for densely-sampled surfaces ∂�. A more robust way to find such Y-

curve points, that is far less sensitive on the sampling density of ∂�,

is described further in Section 3.2.2 , based on the segmentation of S �
into individual medial sheets. 

Related to our work, Reniers et al. [33] found A 3 points by comput-

ing the set difference between the full medial surface S and a simpli-

fied version S τ of S , where τ is a small fixed value and simplification

uses the MGF metric ( Section 2.1 ). Compared to our approach, their

method does not find A 

1 
k,k> 1 

points, and does not give an analysis of

how to set parameter values. 
.1.3. Skeleton regularization using A 3 edge filtering 

As outlined in Section 2.1 , the MGF metric [11,38] provides very

ood regularization properties such as separating spurious skeleton

oints from important ones while maintaining skeleton connectivity.

he MGF importance μ( x ) of a medial point x equals the length of

he longest shortest-geodesic on ∂� between any two feature points

f F ( x ). Hence, the MGF requires an accurate computation of the fea-

ure transform F ( Eq. (3) ). As discussed in Section 3.1.1 , we compute

 conservative F τ which may contain tens of feature points for A 3 -

ype points. Computing shortest-geodesics between all such point-

airs is very expensive. Given this cost, Jalba et al. [19] and Reniers

t al. [38] compute the MGF using only two feature points per skele-

on point, i.e. implicitly consider all medial points to be of type A 

1 
2 .

his has two problems. First, the importance μ for A 3 points will be

ypically underestimated, since one has no guarantee of finding the

ongest shortest-geodesic connecting any two feature points. This, in

urn, creates a relatively jagged appearance of the simplified skele-

on. Secondly, computing the MGF is expensive for large models, even

hen using only two feature points per medial point and highly op-

imized GPU implementations [19] . 

We propose here an alternative way to regularize medial surfaces

y simply filtering A 3 points found by our classification. Fig. 4 shows

his for a shape having highly rounded edges, i.e. whose A 3 points

ave many feature points. This is the kind of shape where the afore-

entioned problem of the MGF metric occurs. Fig. 4 a shows the me-

ial cloud with feature vectors (in red) for the A 3 points. Fig. 4 b shows

ur regularized skeleton, with all noisy points being removed. Since

 3 points appear only on the medial boundary by definition, our regu-

arization does not create gaps or disconnect the medial surface. Since

ur method requires only a simple clustering of feature points based

n their Euclidean distance, it is considerably faster than the MGF

etric (see Section 5 for details). However, in contrast to the MGF, our

ethod cannot deliver a multiscale of progressively simplified skele-

ons; we can only remove the finest scale of noisy boundary points. As

uch, our regularization is useful when one needs a clean and detail-

ich surface skeleton for further processing, rather than a multiscale

keleton representation. 

.2. Surface skeleton decomposition 

Besides classifying skeleton points, higher level features can be

omputed. One such feature is the decomposition of the medial sur-

ace into separate sheets, used in shape analysis and segmentation

asks [22,36] . While such decompositions can be computed relatively
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Fig. 5. Medial sheet computation: (a) Distance function δ, illustrated in 2D. (b) Sparse distance matrix, used as an input for hierarchical point clustering. (c) Medial sheets found 

for a palatine bone shape (see Section 3.2.1 ). 
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Fig. 6. Medial sheet extraction: (a) [37] ; (b), (d), (e), (g), (h) [21] ; (c), (f), (i) our method. 

For [21] , its key parameter, the number of nearest neighbors NN , is indicated. (For in- 

terpretation of the references to color in this figure legend, the reader is referred to the 

web version of this article.) 
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asy for voxel skeletons [37] , this is challenging for medial clouds,

specially when these contain a large number of complex sheets [21] .

We address this task by clustering the medial cloud based on a

ovel definition of medial sheets that uses the medial cloud proper-

ies ( Section 3.2.1 ). Next, we use this decomposition to robustly find

-intersection curves where several such sheets meet ( Section 3.2.2 ).

inally, we use the feature transform to construct compact (meshed)

heet representations ( Section 3.2.3 ). 

.2.1. Medial sheet computation 

We first define the distance of two A 

1 
2 

points x and y as 

(x , y ) = 

∑ 

a ∈ F (x ) 

min 

b ∈ F (y ) 
MGF (a , b ) , (7)

here MGF (a , b ) is the medial geodesic function, i.e. the length of the

hortest geodesic on ∂� between feature points a and b [38] . Next,

e define a medial sheet γ as all medial points having a distance δ
ower than a threshold τ

= { x ∈ S � | ∃ y ∈ S �, δ(x , y ) < τ } . (8)

he rationale behind Eq. (8) is that medial points x and y which are

lose and belong to the same sheet have small distances (along ∂�)

etween their corresponding feature points. This statement is sup-

orted as follows: Since medial sheets are locally smooth and have a

ow curvature [30] , their feature vectors vary smoothly and slowly lo-

ally; in turn, this implies that the corresponding feature points vary

lowly and smoothly across ∂�. Fig. 5 illustrates this for a 2D shape

for simplicity): Medial points x and y are on the same sheet, and

ave small MGF distances between their feature points, thus a small

( x , y ). In contrast, medial points w and z , which belong to different

heets, have at least two feature vectors pointing in different direc-

ions, thus a large δ( w , z ). 

Eqs. (7) and ( 8 ) define medial sheets without using any medial

onnectivity information, and thus allow us to segment a medial

loud into its sheets, as follows. First, we define a distance matrix M

ncoding the distances δ( x , y ) between all medial point pairs. For ef-

ciency, we only compute matrix entries that correspond to δ values

elow our chosen threshold τ , since the sheet definition ( Eq. (8) ) only

equires to know when δ < τ . Secondly, when computing δ( x , y ), if the

ength of the geodesic traced on ∂� from x to y exceeds τ , we stop

racing it and skip the respective matrix entry. Overall, this turns the

omputation and storage of M from a quadratic process in the num-

er of medial points into a linear process, since any medial point x has

nly a limited number of points y at close distance δ from it. Finally,

e use M as input for a single-linkage hierarchical clustering [18] ,

hich outputs a partition of S � into a set of medial sheets γ i , so that

i ∩ γ j � = i = ∅ and ∪ i γi = S �. Fig. 5 c illustrates the separated sheets of

he medial surface of a palatine bone shape. Same-sheet points are
arked by the same color. Although the medial cloud is quite com-

lex, its sheets are cleanly separated. Such sheets can be processed

o create compact representations thereof, as discussed next in

ection 3.2.3 . 

Fig. 6 compares our method for extracting sheets from a medial

loud with two other methods. Fig. 6 a shows the method of [37] ,

hich works in brief as follows: Given a (voxel) medial surface S , its

-network voxels S Y are found based on the cardinality of the feature

ransform for A 

1 
3 points ( Section 2.1 ). Next, separate medial sheets are

ound as being the connected components of the voxel set S �S Y . This

ethod is quite sensitive to the voxel sampling of the input shape.

or example, the cog wheel detail in Fig. 6 a (128 3 voxels) shows two

eparate components c (red) and c (purple), which actually are part
1 2 
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a) sternum b) cortex c) manubrium

Fig. 7. Y-network extraction with Y-curve points colored green. (For interpretation of 

the references to color in this figure legend, the reader is referred to the web version 

of this article.) 
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of the same sheet. These are wrongly separated since (1) the sam-

pling resolution disconnects the detected medial sheet half-way and

(2) sheet detection is based on connected component finding. Fig. 6 b

shows the method of [21] , which is a general-purpose clustering of

3D point clouds based on a similarity metric that accounts for both

distance (computed between nearest neighbors in the point cloud)

and local sheet flatness. Fig. 6 c shows our method. As visible, both

Kustra et al. [21] and our method correctly detect a single sheet c in-

stead of the two separate fragments c 1 and c 2 . Images (d)–(i) further

compare our method with [21] for two shapes and two different val-

ues of the nearest-neighbor count NN , the key parameter of [21] . Two

observations can be made here. First, we see how the results of [21]

depend quite strongly on the NN choice. In contrast, our method does

not need such parameter tuning. Secondly, and more importantly, the

point-similarity used by Kustra et al. [21] is purely local , as it uses only

inter-point distances and local flatness of the sheets. In contrast, our

method uses a distance function ( Eq. (7) ) which captures global shape

properties, due to the underlying MGF function. This makes the sheet

computation far less sensitive to local shape variations or small-scale

noise. 

3.2.2. Y-intersection curve extraction 

Once the medial sheets γ i are found, the Y-intersection curves can

be found as those points x ∈ S � that belong to at least two different

sheets. However, performing this test directly on the medial sheet-set

is not possible, since our sheets are disjoint, i.e. γi ∩ γ j � = i = ∅ . Hence,

we find Y-curve points as those skeleton points x which have at least

one k -nearest neighbor belonging to a different sheet than the one

containing x . Tuning k allows controlling the thickness of the Y net-

work being computed. Fig. 7 shows three examples of Y networks,

computed for k = 3 . 

3.2.3. Computing compact medial sheets 

In Section 3.2.1 , we computed medial sheets as unstructured point

clouds. Many shape processing operations require compact sheets, e.g.

in the form of a triangle mesh. We show next how such meshes can be

created based on an analysis of the feature vectors v 1 ( x ) and v 2 ( x ) of

each skeleton point x ( Section 2.1 ). The key idea is to use the feature

vectors to back-project the connectivity information captured by the

∂� mesh onto each sheet γ . The method has two steps, as follows. 

Feature vector alignment: The projection 

P (γ ) = P 1 (γ ) ∪ P 2 (γ ) = { x ∈ ∂� | ∃ y ∈ γ , x ∈ { f 1 (y ) , f 2 (y ) }} (9)

of a sheet γ consists of two compact areas P 1 ( γ ) and P 2 ( γ ) of ∂�,

one for each side of γ . If we can isolate any of these two areas, we can

next simply transfer its connectivity information onto γ to obtain our

desired sheet mesh. For this, we reorder, or align, the feature vectors

v 1 ( x ) and v 2 ( x ) of all sheet points so that all f 1 are included in P 1 ( γ ),

and all f 2 are included in P 2 ( γ ), as follows. First, we select an arbitrary

reference point x ref ∈ γ and mark it as visited. We next visit all other

points x ∈ γ in order of increasing distance to x and redefine their
ref 
eature points as 

 i = arg min 

f ∈{ f 1 , f 2 } 
MGF (f , f vis 

i ) , i ∈ { 1 , 2 } , (10)

here f vis 
i 

is the closest visited (aligned) feature point to f i , and mark

 as visited. When all points of γ are visited, all feature vectors v 1 
ill be on the same side of γ as v 1 (x ref ) , while all v 2 will be on the

ther side. We can next find the projection of side i ∈ {1, 2} of γ as

 i (γ ) = { x ∈ ∂� | ∃ y ∈ γ , x = f i (y ) } . 
Connectivity projection: We finally construct a meshed version

f γ by simply copying all triangle information from P i ( γ ) to γ , with

 being either 1 or 2 (both sides are equally good). That is, for any tri-

ngle t = { x i } 1 ≤i ≤3 in e.g. P 1 ( γ ), we construct a triangle t γ = { y i } 1 ≤i ≤3

here x i = f 1 (y i ) . Fig. 8 illustrates the resulting meshed sheets for

he surface skeletons of several complex anatomical shapes from the

pen database in [26] , where neighbor sheets have different colors for

llustration purposes. Given these meshed sheets, we can now use any

olygon-based geometric algorithm to analyze or process them fur-

her, e.g. , to estimate curvature, areas, elongation, or compute short-

st paths or distance fields. 

. Applications 

We next use our computed medial features (point classification,

egularization, and medial surface decomposition into sheets) to sup-

ort several shape analysis applications. These examples implicitly

llustrate the quality and robustness of our feature computation

ethods. Secondly, they show how such features enhance the added-

alue of surface skeletons by allowing it to support the construction

f surface processing tools. 

.1. Surface edge detection 

Finding edges on a 3D surface has many applications in segmenta-

ion and classification. Most existing edge detectors are based on the

urface’s curvature tensor [8,27,50] . A problem of such detectors is

hat they operate at a given scale, i.e. find edges of a sharpness range

hich must be specified. Using skeletons allows finding both sharp

nd blunt edges, i.e. , removes the need to specify an edge-sharpness

ange: Following the observation that medial surface boundaries ( A 3 

oints) correspond to curvature maxima or edges on the input surface

30] , Reniers et al. compute surface edges by finding A 3 points as ex-

lained in Section 3.1.2 , and next back-projecting these on the input

urface by the feature transform [33] . We propose here an alterna-

ive approach: For each A 3 skeletal point x , detected as explained in

ection 3.1.2 , we find all surface points enclosed in a sphere of radius

T x + τ, with τ set as explained in Section 3.1.1 , and assign to each

urface point the smallest DT x value which encloses it. Remaining sur-

ace points are assigned a value of max ( DT x ) . Fig. 9 (a)–(c) compares

ur method with the classical curvature detector of [50] and with [33]

or a brain cortex surface. The goal is to find the sulcal brain struc-

ures, which correspond to (soft) convex surface edges, an important

ask in many structural and functional anatomic brain analyses. The

resence of sulci is shown using a blue (concave) to red (sharp con-

ex) rainbow colormap, mapping the three studied detectors: mean

urvature [50] ( Fig. 9 a), geodesic distance to back-projected A 3 points

33] ( Fig. 9 b), and our sphere-radius metric ( Fig. 9 c). Our method

chieves a sharper sulci separation than [33] , which in turn performs

etter than [50] . Fig. 9 (d)–(f) show our method applied to three addi-

ional shapes which exhibit a mix of sharp and blunt edges. As visible,

ur detector finds both sharp (and thus, thin) and blunt (and thus,

hick) edges. The edge sharpness and thickness is also visible in the

olor mapping. 
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a) scapula xetroc)cenobpih)b d) ear

h) gyrus i) frontal bonef) manubrium g) sternume) xiphoid

capula

Fig. 8. Compact medial sheets computed for several anatomical models ( Section 3.2.3 ). 

(d) (e) (f)

(a) (b) (c)

Fig. 9. Soft edge detection using (a) curvature estimation [50] ; (b) skeleton method 

of [33] ; (c)–(f) our method. (For interpretation of the references to color in this figure 

legend, the reader is referred to the web version of this article.) 
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.2. Patch-based segmentation 

Patch-based segmentation (PBS) divides a shape ∂� into patches ,

.e. quasi-flat areas which are separated by sharp creases. Most PBS

ethods work by clustering surface points using, as similarity metric,

he surface curvature or similar quantities [42] . Since medial surfaces

ully capture the surface information via the MAT ( Section 2.1 ), these

edial surfaces can be used for PBS. For this, Reniers and Telea [36]

ompute soft edges by using the feature transform of low-importance

edial-surface points, and next use these thick edges to segment the

hape. However, their method needs to handle a large number of spe-

ial cases (and is thereby quite complicated), and only works for voxel

hapes. We propose here a much simpler approach: We project all

keleton-boundary points p (type A 3 ) to ∂� via our extended feature

ransform F τ , i.e. compute the set E = { x ∈ F τ (p ) | p ∈ S � ∧ type (p ) =
 3 } ⊂ ∂�. The set E consists of a thick version of the edges of ∂�. Due

o the conservativeness of F τ ( Section 3.1.1 ), E will contain connected

dges, in contrast to e.g. a naive thresholding of the curvature of ∂� or
ther similar local surface classifiers. Hence, we next find patches by

imply computing connected components of ∂��E . Finally, we add

he points in E to their closest patch, thereby making the resulting

atches become a partition of ∂�. 

Fig. 10 shows our results, using the same color scheme as Fig. 8 .

or models with clear, sharp, edges, we see how patches neatly follow

hese edges ( e.g. Fig. 10 a, rib sockets in Fig. 10 g, skull concavity in

ig. 10 i). More importantly, our method handles equally well models

ith soft edges ( Fig. 10 (b), (c), and (f)) and/or mixes of sharp and soft

dges ( Fig. 10 (d), (g), and (h)). 

.3. Medial sheet mapping segmentation 

In contrast to patch-based segmentation ( Section 4.2 ), part-based

egmentation (pBS) separates a shape ∂� into components that

re perceived as being the natural ‘parts’ of the shape [42] . Among

he many methods for pBS, curve skeletons are often used, as they

eadily capture the part-whole topology of shapes having elongated

rotrusions. One way to compute a pBS is to find the so-called junc-

ion points of curve skeletons (equivalent to Y-curves for surface

keletons), and then cut the shape with curves that go around these

oints [35] . Such methods are robust and relatively simple to imple-

ent, but work well only for shapes with a tubular structure, i.e. ,

hich have a meaningful curve skeleton. We propose here to use the

urface skeleton for pBS. For this, we compute its medial sheets γ
 Section 3.2.1 ), and next project these into ∂� using P ( γ ) ( Eq. (9) ).

ince all points on ∂� have a skeleton point by construction [19] ,

he entire shape is covered by such projections, which give us the

parts’ of the shape. The borders separating two such neighbor parts

re nothing but the projections of the Y-curves. Since such curves are

mooth [44] , and the feature-vector field used for projection is also

mooth (since parallel to ∇ DT ∂� which is divergence-free away from

he skeleton, see [43] ), the resulting part-borders will also be smooth.

ig. 11 show several part-based segmentation examples. Although

any alternative pBS segmentations are possible, we argue that the

ound segments match well the perceived distinct shape parts. We

ote that such segmentations cannot be achieved using only curve-

keletons, since the shown shapes do not have a tubular structure. 
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d) scapula

e) gyrus

c) xiphoid

h) vertebrag) sternum

i) frontal bone (left: front view; right: below view)

d) scapulalapulala

ho

f) kidney

neelps )bksidnaf )a

Fig. 10. Patch based segmentation ( Section 4.2 ). 
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Fig. 11. Medial sheet mapping segmentation ( Section 4.3 ). 

Table 1 

Medial sheet extraction times on the CPU. 

Model Points ‖ ∂�‖ Sheet extraction (s) 

Hip bone 24 ,852 46 .87 

Xiphoid 64 ,690 68 .88 

Vertebra 48 ,924 49 .09 

Manubrium 65 ,038 64 .22 

Spleen 29 ,507 55 .35 

Sternum 27 ,525 62 .26 

Scapula 233 ,856 436 .57 

Ear 24 ,900 49 .58 

Cortex 58 ,490 133 .98 

Gyrus 29 ,116 56 .75 

Frontal bone 48 ,171 131 .54 
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5. Discussion 

We discuss next several aspects related to our contribution—

showing that we can efficiently and easily compute high-level me-

dial features from large point-cloud skeletons, and that using such

features in various applications is a practical proposition. 

Generality: We require as input only a raw medial 3D cloud with

two feature points per skeleton point. Such clouds can be very effi-

ciently computed by recent GPU methods [19,24] or older CPU meth-

ods [17] , for any type of 3D shape topology or geometry. 

Point classification: To our knowledge, our work is the first

attempt to compute Giblin’s medial point classification [15] for

raw medial clouds. Using this classification to regularize skeletons

( Section 3.1.3 ) is much simpler to implement, and also much

faster, than the MGF metric. Compared to local regularization met-

rics [30,43,49] , we do not disconnect the skeleton, and only remove

a thin layer of boundary points. This gives a simple, fast, automatic,

and effective way to create clean medial surfaces that preserve rele-

vant skeletal details. 
Medial sheet extraction: Separating sheets from a raw medial

loud is a hard task, for which few methods exist, and for which

eneric point-cloud clustering tools cannot be used [7,21] . Our

ontribution—the similarity metric ( Eq. (7) )—combines both local

nd global shape information, and enables a medial cloud segmenta-

ion into sheets which is noise-resistant and has a simple parameter

etting. In detail, Kustra et al. [21] require tuning three parameters:

he number of nearest neighbors of each skeletal point, the maximal

llowed local-flatness of each sheet, and the sheet similarity. In

ontrast, our method requires a single parameter, the maximum

GF distance between feature-points of two skeleton-points that

re on the same sheet ( τ in Eq. (8) ). For all tested shapes, a value of τ
qual to four times the local point-density ρ∂ � on the input surface

ielded optimal results such as shown in this paper. 

Y-network extraction: Our Y-network extraction finds the points

round the Y-network of the skeleton. Exact Y-network points are, by

efinition, not explicitly found by the core skeletonization method

e build atop, since this method always assumes two contact points

or each medial point ( Eq. (2) ). 

Scalability: On an Intel Core i7 3.8 GHz computer, our method, im-

lemented in single-threaded C++, performs all described steps (me-

ial feature computation, edge detection, PBS and pBS) in under 3 s

or all shapes in this paper, which range between 30K and 230K skele-

on points. Memory used is linear with the input point count. Medial

heet extraction is more costly, as it uses the expensive MGF metric

 Eq. (7) ). Timings for this step are given in Table 1 , for CPU-based MGF

omputation. If desired, higher performance can be easily obtained

y GPU-based MGF computation ( [19] ). 
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Limitations: The quality of our medial features highly depends on

he quality of the input medial cloud. This depends next on the sam-

ling density of the input shape, since we require only two feature

oints per medial point ( Section 3 ). 

Applications: For the segmentation and classification applica-

ions in Section 4 , we note that better specific techniques (not using

edial descriptors) exist. Our sample applications are aimed at show-

ng the possibilities that refined medial features open, as alternatives

nd in contrast to established approaches, and not as a definitive so-

ution to the underlying use-cases. 

. Conclusions 

We have presented a set of techniques for computing refined

edial features from raw medial-surface point clouds. These fea-

ures include medial point classification, skeleton regularization, Y-

etwork extraction, separating medial sheets, and reconstructing

eshed sheets. Such features enrich the level on which one can rea-

on about medial surfaces, and open new ways for shape processing

pplications using medial clouds. We provide, for illustration, sample

pplications for edge detection and shape segmentation. Overall, our

ork shows that the more complex (and information-richer) surface

keletons can be, technically, used with the same ease and computa-

ional efficiency as the simpler, and so far more frequently used, curve

keletons. 
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