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Abstract 

  

 Apathy is a common neuropsychiatric symptom (NPS) in Alzheimer’s disease 

(AD) and is linked to changes in multiple brain regions. However, NPS are often comorbid 

in AD and functional network changes specific to apathy remain unclear. In AD and mild 

cognitive impairment patients with low depression scores, topological metrics from 

resting state functional magnetic resonance images in those with apathy (NPS_A, n=21) 

were compared to those without NPS (NPS_None, n=28) and those with NPS other than 

apathy (NPS_NA, n=38). Altered global efficiency, reduced local efficiency and clustering 

coefficient were found in NPS_A compared to NPS_None and NPS_NA at the whole brain 

level. In similar contrasts, apathy was associated with increased participation coefficient 

in the fronto-parietal network and cingulo-opercular network, and reduced local 

efficiency in the dorsal anterior cingulate network. Apathy in AD is associated with 

reduced inter-network connectivity of the fronto-parietal network and cingulo-opercular 

network. 
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1. Introduction 

 Apathy is among the most common neuropsychiatric symptoms (NPS) in 

Alzheimer’s disease (AD) (Geda et al., 2008; Onyike et al., 2007; Spalletta et al., 2010). It 

is clinically diagnosed by a lack of interest in routine and new activities, and a flat 

emotional affect (Robert et al., 2009). Symptoms of apathy increase in prevalence and 

severity as AD progresses from a preclinical stage to mild cognitive impairment (MCI) 

and later to clinically diagnosed AD (Geda et al., 2008, 2014; Lyketsos et al., 2002). 

Notably, apathy is associated with a higher risk for disease progression (Palmer et al., 

2010), institutionalization and death (Vilalta-Franch, Calvó-Perxas, Garre-Olmo, Turró-

Garriga, & López-Pousa, 2013), suggesting that apathy may be a clinical marker for worse 

pathophysiology in the brain in AD. 

 Apathy in MCI and AD is associated with changes in brain structure, perfusion, 

and metabolism (Kos, van Tol, Marsman, Knegtering, & Aleman, 2016; Stella et al., 2014; 

Theleritis, Politis, Siarkos, & Lyketsos, 2014). The affected regions include the dorsal 

anterior cingulate cortex, prefrontal cortex, basal ganglia, superior and inferior temporal 

lobe, and lateral parietal lobe. Though fronto-subcortical disturbances are considered to 

underlie apathy across disorders (Levy & Dubois, 2006), the involvement of multiple 

brain regions suggests that diverse neural mechanisms may underlie apathy. Similar 

investigations of functional mechanisms of apathy that can indicate of the neural circuits 

involved are few. Moreover, multiple brain regions are known to be impaired 

progressively in AD (Agosta et al., 2012), but whether these changes contribute to 

behavioral symptoms is not known. 

 Resting state functional magnetic resonance imaging (rs-fMRI) has revealed 

that distant brain regions show correlated activity forming functional networks (Fox & 

Raichle, 2007). Such networks support specific cognitive functions and changes in these 

networks are related to neurodegenerative diseases (Seeley, Crawford, Zhou, Miller, & 

Greicius, 2009). In AD, the default mode network (DMN) shows reduced connectivity and 

is associated with memory decline and amyloid deposition (Buckner et al., 2005). Two 

recent studies investigated associations between NPS in AD and functional networks. 

While Balthazar and colleagues (Balthazar et al., 2014) found no correlations between 

functional networks and apathy in AD, Munro et al. (Munro et al., 2015) found that the 

apathy was correlated with reduced connectivity in the fronto-parietal control network 

(FPCN). However, both studies combined apathy symptoms with other NPS to form a 

broad category of affective symptoms. As indicated by Munro et al. (Munro et al., 2015), 

such broader categories may be problematic from a clinical perspective. Moreover, brain 

changes related to apathy must be separated from comorbid depression, besides other 

NPS, as apathy and depression are suspected to result from different neural mechanisms 

(Palmer et al., 2010). In addition, both studies utilized a region-of-interest approach 
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where a limited number of brain regions are predefined for analysis. Nonetheless, 

evidence suggests that apathy may be associated with changes in specific functional 

networks outside the DMN. 

 Brain networks can be comprehensively characterized by network measures 

based on graph theory. These metrics describe topological properties of the whole brain 

as well as of sub-networks (Bullmore & Sporns, 2009). A graph is defined by nodes and 

their interlinking edges. In rs-fMRI, nodes can be defined as key areas that are denoted 

as regions of interest (ROI) and the correlation in activation between these ROI defines 

their edges. Nodes that are connected to each other with a single edge are considered 

neighbors and the average number of edges between a node and every other node is 

the path length of that node. The brain is considered to be an optimal network where 

specialized information can be processed in sub-networks in a segregated manner and 

processed information can be rapidly integrated globally. These properties of functional 

segregation and integration can be quantified with measures derived from graph theory 

(Rubinov & Sporns, 2010). Measures of integration include global efficiency, which is 

defined as the sum of the inverse of the shortest path length between all pairs of nodes. 

Measures of segregation quantify the extent of clustering of nodes where specialized 

information processing can occur. These measures include modularity, clustering 

coefficient and local efficiency. In large networks, communication is facilitated by nodes 

that connect to multiple sub-networks. This property is assessed by participation 

coefficient. All these measures quantify different properties of a network and are further 

described below. 

 Studies reporting intrinsic connectivity measures based on graph theory in 

patients with MCI and AD have reported divergent results regarding both structural and 

functional brain networks (Brier et al., 2014; Sanz-Arigita et al., 2010; Dai et al., 2015; 

Tijms et al., 2013; Liu et al., 2014). Relatively consistent findings include increased 

modularity (Pereira et al., 2016), indicating a loss of functional network organization of 

the brain, and increased path length that preferentially affects long distance connections 

(Dai et al., 2015; Deng et al., 2016; Liu et al., 2014). Similar changes have also been 

reported in the preclinical stage of AD showing changes in modularity and transitivity 

(similar to clustering coefficient but at network level) from the preclinical stage to mild 

AD (Brier et al., 2014). Thus, graph measures describe whole brain functional network 

alterations in AD but no study to our knowledge has investigated such measures in 

relation to NPS in AD.  

Based upon existing literature on apathy and specifically, from empirical 

associations between brain regions and apathy in AD, we hypothesized that graph 

theoretical measures of functional sub-networks such as the FPCN and the salience 

network would be altered in apathy. Further, these localized changes in individual 
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networks would result in altered graph theoretical measures at the global level. To test 

this hypotheses, we compared global and network level graph measures in MCI/AD 

patients with apathy (NPS_A) to those without any NPS (NPS_None), and with those who 

had NPS other than apathy (NPS_NA). As multiple NPS are often comorbid in MCI/AD, 

comparison with a NPS_NA group would increase confidence in attributing changes 

specifically to apathy. Additionally, the AD group was compared with an amyloid 

negative cognitively normal group to provide a reference with the primary disease 

process. 

2. Methods 

 Data used in this study were obtained from the Alzheimer’s Disease 

Neuroimaging Initiative (ADNI) database (http://adni.loni.usc.edu). ADNI was launched 

in 2003 as a public-private partnership, led by Principal Investigator Michael W. Weiner, 

MD. The primary goal of ADNI has been to test whether serial magnetic resonance 

imaging (MRI), positron emission tomography (PET), other biological markers, and 

clinical and neuropsychological assessment can be combined to measure the 

progression of mild cognitive impairment (MCI) and early Alzheimer’s disease (AD). 

Further information on subject recruitment for this study can be found at 

http://www.adni-info.org. Written informed consent was obtained from all subjects and 

study partners. Notably, only those scoring less than 6 on the 15-item Geriatric 

Depression scale were included. 

2.1. Subjects 

 In the present study, subjects with a baseline rs-fMRI scan from the ADNI2 

cohort were included. The analysis consisted of two parts. First, we assessed differences 

in graph metrics (detailed below) between AD subjects (n=26) and healthy controls (HC, 

n=18), who were defined as cognitively normal (according to ADNI inclusion criteria) and 

with cortical amyloid tracer (AV-45) retention below 1.11 standardized uptake value 

ratio (SUVR) (Landau et al., 2012). This comparison provides a context to changes 

associated with apathy. Next, three sub-groups were defined within the MCI or AD group 

- those with i) apathy (AP, n=21), ii) without NPS (NPS_None, n=28), and iii) NPS other 

than apathy (NPS_NA, n=38). NPS were assessed with the Neuropsychiatric Inventory 

(NPI, described below). 

2.2 Assessments 

At baseline, all subjects underwent neuropsychological tests including the Mini 

Mental State Examination (MMSE), Clinical Dementia Rating (CDR) assessment, and the 

13-item Alzheimer’s Disease Assessment Scale (ADAS). The NPI is a validated and reliable 

instrument assessing twelve NPS (Cummings et al., 1994). It is administered to the study 

partner (known to the subject or preferably living with him/her) in the absence of the 
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subject and assesses the presence or recent development of NPS in the preceding four 

weeks. To assess apathy, study partners were asked the following: ‘Has the patient lost 

interest in the world around him/her? Has he/she lost interest in doing things or does 

he/she lack motivation for starting new activities? Is he/she more difficult to engage in 

conversation or in doing chores? Is the patient apathetic or indifferent?’ Subjects in this 

study were considered apathetic if the study partner answered ‘yes’ in response to the 

above questions. The present study utilized the diagnosis of apathy, and not the severity 

of apathy symptoms. Other NPS were similarly assessed with symptom-specific 

questions. The NPS_None group was defined by a total NPI score of zero and the NPS_NA 

group was defined by a total NPI score greater than zero and NPI-apathy score of zero. 

In addition to the NPI, the study partner was administered the Functional Assessment 

Questionnaire (FAQ) (Pfeffer, Kurosaki, Harrah, Chance, & Filos, 1982). All study 

procedures are described in detail on the study website (http://www.adni-

info.org/Scientists/ADNIStudyProcedures.html). 

2.3 Image acquisition and processing 

An overview of the image processing steps is given in Fig. 1 and described briefly 

below (Detailed methods in supplementary methods). A seven minute scan was acquired 

under resting conditions with eyes closed in 3T Philips scanners from 13 sites. The 

repetition time was 3000ms with a 3.31mm isotropic voxel. A high resolution T1-

weighted structural scan was also acquired. Subjects were excluded (n=8) if 40% or more 

volumes were affected by in-scanner movement (framewise displacement > 0.5mm or 

intensity variation > 3 standard deviations), resulting in each subject having at least 5 

min of minimally affected scans (Power et al., 2014). Further steps included global signal 

regression, temporal filtering to retain frequencies in the range of 0.009-0.08 Hz, and 

spatial smoothing with a 6mm full width half maximum kernel. Pearson’s correlation 

coefficient between blood-oxygen level dependent activity in pairs of 264 standard ROI 

(Power et al., 2011) yielded connectivity matrices, where ROI that were >50% outside 

scan coverage area in any subject were excluded (28 ROI). 

2.4 Network definition 

 Based on the modularity metric, seven functional networks were defined in the 

current sample (Fig 2A). These were labeled as - visual network (VS, 52 nodes), somato-

motor network (SMN, 43 nodes), insulo-temporoparietal network (Ins-TPN, 39 nodes), 

FPCN (24 nodes), DMN (64 nodes), dorsal anterior cingulate network (dACC, 6 nodes), 

and subcortical network (8 nodes). In addition, a standard network definition from 

independent young healthy subjects was used (Power et al., 2011) (Fig. 2B & 

supplementary methods). Both network definitions were used as the disease process 
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may alter healthy network structures but definitions are also influenced by the 

parcellation method used. 

We assessed global efficiency where higher values reflect a more integrated 

network. Measures of segregation that indicate segregated neural processing were 

determined at the nodal level with local efficiency and for groups of nodes with 

clustering coefficient, for both which higher values indicate higher density of edges 

locally. Segregation was also assessed globally by modularity where higher values 

indicate increased segregation. For each functional network in both definitions, mean 

local efficiency representing intra-network density of edges and mean participation 

coefficient where higher values indicate higher edges within the network or lower inter-

network edges (Rubinov & Sporns, 2010). Statistical significance, considered at p< .05 

(two-sided), for group comparisons adjusted for age and gender was tested non-

parametrically using threshold free cluster enhancement (Smith & Nichols, 2009). 

3. Results 

3.1 Sample characteristics 

Table 1 presents demographic, neuropsychological and neuropsychiatric 

assessments, and imaging characteristics of HC and AD, and MCI and AD subjects with 

NPS_None, NPS_NA, and NPS_A groups. The NPS_A group showed a worse 

neuropsychological and AD-related biomarker profile compared to NPS_ None and 

NPS_NA groups. The NPS_A group had significantly higher CDR scores, reduced 

functional abilities and a higher total neuropsychiatric burden along with higher cerebral 

amyloid deposition and lower cerebral glucose metabolism. 

3.2 Whole brain topological properties 

Graph metrics showed that graph construction methods differentially influence 

measures. Global efficiency, local efficiency, and clustering coefficient were less stable 

at network densities below 5%. Modularity reduced with increasing network density in 

all groups in binary and weighted graphs, whereas global efficiency increased with 

increasing network density in binary graphs and remained stable in weighted graphs. 

Local efficiency and clustering coefficient increased with network density in binary 

graphs but decreased with increasing network density (5-30%) in weighted graphs (Fig. 

3). 

In the AD group, modularity was significantly higher compared to HC in binary 

(1-20% network density) and weighted graphs (1-30% network density). No significant 

differences were found between HC and AD in other global graph metrics. Subjects with 

apathy showed lower local efficiency compared to NPS_None and NPS_NA groups in 

binary (8-24% & 9-30% network density, respectively) and weighted graphs (5-30% & 1-
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30% network density, respectively). Global efficiency also differed between the groups. 

However, compared to the NPS_None and NPS_NA groups, global efficiency was lower 

in the AP group in weighted graphs (10-30% & 9-30% network density, respectively), but 

higher in binary graphs (5-30% & 2-30% network density, respectively). Clustering 

coefficient was reduced in the NPS_A group as compared to the NPS_NA group in binary 

(5-30% network density) and weighted (1-30% network density) graphs. The NPS_A 

group also showed lower modularity compared to the NPS_NA group but only over a 

narrow range of network densities in binary graphs (11-13 and 16-22%). 

 

Figure 1: Overview of processing steps 
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Figure 2: Comparison of functional networks defined in the current study sample (A) 

and in an independent sample (B) (Power et al., 2011).  

The nodes of salience and/pr network in (B) are segregated into a relatively smaller dACC 

cluster (A) and the insular nodes are coupled with the cingulo-opercular network, which 

is labelled as the insulo-temporoparietal network in Figure 2A. 

 

3.3 Group differences in functional brain networks 

  In study-specific networks (Fig. 4), compared to the HC group, the AD group 

showed significantly reduced local efficiency in the dACC network in binary and weighted 

graphs (4-28% and 5-30% network density, respectively) and higher participation 

coefficient in the Ins-TPN (binary: 3-30%, weighted: 4-30%). No further differences were 

found between HC and AD in other networks. Participation coefficient in the AP group 

was higher in the FPCN compared to the NPS_NA group (binary: 3-30%, weighted: 3-

30%) and lower in the dACC network compared to the NPS_ None group (binary: 8-20, 

27-30%, weighted: 8-30%) and the NPS_NA group (binary: 3-30%, weighted: 3-30%). The 

NPS_None group also showed higher local efficiency in the subcortical network (binary: 
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3-30%, weighted: 3-30%) and lower participation coefficient in the SMN (binary: 3-30%, 

weighted: 4-30%) compared to the NPS_A group. Participation coefficient in the 

subcortical network was lower in the NPS_NA group compared to NPS_A group (binary: 

2-24%, weighted: 2-29%). 

 In network definitions by Power et al. (Power et al., 2011) (Fig. 5), participation 

coefficient was higher in the VAN in AD compared to HC (binary: 4-30%, weighted: 7-

30%). No other significant differences were found between HC and AD in any network. 

Compared to the NPS_None and NPS_NA group, the NPS_A group showed higher 

participation coefficient in the FPCN (binary: 5-30%, weighted: 5-30% & binary: 2-30%, 

weighted: 2-30%, respectively), CON (binary: 5-30%, weighted: 6-30% & binary: 7-30%, 

weighted: 7-30%, respectively), and SAN (binary: 8-30%, weighted: 8-30% & binary: 13-

17, 19-20%, weighted: 13-16, 19%, respectively). The NPS_A group showed higher local 

efficiency than the NPS_NA group in the DAN (binary: 1-30%, weighted: 1-30%).  

 

Table 1: Sample characteristics of healthy control and AD, and MCI and AD subjects 

without any NPS (NPS_None), with NPS other than apathy (NPS_NA), and apathy 

(NPS_A) 

 

 HC AD No NPS Non-AP NPS AP Chi-sq$ p 

n (female) 18 (11) 26 (12) 28 (12) 38 (21) 21 (5) 5.39 .07 

n (AD) - - 4 12 10 6.38 .04 

Age 73.13 (5.7) 72.87 (7.2) 71.22 (6.3) 71.29 (7.6) 75.27 (5.7) 5.18 .07 

Education 16.56 (1.8) 15.88 (2.7) 16.18 (2.5) 16.16 (2.7) 15.76 (2.6) 0.41 .81 

MMSE 28.61 (1.5) 22.35 (2.5) 26.75 (3.0) 26.05 (3.2) 25.48 (3.4) 2.38 .30 

ADAS-13 9.28 (3.9) 35.58 (9.2) 
19.71 

(11.4) 
20.08 (11.4) 

25.57 

(12.5) 
4.01 .13 

CDR-SB 0.03 (0.1) 4.40 (1.4) 1.64 (1.5) 2.49 (1.6) 3.57 (1.6) 18.62 <.01 
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FAQ 0.11 (0.5) 15.00 (7.8) 3.70 (6.9) 7.26 (7.9) 12.19 (6.0) 22.12 <.01 

Total NPI 0.61 (1.0) 9.23 (11.3) - 5.13 (5.2) 
12.81 

(11.1) 
10.76 <.01# 

Hippocampal 

volume 

(bilateral, 

mm3) 

7029.2   

(783.8) 

6068.7 

(1050.0) 

(n=23) 

7085.7 

(1070.6) 

(n=23) 

6837.20 

(1369.6)  

(n=36) 

6637.41 

(933.0) 

(n=19) 

1.05 .59 

Amyloid 

uptake 

(AV45) 

1.02 (0.04) 
1.47 (0.2) 

(n=25) 
1.22 (0.2) 

1.31 (0.2) 

(n=37) 
1.39 (0.3) 6.21 .04 

FDG-PET 6.79 (0.4) 5.24 (0.7) 6.17 (0.9) 6.02 (0.7) 5.64 (0.6) 8.37 .02 

$ Chi-square statistic for Kruskal-Wallis test (two-tailed); # comparison between No-AP 

NPS and AP groups; AV45: Amyloid binding ligand, values in Standardized Uptake Value 

Ratio (SUVR); FDG-PET: Glucose metabolism, values in SUVR; ADAS-13: Alzheimer’s 

Disease Assessment Scale-13 item; FAQ: Functional Assessment Questionnaire; CDR-

SB: Clinical Dementia Rating scale-sum of boxes; NPI: Neuropsychiatric Inventory score 

 

Further, the NPS_None group showed higher local efficiency in the subcortical 

network (binary: 20-27%, weighted: 16-30%) and lower participation coefficient in the 

SMN (binary: 3-30%, weighted: 3-30%) than in the NPS_A group. Finally, the NPS_NA 

group showed higher local efficiency (binary: 11-25%, weighted: 4-30%) and lower 

participation coefficient (binary: 8-10%, weighted: 6-29%) in the DMN as compared to 

the NPS_A group. 
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Figure 3: Whole brain graph theoretical measures (previous page) 

The figures show the binary (left) and weighted (right) global efficiency (A), mean local 

efficiency (B), modularity (C) and clustering coefficient (D) (y-axis) over increasing 

network densities (x-axis), after adjustment for age and gender, for each group. Each 

hash (#) symbol (aligned to the x-axis) indicates a significant difference at each network 

density with the color indicating the groups compared. Dark blue (#) indicates 

significance for HC vs AD. Light blue (#) indicates significance for NPS_NA vs NPS_A. Light 

green (#) indicates significance for NPS_None vs NPS_A. In those with AD compared to 

HC, modularity was higher (C) suggesting increased segregation of networks. In NPS_A, 

local density of connections are lower as suggested by lower local efficiency (B) and 

clustering coefficient (D) whereas global efficiency in the AD and NPS_A groups are 

highly similar (A). 

 

 

 

 

 

 

 

Figure 4: Graph theoretical properties in current sample networks (next page) 

The figures show the binary (left) and weighted (right) mean local efficiency (y-axis) in 

the dACC (A), and mean participation coefficient (y-axis) over increasing network 

densities (x-axis) in the dACC (B), Insulo-temporoparietal network (C), and frontoparietal 

control network (D), after adjustment for age and gender, for each group. Each hash (#) 

symbol (aligned to the x-axis) indicates a significant difference at each network density 

with the color indicating the groups compared. Dark blue (#) indicates significance for 

HC vs AD. Light blue (#) indicates significance for NPS_NA vs NPS_A. Light green (#) 

indicates significance for NPS_None vs NPS_A. The NPS_A group shows similar changes 

as the AD group in local efficiency in dACC (A) and participation coefficient in the insulo-

temporoparietal network (C). However, participation coefficient of the dACC (B) in the 

NPS_A group and AD diverge. Taking (A) and (B) together suggests that inter-network 

edges in NPS_A are lost to a greater extent than in AD. In contrast, changes in FPCN in 

form of increased participation coefficient may be specific to the NPS_A group. 
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4. Discussion 

 This study aimed to determine topological properties of functional brain 

networks associated with apathy in MCI and AD. Subjects with apathy were more likely 

to have AD, have higher scores on the CDR-SB, NPI and FAQ, and higher global amyloid 

deposition, and lower cortical glucose metabolism compared to those without any NPS 

and those with NPS other than apathy. In topological measures, the AD group showed 

increased modularity while global efficiency, local efficiency and clustering coefficient 

were similar as compared to the HC group. In contrast, those with apathy showed lower 

local efficiency and clustering coefficient, suggesting that segregated neural processing 

is affected. Global efficiency was also altered in the NPS_A group, whose values were 

highly similar to the AD group (Fig 3). These results suggest that apathy may be 

associated with reduced nodal density of functional connections. The findings from 

network level analysis in both network definitions converge upon the FPCN where 

participation coefficient was higher while local efficiency was similar in NPS_A compared 

to the NPS_None and NPS_NA groups. This suggests that lower inter-network 

connectivity of the FPCN is associated with apathy in AD. Similarly, inter-network 

connectivity in the CON is lower in NPS_A than in NPS_NA and NPS_None. In addition, 

the dACC showed lower local efficiency than in NPS_NA and NPS_None suggesting that 

reduced intra-network connectivity in the dACC may play a role in producing symptoms 

of apathy. 

 Symptoms of apathy have been proposed to arise from deficits in neural circuits 

linking the frontal cortex to the basal ganglia (Levy & Dubois, 2006). As noted above, 

apathy in MCI and AD patients is associated with only the frontal-subcortical circuits but 

with broader regions of the association cortex and particularly with regions that support 

goal-directed actions (Kos et al., 2016; Stella et al., 2014; Theleritis et al., 2014). The 

findings of this study show that functional connectivity between the FPCN and CON to 

other networks is reduced in apathy. These networks support control of goal-directed 

action by dynamically regulating executive functions in the FPCN, and the maintenance 

of sustained attention and task-representations in the CON (Dosenbach et al., 2007; 

Sadaghiani et al., 2010; Seeley et al., 2007). That changes in both networks indicate 

reduced inter-network connectivity suggests that patients with apathy experience 

difficulties in transforming goal representations to goal-directed actions but not in the 

neural processing of each set of functions independently. This interpretation is 

consistent with apathy symptoms such as an inability to initiate actions but once 

initiated, capacity to execute the action is preserved.  
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Figure 5: Group difference in independently-defined networks (previous page) 

The figures show the binary (left) and weighted (right) mean participation coefficient (y-

axis) over increasing network densities (x-axis) in the ventral attention network (A), 

frontoparietal control network (B), cingulo-opercular network (C), and salience network 

(D), after adjustment for age and gender, for each group. Each hash (#) symbol (aligned 

to the x-axis) indicates a significant difference at each network density with the color 

indicating the groups compared. Dark blue (#) indicates significance for HC vs AD. Light 

blue (#) indicates significance for NPS_NA vs NPS_A. Light green (#) indicates significance 

for NPS_None vs NPS_A. Increased participation coefficient in the frontoparietal control 

network (B) and cingulo-opercular network (C) was present to a greater extent in the 

NPS_A group whereas all patient groups show similarly increased participation 

coefficient in the ventral attention network (A). In the salience network (D), the 

NPS_None group shows lower participation coefficient, which may indicate 

compensatory changes that preserve function. 

  

 It may also be that both networks communicate independently with other 

networks controlling the generation of behavior that may be deficient. This 

interpretation would suggest that the neural routes to the development of apathy may 

differ between patients with apathy. 

 This study expands upon previous results that associated apathy in MCI/AD to 

broad brain regions and particularly to the dACC and temporo-parietal lobe (Stella et al., 

2014; Theleritis et al., 2014). A recent functional connectivity study found that apathy 

was associated with reduced connectivity in the FPCN in association with apathy in MCI 

patients (Munro et al., 2015). ROI were limited to four functional networks and inter-

network connectivity was not investigated. As NPS increase in number and severity with 

stages of AD, they are often comorbid and associating brain changes to specific NPS is 

not trivial. In the current study, a novel approach was used contrasting apathy with those 

without NPS and those with NPS_NA. When differences are present in both comparisons, 

the findings are more likely to be specific to apathy. Moreover, the parent ADNI study 

excluded subjects with high depression scores at baseline, which reduces the likelihood 

of overlapping symptomatology and confounding neural changes. Finally, this study 

investigated network topology in the whole brain that enabled detection of intra- and 

inter-network connectivity changes in fine-grained brain networks. Thus, the results 

from the current study may be considered to reflect brain changes underlying apathy 

more accurately as compared to past studies. 
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 In the broader context of graph theoretical changes seen in AD, the apathy sub-

group showed similar changes to the complete AD group in global efficiency but 

modularity in apathy is altered to a smaller degree (Fig. 3). Local efficiency and clustering 

coefficient were altered to a greater extent in the apathy group than in complete AD 

group. In AD, long distance connections are posited to be more affected than short 

distance connections (Dai et al., 2015; Deng et al., 2016; Liu et al., 2014). Taken together, 

it may be that loss of functional connectivity at a nodal level plays a large role in the 

producing symptoms of apathy. Considering that the apathy group comprised of MCI 

and AD patients, the larger differences in this group compared to the AD group may also 

underlie the increased risk for disease progression seen in those with apathy in AD. 

Furthermore, the pattern of changes in individual networks seen in Fig. 3 & 4 suggests 

that NPS can reveal localized network changes in AD. For example, participation 

coefficient was similar in all patient groups in the ventral attention network (Fig. 3) but 

lower in the somatomotor network of the NPS_None group (Supplementary figures). 

Thus, NPS may reveal localized network changes and their role in the general network 

dysfunction in AD need to be further investigated. 

4.1 Limitations 

 Graph theoretical measures are sensitive to methodological procedures, which 

have been suggested to result in differences between studies (Tijms et al., 2013). In this 

study for example, AP was associated with higher GE in binary graphs but reduced GE in 

weighted graphs. Such results highlight the complexity of graph measures and 

interpreting such findings may be challenging (De Vico Fallani, Richiardi, Chavez, & 

Achard, 2014). Processing steps such as ignoring negative correlations in building graphs 

or the use of global signal regression may also affect results. Therefore, replication of 

findings in an independent sample is essential. Furthermore, the organization of brain 

networks is affected by variables such as age and disease. By using functional networks 

defined in a healthy independent sample and in the study sample, we aimed to minimize 

such effects. Nevertheless, methodological differences in defining the network 

structures need to be considered. Finally, using the NPI to diagnose apathy can be 

considered a limitation as studies indicate that apathy is a complex construct that can 

be separated into sub-types that may have distinct neural mechanisms (Levy & Dubois, 

2006). Future studies may investigate if there are multiple routes to apathy in AD. 

 In summary, the results of the current study in a sample with low depression 

scores suggest that reduced inter-network connectivity of the frontoparietal control 

network and the cingulo-opercular network is associated with apathy in AD. Further, 

the dACC shows a marked reduction in efficiency and segregation in association with 

apathy. Finally, global changes suggest that apathy is specifically associated with 

localized loss of functional connections.  
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Supplementary Information 

Supplementary Methods 

Image acquisition: Subjects were scanned on 3.0 Tesla Philips MRI scanners at thirteen 

sites. Echoplanar images with repetition time/echo time (TR/TE) of 3000/30 ms and flip 

angle (FA) of 80° were acquired in an interleaved manner. Each scan consisted of 140 

volumes, with 48 slices, dimensions 64 x 64 and voxel size 3.31 x 3.31 x 3.31 mm. 

Structural images with a resolution of 1 x 1 x 1.2 mm were acquired through the sagittal 

plane, using a magnetization prepared rapid gradient echo (MPRAGE) three-dimensional 

T1-weighted sequence with a TR = 6.8 ms, TE = 3.16 ms, and FA = 9°. Scans were acquired 

a maximum of 81 days prior to NPI assessment (mean (SD) = 18.6 (15.0) days). 

Image pre-processing: An overview of the methods are provided in Fig. 1. rs-fMRI data 

were preprocessed with the following steps: i) first three volumes of the resting state 

scans were discarded to achieve signal equilibrium; ii) scans were corrected for slice 

timing and intensity differences due to interleaved acquisition; iii) scans were spatially 

realigned  to the first volume using rigid body transformation to correct for head motion 

within runs, and then coregistered to the subject's high resolution structural scan; iv) 

scans were intensity scaled within runs to a mode value of 1000 (performed using 

fslmath in the FSL suite), and v) normalized to a study specific anatomical template 

created using DARTEL (Diffeomorphic Anatomical Registration through Exponentiated 

Lie Algebra toolbox) and resampled to 3mm isotropic voxels. To minimize motion-

induced spurious correlations (van Dijk, Sabuncu and Buckner, 2012; Power et al., 2014), 

scans were examined for excessive motion defined by framewise displacement (FD) and 

standardized delta variations in signal intensity (DVARS). FD estimates head motion from 

one volume to next and is calculated as the sum of the absolute displacement in 

translational and rotational motion. Rotational measures were transformed to 

millimeters by assuming that the center of rotation was located 65mm away from the 

affected voxels. The DVARS measure determines changes in signal intensity from one 

volume to the next and is calculated at the global level as the root mean square of the 

temporal derivative of the time series at each voxel. Volumes where FD exceeded 0.5mm 

and DVARS exceeded 3 standard deviations (with first volume set at zero) were 

censored. If less than five minutes of valid volumes (100 volumes, 73% of the scan) 

remained after censoring then scans were excluded from further analysis (n=8). For 

remaining scans, censored volumes were replaced by spline interpolation, and were re-

censored after frequency filtering. On average, 5.08 % volumes in each scan were 

censored (AD=4.2%, MCI=4.29%, SMC=5.7%, HC=6.9%). To further reduce spurious 

effects, additional steps were performed including demeaning and linear detrending the 

signal, regressing out 1) the global signal, 2) white matter, 3) cerebrospinal fluid signal 

and 4) motion parameters from the realignment step, and their first order derivatives. 
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We chose to perform global signal regression as it was shown to strongly reduce motion 

related artifacts when combined with censoring of motion affected volumes and reduces 

the need to censor volumes subsequent to the movement affected volume (Power et 

al., 2014). Next, temporal band pass filtering using an eighth order Butterworth filter 

with zero phase was performed to retain frequencies in the range of 0.009 to 0.08 Hz. 

Finally, data were spatially smoothed with a 6mm FWHM (full width half maximum) 

kernel. 

Connectivity matrices: To determine functional connectivity, first subject specific masks 

were created by binarizing the processed scans using BET tool in the FSL suite. Regions 

of interest (ROI) with less than 50% coverage in any subject were excluded for all subjects 

(28 ROI). The mean time-course from each remaining ROI was extracted and Pearson's 

correlation coefficient between each pair of ROI was calculated, generating a 236 x 236 

matrix for each subject. For ROI at a distance of less than 20mm apart, the correlations 

were set to zero as such correlations may result from motion induced artifacts and/or 

smoothing process. Further, correlations between a ROI and itself were set to zero. 

Negative correlations were also set to zero as negative correlations can be introduced 

spuriously when global signal regression is performed (Murphy et al., 2009; 

Weissenbacher et al., 2009), which lead to reduced test-retest reliability (Shehzad et al., 

2009; Wang et al., 2011). The final outcome matrix, referred to as the connectivity matrix 

hereafter, was used in all subsequent steps. 

Network definition: The nodes of a graph can be separated into non-overlapping 

communities or modules by maximizing the modularity metric, which quantifies the 

extent to which a module has maximum within-module edges and minimum between-

module edges. The resulting modules are labeled functional networks. However, such 

definitions are subject to methodological choices and may differ between study 

populations. Therefore, we defined functional networks based on the current study 

sample. The modularity metric was determined at a single optimal threshold, which was 

determined by computing entropy values obtained by applying information theory to 

the connectivity matrices (See Geerligs et al., 2015 for details of this method). Briefly, 

connectivity matrices were thresholded proportionally over a range of values (1-50%) in 

incremental steps of 1%, where the threshold proportion of strongest correlations in the 

matrix at each step were retained such that the matrix is converted to represent the 

retained correlation values as present and the rest as absent. The binarized matrices 

were then averaged over subjects and entropy values were calculated. These steps were 

performed separately for the HC, MCI, and AD groups to allow for variations in the 

optimal threshold according to group. As entropy values are sensitive to the number of 

edges, which differ according to the applied threshold, random matrices with the same 

number of edges at each threshold were created for comparison. The following process 
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was used to generate the random matrices - 50 randomized matrices with the same 

number of nodes and edges were generated at each threshold per subject. From these 

random matrices, 500 new average matrices were created per group by sampling the 

randomized matrices at each threshold. The random matrices per group were then 

averaged and entropy values were calculated at each threshold. Finally, entropy values 

of the random matrices and true matrices were compared. The threshold at which the 

lowest entropy in the true matrices across groups maximally differed from the lowest 

entropy of the randomized matrices was determined as the optimal threshold. For all 

groups, the optimal threshold value was determined at a threshold value of 1%. 

The optimal threshold was used to partition the connectivity matrices into non-

overlapping modules (Newman, 2004). In order to obtain smaller modules, the 

modularity metric used for partitioning was maximized across a range of resolutions. 

First, an initial partition was created for each connectivity matrix using the Louvain 

modularity algorithm (Blondel, Guillaume, Lambiotte and Lefebvre, 2008). Next, a fine-

tuning algorithm was applied to increase modularity, and a new partition was obtained 

(Sun, Danila, Josić and Bassler, 2009). This process was repeated 50 times and each node 

was assigned to a module. The node assignments over the 50 repetitions were then 

averaged to create a single consensus matrix per subject. The consensus matrix per 

subject was then re-entered into the above steps to obtain new partitions. This step was 

repeated until the consensus matrix per subject remained unchanged and was 

considered stable. 

To achieve stable partitioning across subjects, consensus matrices of all subjects were 

averaged and entered into a consensus partitioning algorithm (Lancichinetti and 

Fortunato, 2012) at 30 resolutions (ranging 1 to 3, in steps of 0.1). The resulting group 

consensus matrices at each resolution were assessed for similarity across the 

resolutions. This was achieved by comparing the normalized mutual information (NMI) 

across each resolution. Across all resolutions, a 7-module decomposition was found 

most often (13 times), which showed a mean NMI of 0.93. Identical partitioning (NMI=1) 

was present at four resolutions and was used to define functional networks in 

subsequent analyses (Fig. 2A). We then repeated the analyses using a network definition 

based on an independent sample of healthy young adults (Power et al., 2011) 

(http://www.nil.wustl.edu/labs/petersen/Resources.html) to provide comparability 

with previous studies. In this network definition, nodes with inadequate coverage, those 

defined as uncertain (11 nodes), as part of cerebellar network (4 nodes), and a posited 

memory retrieval network (5 nodes) were excluded.  Nodes classified separately as 

sensory-motor hand (29 nodes) and sensory-motor mouth (5 nodes) networks were 

combined. These steps resulted in a total of 10 functional networks (216 nodes) (Fig. 2B). 
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Network Measures: Connectivity matrices were thresholded over a range (1-30%), 

retaining the proportionate number of strongest correlations. Thresholding over a range 

of edge strengths is required, as including all edges results in a fully connected graph, 

while using a single threshold uses an arbitrary set of functional connections. Binary and 

weighted thresholded matrices were used to calculate network measures. Both types of 

measures were determined because binarizing matrices may introduce bias as 

correlations close to the threshold value are similar but may be included or excluded, 

resulting in artificial variations in edges between subjects [6]. Using weighted graphs 

reduces this bias and enhances reproducibility but methods for scaling edge weights are 

currently not definitive. 

The following network measures were determined using the Brain Connectivity Toolbox 

(Rubinov and Sporns, 2010). Three measures were calculated using whole brain graphs 

- global efficiency, local efficiency, and modularity. Global efficiency is the sum of the 

inverse of the average path between all pairs of nodes in a graph with higher values 

indicating more efficient paths between each node to any other node in the network. 

Local efficiency is calculated as the inverse of the average path length between a node 

and its immediate neighbors. Higher local efficiency indicates higher density of edges 

locally. For the whole brain graph, local efficiency of each node is averaged. Modularity 

quantifies the extent of segregation of nodes in a graph into modules or networks.  

Segregation of networks allows each network to process specialized information. Higher 

modularity values indicate better segregation between networks. Further, for each 

functional network, local efficiency and participation coefficient were calculated. In this 

case, local efficiency of each node and the mean value for a network were restricted to 

edges within the network. Participation coefficient determines the ratio of intra-network 

edges to all edges of a node and the mean of these values from each node within a 

network indicated the extent of intra- or inter-network edges. Higher values indicate 

better integration between networks. 

Statistical analysis: Differences in graph measures between i) HC and AD, ii) NPS_None 

and NPS_A, and iii) NPS_NA and NPS_A were determined after controlling for age and 

gender. Significance of the differences in network measures was non-parametrically 

tested by randomly permuting group membership 5000 times for each comparison 

(maintaining group sizes). A null distribution of group differences for each comparison 

was computed at each threshold and tested for significance using threshold free cluster 

enhancement (TFCE) (with default settings-E=0, H=1) (Smith and Nichols, 2009). Results 

were considered significant at a two-sided p value of < .05. All analyses were conducted 

in MATLAB 2014a (The MathWorks, Inc., Natick, USA), unless noted otherwise, using 

custom in-house scripts. Preprocessing steps (except intensity normalization) were 
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performed in SPM12b (http://www.fil.ion.ucl.ac.uk/spm/software/spm12). Fig. 2 was 

created using BrainNet Viewer (http://www.nitrc.org/projects/bnv/). 

 

Supplementary Figures A-E: Group difference in current-sample and independently-

defined networks 

The figures show the binary (left) and weighted (right) mean participation coefficient (y-

axis) over increasing network densities (x-axis). Fig A shows local efficiency and Fig B 

shows participation coefficient in networks defined in the current sample. Fig C and D 

show local efficiency and Fig E shows participation coefficient in networks defined in an 

independent sample. Measures in all figures are adjusted for age and gender. Each hash 

(#) symbol (aligned to the x-axis) indicates a significant difference at each network 

density with the color indicating the groups compared. Dark blue (#) indicates 

significance for HC vs AD. Light blue (#) indicates significance for NPS_NA vs NPS_A. Light 

green (#) indicates significance for NPS_None vs NPS_A. 

DMN: Default mode network; DAN: Dorsal attention network; VAN: ventral attention 

network; FPN: frontoparietal network, CON: cingulo-opercular network, SN: salience 

network; Ins-TPN: insulo-temporoparietal network; AN: auditory network; VN: Visual 

network; SMN: somatomotor network;  
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SI Figure B  
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SI Figure C 
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SI Figure D 
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