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Model-based clustering is a technique widely used to group a collection of units into mutually exclusive
groups. There are, however, situations in which an observation could in principle belong to more than one
cluster. In the context of Next-Generation Sequencing (NGS) experiments, for example, the signal observed
in the data might be produced by two (or more) different biological processes operating together and a gene
could participate in both (or all) of them. We propose a novel approach to cluster NGS discrete data, coming
from a ChIP-Seq experiment, with a mixture model, allowing each unit to belong potentially to more than
one group: these multiple allocation clusters can be flexibly defined via a function combining the features
of the original groups without introducing new parameters. The formulation naturally gives rise to a ‘zero-
inflation group’ in which values close to zero can be allocated, acting as a correction for the abundance of
zeros that manifest in this type of data. We take into account the spatial dependency between observations,
which is described through a latent Conditional Auto-Regressive process that can reflect different depen-
dency patterns. We assess the performance of our model within a simulation environment and then we apply
it to ChIP-seq real data.

Key words: ChIP-Seq; Mixture model; Model-based clustering; Multiple allocations; Spatial
dependency;

Supporting Information for this article is available from the author.

1 Introduction

In the last 15 years, the development of parallel massively sequencing platforms for mapping the genome
has completely revolutionized the way of studying genetic information. These recent technologies called
Next Generation Sequencing (NGS) allow to simultaneously investigate thousands of features within a sin-
gle reliable and cost-effective experiment, thus representing a valid alternative to microarray experiments
in enhancing our understanding of how genetic differences affect health and disease (Nagalakshmi and
others, 2008). Indeed, these innovative platforms have been quickly applied to many genomic contexts
giving rise to a large amount of available data in complex form. Data coming from such experiments are
highly structured and their analysis has raised an imperative need for specific methodologies: technical or
biological replicates can be observed in several experimental conditions (Bao and others, 2014), and the
single observational units, such as genes or exons, are very likely characterized by spatial dependencies and
relationships (Mo, 2012). Moreover, the abundance of a particular transcript is measured as a count and
so the single data point is a discrete measurement. In the context of Chromatin ImmunoPrecipitation and
sequencing (ChIP-Seq) data, the authors of Thomas and others (2016) survey and review some established
algorithms and some new ones, in order to compile a set of characteristics and properties that could define
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2 Saverio Ranciati et al. and dd: Multiple allocation clustering for spatially correlated genetic data

a common benchmark platform. They evaluate methods that aim at decoupling background and signal in
the data: these algorithms may rely on test statistics (Binomial or Poisson, for example) or normalized
scores that employ simultaneously input samples (that is, a ‘control condition’) and ChIP samples.

We consider in this paper the same context, ChIP-Seq experiments, and in particular data on proteins
p300 and CBP analysed by Ramos and others (2010). In this experiment, two technical replicates are
observed after 30 minutes from the initial interaction of the proteins with the human genome, with the
aim of discovering the binding profile of these transcription factors. Figure 1 displays summarized counts
for 1000 base pairs contiguous windows along chromosome 21. The plot shows segments with high read
counts and segments where there is a uniformly low level of signal, thus suggesting a potential spatial
effect.

In ChIP-Seq data like the one investigated (see Kuan and others (2011) for a review), researchers usu-
ally associate the counts to two specific components: a background level, which accounts for the noise in
the process and the inactivity of the regions with respect to protein binding; a signal level, that is described
by a higher counts of sequenced DNA fragments, indicating that the protein is actually interacting with
those specific genomic regions. From a statistical point of view, the problem of the detection of such bio-
logical processes can be addressed by introducing a mixture model with the aim of identifying groups of
genomic regions that exhibit similar preferential binding by a protein. Typically, conventional model-based
clustering methods perform classification of units into mutually exclusive partitions. However, looking at
Figure 1, it could be interesting to uncover components that may arise from the multiple overlapping action
of the main aforementioned group processes. Multiple partitions can be obtained in (at least) two ways: (a)
by fuzzy or ‘soft’ clustering that is the assignment of a unit to the group with some posterior probabilities
(see, for instance, Bezdek, 1981; Heller and others, 2008) or (b) by accounting for multiple allocations
directly within a generative model. Our proposal employs this second perspective that explicitly assumes
that genomic units are fully co-actors of multiple processes in a model based framework. The idea stems
from earlier contributions aimed at discovering multiple clusters. Battle and others (2005) introduced a
probabilistic-based method to discover overlapping cellular processes and the associated gene regulation
scheme. Given the complexity of a cellular system, they propose a decomposition of the observed contin-
uous data matrix into layers representing biological processes and groups of co-regulated genes, allowing
every unit to express itself in more than one activity layer and belong to multiple clusters. In Banerjee
and others (2005) and Fu and Banerjee (2008), the problem of multiple allocation is solved within a model
based clustering strategy, where the distribution of the groups is extended generalizing the Gaussian proba-
bility distribution used in Battle and others (2005) to the case of exponential family distributions. The main
idea of such approach known as ‘Model-Based Overlapping Clustering’ is to re-parameterize the density
of the overlapped clusters as the product of some primary densities that, being members of the exponential
family, still result in the same parametric family. Heller and Ghahramani (2007) extended these models
by employing a nonparametric Bayesian technique to infer the number of groups in their overlapping clus-
ters model, while maintaining the characterization of the mixture densities as members of the exponential
family. More recently, Zhang (2013) proposed the ‘epistatic model based clustering’ for the analysis of
microarray data. In this approach, a more explicit description of the mixed component densities in terms of
Gaussians is given; different interactions between the parameters of the primary groups are investigated but
the order of the interactions between these original clusters and the overlapped counterparts is practically
limited to the second order.

The aim of this work is to define a general Multiple Allocation Mixture (MAM) model for analyzing the
ChIP-Seq data. The peculiar features of these experimental data demand for specific treatment. First, their
discrete nature and a marked overdispersion require a flexible count distribution such as the Negative Bi-
nomial, that however does not generally belong to the exponential family, unless its dispersion parameter is
known and fixed. To this aim we generalize the model-based overlapping clustering to arbitrary parametric
probabilistic functions. In addition, as shown in Figure 1, ChIP-Seq data are characterized by the inflation
of non-structural zeros. These aspects are naturally taken into account by the proposed model, where each
component of the multiple mixture corresponds to a primary or to an overlapping cluster distributed as
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Negative Binomials with parameters that are function of the primary parameters only. A further important
aspect that emerges from Figure 1 is that the protein interactions with DNA are spatially correlated. We
will show that the model can be easily extended in order to account for the spatial linkage among the genes,
via a Conditional Auto-Regressive (CAR) process.

In what follows, we will present our proposal in three gradual steps in order to sequentially address
these issues. First, in Section 2, the general MAM model will be presented and then we will adapt the
model to the NGS data. We will illustrate how to extend this approach in order to model spatial dependent
observations. In Section 3, a simulation study aimed at investigating the flexibility and effectiveness of the
proposal is presented. Furthermore, we use the newly developed model to study the genome wide binding
of the protein p300 in order to investigate its transcriptional regulatory function. In Section 4, conclusions
are discussed.

2 Methods

2.1 Model-based clustering with mixture model

Finite mixture models have been receiving a wide interest in the statistical literature as a tool for performing
model based clustering and density estimation (see Banfield and Raftery, 1993; McLachlan and Peel, 2000;
Fraley and Raftery, 2002).

Let yj (j = 1, . . . , p) be an observed vector of values that we want to classify in some unknown groups.
The conventional model based clustering model assumes

f(yj |Θ) =

k∑
i=1

πif(yj |θi), (1)

where f(yj |θi) are the component densities with parameters θi and πi are the prior probabilities to belong
to each component, satisfying πi > 0 and

∑k
i=1 πi = 1. According to this model, a sample of p observa-

tions arises from some underlying populations of unknown proportions and the purpose is to decompose
the sample into its mixture components, where each component corresponds to a cluster. In doing so, the
data are partitioned into mutually exclusive k groups. This is achieved by introducing a latent variable,
say zji, which allocate each observation j to the component i. More precisely, zj is a vector of length k
that takes the value 1 in correspondence of the cluster assignment, and 0 elsewhere, so that

∑k
i=1 zji = 1.

According to the maximum a posteriori probability (MAP) rule, the partition is then obtained by assigning
subjects to their most likely class according to the posterior probabilities of z given the data:

f(zji|yj ; Θ) =
πif(yj |zji;θi)∑k

i′=1 πi′f(yj |zji′ ;θi′)
.

In this sense the classification produced by a mixture model is ‘hard’ (because a unit is allocated to the
mixture component with the maximum posterior probability of belonging to) but in principles it could be
‘soft’ by assigning each cluster a weight that equals its posterior probability as in the partial membership
model (Heller and others, 2008). However, a soft assignment perspective does not mitigate the limitation
of the model based classification, that results when data points may simultaneously belong to multiple
clusters. In such situations, a change in the generative model is required, by explicitly assuming that the
allocation vector zj may contain several - and not just a single - ones.

2.2 Multiple Allocation Mixture model

In order to construct a new generative model for multiple components, we define k in Eq. 1 as the number
of primary groups which are not mutually exclusive. For such a reason, we assume the prior probabilities of
each primary group satisfying the constraint πi > 0 but not necessarily summing up to one,

∑k
i=1 πi 6= 1.
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The total number of possible single and multiple allocation clusters is k∗ = 2k and
∑k
i=1 zji = nj is the

multiplicity of the cluster membership for the unit jth. When nj = 1 we have a single group allocation,
otherwise we have multiple group allocations. More precisely, if nj = 2 the unit jth belongs to two groups
simultaneously. These two groups altogether may be thought of as a new secondary group. If nj = 3 the
unit belongs to three groups that jointly define a tertiary group and so forth. When nj = 0, the unit is
assigned to what we call a ‘outward cluster’: this group collects observations that ideally do not belong
to any clusters, and for this reason their distribution might be described by peculiar parameters depending
on the empirical context. For instance, in many applications it could represent a group of outliers or
noisy observations, characterized by high variance. The definition and existence of the ‘outward cluster’
is particularly relevant for the analysis of ChIP-Seq data, where the clusters are interpretable as biological
processes. A gene that does not take part to any biological processes will have extremely low values (close
to zero or zero). Thus, the outward cluster has the purpose to describe the group of ‘inactive genes’ and, in
so doing, it acts as a zero-inflation adjustment for the model. For k fixed, let U be a connection matrix of
dimension 2k × k, with elements uhi ∈ {0, 1}, containing all the possible assignment configurations. For
instance, for k = 3:

U =



0 0 0
1 0 0
0 1 0
0 0 1
1 1 0
0 1 1
1 0 1
1 1 1


. (2)

In this case we define the prior probability to belong to a general (single or multiple allocation) group

π∗
h =

k∏
i=1

πuhi
i (1− πi)1−uhi (3)

with h = 1, . . . , k∗. Notice that, by definition, these weights satisfy
∑k∗

h=1 π
∗
h = 1. Each π?h comes

naturally from the representation of clusters as sets in a sample space. For instance, if k = 2,
∑k∗

h=1 π
∗
h =

(1− π1)(1− π2) + π1(1− π2) + (1− π1)π2 + π1π2 = 1.
The Multiple Allocation Mixture model (MAM) can be defined as a reparameterization of Eq. 1 in the

new formulation

f(yj |Θ) =

k∗∑
h=1

π∗
hf(yj |ψ(uh,θ), φh) (4)

where ψ(uh,θ) is a location parameter and φh is a nuisance parameter. More specifically, ψ(uh,θ) is a
function that depends on uh, which is the h-th row of U , and transforms the primary parameters θi into
the parameters of the multiple allocation components according to several possible schemes:

(i) additive model: the parameters of the mixed groups could be the sum of the original parameters, that
is

ψ(uh,θ) =

{ ∑k
i=1 uhiθi if h > 1

θb if h = 1;

(ii) co-dominance of order 1:

ψ(uh,θ) =

{ ∑k
i=1 uhiθi∑k
i=1 uhi

if h > 1

θb if h = 1;
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(iii) co-dominance of order 0:

ψ(uh,θ) =


(∏k

i=1 θ
uhi
i

)1/
∑k

i=1 uhi

if h > 1

θb if h = 1.

How suitable is each scheme depends on the task at hand and the nature of the phenomenon being studied:
an additive framework assumes that the effect of two main groups sums up to produce the overall activity
of the multiple allocation group they originate; a co-dominance scheme reflect the idea that a multiple
allocation group has a mean effect that is the average of the mean parameters of the main groups that
originated it. The order of co-dominance simply describes the type of mean we are using, with order 1
being the arithmetic mean (AM) and order 0 the geometric mean (GM). Given the inequality of arithmetic
and geometric means (AM-GM inequality), that is, AM ≥ GM when computed on the same values,
the latter might be particularly useful to alleviate the effect of primary groups having ‘extreme’ mean
parameters. Finally, the nuisance parameters φh are taken h-specific because we aim to add more flexibility
to the mixture model.

2.2.1 Model selection

The choice of combining scheme to be used and number of clusters K are two aspects addressed via the
adoption of a selection criterion, weighing both fitness and complexity of the resulting model. While
choosing among different combining functions ψ(·) has the advantage to exploit (prior) information from
the expert, how many clusters are needed to represent the heterogeneity in the data is a question that we
answer by computing different quantities. The first option is the BICM (Raftery and others, 2007), that is
a posterior simulation-based version of the canonical Bayesian Information Criterion

BICM = 2 ln(L)− 2s̃2 ln(n),

where L is the likelihood of the model and s̃2 a sample variance of the log-likelihood values, computed at
each iteration of the MCMC. We select the number of clusters K producing the highest BICM. A second
option is the BIC-MCMC criterion (Frühwirth-Schnatter, 2011)

BIC-MCMC = 2 ln(l̃)− κ ln(n)

with l̃ being the largest computed log-likelihood value among the iterations of the MCMC and κ the number
of parameters in the model. Again, the selected K is the one with the corresponding largest value of the
BIC-MCMC. A third option is represented by the Deviance Information Criterion (DIC) (Spiegelhalter
and others, 2002) and the use of an associated prior probability distribution for K, i.e. a Uniform prior in
the range (2,Kmax) for some reasonable and context-specific Kmax.

2.3 Multiple Allocation Mixture model for ChIP-Seq Data

Suppose we observe the ChIP-Seq counts of p genes in D biological conditions or replicates. We denote
Yjd the random variable that expresses the read counts, say yjd, mapped to gene j (j=1, ..., p), in sample
d with d = 1, . . . , D. Let Y j be the random vector of length D denoting the counts for a gene across
the different conditions. Let yj be the observed value. We assume that Yjd is distributed according to the
Negative Binomial (NB) distribution, given both the discrete nature of the observations and the flexibility
of having a specific parameter used to model the overdispersion, which makes this distribution preferable
over the Poisson. We further assume that, conditional on the group, the replicates are independent draws
so that the mixture model in Eq. 4 becomes:

f(yj |Θ) =

k∗∑
h=1

π∗
h

D∏
d=1

NB (yjd|ψ(uh,µd), φdh) ,
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where φdh are specific dispersion parameters of the negative binomials and µ∗
dh = ψ(uh,µd) are the

means defined in the extended space of multiple components. We allow dispersion parameters φhd to vary
for each of the k∗ possible assignment and replicates because it is not directly clear a priori what is the
most reasonable variance structure to define through a function for the multiple allocation clusters. This
allows, nevertheless, for a certain degree of flexibility in describing the context-specific variability in the
data. With reference to the means µ∗

dh they are modelled as function of primary k means through the
combination scheme ψ. More specifically, with reference to the connection matrix U in Eq. 2, µ∗

d1 is the
mean parameter in condition d of the outward distribution; µ∗

d2 is the mean parameter of the units that
belong to the first primary group only and not to mixed groups, and so on, till µ∗

d8 that is the mean of
the units that belong simultaneously to the three components under condition d. Given the nature of the
data we consider the ‘outward’ group as the component devoted to describe the inactive genes and for this
reason we fix its mean to a very low value, such as µ∗

d1 = 0.01. The other mean parameters are obtained
as combination scheme through ψ of k primary values that represent the means of the units that belong
to the primary groups or related multiple groups. In order to construct an hierarchical form of the model,
we define with z∗ the allocation matrix in the augmented space given by k∗ as a p × k∗ ‘multinomial’
matrix. While each row of z can have multiple ones according to the assignment of the unit to multiple
clusters, the rows of z∗ only have a single one and the matrix U allows for a connection between original
parametrization allocation and the re-parametrized version. Given the whole set of parameters, say Θ, the
joint complete likelihood of our model is the following:

P(y, z∗|Θ) = P(y|z∗,Θ)P(z∗|Θ). (5)

Inference is carried out within a Bayesian framework. The posterior distribution of the parameters and the
latent variables is:

P(z∗,Θ, ξ|y) ∝ P(y|z∗,Θ)P(z∗|Θ)P(Θ|ξ) (6)

with P(Θ|ξ) specifies priors for the mixture parameters and ξ as the vector containing the hyper-parameters.
The posterior in Eq. 6 can then be rewritten as:

P(z∗,π,µ,φ, ξ|y) ∝ P(y|z∗,µ,φ)P(z∗|π)P(π|ξ)P(µ|ξ)P(φ|ξ) =

=
∏p
j=1

∏D
d=1

∏k∗

h=1

{
Γ(φhd+yjd)

Γ(φhd)Γ(yjd+1)

[
φhd

φhd+ψ(uh,µd)

]φhd
[

ψ(uh,µd)
φhd+ψ(uh,µd)

]yjd}z∗jh
×

×
∏p
j=1

∏k∗

h=1

(∏k
i=1 π

uhi
i (1− πi)1−uhi

)z∗jh
P(π|ξ)P(µ|ξ)P(φ|ξ), (7)

where P(π|ξ),P(µ|ξ) and P(φ|ξ) are prior distributions for these quantities. As prior distribution for the
weights we assume a Beta distribution so that we get the following hierarchical structure:

πi ∼ Beta (1, 1)

P(z∗jh = 1|π∗) = π∗
h (8)

yjd|z∗jh; Θ ∼ NB(ψ(uh,µd);φ).

For the other two parameters we select conjugate and flat priors. More precisely, for every i and h,
µid ∼ Gamma(aµ, bµ) and φhd ∼ Unif(aφ, bφ), where (aµ, bµ, aφ, bφ) are elements of the vector ξ of
hyperparameters. Given these chosen priors, full conditionals can be derived and a Gibbs sampling MCMC
algorithm applied to estimate the parameters. At the implementation step of the algorithm we exploit the
Gamma-Poisson mixture representation of a Negative Binomial distribution. We introduce a further latent
variabile s, specific to each unit j in each replicate/condition d, that has a Gamma density with shape and
rate parameters equal to φhd. It follows that:

f(sjd) = Gamma(φhd, φhd)

p(yjd|sjd) = Pois(ψ(uh,µd)sjd)

p(yjd) =
∫
p(yjd|sjd)f(sjd)ds = NB(ψ(uh;µd), φhd)
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which allows us to use a Gibbs sampler for the mean parameters µi.

2.4 Modelling spatial correlation with a CAR structure

The units/observations (in our case, genes or genomic locations) are not independent but spatially corre-
lated. We introduce the spatial correlation by allowing the primary weights πi to be j-varying and we
denote them as πij . The spatial relationship is taken into account by allowing the weights of the mixture
in Eq. 4 to vary from one gene to another. The way we formulate it is inspired by the work proposed
by Fernández and Green (2002). They first introduced k independent p-dimensional latent variables with
a Markov random-field distribution. The weights are then a non-linear function of these latent variables
and spatial relationships are expressed in terms of neighborhood relationships. This could be restrictive
because the correlation between two genes should decrease as their distance increases. We extend the
approach by considering a Gaussian conditional auto-regressive model (Pettitt and others, 2002), where
the distances are directly used to model correlations instead of dummies denoting the neighborhood con-
dition. In a Bayesian framework, this is accomplished by introducing additional layers to the hierarchy
formulation shown in Eq. 8, with their own set of hyper-parameters. With reference to π, we introduce the
spatial latent vectors, denoted by x1, . . . ,xi, . . . ,xk, with i = 1, . . . , k: each xi is a Gaussian conditional
autoregressive model given by

f(xi) = N (0, Q−1) (9)

whereQ is a precision matrix of order p and γjj′ is some non-linear function of δjj′ , which are the distances
between all the units. More specifically,

Q = Ip + ∆− Γ =

{
1 +

∑p
j′=1 γjj′ if j-th diagonal element

−γjj′ elsewhere

After some algebraic steps it is possible to show that Eq. 9 is equivalent to

f(xi) = c · exp

−1

2

 p∑
j=1

p∑
j′=1

γjj′(xij − xij′)2 +

p∑
j=1

x2
ij

 (10)

with c the normalization constant

c = (2π)−p/2
p∏
j=1

(1 + vj)
1/2.

In the previous expression, vj’s denote the eigenvalues of the spatial matrix ∆− Γ. Given x1, . . . ,xk, the
weights for location j can be obtained via logistic formulation

πij =
exp(xij/η)

1 + exp(xij/η)

where η is a ‘shrink-or-stretch’ tuning parameter to be estimated that provides a way to exaggerate the
differences in units allocation among the clusters.

2.5 Conditional Auto-Regressive Multiple Allocation Mixture (CAR-MAM)

In order to account for spatial correlation between the units/observations (in our case, genes or genetic
locations), we introduce another layer in the hierarchical structure of the model. Starting from Eq. 5, the
updated joint complete likelihood is:

P(y, z∗,x|µ,φ, η, ξ) = P(y|z∗,µ,φ)P(z∗|x, η)P(x|ξ) (11)
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leading to the following posterior distribution

P(z∗,x,µ,φ, η|y, ξ) ∝ P(y|z∗,µ,φ)P(z∗|η,x)P(x|ξ)P(µ|ξ)P(φ|ξ) (12)

where the vector ξ now also contains the hyper-parameters for the new latent layer and P(y|z∗,µ,φ) is
defined as in Eq. 7. More precisely, the complete latent structure in Eq. 12 is equal to:

P(z∗,x|η) =
∏p
j=1

∏k∗

h=1

[∏k
i=1

(
exp(xij/η)

1+exp(xij/η)

)uhi
(

1− exp(xij/η)
1+exp(xij/η)

)1−uhi
]z∗jh
×

×
∏k
i=1 c exp

{
− 1

2

[∑p
j=1

∑p
j′=1 γjj′(xij − xij′)2 +

∑p
j=1 x

2
ij

]}
where c is the constant defined in Eq. 10. As proposed in Fernández and Green (2002), we integrate out
the latent allocation variable z when implementing the Metropolis sampler for x in order to employ the
information carried by the data y and bring the two layers of the hierarchical structure of the model closer
together.

3 Results

3.1 Simulation study — Multiple Allocation Mixture (MAM) model

We assess the performance of our model (MAM) under different scenarios and we compare it with a clas-
sical non-overlapping components mixture (NegBinMix) and a variant (OverlapPois) of the algorithm pro-
posed in Heller and Ghahramani (2007). The algorithm OverlapPois follows the same idea presented by the
authors in their work: the density of an overlapping region is modeled by the product of the cluster-specific
densities of the involved original groups. In particular, the authors exploit the properties of exponential
families and the fact that the product of two (or more) distributions from the exponential family belongs to
the same exponential family, with new parameters defined from the natural parameters of the main groups
(see Heller and Ghahramani (2007) for further details, Section 2). We use the Poisson distribution as a
reference for OverlapPois because the Negative Binomial distribution does not belong to the exponential
family (unless the dispersion parameter φ is assumed known, which is not our case). Our implementation
differs in one main aspect: the choice of k. In their work, the authors use a Dirichlet Process to infer the
number of clusters: in our context, the number of clusters k is fixed and provided. Data are generated from
two independent Negative Binomial distributions (D = 2) and p = 2000 units, allowing for overlapping
clusters with a number of groups k = {2, 3}: in the augmented k∗ space this equals to represent a situation,
as in a classical model-based clustering framework, where the actual number of groups ranges from k∗ = 4
to k∗ = 8. We explore three degrees of clustering between primary and outward/non-primary groups by
selecting three scenarios which we call low, medium and high activation: this is achieved by setting all the
π equal to - respectively - 0.25, 0.50 and 0.75. We run the three algorithms (MAM, NegBinMix and Over-
lapPois) for 10000 MCMC iterations and a 5000 burn-in window is selected. For every µid, we choose
hyperparameters of the Gamma prior distributions equal to aµ = 1 and bµ = 0.001; for every dispersion
parameter φhd, we select the ranges of the prior uniform distributions to be [aφ = 100, bφ = 2000]. Con-
vergence is checked for every chain and we assign to the clusters according to the maximum a posteriori
rule: we compute the posterior probabilities of the allocation vectors z∗j given the data and, for every unit,
we allocate to the component with the highest probability value (see also Section 2.1). We choose as an
overall performance indicator the misclassification error rate (see Table 1), that is, the average number
of units not correctly allocated when compared to the known true membership. The posterior means of
the parameters in the selected models for MAM and NegBinMix are consistent with the true values and
do not show any substantial bias. The posterior distributions of the parameters for OverlapPois are mod-
erately shifted with respect to the true values and this impacts the overall performance of the method in
terms of classification. We report the misclassification error rates for the estimated models in Table 1: the
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percentage of misclassified units is always lower in the low activation scenario because most of the obser-
vations are allocated in the outward component, which has small variance and near zero (fixed) mean, thus
simplifying the clustering task. As we can see in Table 1, our model has comparable (sometimes better)
classification rates, with respect to the conventional mixture of Negative Binomial, in simpler simulated
dataset (k = 2). When k = 3, MAM model always outperforms the compared mixture with noticeable
improvements on the misclassification error rate. Also, OverlapPois is performing constantly worse than
the other two.

3.2 Simulation study — MAM with Conditional Autoregressive model (CAR-MAM)

We simulate data from a mixture of Negative Binomials with multiple allocation and spatial information;
we choose k = 2, 3, 4 (k∗ = 4, 8, 16) and for every number of groups we adopt two different spatial
structures. In the former, the latent variable x is drawn from a CAR model using a reciprocal function
γjj′ (see Pettitt and others, 2002), which is an inverse function of the distances between uniformly drawn
positions (posj , j = 1, . . . , p). In the latter, a sine function is employed in the data generating process,
in order to have stronger spatial relationships. More precisely, we assume that the spatial latent vectors,
x1, . . . ,xk are:

xij = sin

(
iπ

posj
max {posj}j=1,...,p

)
.

For each scenario we run three algorithms assuming k is known: NegBinMix, which is a mixture of Neg-
ative Binomials without any further specification, and our two proposed models MAM and CAR-MAM
assuming that the conditional autoregressive structure is computed through a reciprocal function γjj′ . We
average the misclassification error rates across 100 independent datasets simulated for each scenario and
we compare the results to assess the performance. Again, we cluster the units according to the maximum
a posteriori rule and we measure the performance through the misclassification error, computed for each
model. In Table 2 and Table 3 we summarize the results of 100 runs of both scenarios, where data were
generated - respectively - with a reciprocal function for the CAR part of the model or a sine function. As
clear from the tables, we achieve improved accuracy in the clustering task with CAR-MAM model over
the simpler MAM model and both of them perform better with respect to NegBinMix (Table 2) even when
the estimated conditional autoregressive structure is not the same as the one used in the data generating
process (Table 3).

3.3 p300 protein binding ChIP-Seq experiment

We apply our model to the data already discussed in the introduction and previously analysed by Ramos
and others (2010). p300 is a transcription coactivator associated with many genes that are involved in mul-
tiple processes (i.e., differentiation, apoptosis, proliferation); also, the protein serves as a bridge for other
transcription factors and it is involved in the transcription machinery of cells related to the development of
cancer and other diseases. The data from p300 ChIP-Seq experiments consist of results from multiple in-
teractions of the transcription coactivator with the chromatin in quiescent and stimulated cells, at different
time points. We select two technical replicates (T01, T02) collected 30 minutes after the initial interac-
tion between the chromatin and the protein p300 on a sequence of 1000 base-pairs windows describing
the pre-processed raw counts across 4000 regions of the chromosome 21 (see Figure 1). We analyze both
replicates jointly and we summarize the data of this subsample by computing the average of the counts for
the two different replicates T01 and T02. As we can see in the plot, the majority of the observations lie
in a ‘band’ of counts lower than 5, aggregated into segments that are spanned by smaller batch of regions
exhibiting a higher count level, thus suggesting a spatial effect with respect to the protein binding process.
Since in ChIP-Seq data researchers usually associate the counts to a background group and a signal group,
we run the algorithm with k = 2 (k∗ = 4) in order to capture the two aforementioned expected clusters and
potentially a better characterization of them through our multiple allocation cluster, while simultaneously
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taking into account the spatial dependency between the genomic regions. We choose the geometric mean
(co-dominance of order 0) as our combination scheme ψ(·) to lessen the effect (on the multiple allocation
cluster mean values) produced by the highest counts (as previously said at the end of Section 2.2). Out of
the 4000 genomic regions, 159 are allocated in the outward cluster, which accounts for the zero-inflation
in the data, represented by the observations around positions 17200 and 18000 (see Figure 5). This group
has fixed mean values equal to 0.01 for both replicates T01 and T02, while the dispersion parameters are
estimated by the algorithm. The first primary cluster i = 1, whose units are indicated by green dots in
Figure 5, has posterior means equal to µ1 = (1.61, 1.07) and represents the background process of the
protein binding: 3478 possibly inactive genomic regions, with very low counts, are allocated in this group.
The second primary cluster, i = 2, is representative of a signaling group of 48 genomic regions having a
higher mean count level of µ2 = (19.27, 34.23) depicted with red dots in Figure 5. The multiple allocation
cluster in our analysis is interpretable as a group of 315 units involved in both the background and signal
clusters: in this case, given that we are observing these counts after 30 minutes from the initial interaction
of the protein with the strand of chromosome 21, the genomic regions allocated in this cluster could be
thought as either being locations that were active immediately at the beginning and now not signaling any-
more or locations only starting to interact with the p300 protein after 30 minutes. The mean values for this
multiple allocation cluster are equal to 5.57 and 6.06 in the two replicates T01 and T02: the units belong-
ing to it are shown as blue dots in Figure 5. Finally, the posterior probability for each unit to be allocated
in the signaling group is shown in Figure 5 as a magenta solid line. We can see from the plot that this
probability is higher in those segments where genomic regions with higher counts are observed; moreover,
the allocation weight of the signal component follows a spatial pattern, increasing and decreasing across
the analyzed strand and thus accounting for the spatial effect occurring among the observations. For com-
parison, we also run the algorithm for a conventional four components Negative Binomial mixture model,
fixing the location parameter of the first component to 0.01 as we do in our model. The result shows that
only a total of three clusters are estimated, with one of them capturing the same background mean level
shared by the fixed component, thus producing a blurred classification with respect to one of the two main
processes of interest. For comparative purposes, we also applied to the data the Bayesian Change Point
(BCP) method (Xing and others, 2012), recently reviewed among other approaches in Thomas and others
(2016). For BCP, the two technical replicates T01 and T02 are analyzed separately and results for both are
provided in Figure 6 and Figure 7. In the case of CAR-MAM, an enrichment statement about each bin is
obtained as a by-product of the allocation procedure, wether a location is put in the ‘pure signal’ group or
‘potentially signaling’ one. As for BCP we only obtain a bin-specific posterior probability of changes in
the observed counts sequence: in order to call for the analyzed locations to be enriched or not we select
a cut-off that produces an estimated False Discovery Rate of 5%. For the dataset we analyze, this cut-off
on BCP posterior probabilities is equal to 0.46. To assess the advantage of our approach with respect to
another Bayesian method as BCP, we summarize both classifications in Table 4. BCP detects 210 changes
in the sequence of bins out of 4000 total locations: as we can see from the second column, we are able
to provide with CAR-MAM a more detailed representation of the noise observed in the data; of the 3790
bins not detected as signal by BCP we classify 159 of them to be zero-inflation, 3 as ‘pure signal’ and the
rest as either noise (3416 bins) or counts produced by both mechanism (signal and noise, 212). In the third
column, of the 210 locations with an associated changepoint detected by BCP, our approach CAR-MAM
finds that 148 of them are signal or an overlap of signal and noise while 62 bins are allocated in to the noise
group (in contrast with BCP).

4 Conclusions

Motivated by the analysis of data coming from ChIP-Seq experiments, we proposed an extension of the
conventional mixture model that allows for units to simultaneously belong to more than one group. As a
by product of the model specification, an outward cluster has been introduced that can be used to describe
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specific features of the data such as zero-inflation, outliers and so forth. A spatial dependency layer among
the units is encoded in the formulation by the means of a conditional autoregressive model, allowing for
spatial information to aid the clustering task. We have compared our proposed model with a mixture of
Negative Binomials to investigate its advantages with respect to the conventional approach: results on
the simulated data show an increase in performance in terms of misclassification error rates. We applied
our model to data previously analyzed by Ramos and others (2010): a promising richer description of
the signal in the observations is found, calling for a potentially deeper biological investigation of those
genomic regions associated with it. A delicate issue that deserves future investigation is the choice of k,
which is a fundamental aspect because it identifies the number of primary clusters. Some well-known
methods such as reversible jump (Green, 1995) and birth-death process (Stephens, 2000) do not allow an
extensive exploration of the range of values for k without incurring in a dramatic increase in computational
cost. However, in some applications, this choice could be suggested by the empirical context such as
in our case, where a number of primary clusters equal to two was reasonable because they represented
background and signal groups.
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Figure 1 Summarized counts for 4000 bins from the chromosome 21. Regions on x-axis are 1000bp
windows; averaged counts of the two replicates T01 and T02 reported on y-axis.
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Figure 2 Graphical visualization of the sine functions for i = 1 up to k = 4.

c© —- WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.biometrical-journal.com



Biometrical Journal – (—-) – 15

CAR−MAM MAM NegBinMix

0.
22

0.
28

0.
34

k=2

CAR−MAM MAM NegBinMix

0.
20

0.
35

0.
50

k=3

CAR−MAM MAM NegBinMix

0.
2

0.
4

0.
6

k=4

Figure 3 Boxplots of misclassification errors over 100 datasets generated from CAR model using recip-
rocal function.

c© —- WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.biometrical-journal.com



16 Saverio Ranciati et al. and dd: Multiple allocation clustering for spatially correlated genetic data

CAR−MAM MAM NegBinMix

0.
25

0.
35

k=2

CAR−MAM MAM NegBinMix

0.
2

0.
4

0.
6

k=3

CAR−MAM MAM NegBinMix

0.
2

0.
5

0.
8

k=4

Figure 4 Boxplots of misclassification errors over 100 datasets generated from CAR model using sine
function.
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Figure 5 Clustering result for the analyzed segment. Counts are reported as average of the two technical
replicates T01 and T02; solid line is the posterior probability to be allocated to the signal group.
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Figure 6 Bayesian Change Point analysis results for the first technical replicate T01. Posterior means
are reported on the first plot (top); posterior probabilities of changepoint are provided in the second plot
(bottom).
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Figure 7 Bayesian Change Point analysis results for the first technical replicate T02. Posterior means
are reported on the first plot (top); posterior probabilities of changepoint are provided in the second plot
(bottom).
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Table 1 Misclassification error rate (in percentage) for NegBinMix, MAM and OverlapPois, for the three
scenarios of activation.

Number of clusters Model Degree of activation
πi = 0.25 πi = 0.50 πi = 0.75

k = 2 MAM 1.05 2.70 2.65
(i.e. k∗ = 4) NegBinMix 1.20 2.65 2.55

OverlapPois 7.25 24.40 19.30
k = 3 MAM 0.95 3.05 5.10

(i.e. k∗ = 8) NegBinMix 11.00 25.05 9.15
OverlapPois 15.60 49.50 39.40

Table 2 Average misclassification error rate (in percentage) over 100 simulated datasets with standard
errors in brackets; CAR structure with reciprocal function.

Number of clusters CAR-MAM MAM NegBinMix
k = 2 (k∗ = 4) 26.58 (0.001) 26.87 (0.001) 30.40 (0.001)
k = 3 (k∗ = 8) 23.60 (0.001) 28.65 (0.009) 41.00 (0.002)
k = 4 (k∗ = 16) 36.32 (0.009) 49.84 (0.013) 60.39 (0.002)

Table 3 Average misclassification error rate (in percentage) over 100 simulated datasets with standard
errors in brackets; CAR structure with sine function.

Number of clusters CAR-MAM MAM NegBinMix
k = 2 (k∗ = 4) 27.71 (0.002) 29.13 (0.001) 35.42 (0.001)
k = 3 (k∗ = 8) 31.31 (0.006) 35.06 (0.011) 40.11 (0.002)
k = 4 (k∗ = 16) 44.93 (0.005) 56.12 (0.007) 57.18 (0.003)

Table 4 Comparison between the two classifications (CAR-MAM and BCP) on the number of enriched
bins. For BCP method, the classification is conditional on an estimated False Discovery Rate equal to 5%.

CAR-MAM
BCP Totalsnot enriched (noise) enriched (signal)

zero-inflation 159 0 159
noise 3416 62 3478

enriched (signal only) 3 45 48
enriched (mixed signal) 212 103 315

Totals 3790 210 4000
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