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Chapter 2. Monotonic shifts and orthogonality in single-stage 
LC-MS(/MS) data 
Vikram Mitra1, Age Smilde2, Frank Suits3, Rainer Bischoff1, Péter Horvatovich1* 

1 Analytical Biochemistry, Department of Pharmacy, University of Groningen, A. Deusinglaan 1, 9713 AV 
Groningen, the Netherlands 
2 Swammerdam Institute for Life Science, University of Amsterdam, the Netherlands, Science Park 904, 1098 
XH Amsterdam, the Netherlands 
3 IBM T.J. Watson Research Centre, 1101 Kitchawan Road, Yorktown Heights, 10598 New York, USA 

2.1 Abstract 
Label-free LC-MS(/MS) provides accurate quantitative profiling of proteins and metabolites 

in complex biological samples such as cell lines, tissues and body fluids. A label-free 

experiment consists of several LC-MS(/MS) chromatograms that might be acquired over 

several days, across multiple laboratories using different instruments. Differences in 

experimental conditions and analytical parameters influence the overall quality of the 

datasets, which affect comparative statistical analyses and data interpretation. The quality 

of LC-MS(/MS) datasets can be assessed based on changes in the two separation 

dimensions (retention time, mass-to-charge ratio) and the readout dimension (ion intensity). 

In this review we discuss two types of changes, monotonic shifts and orthogonality, which 

may occur in all three dimensions of single-stage LC-MS(/MS) data. While monotonic shifts 

can be corrected, orthogonality can only be assessed but not corrected, since correction 

would require precise modelling of the underlying physicochemical effects. We discuss 

reasons for monotonic shifts and orthogonality in the three dimensions of single-stage LC-

MS(/MS) data, as well as algorithms that can be used to correct monotonic shifts or assess 

orthogonality. 

Manuscript submitted to Analytica chimica Acta for consideration.  
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2.2 Introduction 
Over the past decade LC-MS(/MS) technology has been routinely used in proteomics and 

metabolomics laboratories to analyse complex biological samples1-2. However, to 

understand system level perturbations, abundance levels of proteins or metabolites are 

measured, whose differential levels between sample groups indicate differences in 

molecular mechanisms of biological events in disease states3–5. Such differentially regulated 

molecular mechanisms may allow selection of proteins and metabolites that are related to 

the pathogenesis of patients at various stages of disease compared to controls5,6. 

There are two main LC-MS(/MS) approaches to measure abundance level of analytes. One 

method, labels analytes with stable isotopes and while the other does not require any 

labelling (so-called label-free approach)7. Labelling technique usually employ stable 

isotopes (2H, 13C, 15N, 18O) to be incorporated into peptides, proteins or metabolites. In 

proteomics, stable isotope labelling by amino acids in cell culture (SILAC)8, isotope-coded 

affinity tags (ICAT)9, and isotope-coded protein labelling (ICPL)10 , provides measurable 

mass spectrometry signals at the single-stage MS level. Isobaric tags such as iTRAQ11 or 

tandem mass tags (TMT)12 release reporter ions of different masses upon fragmentation of 

the target compounds, which are measurable at the MS/MS level. The advantage of using 

a stable isotope labelling technique over label free is that differentially labelled samples are 

mixed at a given sample preparation step, and therefore compounds undergo the same 

treatment steps leading to reduction of technical and analytical variability. 

However, labelling strategies have other shortcomings. These consist of additional sample 

processing steps, high cost of the labelling reagents that must have unique isotopic 

constitutions for each of the combined sample7,13,14 and the difficulty in analysing low-

abundant peptides due to diminishing the measured dynamic concentration range in 

multiplexed samples15. As a result, label-free methods are gaining increasing popularity in 

the proteomics and metabolomics communities1,6,7,14,16,17. The label-free approach analyses 

each sample in a separate LC-MS(/MS) run and merges the results at the data pre-

processing stage1,13,18,19. Consequently, label-free approach has higher technical variability 

and lower sample throughput. However, it offers a wider dynamic range for quantification20 

compared to stable isotope labelling approaches. Since label-free approaches analyse a 

single sample for every LC-MS(/MS) run, this approach requires overall longer analysis time 

compared to multiplexed stable isotope labelling approaches. On average total analysis time 

is about 10-120 minutes for each LC-MS(/MS) run (shorter for less complex metabolomics 

samples and longer for more complex proteomics samples) to give adequate sensitivity 
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while covering a wide measured dynamic concentration range and good coverage of the 

compounds in the sample5,6,18,21,22. Within label-free LC-MS/MS profiling, quantification of 

proteins is either performed using spectral counting (SPC) or using single-stage signal 

intensities of intact ions (at MS1 level), while metabolomics studies use solely MS1 

quantification5,6,19. Since the height, area or volume of chromatographic peaks expresses 

the relative quantity of compounds over a defined dynamic concentration range, MS1-based 

quantification provides more accurate quantification compared to SPC5–7.  

Although both label free quantification methods seem straightforward, various aspects 

pertaining to data pre-processing makes this approach challenging1,5–7,18,19,23. Since, MS1 

signal can vary across compounds and some can be present with missing identity across 

samples, comparing compound quantities obtained using single-stage LC-MS(/MS) profiles 

in different samples remains a difficult task. Thus the MS signal of compounds in multiple 

LC-MS(/MS) runs have to be matched using retention time (rt) and mass-to-charge ratio 

(m/z) dimensions. The readout or the ion intensity (iin) dimension, also needs to be 

normalised for successful comparison of datasets. The three vital dimensions of a LC-

MS(/MS) data have been illustrated in Figure 1. Typical label-free proteomics studies 

involve the analysis of samples from multiple sample classes such as different stages of 

disease compared to various control groups2,5,6, which may show different degrees of 

sample composition similarity. For such studies the registration of signals of the same 

analyte across samples is crucial prior to statistical analysis. The goal of data pre-processing 

is to provide an aligned table that contains quantitative information of identical compounds 

across multiple LC-MS(/MS) chromatograms ready for statistical analysis. 
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Figure 1. The three dimensions of a single-stage LC-MS data. The dimensions are mass-to-charge ratio 

(m/z), retention time (rt) and ion intensity or counts (iin) dimensions. Chromatographic pairs show monotonic 

shift. Monotonic shifts can be can be corrected, while the remaining non-monotonic shifts (causing 

orthogonality within a dimension) causes uncertainty in finding corresponding peaks between chromatograms 

using rt and m/z dimensions. Orthogonality in iin dimension leads to statistical bias and increase in false 

discovery rates. 

The minimal data processing workflow includes only modules for peak detection and 

matching and assumes no shift in the three dimensions of MS1 data (Figure 2a). Typical 

quantitative MS1 LC-MS data pre-processing (Figure 2b) consists of modules for data 

format conversion, raw data resampling in retention time and m/z dimensions, denoising, 

correction for background ion intensity, peak detection and quantification followed by 

correction of shifts occurring in each of the three dimensions of the MS1 data. All these steps 

are required prior to statistical evaluation and are implemented in automated data pre-

processing pipelines24–29. Broadly these algorithms can be classified into three groups. 

Algorithms, which correct shifts in the retention time domain are called retention time 

alignment methods, algorithms which correct shifts in the m/z domain are called mass 

(re)calibration methods and algorithms that correct “shifts” in the ion intensity dimension are 

classified as normalisation approaches. Improper correction of shifts may lead to 

inaccurately matched peaks which may ultimately lead to inappropriate conclusions after the 

statistical analysis. Presence of such biases can only be recognized at much later stage, 

such as during the experimental validation of biomarkers discovery results. Such biases 
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contribute to irreproducibility of biological and preclinical studies, leading to loss of analysis 

time, research effort and resources30.  

To enhance peak capacity, multi-dimensional chromatographic methods such LC x LC work 

on the principle that each chromatographic separation dimension must be independent from 

each other. However, it must be noted that changes in chromatographic conditions can also 

produce uncorrelated, values, in m/z or retention time dimension, for the same set of 

analytes, which produces “orthogonality” within a separation dimension. For example, 

spectral data measured at one particular time in one chromatogram may considerably differ 

from the best corresponding spectral data in another chromatogram, giving rise to 

“orthogonality” within the retention time domain between MS runs. As compounds elute at 

different times relative to each other in the two chromatograms, increase in orthogonality 

within the retention time dimension can lead to poor spectral correlation or poor data 

alignment quality. In this review we present a detailed discussion of the physicochemical 

origins of monotonic shifts and orthogonality in the MS1 part of LC-MS(/MS) data within 

each dimension. This will be followed by discussing the conditions to correct such shifts and 

discuss the effect of the remaining orthogonality that limits the accuracy of the algorithmic 

correction of shifts specific to a dimension. We further present algorithms, which allow to 

assess if all conditions for accurate alignment are met and to evaluate the remaining degree 

of orthogonality. 
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Figure 2. Scheme of a) minimal and b) optimal label-free single-stage LC-MS data processing 

workflows. Two modules are required for minimal workflow, which includes peak detection/quantification 

modules (green) and module that matches the corresponding peaks across multiple chromatograms (purple). 

The minimal module assumes no monotonic shift and orthogonality in rt, m/z and iin dimension. The optimal 

workflow implements modules for correction to monotonic shifts in all three dimensions corresponding to time 

alignment (correction in rt), to mass (re)calibration (correction in m/z) and to normalization (correction to iin). 

Other modules such as noise and data reduction, and resampling are additional modules of the workflow. 

Although not present in current pipelines, orthogonality assessment and modeling module e.g. by use of 

retention time prediction or feature decharging algorithms may add additional precision for LC-MS(/MS) data 

pre-processing workflow. The result of pre-processing is a quantitative table of compounds detected in multiple 

chromatograms serving as input for differential statistical analysis. Scheme b) was adopted from Christin et 

al18. 
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2.3 Accurate alignment of single-stage LC-MS(/MS) data 

2.3.1 Definitions and statements 

In order to avoid confusion and facilitate the reading of the article we define here terms that 

will be used throughout the manuscript. Common peaks or correspondences: Identical 

compounds that can be matched based on either identified amino-acid sequence 

composition or based on a user defined m/z and rt tolerance window, between a pair of 

chromatograms. Single-stage LC-MS(/MS) or MS1 dimensions: As stated by Booksh et 

al31 in Theory of Analytical Chemistry, single-stage LC-MS data can be defined as a second-

order instrument where each peptide or a measured analyte is a second-order tensor 

collected for each sample. Each tensor can be considered as a multi-dimensional array, with 

rt, m/z and iin as its 3 dimensions. Monotonic shift: Shifts are variations (fluctuations) in 

measured values in one of the three dimensions of single-stage LC-MS(/MS) data of the 

same compounds, observed across mass-spectrometric runs that can be corrected using a 

monotonic function. Orthogonality: the term orthogonality in the context of this review, 

relates to the variation (fluctuation) of values in a specific dimension (m/z, rt or iin) in single-

stage LC-MS data, observed across mass-spectrometric runs for the same set of 

compounds. Assessment of orthogonality can be performed using common compounds, 

present in similar quantities between a pair of chromatograms. The metric to measure the 

extent of orthogonality can be different as shown by articles discussing various measures of 

orthogonality in the rt dimension32–35.  

2.3.2 Conditions for correcting shifts 

As mentioned above, MS1 data has three components with two separation dimensions (m/z 

and rt) and one readout dimension (iin). Thus, quantitative information of compounds in MS1 

data can be represented as 3-dimensional Gaussian (or Lorentzian) peaks, where iin as 

relating to the abundance of a peak with rt and m/z representing the location of the peak. 

m/z and rt characterises the peak capacity of the analytical system and relate to the identity 

of a compound identity, while the quantity of a compound is expressed in the iin dimension. 

Algorithms correcting shifts in each of these dimensions are generally applied to a pair of 

LC-MS(/MS) chromatogram (pairwise alignment), but some approaches perform alignment 

of the complete dataset in one step such as the Continuous Profile Model36,37. This method 

assumes one common underlying molecular profile, to which all chromatograms are aligned 

using a hidden Markov model36. In pairwise alignment, generally the MS1 coordinates of the 

raw data or feature list in one chromatogram (often called sample chromatogram) is 

corrected relative to the other non-altered chromatogram reference. In this review we 
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discuss pairwise alignment approaches but similar conditions apply for methods that align 

the complete data set in one step. Shifts in all three dimensions may occur as a result of 

physicochemical properties of compounds and/or due to the differences in instrument set-

up. Monotonic shifts across all three dimensions can be corrected when the following 

conditions are met: 

1. Sample chromatograms should contain a set of common compounds for alignment 

in the m/z and rt dimension, while for normalization (correction in the iin dimension) 

the samples should contain common compounds with the similar quantities between 

a pair of chromatograms. 

2. The alignment algorithm should identify an adequate number of common peaks 

accurately for alignment in rt and m/z dimensions, while the iin dimension 

(normalisation) should identify common compounds that are present in the same 

quantity in sufficient numbers and in sufficient distribution in the range of interest that 

allow accurate alignment. 

3. Common compounds should follow the same detection order in both chromatograms 

for m/z and rt dimensions. For the iin dimension, the order of ion abundance for a set 

of common compounds should remain similar between a pair of chromatograms, if 

the analysed samples belong to the same biological or analytical class. 

It is important to note that accurate correction functions cannot be derived if one or more of 

these conditions are not met to align datasets. After obtaining the correction function, all rt, 

m/z and iin values of the other compounds can be adjusted using the derived correction 

function. The requirement that common compounds should have the same quantity in the 

two chromatograms for alignment in iin is due to the fact that detector response and ion 

suppression/competition effects may be different at different concentration ranges. In fact 

the condition of having the same compounds in the same quantity can be seen to be too 

restrictive compared to requirement of known quantity. However, the iin dimension of 

compounds is affected by the presence of other compounds within a similar m/z or rt value. 

Using compounds with known but different quantities in the two chromatograms would result 

in compounds that are in different concentration ranges and their values could be affected 

by different detector response and/or ion suppression. When the second point is not met, 

common compounds or compounds with the same quantity are present in the two 

chromatograms, but the correction algorithm is unable to find them in sufficient number and 

to accurately perform a correction. Beside the numbers of common compounds and 

quantities, their distribution across the entire gradient range is also important. If there are 
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domains with no or low number of common compounds, local misalignment may occur. In 

highly complex proteomics samples, common compounds and compounds with the similar 

quantity are present in sufficient number and density across the full measured range. This 

may be challenging however for lower complexity metabolomics samples. Typical examples 

of lack of information is at the beginning or end of the chromatogram where no compounds 

elute. Other important aspect for the accuracy of the alignment algorithm is to select the 

common compounds. If mismatched compounds or noise level are too high, then alignment 

algorithms may be fail. When the third point is not met, compounds with the similar quantity 

in the same biological or analytical class are mismatched and their exact location or quantity 

cannot be determined in other chromatograms, thus biasing downstream statistical analysis. 

2.3.3 Distinction between shifts and orthogonality 

Shifts should be monotonic since any non-monotonic behaviour increases the chance of 

inversion of the elution order or indicates change in abundance order of common peaks. 

Ultimately, changes in peak order increases the chance of orthogonality within a dimension 

of single stage LC-MS data. Any deviation from monotonicity would cause biased or 

inaccurate correspondence identification between a pair of chromatograms. Non-monotonic 

shifts create mathematical inversion of the shift correcting function, which inverts the role of 

sample and reference chromatograms. Shifts and orthogonality should be algorithmically 

treated differently. Shifts can be modelled and any monotonic behaviour of shifts can also 

be sufficiently corrected. However, orthogonality can only be modelled and corrected if all 

physicochemical parameters are carefully measured and identified. LC-MS(/MS) (and GC-

MS or CE-MS) pre-processing algorithms discuss orthogonality and monotonic shifts 

correction approaches separately. Furthermore many methods state that the contribution of 

orthogonality within a LC-MS dimension to be very small. For example, few retention time 

alignment algorithms consider the existence of elution order change, which suggests 

orthogonality in the RT dimension, to be very small38,39. However, it is obvious that the two 

phenomena may be present to a different extent in various datasets, and may influence the 

performance of shift correction algorithms. Most orthogonality assessment studies were 

solely related to the retention time domain and do not mention its presence in other 

dimensions of single-stage LC-MS(/MS) data32–35. Figure 3 shows a pair of chromatograms 

with non-linear monotonic shifts. A monotonic function can be modelled based on the 

retention time co-ordinates but it does not model the orthogonality that exists in the RT 

dimension of the two chromatograms. The monotonic retention time correction function is 

unable to correct the orthogonality and seen in the residual plot after RT correction. 
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Since orthogonality cannot be corrected without accurate modelling and without prior 

knowledge of the identity of the peak, it has consequences in predicting the rt or m/z 

coordinates of a compound a sample LC-MS chromatogram. Presence of any orthogonality 

in iin dimension relates to a normalisation method with limited precision.  

 

Figure 3. Monotonic shifts and orthogonality in LC-MS(/MS) data. Mixing of monotonic shift (red line) and 

orthogonality in the retention time scatter plot of the retention time of identified peptides (blue dots) matched 

based on agreement of the primary amino acid sequence. The data originate from same trypsin digested 

porcine cerebrospinal fluid sample analysed in two different laboratories using different eluent programs and 

LC-MS/MS platforms (QTOF and Orbitrap), in two laboratories. The upper plot shows the original retention 

time of peptides, which includes perturbations that are due to monotonic shift and orthogonality in the liquid 

chromatography separation. The lower left plot shows the monotonic retention time correction function, which 

can be used to remove monotonic shift from the raw data. The lower right plot shows the scatter plot of the 

retention time of identified peptides after correction with monotonic retention time correction function. The 

remaining fluctuation of peptides reflect the real orthogonality of the liquid chromatography separation and 

shows the uncertainty to found corresponding compounds based on rt and m/z coordinates in other 

chromatograms. 

Monotonic shift and orthogonality

OrthogonalityMonotonic shift
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Figure 4a shows a scatterplot of retention time of identical peptides in two chromatograms 

that were obtained with analysis of the same sample using two different LC-MS platform and 

gradient LC program. Non-linear shift and orthogonality is obviously visible on the plot. 

Alignment of the two chromatograms using monotonic best fitted retention time alignment 

correction function on the scatterplot using LOWESS regression constrained for 

monotonicity results in accurate alignment of certain peaks that can be corrected based on 

monotonic function, while peaks that show non-monotonic behaviour are misaligned (Figure 
4b and c). Orthogonality in this review is assumed to have a symmetric form around a main 

monotonic trend, which is generally the case when the goal is to correct datasets for shift 

coupled with limited orthogonality (i.e. strong correlation of retention time of the same 

compounds in the two chromatograms). This situation may be different when orthogonality 

is large e.g. in case of optimisation of peak capacity in multidimensional 

chromatography32,40. Another assumption that we include in the description of shifts and 

orthogonality is that these two phenomena are independent across the three dimensions of 

single stage LC-MS data. Interaction between the dimensions exists but their effect is 

generally small. Certain degree of orthogonality in all the three dimensions is always visible 

even in absence of any major technical or physicochemical phenomena. On technical cause 

of orthogonality could be due to the error in determining the rt and m/z coordinates of a 

compound isotopologus peak and error in quantification of its ion intensity. 
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Figure 4. Mismatching of LC-MS(/MS) peaks as results of considerable orthogonality. a) shows a scatter 

plot of retention times of peptides matched based on agreement of peptide sequence (blue dots) in two 

chromatograms acquired with two different LC-MS/MS platforms and in the different laboratories under 

different gradient programs (same data is presented in Figure 3). The monotonic retention time correction 

function is shown as a red solid line. The maximal deviation of peptides from the monotonic correction function 

obtained with robust kernel density approach and between laboratories is shown with red dashed line (red D). 

Green dashed line and greed “d” label shows the maximal deviation of peptides from the main monotonic 

retention time correction function in data that was acquired in the same laboratory using the same LC-MS/MS 

platform and the same eluent program. The difference between red “D” and green “d” represent the maximal 

orthogonality of the liquid chromatographic separation and shows the uncertainty to determine corresponding 

peak locations in two different chromatograms. Peak pairs with red, blue and green circles in the black dashed 

box area are corresponding to the three peak pairs that are used to illustrate the effect of peak elution order 

inversion in extracted ion chromatograms (EICs) in plots b and c after aligning one of the chromatograms to 

the other one. In plot b) chromatogram of laboratory 1 was aligned to the chromatogram of laboratory 2, while 

in c) the chromatogram of laboratory 2 was aligned to the chromatogram of laboratory 1. Peptide LTLPQLEIR 

(green arrows) is located on the monotonic retention-time correction function, while the peptides 

DIAPTLTLYVGK (red arrows) and VHQFFNVGLIQPGSVK (blue arrows) are located far from this function. 

Retention time alignment using the main monotonic retention time correction function provides well aligned 

peaks for the first peptide (green traces). The two other peptides (red and blue arrows) suffer from considerable 

misalignment with retention time error close to the distance D due to orthogonality of the liquid separation. The 

EICs are normalized to the highest peaks and the Y axis represent ion counts relative to the most abundant 

signal intensity in the three EICs. Figures adapted from Mitra et al41. 

2.4 Causes for shifts and orthogonality in single-stage LC-MS data 
In this section we describe the physicochemical background that causes monotonic shifts 

and orthogonality in rt, m/z and iin dimensions along with algorithms that correct for 

monotonic shift or assess the degree of orthogonality. One pertinent problem relates to the 

definition of the term “same compound” in multiple samples. A chemical compound can be 

modified by different ways ranging from chemical modifications, adduct formation, charge 

states differences, or can be present at different degree of dissimilarity when it comes to 

chemical and 3D structures such as diastereomerisation, cis/trans isomerization, structural 

(constitutional) isomers, chiral isomerisation and conformation changes. Table 1. shows 

molecular variants and modifications that describe how compounds in the same family can 

be discriminated in the 3 dimensions of the single-stage LC-MS data. 
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Type of 
modification/molecular 

variant 

Retention time (rt) 
dimension 

Mass-to-charge ratio 
(m/z) dimension 

Ion intensity (ii) 
dimension 

Chemical modifications 
(covalent bond changes) 

Difference can be expected, 

which extent is depending 

form the type and size of the 

modification 

Difference is expected if there is a 

change in molecular mass of the 

target compound. 

Chemical modification 

leads to differences in 

ionisation properties, 

therefore same ion 

intensity may express 

different amount of 

compounds. 

Same chemical but different 
isotopic constitution 

No difference in retention time, 

only when deuterium/hydrogen 

replacement occurs. 

Difference should be observed 

when mass of the intact ion 

changes. 

No difference between 

members of this type of 

compounds is to be 

expected. 

Different charge state 

Certain eluent composition 

(e.g. pH) may influence charge 

of the peak and therefore the 

retention time. The effect is 

depending form the time scale 

of hydrogen exchange and the 

pH. 

In principle the charge states 

during liquid chromatography 

influence the charge distribution of 

the analytes in the MS. The same 

holds in changing electrospray 

conditions such as voltage, 

application of shearing gas 

(ionspray), different eluent or uses 

of eluent modifiers etc). 

Charge state differences 

in chromatography or at 

the MS interface may 

influence the number of 

formed ions and may 

provide different detected 

response. 

Adduct formation (Na+, K+, 
NH4

+, Mg2+, Ca2+ etc.) 
May result in distinct peaks in 

the LC dimension. 

Results in distinct peaks if mass of 

the compound changes. 

Adduction formation may 

influence the competition 

for charges and this 

could lead to different 

detector response. 

Diastereomers, cis/trans 
isomers 

Physicochemical properties 

changes of the analyte may 

result in different retention 

time. 

Undistinguishable in this 

dimensions without fragmentation. 

Very small (mass defect) 

or no difference is to be 

expected. 

Constitutional isomers 

May be resolved in 

chromatographic domain, but 

retention time are expected to 

be close, except when 3D 

structure has major changes. 

Undistinguishable in this 

dimension without fragmentation. 

Expected to provide the 

same response. 

Chirality 

May be distinguishable in this 

dimension in special condition 

e.g. by using chiral counter 

ions or chiral stationary 

phases. 

Undistinguishable in this 

dimension without fragmentation. 

Expected to provide the 

same response. 

Conformational isomers 

May be resolved in 

chromatographic domain, but 

retention time are expected to 

be close, except when 3D 

structure has major changes. 

Undistinguishable in this 

dimension without fragmentation. 

Expected to provide the 

same response. 
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Table 1. Summary of molecular variants which effect the definition of compound (molecular entity). The table 

contains molecular variants at various levels and presents how molecular variants can be distinguished in the 

three dimensions of the single-stage LC-MS(/MS) data. 

2.4.1 Retention time dimension 

Physicochemical background. The retention time dimension is most prone to shifts and 

orthogonality is the chromatographic dimension. Multiple factors may influence the elution 

time of a compound which may result in non-linear retention time shifts between 

chromatograms, such as slight changes in column/eluent temperature, slight changes in 

eluent’s pH, modification of the stationary phase surface e.g. due to accumulation of the 

non-eluted components from previously analysed samples, degradation of the surface 

chemistry or mechanical changes of the stationary phase due to high pressure and slight 

changes in the solvent delivery and/or mixing system of the liquid chromatography 

apparatus17. 

Within a quantitative profiling studies, orthogonality in this separation dimension lowers the 

precision to predict the retention of a compound in other chromatograms41. Orthogonality 

may have different origins compared to monotonic shifts, such as those listed as cause of 

non-linear monotonic behaviour. For example, simple change of the gradient program leads 

to slight orthogonality in the RT dimension. The reason for this orthogonality has been 

already described in the linear solvent strength theory introduced by Snyder and his co-

workers in the 60’s42 and it was studied elsewhere43,44. As a consequence, chromatograms 

acquired with different eluent programs will show different degrees of orthogonality, which 

in turn compromises the maximal accuracy that can be achieved by retention time alignment 

algorithms. 

Retention time shift correction algorithms. In the last two decades multiple retention time 

correction algorithms were developed as part of label-free LC-MS(/MS) data pre-processing 

workflows15,18,28,41,45–56. A comprehensive review by Smith et al.17 includes discussion of 50 

open source retention time alignment algorithms. Although several retention time alignment 

algorithms exist, the general objective of every time alignment algorithm is to first identify 

peaks of the same compound in two (or more) chromatograms and provide a retention time 

transformation function, that corrects for retention time shifts and aligns datasets. Retention 

time correction algorithms can be classified as: i) type of data in the single-stage LC-MS 

data dimensions for the alignment, such as complete single-stage LC-MS raw data, total ion 

or base peak chromatograms, peak lists18; ii) if alignment is performed pairwise or across 

multiple chromatograms in one step and iii) type of benefit or objective function used to 
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measure similarity of the chromatographic pairs, which is used subsequently to derive 

retention time correction function (e.g. sum of the squared ion intensity distance of raw data, 

correlation of raw ion intensity or sum of overlapping peak volume). 

One of the most widely used algorithmic approach to derive a correction function is by using 

a dynamic time warping (DTW)57 function that identifies the optimal retention time 

correspondence path. This path can be obtained by minimizing the cumulative differences 

between the LC-MS signals at different sampling points either using peak lists58, TIC54 or 

the parts of single-stage LC-MS maps59. Correlation-Optimized time Warping (COW)60 

performs segment-wise stretching or shrinking of the retention time co-ordinates and uses 

a cumulative benefit function that maximizes segment profile similarity such as correlation60 

or sum of overlapping peak volumes61. The combination of segment positions that best fit a 

reference chromatogram is obtained using dynamic programming. Christin et al52 combined 

COmponent Detection Algorithm (CODA) with COW, which detects high quality LC-MS 

mass traces with low noise and background. CODA implements a moving window, to detect 

retention time domains of high quality peak content. Another algorithm called parametric 

and semi-parametric time warping (S-PTW) uses fitted polynomial as a warping function that 

minimizes the profile differences between LC-MS chromatograms using TIC62–64 or 

combined CODA selected mass traces59. OpenMS65 applies an affine transformation to the 

retention time coordinates of sample feature list using linear regression on features obtained 

with robust matching (pose clustering) of the rt and m/z coordinates. 

Commonly used time alignment methods either use centroid peak lists or charge-state and 

isotope-deconvoluted feature lists. These lists are then used to model a retention time 

alignment functions based on retention time values of correspondences. Correspondences 

could be defined as matched peak pairs within certain rt and m/z tolerance window, using 

bins or use matched landmark isotopic features between datasets. However algorithms such 

as PEPPeR66, SuperHirn27, IDEAL-Q49 and LCMSWARP67 use a combination of isotopic 

feature detection and MS/MS identification to enhance the "Landmark Matching" process 

prior to retention time alignment. Many time alignment algorithms perform alignment 

pairwise, which poses the problem of reference selection. Star type of alignment techniques 

uses one reference to which all other chromatograms are aligned. However this approach 

is suboptimal in alignment of large datasets containing chromatograms with dissimilar 

molecular composition. Voss et al58 developed the simultaneous multiple alignment of LC-

MS peak lists. This algorithm performs the pairwise matching of peak lists following a 

hierarchical-tree based alignment of subsequent chromatographic pairs using peak list 
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similarity as sequence for its alignments. Finally, the algorithm calculates a global retention 

time correction function using a multidimensional kernel function and uses maximum 

likelihood estimation to derive the common elution profile. It should be noted that the 

assumption of the existence of a global retention time profile of samples could be wrong e.g. 

in dataset that contains chromatogram obtained with different gradient programs due to 

orthogonality. 

Many papers confuse time alignment with peak or feature matching algorithms and use the 

word “feature alignment” or “peak alignment” instead of peak matching. The origin of this 

confusion may be that retention shift correction algorithms need information of common 

compounds and one of the goals of shift correction algorithms is to find them. However, the 

goal of shift correction algorithms is not necessarily to find all common peaks (or signal of 

common compounds) between chromatograms, but to find them in a number, distribution 

and quality that allows to accurate modelling of a the shift correction function. After correction 

of shifts, the final peak matching algorithms are used to identify with highest accuracy all 

corresponding peaks across multiple chromatograms. The monotonicity aspect of shift 

correction means that the shift correction functions cannot change the elution order of the 

peaks and assumes one-to-one correspondences between chromatograms. Peak matching 

algorithms are then left dealing with the remaining orthogonality. The accuracy of the peak 

matching step depends on similarity of corresponding features in a pair of chromatograms. 

Many algorithms combine time alignment and feature matching in one module. PEPPeR, 

IDEAL-Q, SIMA58, LWBMatch68 and algorithm developed by Wandy et al69 which include 

grouping of peaks of related compounds are examples of peak matching algorithm and 

algorithms that combine time alignment with peak matching within a single module. 

To deal with datasets that show peak elution order inversion or orthogonal separation 

Bloemberg et al70 applied mass-trace optimized time warping. However, PTW does not 

assume change in the elution order of the peaks, and thus cannot deal with LC-MS(/MS) 

pairs with significant elution order inversion in the RT dimension. It is also obvious that the 

retention mechanism of analytes/stationary phase that lead to elution order inversion in two 

chromatograms is not solely depend on the m/z of the compound, but depends on other 

parameters such as complex retention time mechanisms of the eluting compounds. 

Therefore, devising different retention time correction function for different m/z does not 

account for peak elution order inversion. 
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Orthogonality assessment algorithms. Metrics to measure the amplitude of orthogonality 

were solely developed for retention time dimensions and was used to assess the peak 

capacity in two-dimensional liquid (2D-LC) or gas chromatography systems. The goal in 2D-

LC is to maximise orthogonality between the first and second separation dimensions and 

concomitant peak capacity of the chromatographic system, therefore those algorithms deal 

with large orthogonality. One of the first metrics for orthogonality was introduced by Gilar et 

al.35,71. This metric measures the occupancy of bins of common peaks determined based on 

identified peptide sequences in the retention space of the two chromatograms. Recently 

Camenzuli et al32 introduced a generic measure of orthogonality that uses spread of peaks 

along the four quadrants within a 45˚ diagonal of a normalized retention time plane (retention 

time values range between 0 and 1) obtained for a pair of chromatograms. The latter 

approach is independent to the density distribution of peaks and provides accurate measure 

of orthogonality. Gilar et al33 compared 4 different measures of orthogonality using binning 

of retention times (correlation coefficients, mutual information, box-counting dimensionality, 

and surface fractional coverage with different hulls) and concluded that except correlation 

all orthogonality metrics are related to each other and are suitable to optimise peak capacity 

in two dimensional chromatography. Schure et al34 recently summarized the 20 metrics of 

orthogonality and assessed their performance using 47 two-dimensional LC 

chromatograms. This article pointed out that there are many definitions of orthogonality 

measurements. Principal component analysis of the different orthogonality metrics shows 

that despite the fact that the studied metrics are correlated they do capture different aspects 

of the data. However so far no published approach assesses orthogonality between 

chromatographic separation dimensions. Developing metrics to measure orthogonality in 

the rt dimension is important, since orthogonality causes uncertainty to predict where a 

compound will elute in the other chromatogram and therefore determines the search domain 

for the peak matching algorithm using rt and m/z coordinates. Many peak matching 

algorithms try to find correspondences at all cost by allowing wide range, which may lead to 

peak mismatching and biased statistics. Thus, we have developed an approach that 

assesses orthogonality and the corresponding maximal retention time matching domain that 

can exist after time alignment. The algorithm determines the uncertainty region used to 

identify corresponding peaks in multiple LC-MS(/MS) chromatograms41. 

Orthogonality between chromatograms will also have an effect on the accuracy of retention 

time normalisation algorithms such as iRT72,73 or RePLiCal74, which uses the retention time 

of set of reference standards introduced using a standard mix or spiked QconCAT proteins 

to calculate normalized retention time values. In this case orthogonality will decrease the 
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accuracy of normalised retention times or even may lead to completely false results in case 

of mismatched reference standard peaks. 

2.4.2 Mass to charge ratio dimension 

The shifts in the m/z dimensions are mainly monotonic and may be caused e.g. by small 

changes in room temperature in case of time of flight mass analyzers18. Due to well-known 

physics of ion separation in theory no orthogonality in m/z dimension should occur. However 

due to varied affinity of compounds towards certain charge states, some orthogonality in m/z 

dimension may be observed. Shift of charge distribution is non-conventional, which happens 

at discrete m/z values, compared to conventional shifts such as retention time shifts. During 

the electrospray process, ionisation parameters have a large influence on the charge 

distribution of analytes. For example, when ionspray combines with electrospray (along with 

pneumatic nebulisation) in normal or capillary LC columns, produces more charges for the 

same analytes due to triboelectric effect compared to electrospray only ionisation. The effect 

of charge depends on the chemical composition of analytes, therefore its effect is different 

for the different analytes which can result in orthogonality. Figure 5 shows the considerable 

charge sate shift in LC-MS maps of human blood sample (depleted of the 6 most abundant 

proteins) on LC-MS platform with varied LC column diameter, injected sample amount and 

electrospray ionisation type (ionspray and electrospray)75. No orthogonality measure was 

so far applied and developed for the m/z dimension, but “orthogonality” due to charge state 

shifts can be corrected in compound lists by calculating the neutral mass of compounds and 

summing up the intensity of the different charge states. Other aspects of orthogonality may 

relate to adduct formation of the same analytes. Adduct formation is often taken into account 

in untargeted label-free metabolomics LC-MS data pre-processing workflows, and 

correction is performed by summing up intensities for different adduct forms of the 

metabolite. However, the detector response may be differ across m/z range and adducts 

may influence the ionisation efficiency, ultimately affecting the measured signal for analytes. 

These changes in detector signal are generally not taken into account when different types 

of ion signals are summed up in current data processing pipelines. 
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Figure 5. Effect of charge state distribution shift. Image of an LC-MS map of the same human serum 

depleted from the 6 most abundant proteins acquired with an Agilent ion trap LC-MS platform using nanoLC 

integrated in a microfluidic device (image a) and using capillary LC (image b). nanoLC was operated with an 

eluent flow rate of 300 nl/min, electrospray for peptide ionization and the injected sample amount was 5 pmol, 

while capillary LC analysis was performed using ionspray (electrospray enhanced with pneumatic 

nebulisation), 20 l/min of flow rate and the injected sample amount was 140 pmol. Pneumatic nebulisation in 

ionspray provides additional charging of peptides resulting in shift of charge state of compounds, which effect 

can be different for the different peptides resulting in orthogonality in m/z dimension. Figure adapted from 

Horvatovich et al75. 

Mass recalibration algorithms. Several algorithms were developed to correct for shifts in 

m/z, with goal to enhance mass accuracy, which becomes essential for modern high 

resolution mass spectrometers. Space-charge effect in ion trap instruments may cause shift 

in m/z which stays monotonic within a mass spectrum. Space-charge effect are caused by 

the presence of high abundant compound close in m/z resulting in ion repulsion, which may 

strongly effect ions trapped in 3 dimensional space such as in ion traps76. To correct for 

shifts in m/z domain, routine calibration of the mass spectrometers based on spiked internals 

standards18,77 or ubiquitous background ions and contaminants78 are performed at regular 

intervals of time or for each acquired mass spectrum. The most widely used approach to 

device a monotonic mass shift correction function is based on regression using 2-5 degree 

polynomial. Methods that utilise prior knowledge of the sample being analysed in 

combination to multidimensional non-parametric regression have shown to decrease 

standard deviations of m/z errors by 1.8-3.7 fold77. Mass correction algorithms that are 

implemented in recent Matlab® versions eliminates the monotonic shift in m/z caused by 

space-charge effect by using advanced data binning algorithms that synchronize all the 

spectra in a dataset to a common mass/charge grid79–81 (Figure 6a and b). Space charging 

effects influenced by the eluent and co-eluting compound composition is strong in ion trap 

data, where the order of peaks stays the same but the monotonic shift can differ between 
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mass spectra. This allows usage of different monotonic correction functions for individual 

single-stage mass spectra in contrast to rt domains where one elution profile of all mass 

trace is justified. Removal of mass measurement error is not only required for MS1 data 

processing, but also for correction of bias in the assignment of peptide identifications. One 

way to correct systematic bias in mass measurement is to obtain monotonic correction 

function for the difference between the m/z of the precursor ion and the theoretical m/z of 

the identified peptides across the entire m/z range of detected precursor ions (Figure 6c)82. 

Petyuk et al77, have corrected mass measurement errors for covariates of m/z, retention 

time, ion intensity and other parameters using a multidimensional, nonparametric regression 

models. Based on the results from their study, the authors expected to reduce the number 

of false identifications by 2-4 fold after correcting for mass measurement error77. Lommen 

et al83 showed the dependency of mass error as a function of retention time and ion intensity 

and the correction for these shifts allowed sub ppm level accuracy for steroid metabolites in 

UHPLC-Orbitrap platforms. 

 

 

 

Mass measurement error in function of m/z

b)a)

c)
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Figure 6. Correction of monotonic shifts in low resolution iontrap LC-MS data. Image representation of 

a raw single-stage LC-MS map, which shows the fluctuation of m/z in a raw ion trap LC-MS dataset due to 

space-charge effect (image a). This fluctuation results in small monotonic shifts but does not change the order 

of peaks in m/z dimension and therefore could be corrected with binning algorithms that synchronizes all 

spectrum in a LC-MS chromatogram to a common mass/charge grid (image b). Scatter plot of mass error 

(difference of measured precursor m/z and theoretical m/z calculated from the sequence of identified peptide), 

showing non-linear monotonic shift and orthogonality in m/z dimension (plot c). Correction for monotonic shifts 

enhances the peptide identification rate, which option is implemented in some data pre-processing workflows. 

Images a and b were obtained with and LCQ ion trap LC-MS platform analysing a mix of 7 proteins obtained 

from Sashimi data repository (file 7MIX_STD_110802_1 from http://sashimi.sourceforge.net/repository.html). 

Plot c was obtained from proteomics analysis of HeLa cell using QExecutive orbitrap LC-MS/MS platform and 

1 h of gradient program. 

2.4.3 Ion intensity dimension 

Experimental bias such as fluctuation of ionization efficiency in complex samples e.g. due 

to ion suppression, changing of eluent composition, differences in electrospray interface, 

parameter settings, and sample preparation can influence quantified peptide/protein 

levels84. Ion suppression is one source of orthogonality in LC-MS(/MS) data, since intensity 

of compounds may differ based on the composition of co-eluting compounds85. Ion 

suppression is larger in ionspray which combines electrospray with pneumatic nebulisation 

to ionise compounds at high eluent flow rate. However, it becomes less important at lower 

flow rate regimes where electrospray only dominates and this effect disappears at very low 

flow rates of a few nl/min86. Correction algorithms for iin dimension are commonly known as 

normalisation methods and approaches to assess orthogonality in the iin dimension are 

unknown. When ion suppression effects are taken into consideration, normalisation should 

be performed using set of compounds that have the same quantity in the two similar samples 

and should span the entire dynamic ion intensity range. The best practice is to use an 

internal standard mixture for normalisation purpose, with known absolute concentration of 

all analytes. 

Normalisation approaches. The normalization methods aim to correct biases in iin 

dimension. Commonly applied normalisation approaches use mean, median or some global 

fixed value to correct constant shift in intensity in each sample87. Such normalisation 

methods remove systematic bias across samples and assume that all peptides behave 

similarly and are independent to their abundances across multiple samples. Constant value 

are often calculated from a set of unique peptides originating from known house-keeping 

proteins that supposed to have tightly regulated concentration in biological samples88. 

Global adjustment can correct for differences in the amounts of material loaded on the LC-
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MS system for each sample, but cannot capture more complex (e.g., non-linear and 

intensity-dependent) biases. LOWESS regression approach applied in the ion intensity 

domain or quantile normalisation that makes distribution of peak intensity similar across 

multiple samples87,89 can correct for such non-linear biases87, however these approaches 

assume that the majority of the compounds are the same and have very similar quantity 

across samples84. ANOVA and other regression models can effectively remove systematic 

biases when their sources are known90. In order to normalise and model data obtained from 

varied sample groups, such as disease versus control, a method called normalized spectral 

index (SIN) was developed. SIN combines three MS abundance features: peptide count, 

spectral count and fragment-ion (MS/MS) intensity91. Most normalization methods used for 

label free proteomics data, such as normalisation to various central tendencies (e.g. mean, 

median), LOWESS regression and quantile normalization, have originated mostly from 

micro-array studies87,92. Specific MS based data normalisation methods have also been 

developed which applies probability based model for imputing missing events in order to 

avoid severe biases due to compounds present below the detection limit in the statistical 

analysis93. All of the above described approaches do not change the order of peaks 

originating from the same compounds that have the same quantity in chromatograms i.e. 

they perform monotonic transformations. 

Improperly applied normalisation may introduce bias in the statistical analysis for example 

when one subclass of compound differs considerably in one sample group while the 

remaining compounds remain unchanged between samples (so-called non-closed data) and 

normalisation is performed using a fixed value such as sum of ion intensity, median fold 

change, sum of peptide-spectrum-matches or injected sample amount (Figure 7). This 

effect is called size-effect and ratio based normalisation approach should be used to avoid 

such bias94. The pairwise normalisation has allowed to identification of synergistic RAS and 

CIP2A signalling in HeLa cells before and after phosphorylation enrichment. In this dataset 

there is a major shift in phosphorylation composition of phosphoproteome data before and 

after phosphorylation enrichment and before and after stimulation of cells leading to major 

bias in statistical analysis of the phosphopeptide enriched samples without taking into 

account the enrichment effect. The enrichment effect was corrected using pairwise 

normalisation, which calculates a global factor using the median ratio of phosphopeptides 

that are present in samples both before and after phosphopeptide enrichment steps95. 
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Figure 7. Principle of “effect size” using simulated data of three peaks and two sample groups (red and blue 

traces). Effect size occurs when one sample class has large molecular composition changes (first peak in blue 

traces) compared to the peaks in the other sample group (all peaks in red traces) and to the other peaks in the 

same sample groups (last two peaks in blue traces). The original situation is shown in plot a), while normalized 

data using the total sum of peak area (or compound quantity) results in lowering the fold change of the peak 

that has the major quantity change and introduces small fold changes in the two peaks that is present with the 

same quantity. This type of normalization leads to error in subsequent differential statistical analysis. Figure 

adopted from Filzmoser et al94. 

2.5 Conclusion 
Shifts and orthogonality are generally studied separately where orthogonality has 

exclusively been considered in retention time dimension. In this review we have 

demonstrated that mathematical properties should be considered along all the three 

dimensions of single-stage label-free LC-MS(/MS) data to assess the orthogonality within 

dimensions and ultimately assess quality of LC-MS(/MS) in based on information from all 

three dimensions. It should be noted that signals obtained with other separation methods 

and spectroscopy/spectrometry techniques suffer from similar problems and there are many 

algorithms that can be adapted to accurately pre-process LC-MS(/MS) data. It is obvious 

that mass spectrometry coupled to other separation techniques such as capillary 

electrophoresis (CE-MS) and gas chromatography (GC-MS) present similar behaviours of 

monotonic shifts and orthogonality to LC-MS(/MS). For example peak elution order inversion 

was reported in GC-MS and GCGC-MS data which was obtained with different 

parameters96–99. Signals in two-dimensional gel electrophoresis, NIR or NMR shows also 

this signal processing behaviour. One example of algorithm that could be adopted to process 

LC-MS(/MS) is the generalized fuzzy Hough transform algorithm, which has been used to 

process NMR spectra acquired in one batch. The algorithm follows NMR signals that change 

b)a)



40 

gradually resulting in peak elution order changes in acquisition-time-sorted NMR spectra100. 

Similar algorithms could be adapted to model gradually changing of separation orthogonality 

in LC-MS(/MS) data, which can be used to determine corresponding peaks in datasets 

where gradual changes in retention time and elution order occur. 

Assessment of small orthogonality in LC-MS data is important when peak identity is 

transferred with accurate mass and time tag approach (AMT). AMT uses solely the m/z and 

rt coordinates of peaks and the increase of erroneous identification transfer due to peak 

elution order inversion was demonstrated by Tarasova et al43. When orthogonality in the rt 

dimension is present, the transfer of peak identity will suffer from uncertainty, and may lead 

to false positives and negatives. Therefore, it is necessary to accurately assess the 

presence of orthogonality between peptide identification in LC-MS/MS chromatograms. The 

extent of the orthogonality will determine the accuracy of identification transfer from LC-

MS/MS data to LC-MS(/MS) data, which later contains quantitative information of peptides 

at multiple time points. 

In future more effort should be made in developing accurate modelling of orthogonality in all 

the three dimension of single-stage LC-MS(/MS) data such as models used to predict 

accurately retention time of peptides or metabolites. For example linear solvent strength 

theory in liquid chromatography and 3 dimension structure of peptides were successfully 

used to predict retention time of peptides even when different linear elution programs were 

used44,101–103. However, modelling comes with more experimental effort and cost. For 

example, retention time prediction of peptides measured with different linear gradient 

programs and eluent flow speeds requires to measure peptide standards in different 

conditions to parametrise properly the retention time prediction model. Similar models 

should be developed for example to simulate ion suppression process, charge and 

adduction distribution changes of compounds in ionspray or electrospray regimes. Accurate 

modelling of orthogonality would reduce the effect of orthogonality which relates to the 

uncertainty in matching peaks using m/z and rt coordinates and lowering of analytical 

variance in iin dimension. 

In many LC-MS profiling studies the data is acquired in a small analysis batch where 

orthogonality is limited, however orthogonality becomes important when data originating 

from multiple batches/instruments have to be compared and evaluated or when data is 

acquired in large batches, which will become more common in future large clinical 

proteomics and metabolomics studies. We also hope with this review to raise the importance 

to assess small scale orthogonality with each dimensions and that users understand the 
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adverse consequences that orthogonality can have on the outcome of overall quality if 

quantitative LC-MS(/MS) profiling studies. 
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