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A B S T R A C T

Companies increasingly employ dual-channeling strategies with online and offline channels to reach customers.
The combination of high return rates in e-commerce and the possibility for customers to return products ordered
online at any offline store may result in unbalanced inventories. Transshipments can be used to deal with these
unbalanced inventories. In this paper we study dynamic policies for transshipment of products that are returned
cross-channel from online to offline stores. At the end of each period in a finite sales season, cross-channel
returned products can be transshipped back to the online store or kept on-hand at the offline store. Optimal
transshipment policies are obtained using a Markov decision process. We introduce a well-performing heuristic
based on the expected costs during the sales season, with a maximum deviation of 1.59% from the optimal costs in
experiments. Furthermore, we show that in all instances our heuristic outperforms static policies in which
products are either always or never shipped back to the online store. We observe that dynamic transshipment
policies are more effective than static policies in dealing with imbalances in the initial stock. Dynamic trans-
shipment of cross-channel returns seems to open up possibilities for more effective demand fulfillment of dual-
channel companies.
1. Introduction

Dual-channeling is a distribution strategy increasingly applied by
business-to-consumer companies in practice (Agatz et al., 2008). A com-
mon configuration for dual-channeling uses separate inventories from
offline stores and online stores to meet customer demands for products.
Products demanded from the online store are sent to the customer from a
distribution center. After buying, customers can often return products to
the company. Return percentages of as much as 75% have been reported
for some product categories in fashion (Mostard and Teunter, 2006).
Products are predominantly returned due to either buyer's remorse or an
unclear motivation not related to the state of the product (Lawton, 2008).
Some companies selling consumer electronics or clothing provide cus-
tomers the opportunity to return products at any store, regardless of where
they were bought originally. These products can be resold in the store they
are returned at. The vast majority of cross-store returns are products or-
dered from the online channel and returned by a customer to a nearby
store of the offline channel. In practice, typically all cross-channel returns
are shipped back to the distribution center of the online channel, poten-
tially incurring more transportation costs than necessary. On the other
extreme, if no products are shipped back, imbalances in the inventories of
the two channels may occur.
.van.der.heide@rug.nl (G. Van der He

pril 2017; Accepted 2 September 20
By carefully coordinating the transshipment of cross-channel returns,
companies can increase the availability of products during the sales
season. For both types of channels, demand is typically lost to competi-
tors if a customer encounters an out-of-stock situation. Some stock may
be unsold at the end of the sales season, incurring costs because products
have to be disposed of or sold at a discount. Efficient transshipment
policies should determine when the transportation cost weigh up against
the costs of unsold products.

In this paper, we study the transshipment of returned products in a
dual-channel supply chain for a product that is sold during a single sales
season consisting of multiple periods. Sold products return to the store
they are sold from with some probability, i.e., returns depend endoge-
nously on fulfilled demand. Moreover, products sold in the online
channel return cross-channel to stores of the offline channel with a
certain probability. At the end of every period, these cross-channel
returns can either be added to the inventory of the offline store, or sent
back to the distribution center. Returned products are assumed to be as
good as new and can be resold at full price. The goal is to minimize costs
during the sales season, which comprise of costs for holding stock, car-
rying out transshipments, and having unsold stock at the end of the sales
season. Using Markov decision processes, we study optimal trans-
shipment policies during the sales season. Furthermore, we formulate a
ide), k.j.roodbergen@rug.nl (K.J. Roodbergen).
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transshipment heuristic, which we compare to the optimal policy and
static policies typically used in practice. Our heuristic is shown to
outperform these static policies considerably, showing the potential of
dynamically determining the transshipment of returns.

Lateral transshipments can either take place at predetermined mo-
ments in time or in reaction to stock-outs. The former are called proactive,
whereas the latter are called reactive (Paterson et al., 2011). Recent ex-
amples of papers studying reactive transshipments are Axs€ater et al.
(2013), Howard et al. (2015), and Olsson (2015). Hybrid lateral trans-
shipments, which combine proactive and reactive lateral transshipments
are studied by Paterson et al. (2012) and Glazebrook et al. (2015). Since
the primary purpose of the transshipment of cross-channel returned
products is preventing stock-outs, they are proactive lateral trans-
shipments. Furthermore, as products are transshipped from offline stores
to the online store, the transshipments are unidirectional (Axs€ater, 2003).

Models studying lateral transshipments consider either a finite or an
infinite horizon. Policies for models with a finite horizon mainly focus on
situations with a single transshipment opportunity. A number of heu-
ristics have been proposed to determine transshipment quantities in such
situations (see, e.g., J€onsson and Silver, 1987; Bertrand and Bookbinder,
1998; Agrawal et al., 2004). Optimal transshipment quantities can be
determined for models consisting of a single period with a single trans-
shipment decision (see, e.g., Noham and Tzur, 2014). Our model differs
in that we study a situation in which transshipment is possible in every
period during the finite horizon. This implies that we cannot determine
transshipments by considering the remaining periods after the trans-
shipment in isolation, which is a key characteristic of the previously
studied models. In a finite model, allowing multiple transshipment op-
portunities leads to an optimal policy with a distinct structure
(Abouee-Mehrizi et al., 2015). However, it is unclear whether this
structure still holds when cross-channel returns are possible and only a
part of the inventory can be transshipped. A simulation-optimization
approach to obtain a transshipment policy with a fixed threshold levels
is proposed by Hochmuth and K€ochel (2012). Fixed threshold levels are
unlikely to work for our situation, as the number of remaining periods is
an important factor in determining whether or not to ship a cross-channel
returned product (Abouee-Mehrizi et al., 2015).

In an infinite horizon setting, papers considering multiple trans-
shipment opportunities typically use balancing heuristics, in which stock
levels are compared to future demand in some way (Banerjee et al., 2003;
Lee et al., 2007). These balancing policies typically do not depend on cost
parameters, which can influence their performance (Lee et al., 2007). Liu
et al. (2016) show that a myopic rebalancing policy is optimal for a
pooled virtual stockpile. However, such a policy is unlikely to be optimal
for other transshipment problems (Abouee-Mehrizi et al., 2015). Firouz
et al. (2016) use simulation-optimization to solve a stochastic MILP to
determine transhipment quantities. None of the above finite and infinite
horizon articles consider returns, and extending these models to
accommodate for returns is not straightforward.

Returns can be in an as-good-as-new condition, meaning that they are
resalable, or they can be damaged, requiring an extensive refurbishing or
remanufacturing process. The latter is studied in reverse logistic models
(Fleischmann et al., 1997; Tai and Ching, 2014). In our setting the pre-
dominant reason for returning are not defects. Therefore, we study
resalable returns. Resalable return models have been studied in settings
with a single location andmultiple locations. Returns are modelled either
as an independent exogenous process, or as an endogenous process
depending on fulfilled demand. Single location settings with dependent
returns include Kelle and Silver (1989), Buchanan and Abad (1998), and
Mostard and Teunter (2006). Kiesmüller and Van der Laan (2001) show
that the stock processes under independent and depend returns differ
substantially, especially in case of high return rates. To the best of our
knowledge, papers studying multiple locations with resalable returns
only consider independent return processes (see, e.g., Ching et al., 2003;
Mitra, 2009). As high return rates are common in practice, in this paper
we study a setting with multiple stock locations and a dependent return
71
process. Since future returns depend on the availability of stock, trans-
shipment decisions should account for this.

The remainder of the paper is organized as follows. In x2, we intro-
duce the model and assumptions. In x3, we formulate an MDP for
obtaining the optimal policy. We develop a heuristic in x4 and compare it
with the optimal policy and heuristics from practice in x5. Finally, in x6
we provide conclusions and directions for future research.

2. Problem definition

We consider the inventory control of a single product for a dual-
channel company which sells through online and offline channels. The
online channel consists of one online store (distribution center), indexed
i ¼ 0, and the offline channel consists of n offline stores, indexed
i ¼ 1;…; n. The product is sold during a sales season with duration T. At
the beginning of the sales season (period 1), the stores have initial in-
ventory I1 ¼ ðI11;…; I1nÞ. Each period t; t ¼ 1;…;T, store i faces generally
distributed non-negative demand Dt

i with mean λti . Demand in excess of
the on-hand inventory is lost.

Each item sold during a period has a probability of being returned in
that same period, analogous to Mostard and Teunter (2006). Products
returned in a period are resalable in the next period. There are regular
returns and cross-channel returns. Regular returns return to the online or
offline store from which they were sold, with a probability 0 � pii <1 for
each sold item at store i; i ¼ 0;…; n. Cross-channel returns are items sold
in the online store and returned to one of the offline stores. A sold item at
the online store returns to offline store i; i ¼ 1;…; n with probability p0i.
Clearly, we require 0 � p00 þ

Pn
i¼1p0i <1.

Stock levels are reviewed at the beginning of each period t, and are
denoted It. After each review, transshipments can be carried out. We are
allowed to transship (part of) the cross-channel returns at offline store i
from the previous period back to the online store. As transshipments are
typically carried out overnight, the lead time of transshipments is
assumed to be negligible. At the end of the period, demand is observed
and fulfilled to the extent possible from on-hand stock. Finally, inventory
costs are incurred at the end of the period.

The costs are as follows. Transshipment between store i and store j
costs cij per unit. Clearly, we have cii ¼ 0. Moreover, we have
cij ¼ ∞ if i ≠j and j ≠ 0, which implies that cross-channel returns can
only be transshipped to the online store. In a model extension we later
relax this assumption and allow transshipments between offline stores. A
holding cost h is incurred for each unit on-hand at the end of the period.
We do not consider a direct penalty cost for lost demand. Since the goal of
the company is to sell as much as possible of the remaining inventory
during a finite sales season, instead a penalty s is incurred for each unsold
unit of stock by the end of period T. For our purpose of optimizing
transshipment policies, unsold inventory and lost demand costs are
functionally equivalent, because each extra unit of lost demand pre-
vented by a certain policy results in one less unsold unit at the end of the
sales season. Hence, one can take a similar approach to setting s for a
practical setting as in standard lost-sales models, see e.g., Zipkin (2008).

We aim to find a transshipment policy that minimizes costs during the
sales season. Even though we consider a single sales season, our model
extends to the case with replenishments when the replenishment policy
and transshipment policy are set independent from each other, as in, e.g.,
Banerjee et al. (2003) and Lee et al. (2007). Nonetheless, a finite model
without replenishments is realistic when fashion companies are consid-
ered. In that case, long lead-times lead to single batches being ordered for
the entire sales season (Mantrala and Raman, 1999; Mostard and
Teunter, 2006; Caro and Gallien, 2012).

3. Markov decision process

In order to solve the problem to optimality, we formulate a Markov
decision process (MDP). In what follows we provide the state space, the
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admissible actions in each state, and the state transitions.
Since we have to decide which of the cross-channel returns to ship

back to the online store, our state variable has to include the on-hand
inventory levels as well as the cross-channel returns that are eligible
for transshipment. We therefore define the discrete state variable xt 2
N2nþ1 in period t ¼ 1;…;T as

xt ¼ �It0; It;Rt
�
;

where It0 2 N is the on-hand stock at the online store, It ¼ ðIt1;…; ItnÞ 2
Nn are the on-hand stock levels at the offline stores, and Rt ¼
ðRt

1;…;Rt
nÞ 2 Nn are the cross-channel returns from the previous period

available at the offline stores at the start of period t.
In principle, we can start from a given initial state x1 in period 1 and

determine the state space from this given state. If at the start of period 1
there are K items in total, the state space S consists of all combinations
of on-hand stock levels and cross-channel returns summing up to K or less
in total, i.e.

S ¼
(
ðI0; I;RÞ :

Xn
i¼0

Ii þ
Xn
i¼1

Ri � K

)
:

In the special case where the demand distribution at the online store
has a bounded support with an upper limit lower less than K, fewer states
can be considered since

Pn
i¼1Ri is bounded by the maximum demand at

the online store.
Let an action be a vector a with elements ai; i ¼ 1;…; n denoting the

number of products that are transshipped from offline store i to the online
store. The set of admissible actions in each state xt 2 S are

AðxtÞ ¼ �a : 0 � ai � Rt
i for i ¼ 1;…; n

�
:

The cross-channel returns not transshipped are kept on-hand. The
post-action state bxt , starting from state xt and taking action a, is therefore
given by

bxt≡bxtðxt; aÞ ¼  It0 þXn
i¼1

ai; It þ Rt � a; 0

!
:

Letting cS be the set of possible post-action states, it is evident thatcS ⊂S . This can be exploited to reduce the number of computations in
numerical procedures.

After the action, stochastic transitions occur due to demands and

returns. The systemmakes a transition from a post-action state bxt 2 cS in
period t to a state xtþ1 2 S in period t þ 1.

Now we formalize the transitions. Let dt0 and dt ¼ ðdt1;…; dtnÞ be the
observed demands of the online and offline stores. Let rt ¼ ðrt11;…; rtnnÞ
be the observed regular returns of the offline stores. Finally, let the
regular return of the online store be rt00 and the cross-channel returns to
the offline stores rt0 ¼ ðrt01;…; rt0nÞ. The new state after the transition is

xtþ1 ¼
�̂
I
t

0 � dt0 þ rt00; Î
t � dt þ rt; rt0

�
:

For completeness, below we specify the probabilities of observing a
particular outcome of the convoluted demand and return distributions,

when starting from state bxt 2 cS . The most difficult aspect here is that
demand is limited by the on-hand stock, and that returns are limited by
the demand.

P
�
min

n
Dt

0; Î
t

0

o
¼ dt0;…;min

n
Dt

n; Î
t

n

o
¼ dtn;R

t
11 ¼ rt11;

…;Rt
nn ¼ rtnn;R

t
00 ¼ rt00;R

t
01 ¼ rt01;…;Rt

0n ¼ rt0n
�

¼ P
�
Rt
00 ¼ rt00;R

t
01 ¼ rt01;…;Rt

0n ¼ rt0n
��Yn

i¼1
P
�
Rt
ii ¼ rtii

�
�
Yn

i¼0

�
Ifdi¼Î

t
igP
�
Dt

i � Î
t

i

�
þ Ifdi < Î

t
igP
�
Dt

i ¼ di
��
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Since each sold product has a fixed probability of returning, the
returns of the offline store i, Rt

ii, are Binomialðdti ; piiÞ distributed,
i ¼ 1;…; n. The returns of the online store, Rt

00;R
t
01;…Rt

0n, are Multi-
nomialðdt0; p00; p01;…; p0nÞ distributed. Calculating the convolution of
these 3n þ 2 random variables is challenging when n increases, limiting
the size of possible instances that we can solve.

As terminal cost, we set

VTþ1
�
xTþ1

� ¼ s xTþ1⋅1

as the penalty cost for unsold inventory, where 1 is a (2n þ 1) vector of
ones. Then we can iteratively solve

VtðxtÞ ¼ mina2AðxtÞ
�
h xt⋅1þ c⋅aþ E

�
Vtþ1

�
xtþ1
�	�

for all xt 2 S by backward programming to obtain optimal costs for
the MDP.

The MDP has to be adjusted for the model extension with lateral
transshipment. In that case an action aij; i ¼ 1;…; n; j ¼ 0;…; n, denotes
the number of cross-channel returns transshipped from store i to store j.
The set of admissible actions in xt 2 S then becomes

AðxtÞ ¼
(
a :
Xn
j¼0

aij ¼ Rt
i for i ¼ 1;…; n

)
;

with action cost c
Pn

i¼1
Pn

j¼0aij. The post-action state bxt follows from
straightforward accounting.

In addition, the MDP can be adjusted for situations with non-zero
transshipment lead times. Suppose Lij is the transshipment lead time
from node i to j. For each store i we can introduce a pipeline in the state
variable tracking the aggregate number of transshipments arriving at that
store τ periods from now, τ ¼ 1;…;maxjfLjig. Solving this extension is
challenging because the state space size increases quickly in the lead
times and the number of stores.

4. Transshipment heuristic

Since the MDP from x3 is difficult to solve for realistic instances with
more than three stores, we propose a heuristic that applies to instances of
any size. The idea for this heuristic is as follows. At the start of a period t,
we observe the cross-channel returns at the offline stores. From now on
we drop time indices to reduce notational clutter and include them as
function arguments where needed. We define Ci(Ii þ 1, I0, t) to be the
expected cost of adding a product to the on-hand stock at offline store i
for the remainder of the sales season, including possible penalty costs for
being unsold. We then select store i with unassigned cross-channel
returns that has the lowest value of Ci(Ii þ 1, I0, t). Subsequently, we
assign a cross-channel return from this store i to the store j that minimizes
the direct shipment costs plus expected future costs. Hence, if i≠j the
cross-channel return is transshipped from store i to store j. The heuristic is
summarized formally in Heuristic 1.

When transshipment in the offline channel is allowed, any store can be
selected to transship the return to and we substitute
j≔mink2f0;1;…;ngCkðIk þ 1; I0; tÞ þ cik. The heuristic does not preclude posi-
tive lead times between stores. In this case, one can use the long-run costs
starting fromthemomentofdeliveryof theproduct at location j, insteadof t.
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The remainder of this section deals with estimating Ci(Ii, I0, t) and
C0(I0, I, t). For each cross-channel return assigned to the offline or online
store, the expected costs need to include all costs until the end of the sales
season, including possible penalties for unsold stock. Since returned
products may return again in a future period, we account for this in the
expected costs.We split the expected cost into twoparts: the costs until the
product is sold, and the costs if the product returns again. Since the costs if
the product returns again include these same two parts, we will use a
recursion to obtain the expected costs. In order to simplify the calculation,
we assume that no further transshipments take place in the future.

4.1. Determining the expected costs

The expected costs Ci(Ii, I0, t) at time t for keeping the Ii'th product at
offline store i; i ¼ 1;…; n for the remaining sales season depend on its
own stock level and that of the online store. As stated before, we split the
expected costs during the T � t remaining periods into the expected costs
until being sold for the first time, Cd

i ðIi; tÞ, and the expected costs after
being sold for the first time, Cr

i ðIi; I0; tÞ. Hence,

CiðIi; I0; tÞ ¼ Cd
i ðIi; tÞ þ Cr

i ðIi; I0; tÞ:
The costs Cd

i ðIi; tÞ consists of expected holding and penalty costs,
which depend on the number of periods a product is at a store. Therefore,
let Wi(Ii) be the stochastic variable indicating the time until product Ii is
sold at store i, that is

WiðIi; tÞ ¼ min

(
τ : τ � T � t :

Xtþτ

u¼tþ1

Du
i � Ii

)
:

If the minimum does not exist, we define Wi(Ii,t) ¼ T � t þ 1, which
corresponds to the event that the product is not sold at all during the sales
season. Note that Wi(Ii,t) is a stopping time.

Let DðτÞ
i ðtÞ ¼Ptþτ

u¼tD
u
i denote the convolution of demand at store i

during τ time periods. The distribution of DðτÞ
i is easily obtainable for a

number of common distributions, including Normal and Poisson. For
other distributions it can be determined numerically. From this convo-
lution we can obtain the distribution of Wi(Ii,t) as

PðWiðIi; tÞ ¼ τÞ ¼

8>>><>>>:
1�P

�
Dð1Þ

i < Ii
�

if τ¼ 1;

P
�
Dðτ�1Þ

i < Ii
�
�P
�
DðτÞ

i < Ii
�

if 1<τ� T � t;

P
�
DðτÞ

i < Ii
�

if τ¼ T � tþ 1:

The expected costs until being sold for the first time (or not at all)
are then

Cd
i ðIi; tÞ ¼ hEfWiðIi; tÞg þ ðs� hÞPðWiðIi; tÞ ¼ T � t þ 1Þ: (1)

The first part gives the expected holding costs, the second part the
penalty costs. The penalty costs include the term s� h because we need to
subtract the extra holding cost we counted in case Wi(Ii, t) ¼ T � t þ 1.

The costs Cr
i ðIi; I0; tÞ after a return depend on the period in which the

product is returned and the stock level at that time. Conditioning on the
period in which the product is returned yields the recursive relation

Cr
i ðIi; I0; tÞ ¼

XT�t

τ¼1

PðWiðIi; tÞ ¼ τÞpiiE
(
Ci

 
Ii �

Xtþτ

u¼t

�
dui � ruii � ru0i

�
; I0

�
Xtþτ

u¼t

�
du0 � ru00

�
; t þ τ

!)
:

(2)

Due to the dependence between the demand and return processes it is
complex to obtain the expectation in (2) exactly.

We will approximate the expectation in (2) by replacing some
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quantities with simpler distributions or their expectations. For approxi-
mating

Ptþτ
u¼t d

u
i and

Ptþτ
u¼t r

u
ii the following observation is important. Given

that product Ii is sold, the other Ii � 1 products at the offline store must
also have been sold. Therefore, we replace

Ptþτ
u¼t d

u
i by Ii. Since we con-

dition on the event that product Ii returns, the remaining
Ptþτ

u¼t r
u
ii � 1

returns correspond to the returns of the other Ii � 1 products. Hence, this
follows a Binomial(Ii � 1,pii) distribution. We approximate

Ptþτ
u¼t d

u
0 by its

expected demand minfI0;
PT

u¼tλ
u
0g. As estimates for

Ptþτ
u¼t r

u
0i and

Ptþτ
u¼t r

u
00

we multiply this expected demand by the return probabilities p0i and p00
and round them to the nearest integer. Using this approximation it is
possible to recursively determine Ci(Ii,I0, t) for each online store i.

The costs for products at the online store require a more involved
computation, as products bought from this store can return at any online
or offline store. The idea is to separately calculate expected costs for a
return at each store. Define Cr

0iðIi; I0; tÞ as the part of the expected future
costs of the I00th product at the online store that can be attributed to
returning at store i. Furthermore, define C00(I0, t) as the expected costs
incurred at the online store of the I00th product. Thenwe compute C0(I0, I,
t) as

C0ðI0; I; tÞ ¼ C00ðI0; tÞ þ
Xn
i¼1

Cr
0iðIi; I0; tÞ: (3)

C00(I0, t) can be computed analogously to the expected long run costs at
the offline stores in (1) and (2).

Now we distinguish between two scenarios for the I00th product
returning at offline store i in the future:

1. It returns τ periods from now to offline store i with probability p0i and
incurs costs there.

2. It returns τ periods from now to the online store with probability p00
and later returns to store i when it is sold again.

Note that in the second scenario, a product can return more than once
to the online store before being returned at store i. In the first scenario the
expected future costs are Cið⋅; ⋅; τÞ as given by 2. In the second scenario,
the expected future costs are again Cr

0ið⋅; ⋅; τÞ. Therefore, we can now
write a similar recursion as above. For i; i ¼ 1;…; n we have

Cr
0iðI0; Ii; tÞ ¼

XT�t

τ¼1
PðW0ðI0Þ ¼ τÞ

n
p0iE

n
Ci

�
Ii þ

Xtþτ

u¼t
ruii

þ ru0i � dui ; I0 þ
Xtþτ

u¼t
ru00�du0; t þ τ

�o
þ p00E

n
Cr

0i

�
Ii þ

Xtþτ

u¼t
ruii þ ru0i�dui ; I0

þ
Xtþτ

u¼t
ru00�du

0; t þ τ
�oo

The first part of this equation is the cost for returning immediately to
store i, whereas the second part is the expected cost of returning to store i
after returning to store 0 at time t þ τ first. The latter includes multiple
possible returns due to the recursive nature of the equation. The
approximation of the stochastic variables in this equation is similar to the
one for the stores of the offline channel. We approximate

Ptþτ
u¼t r

u
ii þ ru0i�dui

as 1 þ p0i(I0 � 1) � (1 � pii)λi and �1þ I0 þ
Ptþτ

u¼t r
u
00�du0 by a

Binomial(I0 � 1, p00) distributed variable. Finally, we compute C0(I0, I, t)
as in (3). All of the functions that we derived can be precomputed to save
computation time. Note that this computation is efficient only if we
decompose the cost function into separate cost functions for each store as
we did.

5. Experiments

To test the performance of the heuristic proposed in the previous
section, we solve a number of instances to optimality with the MDP from
Section 3. We compare these optimal solutions to the solutions found by
our heuristic, as well as two static policies. We refer to the policy of
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transshipping all cross-channel returned products to the online store as
the Ship All policy, whereas we refer to the policy of keeping all cross-
channel returned products at the offline store as the Ship None policy.

We have a common experimental design for n ¼ 1 and n ¼ 2 offline
stores. The objective values of the heuristics are the mean of the simu-
lation of 100,000 sales seasons per instance, using common random
numbers. The results are shown in Tables 1–3. The number of periods T
are 10 and the penalty s for unsold stock is 50. Holding costs are equal at
all stores and set to 1 per unit per period. The transshipment costs c are
either low (5) or high (15). The demand rate of the offline stores is kept
constant at 1, whereas the online store faces a demand rate of either 1 or
4. The self-return rate pii for offline store i,i ¼ 1, 2 is 0.1. The online store
has a total return rate of 0.4 of which either 50% or 100% returns cross-
channel to an offline store; for n ¼ 2 the cross-channel returns are evenly
divided over the offline stores. The cross-channel return rates are in
accordance with a recent survey in the USA, in which 60% of surveyed
consumers indicated to prefer returning a product bought online to an
offline store when given the choice (UPS, 2016). Furthermore, a
cross-channel return rate of 100% shows the performance of our heuristic
most clearly, as the number of transhipment decisions in a sales season is
at its maximum.

Optimal initial stock levels depend on the transshipment policy used.
For example, when using the Ship None policy it is better to keep less
stock in the online channel compared to the Ship All policy. Furthermore,
forecasting of demand for fashion products before the sales season is
complex and may lead to substantial forecast errors (Au et al., 2008).
Therefore, we consider two different types of initial stock levels: one with
relatively more offline stock and one with more online stock. Addition-
ally, we consider total initial inventory equal to either 90% or 130% of
total expected sales during the sales season, representing different types
of forecast errors. This results in four different configurations of initial
stock. See Appendix A for the exact procedure used.
Table 1
Results for instances with 1 offline store. Optimal objective value and relative difference from o

c λ0 λ1 p00 p01 S0 S1

1 5 1 1 0.2 0.2 7 6
2 5 1 1 0.2 0.2 5 8
3 5 1 1 0.2 0.2 10 10
4 5 1 1 0.2 0.2 8 12
5 5 4 1 0.2 0.2 24 6
6 5 4 1 0.2 0.2 22 8
7 5 4 1 0.2 0.2 34 9
8 5 4 1 0.2 0.2 31 12
9 5 1 1 0 0.4 7 6
10 5 1 1 0 0.4 5 8
11 5 1 1 0 0.4 10 10
12 5 1 1 0 0.4 8 12
13 5 4 1 0 0.4 24 6
14 5 4 1 0 0.4 22 8
15 5 4 1 0 0.4 34 9
16 5 4 1 0 0.4 31 12
17 15 1 1 0.2 0.2 7 6
18 15 1 1 0.2 0.2 5 8
19 15 1 1 0.2 0.2 10 10
20 15 1 1 0.2 0.2 8 12
21 15 4 1 0.2 0.2 24 6
22 15 4 1 0.2 0.2 22 8
23 15 4 1 0.2 0.2 34 9
24 15 4 1 0.2 0.2 31 12
25 15 1 1 0 0.4 7 6
26 15 1 1 0 0.4 5 8
27 15 1 1 0 0.4 10 10
28 15 1 1 0 0.4 8 12
29 15 4 1 0 0.4 24 6
30 15 4 1 0 0.4 22 8
31 15 4 1 0 0.4 34 9
32 15 4 1 0 0.4 31 12
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5.1. Performance of the heuristic

In Table 1 we see that our heuristic has a maximum deviation of
1.29% from the optimal costs, with all other instances below 1% when
we consider only one offline store. For two offline stores the results are
similar as can be seen in Table 2. The maximum deviation is 1.53%, with
all other instances being below 1.1%. The results for two stores and
transshipments in the offline channel are shown in Table 3. Here, the
maximum deviation is slightly lower at 1.42%, but overall the heuristic's
performance is similar to the case without transshipments in the offline
channel. In all instances our heuristic beats the static Ship All and Ship
None policies.

In general, the deviations from the optimal solution for the heuristic
increase in the cross-channel return rate. This seems logical, as with
higher cross-channel return rates, the decision whether to transship
cross-channel returns has a higher impact on total costs, inflating the
effect of suboptimal decisions. Interestingly, the transshipment cost does
not appear to have a large influence on the performance of the heuristic.
Hence, the heuristic seems to take these costs into account in an effec-
tive way.

The relative difference with the optimal solution of both static pol-
icies increases when the demand rate of the online channel increases.
Which of the static policies is best depends on the other parameter set-
tings. Clearly, a higher transshipment cost means the cost increases of the
Ship All policy. By comparing instances which have the same cost and
demand parameters but different initial inventories, we see that the
initial inventory is the most significant factor for determining the per-
formance of the static policies. When there is relatively more stock in the
online channel, Ship None typically performs best. In this case, the extra
inventory at the online store generates cross-channel returns that can
replenish the inventory at the offline stores. With relatively more stock in
the offline channel, Ship All is better because this gives an option to
replenish the online channel. Under the optimal policy, the costs for
different initial inventories are typically close to each other, indicating
ptimal by heuristics.

Optimal Heuristic (%) Ship None (%) Ship All (%)

137.77 0.14 2.50 22.94
134.25 0.11 9.93 4.93
416.14 0.14 0.97 4.82
418.82 0.10 3.54 1.18
264.60 0.46 30.35 18.66
277.83 0.27 44.92 5.75
814.27 0.20 3.54 8.49
827.07 0.12 7.85 2.33
131.27 0.44 8.95 35.38
137.93 0.25 20.39 7.24
415.73 0.13 3.82 7.07
424.99 0.08 8.82 1.74
291.21 1.29 72.72 19.54
307.10 0.83 83.77 6.36
841.79 0.08 16.56 9.21
858.76 0.06 23.79 2.73
140.04 0.11 0.83 32.84
142.07 0.16 3.87 9.08
418.78 0.15 0.34 8.42
427.48 0.45 1.44 3.17
300.49 0.13 14.78 27.18
328.24 0.12 22.67 9.49
830.35 0.36 1.54 15.04
860.94 0.76 3.61 6.63
139.33 0.41 2.64 51.45
155.57 0.37 6.74 13.21
425.84 0.50 1.36 12.90
446.67 0.67 3.54 4.55
386.89 0.94 30.01 25.25
418.02 0.81 35.01 9.54
911.65 0.20 7.63 16.62
955.80 0.21 11.22 7.30



Table 2
Results for instances with 2 offline stores, without transshipments in the offline channel. Optimal objective value and relative difference from optimal by heuristics.

c λ0 λ1,λ2 p00 p01 p02 S0 S1 S2 Optimal Heuristic (%) Ship None (%) Ship All (%)

1 5 1 1, 1 0.2 0.1 0.1 7 7 7 215.23 0.15 2.18 12.41
2 5 1 1, 1 0.2 0.1 0.1 5 8 8 212.65 0.12 5.81 3.47
3 5 1 1, 1 0.2 0.1 0.1 10 11 11 659.71 0.14 0.65 2.36
4 5 1 1, 1 0.2 0.1 0.1 8 12 12 662.48 0.06 2.15 0.81
5 5 4 1, 1 0.2 0.1 0.1 25 7 6 336.92 0.86 17.13 20.43
6 5 4 1, 1 0.2 0.1 0.1 22 8 8 351.40 0.44 28.58 6.26
7 5 4 1, 1 0.2 0.1 0.1 37 9 9 1061.02 0.20 1.04 10.42
8 5 4 1, 1 0.2 0.1 0.1 31 12 12 1065.72 0.25 5.83 2.39
9 5 1 1, 1 0 0.2 0.2 7 7 7 208.80 0.44 6.65 19.87
10 5 1 1, 1 0 0.2 0.2 5 8 8 215.11 0.20 11.75 5.56
11 5 1 1, 1 0 0.2 0.2 10 11 11 659.39 0.15 2.46 3.76
12 5 1 1, 1 0 0.2 0.2 8 12 12 667.69 0.08 5.37 1.32
13 5 4 1, 1 0 0.2 0.2 25 7 6 353.51 1.53 45.68 24.57
14 5 4 1, 1 0 0.2 0.2 22 8 8 376.55 1.04 55.99 7.87
15 5 4 1, 1 0 0.2 0.2 37 9 9 1066.15 0.16 7.89 13.26
16 5 4 1, 1 0 0.2 0.2 31 12 12 1094.82 0.13 18.26 2.94
17 15 1 1, 1 0.2 0.1 0.1 7 7 7 218.20 0.10 0.79 18.53
18 15 1 1, 1 0.2 0.1 0.1 5 8 8 219.96 0.12 2.30 6.45
19 15 1 1, 1 0.2 0.1 0.1 10 11 11 662.61 0.11 0.21 4.61
20 15 1 1, 1 0.2 0.1 0.1 8 12 12 670.87 0.28 0.87 2.13
21 15 4 1, 1 0.2 0.1 0.1 25 7 6 365.25 0.38 8.04 30.05
22 15 4 1, 1 0.2 0.1 0.1 22 8 8 396.31 0.30 14.01 10.78
23 15 4 1, 1 0.2 0.1 0.1 37 9 9 1067.39 0.17 0.43 16.50
24 15 4 1, 1 0.2 0.1 0.1 31 12 12 1097.96 0.72 2.72 5.92
25 15 1 1, 1 0 0.2 0.2 7 7 7 217.83 0.31 2.23 30.20
26 15 1 1, 1 0 0.2 0.2 5 8 8 230.98 0.26 4.08 10.53
27 15 1 1, 1 0 0.2 0.2 10 11 11 669.78 0.35 0.87 7.48
28 15 1 1, 1 0 0.2 0.2 8 12 12 688.58 0.47 2.17 3.27
29 15 4 1, 1 0 0.2 0.2 25 7 6 433.87 1.08 18.70 33.40
30 15 4 1, 1 0 0.2 0.2 22 8 8 476.78 1.06 23.20 12.73
31 15 4 1, 1 0 0.2 0.2 37 9 9 1110.46 0.14 3.58 21.71
32 15 4 1, 1 0 0.2 0.2 31 12 12 1189.90 0.15 8.81 6.77

Table 3
Results for instances with 2 offline stores, with transshipments in the offline channel. Optimal objective value and relative difference from optimal by heuristics.

c λ0 λ1,λ2 p00 p01 p02 S0 S1 S2 Optimal Heuristic (%) Ship None (%) Ship All (%)

1 5 1 1, 1 0.2 0.1 0.1 7 7 7 210.90 0.07 4.41 14.65
2 5 1 1, 1 0.2 0.1 0.1 5 8 8 210.88 0.15 6.63 4.33
3 5 1 1, 1 0.2 0.1 0.1 10 11 11 656.58 0.10 1.22 2.89
4 5 1 1, 1 0.2 0.1 0.1 8 12 12 661.08 0.08 2.39 1.02
5 5 4 1, 1 0.2 0.1 0.1 25 7 6 330.68 0.59 19.27 22.63
6 5 4 1, 1 0.2 0.1 0.1 22 8 8 348.83 0.34 29.45 6.98
7 5 4 1, 1 0.2 0.1 0.1 37 9 9 1052.21 0.27 1.79 11.36
8 5 4 1, 1 0.2 0.1 0.1 31 12 12 1063.98 0.16 5.99 2.58
9 5 1 1, 1 0 0.2 0.2 7 7 7 203.45 0.40 9.46 23.06
10 5 1 1, 1 0 0.2 0.2 5 8 8 212.98 0.22 12.90 6.65
11 5 1 1, 1 0 0.2 0.2 10 11 11 655.79 0.16 3.10 4.40
12 5 1 1, 1 0 0.2 0.2 8 12 12 666.01 0.14 5.67 1.64
13 5 4 1, 1 0 0.2 0.2 25 7 6 350.16 1.42 46.94 25.73
14 5 4 1, 1 0 0.2 0.2 22 8 8 374.95 0.87 56.70 8.22
15 5 4 1, 1 0 0.2 0.2 37 9 9 1062.95 0.53 8.15 13.59
16 5 4 1, 1 0 0.2 0.2 31 12 12 1093.87 0.23 18.35 2.97
17 15 1 1, 1 0.2 0.1 0.1 7 7 7 216.05 0.10 1.75 19.69
18 15 1 1, 1 0.2 0.1 0.1 5 8 8 218.87 0.02 2.87 6.99
19 15 1 1, 1 0.2 0.1 0.1 10 11 11 661.15 0.14 0.51 4.88
20 15 1 1, 1 0.2 0.1 0.1 8 12 12 670.18 0.31 0.99 2.29
21 15 4 1, 1 0.2 0.1 0.1 25 7 6 362.02 0.28 8.98 31.18
22 15 4 1, 1 0.2 0.1 0.1 22 8 8 395.01 0.15 14.38 11.11
23 15 4 1, 1 0.2 0.1 0.1 37 9 9 1063.31 0.34 0.80 16.92
24 15 4 1, 1 0.2 0.1 0.1 31 12 12 1097.34 0.71 2.76 5.94
25 15 1 1, 1 0 0.2 0.2 7 7 7 215.03 0.25 3.56 31.95
26 15 1 1, 1 0 0.2 0.2 5 8 8 229.75 0.24 4.78 11.09
27 15 1 1, 1 0 0.2 0.2 10 11 11 668.13 0.43 1.18 7.74
28 15 1 1, 1 0 0.2 0.2 8 12 12 687.82 0.51 2.28 3.43
29 15 4 1, 1 0 0.2 0.2 25 7 6 432.47 1.01 19.03 33.76
30 15 4 1, 1 0 0.2 0.2 22 8 8 476.08 0.73 23.31 12.85
31 15 4 1, 1 0 0.2 0.2 37 9 9 1109.17 0.55 3.67 21.85
32 15 4 1, 1 0 0.2 0.2 31 12 12 1189.66 0.19 8.81 6.77
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that a dynamic transshipment policy has the flexibility to cost-efficiently
deal with small imbalances in initial inventories, whereas static policies
generally perform poorly with small imbalances.
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5.2. Transshipment frequency over time

Since our heuristic is dynamic, rather than static, the number of
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Fig. 1. Fraction of cross-channel returns transshipped to the online channel each period
for instance 4, 12, 20, and 28 with 1 offline store.
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Fig. 2. Fraction of cross-channel returns transshipped to the online channel each period
for instance 3, 11, 19, and 27 with 1 offline store.
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transshipped products varies between periods. Figs. 1 and 2 show the
fraction of cross-channel returns transshipped in each period of the sales
season for a number of instances from Table 1. The fractions are the
average of 100,000 simulation runs per instance. Fig. 1 shows instances
with relatively more offline stock. We see that the transshipment fre-
quency declines over time. On the other hand, Fig. 2 illustrates the same
instances with relatively more online stock. The fraction of transshipped
items is almost always lower than in comparable instances in Fig. 1. The
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trend is different: transshipment frequencies are low at first and slightly
increase before decreasing again at a later stage. The interpretation is
that cross-channel returns are first used to replenish some inventory at
the offline store; later the decisions become similar to Fig. 1. In both
Figures we can observe that instances with higher shipment cost have
lower transshipment frequencies in all time periods. The same holds for
the cross-channel return rate; an increase leads to a higher trans-
shipment frequency.

6. Conclusion and discussion

We study dynamic policies for transshipment of products that are
returned cross-channel from online to offline stores. At the end of each
period in a finite sales season, cross-channel returned products can be
transshipped back to the online store or kept on-hand at the offline store.
We derive optimal transshipment policies using Markov decision pro-
cesses and propose a heuristic with a maximum deviation of 1.59% from
the optimal costs in experiments. In all instances our heuristic out-
performs static policies used in practice, showing that dynamic trans-
shipment policies are more effective than static policies in dealing with
imbalances in the initial stock. Dynamic transshipment of cross-channel
returns seems to provide possibilities for more effective demand fulfill-
ment for companies with online and offline channels.

Our research indicates a number of interesting avenues for further
research. We use a transshipment cost that is linear in the number of
items transshipped. It would be interesting to see what transshipment
policies are effective in different situations; for example, when a fixed
order cost is used. Fixed order costs limit the number of periods in which
transshipment is beneficial by incentivising shipment of many returns at
the same time. In this case, policies should probably provide a threshold
for the minimum number of returns that are transshipped, if any are
transshipped at all. Another interesting addition would be the inclusion
of emergency transshipments, which would enable fulfillment of demand
encountering a stock-out if the other channel still has stock available at a
premium. It is unclear how this would affect the lateral trans-
shipment policy.
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Appendix A. Initial stock levels

For setting initial stock levels, we used the following procedure. In case of relatively more offline stock, we use
 
n

!

Ioffi ¼ γλi 1�

X
j¼0

pij

and round to the nearest integer. The scaling factor γ takes on values 0.9 or 1.3. The total stock resulting from this scaling is roughly 90% and 130% of
the expected demand during the sales season. The above assumes that all returns are regular returns and leads to relatively much stock at the offline

stores. For the case with relative more online stock, we redivide the K ¼Pn
i¼0I

off
i items according to the demand rates λi. We set
Ioni ¼ λiPn
j¼0λj

K;

and round to the nearest integer. If the total sum does not add up to K, we subtract/add an item from stock levels which have been rounded up/
down most.
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