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Pseudo Panel Data Models With Cohort
Interactive Effects
Artūras JUODIS

Faculty of Economics and Business, University of Groningen, Nettelbosje 2, 9747 AE, Groningen, The Netherlands
(a.juodis@rug.nl)

When genuine panel data samples are not available, repeated cross-sectional surveys can be used to form
so-called pseudo panels. In this article, we investigate the properties of linear pseudo panel data estimators
with fixed number of cohorts and time observations. We extend standard linear pseudo panel data setup to
models with factor residuals by adapting the quasi-differencing approach developed for genuine panels. In
a Monte Carlo study, we find that the proposed procedure has good finite sample properties in situations
with endogeneity, cohort interactive effects, and near nonidentification. Finally, as an illustration the
proposed method is applied to data from Ecuador to study labor supply elasticity. Supplementary materials
for this article are available online.

KEY WORDS: Cohort interactive effects; Labor supply elasticity; Pseudo panel data; Weak identification.

1. INTRODUCTION

Over the last three decades, panel data techniques proved to
be of high value for both micro and macro economists. Never-
theless, genuine microeconomic panel data can still be difficult
and costly to obtain and administer. The nonavailability of gen-
uine panel datasets can be especially problematic for developing
countries with a limited amount of administrative data that tracks
individuals over time. In such cases, repeated cross-section sur-
veys can be used to form so-called pseudo panels.

Models for this type of data in economics were introduced
by Deaton (1985), with early contributions by Verbeek and Nij-
man (1992) and Moffitt (1993) among others. Although pseudo
panel data models have not been analyzed as extensively as their
genuine counterparts, the volume of literature on these types of
models is increasing. For some recent theoretical articles and
reviews, readers may be referred to McKenzie (2004), Verbeek
and Vella (2005), Inoue (2008), and Verbeek (2008).

Existing estimation methods for linear pseudo panel data
models assume that the unobserved individual heterogeneity
can be properly captured using the standard additive error com-
ponent structure. However, in some cases this assumption might
be too restrictive to properly describe the data at hand. For gen-
uine panel data models, there is a substantial literature available
on models that use a multiplicative error component structure of
the factor type to capture the unobserved individual character-
istics in a more flexible way, see, for example, Pesaran (2006),
Bai (2009), Sarafidis, Yamagata, and Robertson (2009), and the
survey of Sarafidis and Wansbeek (2012).

The key component of pseudo panel analysis is the use of
cohort-based data in estimation. We use the generic term “co-
horts” to describe any grouping structure based on variables like
gender, race, or age. In this article, we introduce a factor struc-
ture to linear pseudo panel data models with a fixed number of
time periods and cohorts. We provide several theoretical con-
tributions to the existing pseudo panel data literature. First, we
propose a generalized method of moments (GMM) estimator
based on the quasi-differencing (QD) approach of Ahn, Lee,
and Schmidt (2013). Second, we discuss identification, estima-

tion, and inference properties of this estimator for potentially
unbalanced samples. In addition to the theoretical results of the
novel estimator, an extensive Monte Carlo simulation study is
conducted to assess the finite sample properties. We focus on the
robustness of the proposed estimator with respect to endogenous
variables, cohort interactive effects, and weak identification.

As an empirical illustration for our method, we apply our
estimator in an analysis of the labor supply elasticity in Ecuador
over the period of 2007–2013. We use annual survey data to
construct 10 cohorts based on the corresponding heads of the
household that work full time. To account for possible general
nonlinear trends in labor supply, we allow for a nonadditive
factor structure using the newly developed estimator.

Here we briefly introduce our notation. The usual vec(·) op-
erator denotes the column stacking operator. The commutation
matrix Kab is defined in such a way that for any [a × b] matrix
A, vec(A′) = Kab vec(A). ⊗ denotes the Kronecker product sat-
isfying the property vec(ABC) = (C ′ ⊗ A) vec(B) and ıT is a
[T × 1] vector of ones. For some setA, we denote its cardinality
by |A|. Finally, 1(·) is the usual indicator function. For further
details regarding the notation used in this article see Abadir and
Magnus (2002).

2. MODEL

In this article, we consider a linear panel data model with
group-specific membership

yi,t = β ′ws,t + ζ ′zi,t + νi,t , νi,t = λ′
i f t + εi,t ,

E[εi,t ] = 0, i ∈ Is,t , (2.1)

where Is,t is the set of all individuals (in total Ns,t ) that
are in group s = 1, . . . , S at time t = 1, . . . , T , ws,t is a
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Kw-dimensional vector of group-time-specific covariates, and
zi,t is a Kz-dimensional vector of individual-specific explana-
tory variables. Thus, in total there are Kz + Kw = K parameters
of interest for observed explanatory variables. We denote the
combined parameter vector by θ = (β ′, ζ ′)′. For ease of expo-
sition we shall assume at this stage that zi,t does not contain
any lags of yi,t . The extension of (2.1) to dynamic models is
discussed in the supplementary material.

We use the generic term cohorts to describe any grouping
structure based on some selection variable. In the literature
variables like gender, race, region of residence, and most popu-
larly age are used to define the group participation, see Verbeek
(2008) and McKenzie (2004).

To allow for individual-specific unobserved characteristics,
ui,t contains the multifactor error term λ′

i ft = ∑L
l=1 λ

(l)
i f

(l)
t . The

L-dimensional vectors λi and ft are individual-specific factor
loadings and time-specific factors, respectively. The standard
two-component (fixed effects (FE)) model (as in, e.g., McKenzie
2001, 2004, Inoue 2008, and Verbeek 2008) can be obtained by
setting ft to some constant c, such that λ′

i ft = δi, ∀t .
Estimation of the model in (2.1) is straightforward if

E[νi,t |zi,t ] = 0 and can be performed by using pooled cross-
sectional ordinary least squares (OLS). However, in most cases
of empirical interest these conditions can be violated as the
unobserved individual characteristics λi are correlated with ob-
served individual characteristics zi,t . Hence, if the correlation
is nonzero we have to rely on either general “external” instru-
ments or pseudo panel techniques that use the cohort structure
of the dataset as instruments, as originally suggested by Deaton
(1985). This article deals with the latter type of estimators.

Before defining the estimators considered in this article, we
discuss the notation first. All estimators discussed in this arti-
cle can be expressed solely in terms of the matrices/vectors-
containing cross-sectional averages. Observations at the indi-
vidual level i, on the other hand, are only used for the estimation
of the asymptotic variance-covariance matrices. By taking the
cross-sectional average for some group s at time t, we obtain the
following aggregated equation

ȳs,t = θ ′ x̄s,t + ν̄s,t , s = 1, . . . , S, t = 1, . . . , T . (2.2)

Here, we denote

ȳs,t = 1

Ns,t

∑
i∈Is,t

yi,t , x̄s,t = 1

Ns,t

∑
i∈Is,t

xi,s,t ,

λ̄s,t = 1

Ns,t

∑
i∈Is,t

λi , ε̄s,t = 1

Ns,t

∑
i∈Is,t

εi,t ,

ν̄s,t = λ̄
′
s,t ft + ε̄s,t , xi,s,t = (w′

s,t , z′
i,t )

′.

After performing cross-sectional averaging, we stack all obser-
vations over the time-dimension for some cohort s

ys = Xsθ + νs , (2.3)

where Xs = (x̄s,1, . . . , x̄s,T )′, a [T × K]-dimensional matrix,
and similarly for T-dimensional vectors ys and us . Finally, we
can stack observations for all cohorts

y = Xθ + ν, (2.4)

where the corresponding s specific vectors/matrices are stacked
on top of each other, for example, y = ( y′

1, . . . , y′
S)′.

It is important that already at this point we discuss the asymp-
totic setup that one can use to derive the theoretical results. Us-
ing the terminology of Verbeek (2008) we formulate commonly
used asymptotic schemes:

Type I. Ns,t → ∞. T and S are fixed (this article);
Type II. Ns,t and T fixed but S → ∞;
Type III. Ns,t → ∞ and T → ∞ but S fixed.

A well-known implication (see, e.g., Inoue 2008) of the Type I
asymptotics is the robustness of the estimator based on cross-
sectional averages to the presence of endogenous explanatory
variables. However, discussed later in this article, robustness to
endogeneity is only achieved under the assumption of strong
identification. Another implication for our analysis is that under
Type I (unlike Type II) asymptotics, the estimator that is dis-
cussed in this article does not suffer from the “many instrument”
bias as in Bekker (1994) and Bekker and van der Ploeg (2005).
The intuition behind these properties is discussed later in the
article.

3. COHORT INTERACTIVE EFFECTS

3.1 Inconsistency of the Conventional Fixed Effects
Estimator

In this section, we show that the conventional fixed effects-
type estimator for pseudo panel data models is inconsistent if
νi,t has a factor structure. The conventional estimator GMM (or
fixed effects) estimator, as in Dargay (2007) and Inoue (2008),
is given by

θ̂GMMl = (
X ′ MΩ M X

)−1
X ′ MΩ M y, (3.1)

where we use the subscript l to emphasize that this estima-
tor is linear. The use of [ST × ST ] matrix M = IS ⊗ (IT −
(1/T )ıT ı ′T ) can be motivated if the unobserved heterogeneity is
of the form E[λ′

i ft |i ∈ Is,t ] = δs . Finally, Ω is some prespecified
[ST × ST ] positive-definite weighting matrix.

This estimator remains consistent provided that E[λ′
i ft |i ∈

Is,t ] = δs , as in this case Mu
p−→ 0S(T −1). This condition in

some cases can be too restrictive as it imposes that all cohorts
respond similarly to common shocks (on average). However, it
can still be reasonable to maintain the less restrictive assumption
that E[λi |i ∈ Is,t ] = λs , such that

E[λ′
i ft |i ∈ Is,t ] = λ′

s ft . (3.2)

Under this assumption all individuals i in cohort s have an error-
component structure with common time-varying mean, or in
other words, a cohort interactive effects structure.

Before characterizing the asymptotic properties of the θ̂GMMl

estimator under the cohort interactive effects structure in (3.2),
we define

F = ( f1, . . . , fT )′, Λ = (λ1, . . . ,λS)′. (3.3)

Here F and Λ are [T × L] and [S × L] matrices of factors
and cohort factor loadings, respectively. As a special case, in
the fixed effects model, both F = c and Λ = δ are T- and S-
dimensional vectors. For the more general model, we define ui,t
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to be

ui,t ≡ νi,t − λ′
s ft , i ∈ Is,t , (3.4)

such that the newly combined error term has mean zero, that is,
E[ui,t ] = 0, i ∈ Is,t . Using this notation we state formally the
assumptions we impose on the error terms ui,t .

(A.1) Ns,t → ∞, ∀s, t ; ∃N → ∞ s.t. Ns,t /N → πs,t , and
0 < min πs,t < max πs,t < ∞. T and S are fixed (Type I
asymptotics).

(A.2) ui,t are i.h.d. with finite 2 + δ moment, for δ > 0,

such that
√

Ns,t ūs,t
d−→ N (0, σ 2

s,t ) jointly ∀s, t with 0 <

min σ 2
s,t ≤ max σ 2

s,t < ∞.

Assumption (A.1) states that the number of individuals per
cohort at any time t should be large and asymptotically nonneg-
ligible as compared to N, while the number of cohorts and time
periods is fixed.

Remark 1. Note that in (A.1) instead of explicitly assuming
that N = ∑T

t=1

∑S
s=1 Ns,t we allow for some generic N. The

estimators and the test statistics considered in this article are
invariant to a particular choice of N. In general, one can think
of N to be the sum (as in Inoue 2008), average or even any
particular value of Ns,t (as in McKenzie 2004).

In Assumption (A.2), unlike Inoue (2008), we do not impose
the iid assumption, but allow for heteroscedasticity between
individuals and over time. Furthermore, this assumption can
be relaxed by allowing a certain degree of spatial dependence
between individuals of the same cohort. In that case consistency
(or inconsistency) properties of all estimators discussed in this
article are not altered, but knowledge about the exact structure
of the spatial dependence is required for correct inference.

Similarly to the model with cohort fixed effects, one can
rewrite the stacked equation for y as

y = Xθ + ν = vec (FΛ′) + Xθ + u. (3.5)

Now define the probability limit of the regressors matrix
X as X∞, that is, X∞ ≡ plimN→∞ X . Here, the regressor ma-
trix X∞ = (W , Z∞), has a typical st’th row element given by
(w′

s,t , limN→∞(1/Ns,t )
∑Ns,t

i=1 E[z′
i,t |i ∈ Is,t ]). If the zi,t are iid for

all i ∈ Is,t the st’th row is simply given by (w′
s,t , E[z′

i,t |i ∈ Is,t ]).
In this case under high-level Assumptions (A.1)–(A.2), the

following result applies to the θ̂GMMl estimator.

Proposition 1. If (3.2) holds, X∞ and FΛ′ are deterministic,
then under Assumptions (A.1)–(A.2)

θ̂GMMl − θ0
p−→ (

X ′
∞ MΩ M X∞

)−1
X ′

∞ MΩ M vec (FΛ′).

Proof. In Appendix A.1. �
Thus, the GMM/FE estimator converges in probability to a

value that depends on unobserved factors (F) and on cohort
factor loadings (Λ). Note that, in principle, it is possible that
both limiting quantities have zero mean (hence θ̂GMMl can be
asymptotically unbiased), if one assumes FΛ′ to be stochastic.
Technical reasons behind the assumption that some of the quan-

tities have to be deterministic are discussed later in this article
in more detail.

Remark 2. One can further show that the conclusions of
Proposition 1 also hold for the linear estimator that allows for
additive cohort and time effects (with M = (IS − (1/S)ıS ı ′S) ⊗
(IT − (1/T )ıT ı ′T )).

3.2 Assumptions and Estimation

Given that the θ̂GMMl estimator is in general inconsistent in the
presence of the multifactor error structure, another estimation
strategy is needed to obtain consistent estimates of θ . For this
purpose, we adopt the quasi-differencing (QD) approach of Ahn,
Lee, and Schmidt (2001, 2013) that is tailored for genuine panel
data models with fixed T . Their approach suggests the use of
the transformation matrix Ms(φ) that depends on the unknown
parameter vector φ so that (for T > L)

Ms(φ)F = O(T −L)×L. (3.6)

In other words, one has to introduce the additional parameter
vector φ to remove the unobserved factors F from the model.
Unlike the standard setup with fixed effects δs only, where the
factors and consequently the corresponding transformation ma-
trix are known (up to a constant), the Ms(φ) matrix is unknown
and depends on φ, which has to be estimated jointly with θ .

Observe that for each [L × L] invertible matrix A, we have

Fλs = (F A)
(

A−1λs

) = F∗λ∗
s . (3.7)

To avoid this rotational indeterminacy (or in other words,
nonuniqueness to multiplication), we can normalize F∗ =
(Φ ′,−IL)′ (assuming that the lower [L × L] block (FL×L) of
F matrix is of full rank). One can then set Ms(φ) to be

Ms(φ) = (IT −L,Φ), (3.8)

where φ = vec (Φ). Analogously to the fixed effects transfor-
mation matrix, we define the stacked version of this matrix using
the Kronecker product, that is, M(φ) = IS ⊗ Ms(φ). Note that
other normalization schemes are also possible, for further details
please refer to the supplementary material.

Given the transformation matrix M(φ), we define the non-
linear GMM estimator γ̂GMMn = (θ̂

′
GMMn, φ̂

′
GMMn)′ as the global

minimizer of the following objective function

f (γ ) = 1

2

[
( y − Xθ )′ M(φ)′Ω M(φ)( y − Xθ )

]
, (3.9)

for some prespecified [S(T − L) × S(T − L)] positive definite
weighting matrix Ω . The corresponding gradient of the objective
function in (3.9) is given by

∇f (γ ) =
(

−X ′ M(φ)′

Q′ (( y − Xθ ) ⊗ IS(T −L)
)
)

×Ω M(φ)( y − Xθ) =
(

Dθ (γ )′

Dφ(γ )′

)
Ω M(φ)( y − Xθ ).

Here Dγ (γ ) = (Dθ (γ ), Dφ(γ )) is the Jacobian matrix of the
moment conditions M(φ)( y − Xθ), evaluated at some γ (when
evaluated at the true value γ0 we suppress the dependence on
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γ ). Finally, the Q is an [S2T (T − L) × (T − L)L] selection
matrix of the following form:

Q = (((IS ⊗ KT S)(vec IS ⊗ IT )) ⊗ IT −L)V ,

V =
((

O(T −L)×L

IL

)
⊗ IT −L

)
,

with zeros and ones as elements.
Before proceeding, we extend the set of the high-level as-

sumptions that are sufficient for proving the asymptotic results
for γ̂GMMn.

(A.3) γ = (θ ′,φ′)′; γ ∈ Γ ⊂ RK+(T −L)L and γ0 ∈ interior
(Γ ). The parameter space Γ is compact.

(A.4) rk[plimN→∞ Dγ ] = K + (T − L)L. The X∞ matrix is
deterministic.

(A.5) (a) L = L0 < min{S, T }, while (S − L)(T − L) > K

with L0 being the true number of factors with nonzero mean
factor loadings. (b) rk(Λ) = L0. (c) F−1

L×L exists. (d) F and
Λ are deterministic matrices.

(A.6) The model is asymptotically identified: plimN→∞
M(φ)( y − Xθ) = 0S(T −L) implies γ = γ0.

The probability limit of the (transposed) Jacobian D′
γ in (A.4)

can be expressed in the following way:

plimN→∞ D′
γ =

(
−X ′

∞ M(φ0)′

Q′(vec (FΛ′) ⊗ IS(T −L))

)
.

(A.4) is the strong identification assumption commonly used in
the standard GMM setting. This assumption is quite restrictive
even when φ is known, see discussion in Verbeek (2008). The
importance of this problem is illustrated in Section 4.2 as well
as in the Monte Carlo section of this article. However, we leave
the properties of the identification-robust inference procedures
of, for example, Kleibergen (2005) for future research.

For genuine panel data models, Ahn, Lee, and Schmidt (2013)
formulated (A.5) slightly differently: “. . . denotes the number
of the individual-specific effects that are correlated with the
regressors. . ..” In our case, only factors with nonzero mean fac-
tor loadings are of interest for estimation, as factors with zero
mean factor loadings cannot be identified from cross-sectional
averages. Hence, it is possible that the genuine panel data esti-
mators would identify more factors than the pseudo panel data
estimator even if applied to the same dataset.

Assumption (A.6) imposes asymptotic global identification
for the objective function. In Section 4.3, we provide detailed
examples when this condition can be violated. Note that As-
sumptions (A.1)–(A.6) do not impose any exogeneity restriction
of zi,t with respect to ui,t , thus elements of zi,t are allowed to be
endogenous, as noted at the end of Section 2.

Remark 3. Although possible, in this article we assume that
ws,t does not contain regressors that are either constant over
time (e.g., cohort effects) or over cohorts (e.g., time effects).
For the nonlinear presented in this article, the identification
of the parameters for such variables (one can think of these
regressors as “low rank,” see, e.g., Moon and Weidner 2015) can
be problematic. That is mainly due to the possible collinearity
with time-varying unobserved factors. On the other hand, if one
does not include these regressors in ws,t , the nonlinear estimator

for θ remains consistent, but not necessarily efficient (see also
the discussion in Ahn, Lee, and Schmidt 2013).

Remark 4. In this article, we treat both cohort specific vari-
ables ws,t and the cohort-interactive effects component FΛ′ as
deterministic. Equivalently, Assumptions (A.1)–(A.6) can be
formulated conditional on these quantities, but in that case one
has to rely on limit theory developed in Kuersteiner and Prucha
(2013, 2015) to obtain the limiting distribution. Our treatment
of the unobserved quantities is similar to the genuine panel data
models for fixed T , where F is usually treated as deterministic
(as in Ahn, Lee, and Schmidt 2013; Robertson and Sarafidis
2015). The deterministic treatment of variables is only needed
to avoid technicalities, without any effect on the way estimation
and inference are performed (as emphasized by Kuersteiner and
Prucha 2013, 2015).

Assumptions (A.1)–(A.6) are sufficient to obtain the follow-
ing asymptotic representation of γ̂GMMn.

Proposition 2. Suppose that Assumptions (A.1)–(A.6) are
satisfied. Then γ̂GMMn has the following asymptotic representa-
tion:

√
N (γ̂GMMn − γ0)

d−→ plimN→∞
((

D′
γ Ω Dγ

)−1
D′

γ

)
×Ω M(φ0)Σ1/2ξ , (3.10)

where ξ ∼ N (0ST , IST ) and Σ is an [ST × ST ] diagonal matrix
with the typical (s − 1)T + t diagonal element given by σ 2

s,t /πs,t .

These results can be proved using standard arguments, for
example, as in Newey and McFadden (1994).

Remark 5. Similar to the original setup of Ahn, Lee, and
Schmidt (2013) for genuine panels, the asymptotic distribution
of γ̂GMMn is well defined only in the case of the true value of
L = L0 as imposed by Assumption (A.5).

The asymptotic variance-covariance matrix (treating X∞,
F, and Λ as deterministic) is minimized at Ωopt =
(M(φ0)Σ M(φ0)′)−1. In that case, the asymptotic variance-
covariance matrix of the θ̂GMMn is given by

plimN→∞
(

D′
θΩ

1/2
opt M

Ω
1/2
opt Dφ

Ω
1/2
opt Dθ

)−1
, (3.11)

where M
Ω

1/2
opt Dφ

= IS(T −L) − Ω
1/2
opt Dφ(D′

φΩopt Dφ)−1 D′
φΩ

1/2
opt is

the usual “residual maker” projection matrix that projects off
the column space of Ω

1/2
opt Dφ .

Remark 6. Depending on the assumptions made for the error
terms (heteroscedasticity or homoscedasticity over time and co-
horts) and regressors (static or dynamic model), the formulas for
consistent estimation of Σ can be used without modifications
as in Inoue (2008). The typical (s − 1)T + t diagonal element
of the Σ̂ matrix is equal to q̂2

s,t = (N/Ns,t )σ̂ 2
s,t , where

σ̂ 2
s,t = 1

Ns,t

∑
i∈Is,t

(yi,t − x′
i,s,t θ̂1)2 −

⎛
⎝ 1

Ns,t

∑
i∈Is,t

(yi,t − x′
i,s,t θ̂1)

⎞
⎠

2

(3.12)
for some consistent initial estimator θ̂1 (e.g., the estimator that
uses the identity matrix for Ω).
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For a fixed value of S and T , the unconditional (treating deter-
ministic quantities as stochastic) distribution of

√
N (γ̂GMMn −

γ0) is not multivariate normal and depends on factors, cohort-
specific factor loadings, and cohort-specific regressors ws,t in
the limit. Note that the limiting distribution of the linear GMM
estimator γ̂GMMl (as in Inoue 2008) is also normal only condi-
tionally on cohort-specific regressors ws,t , while unconditionally
it is not. Hence, the conditioning argument is not unique to the
nonlinear estimator.

Note that the number of rows in the Q matrix is quadratic
in both S and T . Thus, even for moderate dimensions, numeri-
cal computations might become cumbersome. Given that under
Assumptions (A.1)–(A.6) the Σ matrix is diagonal (or block-
diagonal if dynamics are allowed), we can also limit our atten-
tion to the block diagonal (over cohorts) Ω weighting matrix. In
this case, the objective function can be substantially simplified

f (γ ) = 1

2

S∑
s=1

( ys − Xsθ )′ Ms(φ)′Ωs Ms(φ)( ys − Xsθ ). (3.13)

Here as before Ms(φ) = (IT −L,Φ), while Ωs is the sth block
of the block-diagonal matrix Ωs . The gradient can be also ex-
pressed as a sum

∇f (γ ) =
S∑

s=1

(
−X ′

s Ms(φ)′

V ′ (( ys − Xsθ ) ⊗ IT −L)

)
Ωs Ms(φ)( ys − Xsθ ),

with V as defined previously. This simplification of the objective
function is used in Section 5 while conducting the Monte Carlo
study as well as in the empirical exercise.

As an alternative to the quasi-differencing approach with re-
spect to factors, one can also construct a similar estimator by
quasi-differencing over cohorts. In this case, one has to look for
redefined φ s.t.

M(φ)(Λ ⊗ IT ) = 0T (S−L). (3.14)

In this case, the φ vector is of dimension (S − L)L rather than
(T − L)L. This alternative QD transformation might be of par-
ticular interest if T >> S and it is reasonable to consider a large
N, T asymptotic framework as in McKenzie (2004) (Type III).
As a result, the number of parameters does not grow as both
N, T increase.

Remark 7. The possibility to perform quasi-differencing with
respect to either Λ or F is similar in spirit to the estimation
procedure of Robertson and Sarafidis (2015) for genuine panel
data models. For the model studied in Robertson and Sarafidis
(2015), quasi-differencing can be performed either with respect
to the F or G matrices (where G depends on the covariance
between the factor loadings and the instruments).

Remark 8. Note that if we estimate the factor loadings instead
of the factors themselves, the weighting matrix Ω is not block
diagonal over the T dimension. Furthermore, if the Σ matrix is
not diagonal, the optimal Ω in the second step is not even block
diagonal in the S dimension. In this case, the GMM objective
function does not simplify as in (3.13).

4. TESTING, MODEL SELECTION, AND
IDENTIFICATION

In this section, we briefly discuss how hypothesis testing and
the selection of the number of factors can be performed under
the conditions of Proposition 2. Later we discuss some exam-
ples, where one or more of these conditions can be potentially
violated. Particularly, we discuss the issues of local and global
identification.

4.1 Testing and Model Selection

Given that the estimator derived under Assumptions (A.1)–
(A.6) has a well-defined asymptotic normal limit, hypothesis
testing is conducted in the usual way. First of all, the t- and
Wald statistics can be used to test parameter restrictions. Second,
we can consider the Wald test for the H0 : ft = c �= 0,∀t =
1, . . . , T (hence φt = −1) of the fixed effects model:

W = N
(
φ̂GMMn + ιT −1

)′ ( ̂Avar φ̂GMMn

)−1

× (
φ̂GMMn + ιT −1

) d−→ χ2(T − 1). (4.1)

Here, the consistent estimator of the variance-covariance matrix
of φ̂GMMn is given by

̂Avar φ̂GMMn =
(

Dφ(γ̂ )′Ω̂
1/2

M
Ω̂

1/2
Dθ (γ̂ )

Ω̂
1/2

Dφ(γ̂ )
)−1

,

(4.2)
with Ω̂ = (M(φ̂1)Σ̂(θ̂1)M(φ̂1)′)−1 evaluated at a consistent one-
step estimator γ̂1 (e.g., using the identity weighting matrix Ω).
Given that the number of degrees of freedom grows linearly
with T , one can suspect that some loss of power for moderate
values of T might occur.

Similar to any standard GMM estimation problem it can be
shown that under (A.1)–(A.6) the criterion function has a lim-
iting chi-square distribution (provided that (S − L)(T − L) −
K > 0, and accordingly modified for unbalanced and/or dy-
namic models):

JN (L) = N ( y − X θ̂ )′ M(φ̂)′Ωopt M(φ̂)( y − X θ̂ )

d−→ χ2
(S−L)(T −L)−K, (4.3)

if L = L0. Here JN (L) denotes the corresponding J-test for the
model with L factors. Testing for the number of unobserved fac-
tors can be performed sequentially as in Ahn, Lee, and Schmidt
(2013) or using a Bayesian information criterion (BIC) model
selection criterion. One starts with H0 : L0 = 0 and if the null
hypothesis is rejected proceeds with H0 : L0 = 1. The sequen-
tial procedure for a globally identified model, can be motivated
by the fact that for L < L0 (for any positive definite Ω)

JN (L) = N ( y − X θ̂ )′ M(φ̂)′Ω M(φ̂)( y − X θ̂ ) → ∞. (4.4)

However, as we further discuss in the section on global identifi-
cation, the sequential procedure and BIC can fail to consistently
estimate the true number of factors if the global identification
assumption is violated, as for some data-generating processes

(DGPs) in this case JN (L = 0)
d−→ χ2

ST −K . Alternatively, for
model selection we use the Schwartz information criterion (BIC)
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of the following form

SN (L) = JN (L) − a ln (N )((T − L)(S − L) − K). (4.5)

For further details please refer to Propositions 2 and 3 of Ahn,
Lee, and Schmidt (2013).

Remark 9. While JN (L) is invariant to a particular choice of
“N,” this is not the case for SN (L). In the empirical section we
consider two BIC criteria based on N = ∑S

s=1

∑T
t=1 Ns,t as, for

example, in Inoue (2008) and N = (1/ST )
∑S

s=1

∑T
t=1 Ns,t .

4.2 Identification: Local and Weak

At first, we consider the local asymptotic identification con-
dition summarized in (A.4). For the asymptotic distribution
to be properly defined, the Jacobian sub-matrix M(φ0)X∞
should have full column rank K. This condition is more re-
strictive than the analogous condition for the model with
only fixed effects, where it is necessary that M X∞ (where
M = IS ⊗ (IT − (1/T )ıT ı ′T )) is of full column rank. For ex-
ample, the rank condition for the nonlinear GMM estimator is
not satisfied in a model with one individual specific regressor of
the following form:

zi,t = f ′
t λ

z
i + εz

i,t , εz
i,t ∼ (0, σ 2

i,t ), (4.6)

and as a result one has

plimN→∞ M(φ0)z = 0S(T −L). (4.7)

In this example, the cross-sectional averages of zi,t asymptoti-
cally lie in the space spanned by F. In the fixed effects model
(i.e., f ′

t λ
z
s = δs), this condition is violated if the mean of zi,t does

not sufficiently vary over time. On the other hand, if the factors
ft in the equation for zi,t differ from the corresponding factors
in yi,t then the asymptotic identification condition is satisfied.

Remark 10. In the genuine panel data literature, it is some-
times assumed that factor loadings in the equation for zi,t have a
different (nonzero) mean than the corresponding factor loadings
in the equation for yi,t , for example, the common correlated ef-
fects (CCE) estimator of Pesaran (2006) for L > 1 (in our case
that implies E[λz

i ] �= λs �= 0L). In such a case it might be tempt-
ing to use the Quasi-differencing approach with respect to cohort
factor loadings (as in (3.14)) rather than factors to circumvent
the problem with local identification. However, analogously to
the derivations in Section 4.3, one can show that for this setup the
global (rather than local) identification assumption is violated.

The full rank Jacobian condition plays an important role in
proving the consistency and asymptotic normality of the GMM
estimator. To further illustrate the importance of this assumption
for pseudo panel models, we consider the simplified example
with one endogenous regressor.

Example 1 (One Regressor).

yi,t = ζzi,t + ui,t , ui,t = ρ

(
zi,t − μs,t

N
γ
s,t

)
+ εi,t i ∈ Is,t ,

zi,t = μs,t

N
γ
s,t

+ ε
(z)
i,t , εi,t , ε

(z)
i,t ∼ iid(0, 1).

For simplicity, we assume that λs = 0L,∀s and μs,t are deter-
ministic, so that the first-step estimator of ζ is given by (3.1)
with Ω = IST and M = IST . Then we can state the following
result:

Proposition 3. Let the assumptions in the One Regressor
example be satisfied, then

(ζ̂ − ζ0) − ρ
d−→

∑S

s=1

∑T

t=1 π−1
s,t zs,t εs,t∑S

s=1

∑T

t=1 π−1
s,t z2

s,t

, if γ ≥ 1/2.

N 1/2−γ (ζ̂ − ζ0)
d−→

∑S

s=1

∑T

t=1 π
−(0.5+γ )
s,t μs,tus,t∑S

s=1

∑T

t=1 π
−2γ
s,t μ2

s,t

, if 0 ≤ γ < 1/2.

Proof. In Appendix A.1. �
Here the limiting random variables with subscript s, t are

defined as

zs,t ∼ 1(γ=1/2)μs,t + N (0, 1), εs,t ∼ −1(γ=1/2)ρμs,t + N (0, 1),

with us,t ∼ N (0, 1 + ρ2), while all Gaussian random variables
are mutually independent. As a result, the nonscaled estimator
of the structural parameter ζ converges in distribution a random
variable centered at ζ0 + ρ under weak-instrument asymptotics
(if all μs,t = 0 for γ = 1/2). On the other hand, for semiweak (or
semistrong) identification (0 ≤ γ < 1/2), the estimator retains
the asymptotic normal limit centered at the true value ζ0 but with
slower rate of convergence N1/2−γ .

In the supplementary material, we discuss how one can use
the result from this example to analyze the panel AR(1) model.
The important lesson that we learn from this example is that
in cases where the rank condition can be potentially locally
violated, endogeneity starts to play an important role. This is
in sharp contrast to the full-rank assumption. In other words,
endogenous regressors play a role even if one considers the
Type I asymptotic scheme. We investigate implications of this
example for the more detailed model in the Monte Carlo section
of this article.

4.3 Identification: Global

In addition to the full rank condition of the Jacobian matrix,
the model has to be globally identified, as formally summarized
in Assumption (A.6). We start this section with the most trivial
case by considering the setup as in (4.6), but with

E[λz
i ] = κλs ,∀i ∈ Is,t , κ �= 0. (4.8)

Then the required global identification condition for the model
with one regressor is of the very simple form

M(φ)
(
(IS ⊗ F) vec(Λ′) (κ(ζ0 − ζ ) + 1)

) = 0S(T −L). (4.9)

This condition is satisfied for ζ = ζ0 + 1/κ , irrespective of the
value of φ. In this case, if one performs sequential selection of
factors, the model with L = 0 can be selected, as the JN (L = 0)
statistic for this model has a nondegenerate chi-squared limit.

The corresponding (inconsistent) estimator satisfies ζ̂
p−→ ζ0 +

1/κ .
Now consider a slightly less restrictive DGP for zi,t

zi,t = ( ḟ t )
′λz

i + εz
i,t , (4.10)



Juodis: Pseudo Panel Data Models With Cohort Interactive Effects 53

where we assume that ḟ t �= ft , but the factor loadings are as-
sumed to satisfy (4.8). Defining Ḟ ≡ (κ ḟ1, . . . , κ ḟT )′ the global
identification condition can then be formulated in the following
way:

plimN→∞ M(φ)( y − Xζ ) = M(φ) vec(((ζ0 − ζ )Ḟ

+F)Λ′) = 0S(T −L). (4.11)

If we can further assume that the appropriate [L × L] block of
the F̃ = (ζ0 − ζ )Ḟ + F matrix is invertible, then each parame-
ter value from the set

Γ = {γ = (ζ,φ′)′ ∈ R(T −L)L+1 : ζ ∈ R,

Φ = −F̃[(T −L)×L] F̃
−1
[L×L]} (4.12)

satisfies (4.11). In the supplementary material, we show that the
AR(1) model can be written as (4.10), highlighting the global
identification issues of the model without any other regressors.
Finally, one can show that similar result is valid if we consider
the example in (4.8) with quasi-differencing with respect to
factor loadings rather than factors.

5. MONTE CARLO STUDY

5.1 Setup

The main goal of this Monte Carlo study is to investigate the
effects of possibly endogenous regressors in the nearly singu-
lar designs with factors. By doing so, we expand the literature
to models with unobserved factors and cases where asymptotic
identification assumption might be (locally) violated. The sum-
mary of the Monte Carlo setup is provided below.

yi,t = ftλs + βws,t + ζzi,t + εi,t ,

εi,t = ρ(zi,t − μs,t ) +
√

1 − ρ2
√

1 − σ 2
f λη̃i,t , η̃i ∼ N (0, 1),

zi,t = μs,t +
√

1 − σ 2
μ z̃i,t , z̃i,t ∼ N (0, 1), μs,t = 1 + σμN (0, 1),

ws,t ∼ N (0, 1), λ̄s ∼ U(0, 1),

λs ∼ N (λ̄s , σ
2

λs
), ft = 1 + σf u

(f )
t , u

(f )
t = αf u

(f )
t−1 + ε

(f )
t ,

ε
(f )
t ∼ N (0, 1 − α2

f ), u
(f )
0 ∼ N (0, 1).

Similarly to the Monte Carlo setup of Inoue (2008), we nor-
malize var (ftλs + εi,t ) = 1. The following parameter space is
considered:

T = 5, S = 10, θ0 = (1, 1)′, αf = 0.5,

N̄ = {150; 300}, σ 2
f λ = {0.1; 0.5},

σ 2
μ = {0; 0.05; 0.3}, ρ = {0; 0.3}, σf = {0; 0.1}.

To ensure that var (ftλs) = σ 2
f λ, the σ 2

λs
is set to

σ 2
λs

= σ 2
f λ − σ 2

f λ̄2
s

σ 2
f + 1

. (5.1)

The fact that we normalize var (ftλs + εi,t ) = 1 ensures easy in-
terpretation of σ 2

f λ, that is, the fraction of the total error term
explained by the factor structure. Easy interpretability of the
Monte Carlo parameters is a desirable property of a good Monte
Carlo study, see, for example, Kiviet (2012). Note that the values

of σ 2
f λ and σ 2

f are relatively small to emphasize that the impor-
tance of the time-varying factor even when this contribution (to
the total error structure) is small.

Results for five different estimators are presented. We de-
note two linear GMM estimators that do not allow any co-
hort effects (M = IST , i.e., L = 0) or only time-invarying
cohort effects (M = IS ⊗ (IT − (1/T )ıT ı ′T )), by GMMl0 and
GMMl1 (that are obtained as in (3.1) but with the optimal
weighting matrix). Furthermore, we use abbreviations GMMn1,
GMMn2, and GMMo to denote the two-step nonlinear GMM
with L = L0 = 1, nonlinear GMM with L = 2 (both solutions
to (3.9)) and GMM based on BIC selection criteria, respectively.
We also present results for the linear estimator that allows for
time and cohort fixed effects, GMMl2.

The key parameters of this Monte Carlo study are

(σ 2
μ ) This parameter controls the degree of singularity of the
Jacobian matrix. Larger value of σ 2

μ , translates into a larger
amount of time-series heterogeneity in zi,t . For σ 2

μ ≈ 0,
σ 2
f ≈ 0 the Jacobian is (near) singular and one can ex-

pect standard asymptotic inference techniques to perform
poorly in finite samples, see Section 4.2.

(ρ) This parameter controls the correlation between zi,t and
the error term εi,t . Based on results from Section 4.2, for
σ 2
μ = 0 the bias of GMMl1 and GMMn1 is proportional to

ρ.
(σ 2

f ) When this parameter is nonzero, one time-varying factor
is present in the model. As a result, in this case the GMMl1
and GMMl2 estimators are inconsistent.

Note that all s, t specific variables {λs, ft , ws,t , μs,t } are sim-
ulated in every Monte Carlo replication so that the limiting
distribution of the estimator is only conditionally normal. This
is done to emphasize that in Assumptions (A.1)–(A.6) these
quantities are assumed to be deterministic only for technical
reasons. On the other hand, the λ̄s’s are generated only once in
each design to make sure that the GMMl0 estimator (estima-
tor without any factors, i.e., L = 0) is biased in finite samples.
However, the results for other estimators do not change quan-
titatively or qualitatively if all λ̄s = 0. Similar to Inoue (2008),
other distributional assumptions for {λs, μs,t , ws,t } can be con-
sidered, but the given setup is sufficient for our purposes. Ns,t is
set to be �πs,t N̄ST �, where πs,t ∼ U (0, 1). Note, by generating
λs, ft in each replication we deviate from the theoretical discus-
sions in this article, but are more in line with genuine panel data
literature and the setup of Inoue (2008).

All results are presented for the two-step estimators (where
necessary) with the asymptotically optimal weighting matrix,
under the assumption that σ 2

s,t = σ 2. In this section, we discuss
the results for the ζ parameter only; results for β are available
from the author upon request.

Remark 11. Note that, for the given setup the GMMl0 esti-
mator is always inconsistent and biased, where the second result
is due to λ̄s being nonzero. The GMMl1 estimator, on the other
hand, is always unbiased but inconsistent if σ 2

f �= 0. In this arti-
cle, we do not consider any designs where for σ 2

f �= 0 and ρ = 0
the GMMl1 estimator is both inconsistent and biased. For un-
biasedness it is sufficient to have E[ft ] = c and E[zi,t ] = c̃ for
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all t, this condition is satisfied in our Monte Carlo setup. The
GMMl2 estimator remains unbiased even if E[ft ] �= c for some
t.

Remark 12. In the supplementary material, we present ad-
ditional Monte Carlo evidence for the model with two factors.
Results suggest that the variance of factors plays a more sub-
stantial role in the two-factor model as it is necessary to identify
two time-varying factors from cross-sectional averages.

5.2 Results: Estimation

In this section, we summarize the bias and root mean square
estimation (RMSE) properties of the estimators as presented in
Table B.1. All results in the tables are grouped by the corre-
sponding values of the σ 2

μ variable. Here we briefly summarize
the main findings.

• The GMMl0 estimator is severely biased in finite samples,
driving the corresponding values of the RMSE.

• The results for GMMl1 and GMMl2 estimator are quanti-
tatively and qualitatively similar. Hence, the effect of in-
cluding the time effects on RMSE is marginal.

• Finite sample bias of all GMM estimators (except
GMML0) is proportional to ρ, when these estimators are
asymptotically (locally) unidentified (σ 2

μ = 0). The bias
quickly disappears once σ 2

μ > 0, for example, already for
σ 2
μ = 0.05 the bias is small.

• The effects of asymptotic nonidentification show up clearly
once we consider the corresponding values of the RMSE
(even for ρ = 0), as in this case N̄ has no effect on
RMSE. The slightest increase in σ 2

μ substantially reduces
the RMSE and N̄ starts to play a role.

• Although inconsistent for σ 2
f �= 0, the GMMl1 estimator

remains unbiased. For small values of σ 2
f λ it has small bias

and RMSE similar to the consistent GMMn1 estimator.
• Designs with σ 2

f λ = 0.5 show substantial improvements in
terms of both bias and RMSE for consistent estimators.
If time-varying factor is present (σ 2

f �= 0), the RMSE of
GMMl1 is larger than that of GMMn1. Hence, one needs
a sufficiently strong factor for GMMn1 to have smaller
RMSE, as compared to GMMl1.

• The RMSE of GMMn2 (L > L0) tends to be larger than of
correctly specified GMMn1 (L = L0).

5.3 Results: Testing and Model Selection

In this section, inferential properties of the estimators are
considered and discussed. As discussed in Section 4.1, one can
use the Wald test to test the fixed effects assumption. In Table
B.2, we also present results for two Hausman tests, that we
denote by h0 and h1. Here h0 is the test statistic for GMMl0
versus GMMl1, and h1 tests GMMl1 versus GMMn1. The h0
almost in all design rejects close to 100% of all Monte Carlo
replications. All test statistics have a nominal size of 5% (with
the exception of the tests based on the GMMn2 estimator, as no
asymptotic results for that estimator are available).

• The Wald test is superior in terms of both size and power as
compared to the h1 test. For low values of σ 2

f λ and N̄ , the
former test is slightly size-distorted. Similar conclusions
apply to the GMMl1 estimator and the corresponding J-
test; the fixed effects model is rejected more frequently for
larger values of σ 2

f λ and N̄ .
• A larger of σ 2

μ does not seem to influence the Wald test a
lot, while an increase in σ 2

f λ and/or N̄ has a positive impact
on size.

• The size of the J- and t-tests for the GMMl1 and GMMl2 es-
timators is similar when both estimators are consistent. On
the other hand, when σ 2

f �= 0, the tests based on GMMl2 re-
ject the null hypothesis less frequently than the correspond-
ing tests for GMMl1 estimator. Hence, the J-test based on
GMMl2 is less powerful to detect model misspecifications.

• Some size distortions are present for the J-test of the con-
sistent GMMn1 and GMMo estimator, if σ 2

μ = 0.05. In
general, distortions disappear with larger values of N̄ , σ 2

f λ,
and σ 2

μ .
• For the GMMn2 estimator, the J-test is always undersized,

which is driven by the fact that we estimate more factors
than present in the model.

• Local nonidentification (σ 2
μ = 0.00) has no major impact

on the J-test. However, one can observe that this test tends
to under reject this can be partially explained using the
results in Dovonon and Renault (2009).

• If the GMMl1 estimator is consistent, the t-test has better
size properties than the corresponding test for GMMn1.
On the other hand, when this estimator is inconsistent, the
rejection frequencies slowly approach 1 as N̄ , σ 2

μ , and/or
σ 2
f λ increase.

• Empirical rejection frequencies of the t-test for GMMn1,
GMMo, and GMMn2 approach the nominal size of 5% for
larger values of N̄ , σ 2

μ , and/or σ 2
f λ.

• If all GMM estimators are (locally) nonidentified (σ 2
μ =

0.0), the properties of the t- test are driven by ρ, for exam-
ple, for ρ = 0.3 rejection frequencies are close to 1.

The results for BIC criteria can be found in the last column of
Table B.2 (#L = 1), where each number indicates the fraction
of Monte Carlo replications in which the correct number of
factors was selected (L0 = 1 in this case). Here, we adopt a
procedure similar to Ahn, Lee, and Schmidt (2013) and set
a = 0.75/ ln(5), and N = (1/ST )

∑S
s=1

∑T
t=1 Ns,t . The results

based on N = ∑S
s=1

∑T
t=1 Ns,t are similar and available from

the author upon request.
We can see that the BIC-based model selection procedure

performs well in general. In 8 out of 48 designs, the proportion
of correctly specified L is marginally lower than 95% while in
the majority of cases this is above 98%. The results are not
highly sensitive to the choice of the design parameters, but
it is clearly seen that a higher relative weight of unobserved
factor components as represented by the σ 2

f λ parameter has a
positive effect on the model selection procedure. Finally, we do
not document any substantial effects on model selection when
ρ �= 0 and σ 2

μ = 0.
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6. EMPIRICAL ILLUSTRATION

6.1 The ENEMDU Dataset

In this section, we estimate the labor supply elasticity in
Ecuador for working males that are also the heads of the house-
hold, based on the data from 2007 to 2013. To accommodate
possible common shocks, we estimate the model with cohort
interactive effects. We use annual data from the National Em-
ployment and Unemployment Survey (ENEMDU) collected by
the National Institute of Statistics and Census of Ecuador. The
dataset contains information at the household level, with infor-
mation provided about all individuals of age 5 and above. We
consider only surveys from the fourth quarter of each year as
it contains the largest number of observations, which is also
representative for annual observations. This is partially done to
ensure that each cohort contains at least 100 individuals.

Like some other studies (e.g., Antman and McKenzie 2007),
we study the labor market participation of prime aged males
(26–55) occupying a single job. We restrict our sample to males
who work for at least 30 hr but no more than 60 hr per week
to minimize the number of potential outliers. Moreover, as we
are only interested in the intensive margin (the number of hours
worked) of the labor supply, the observations with a lower num-
ber of hours worked (corresponding to part-time workers) are
not of prime interest. A joint study of the extensive (decision to
work full/part time) and intensive margin (the number of hours
worked) is complicated due to the scarcity of the available ex-
planatory variables. To obtain real rather than nominal income,
we deflated individual income using the annual Consumer Price
Index (CPI) at the national level.

Before proceeding with estimation and model specification,
we discuss how we define cohorts in our study. Similar to
González and Sala (2015), we define cohorts solely based on
the age of the individual. In total, we construct 10 cohorts of
equal age intervals based on individuals born in 1952–1981,
therefore each cohort represents a 3-year interval. Alternatively,
one could define cohorts based on 5-year intervals and/or ge-
ographical location. That strategy, on the other hand, would
substantially reduce the average number of observations per co-
hort or the total number of cohorts. This is a common tradeoff
faced by practitioners when dealing with pseudo panel datasets,
see, for example, Verbeek and Vella (2005) and Verbeek (2008).
Hence, for simplicity and ease of exposition we consider only
results based on 3-year intervals. As discussed by Inoue (2008)
the adequacy of the model as well as the definition of cohorts
can be investigated by means of the J-test.

6.2 Results

As a basic setup, we are interested in the model of the fol-
lowing form:

log hoursi,t = γ log wagei,t + β ′zi,t + θ ′qi,t + ui,t ,

E[ui,t ] = 0, i ∈ Is,t . (6.1)

Here, log hoursi,t is the logarithm of the weekly hours worked
by individual i while log wagei,t is the real hourly wage. Models
of similar form were extensively estimated using genuine panel
data methods, see, for example, Ziliak (1997). Furthermore, we

assume that the regressors in zi,t are observed by the econometri-
cian, however qi,t are unobserved but can be well approximated
by

qi,t = Λ(q)
s ft + εi,t , ε̄s,t

p−→ 0Kq
. (6.2)

We would like to stress that we do not assume that E[zi,t q ′
i,t ] =

OKz×Kq
or E[qi,t log wagei,t ] = 0Kq

hence we can allow for en-
dogeneity in our framework. For example, due to the nonavail-
ability of consumption data in Ecuador, we assume that this
endogenous variable is a part of the qi,t variables rather than of
zi,t .

Combining both equations, we obtain a simple model to study
the labor supply elasticity in the intensive margin that can be
summarized by the following equation:

log hoursi,t = λ′
s ft + γ log wagei,t + βzi,t + vi,t ,

vi,t = ui,t + θ ′εi,t , i ∈ Is,t , (6.3)

while λ′
s = θ ′Λ(q)

s . The only control variable that we include in
our model that is of particular interest on its own (and is available
in the dataset) is the total number of reported individuals under
the age of 16 in a given household. By including this variable,
we follow some other studies, particularly Peterman (2014),
and control for the household composition. The averages of
log hoursi,t worked and log wagei,t are presented in Figure 1,
while average values of zi,t and the number of observations per
cohort are summarized in Tables C1–C2 in Appendix C.

As discussed in Sections 4.1 and 4.3, J-test of GMMl0 es-
timator can be used as a possible indication for global non-
identification. For this model specification, the J-test is equal to
JN (L = 0) = 698.91, which indicates a clear rejection based on
the critical values from χ2(68) at any conventional significance
level. That provides some indication that global identification
failure for this dataset is not very likely. In addition to the esti-
mators considered in the Monte Carlo section, we also include
the linear GMM estimator (GMMl2) that allows for cohort and
time effects in the specification of the error component structure.

As we can see from the estimation results in Table 1, the
GMMl1 model specification is rejected based on the J-test.
This conclusion is also confirmed using the Wald test to test
the null hypothesis that the factor is constant over time (see
also Figure C.1 in Appendix C). Hence, based on the statistical
procedures we consider, the assumption that cohorts were not
affected by any internal or external shocks is difficult to justify.
For GMMl1, the estimated elasticity coefficient of log wage is
negative and significant at any conventional significance level.
On the other hand, if we allow for cohort interactive effects the
estimated elasticity coefficient is smaller in magnitude and does
not significantly differ from zero at the 1% significance level
(for the GMMn2 estimator). Based on the BIC model selection
criteria, the model specification with one factor is preferred.
We also find that the results for the GMMl2 estimator are both
quantitatively and qualitatively similar to nonlinear estimators
with one and two factors. Furthermore, the J-test for GMMl2
does not reject the null hypothesis of correct model specifica-
tion (unlike GMMl1). This is partially in-line with Monte Carlo
findings where the J-test for GMMl2 was found to have lower
power to reject the null hypothesis in the presence of multiplica-
tive factors. Turning our attention to the estimated coefficient
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Figure 1. Age of each cohort is defined as the middle point in the interval.

Table 1. T = 7, S = 10. Results are based on two-step estimates
using the optimal weighting matrix in the second step. Based only on
heads of the household. ** indicates statistical significance at the 5%
level and *** at the 1% level γ0, β0 = 0. J (GMMl0) = 577.84. BIC1

and BIC2 use N = ∑S

s=1

∑T

t=1 Ns,t and N = (1/ST )
∑S

s=1

∑T

t=1 Ns,t ,
respectively.

Variable GMMl1 GMMl2 GMMn1 GMMn2

log wage −0.130*** −0.076*** −0.075*** −0.076**
# kids 0.003 −0.009 −0.008 −0.011
df 58 52 52 38
J 88.05*** 57.98 56.97 44.92
BIC1 −187.35 −133.62
BIC2 −84.41 −58.39
Wald(FE) 33.874***

of #kids we can see that the results differ slightly between esti-
mators. In all cases, we find that estimates are not significant at
any conventional significance level.

Although methodologically our study is simpler and spans a
shorter (and different) time period, we can compare our results
with those in González and Sala (2015). They found that for
some Latin American countries, particularly Paraguay, the esti-
mate of the labor supply elasticity is strongly negative, while for
others, it was found to be positive (Argentina, and after sample
restriction, Uruguay). Our estimate of the elasticity coefficient
places Ecuador closer to countries like Paraguay than to Ar-
gentina or Chile. As a robustness check in the supplementary
material, we also provide results based on a linear-log specifi-
cation with qualitatively similar conclusions.

7. CONCLUSIONS

In this article, we have studied the properties of available
estimation techniques for linear pseudo panel data models. We
have extended the pseudo panel data literature to models with
possible cohort interactive effects. To overcome inconsistency
of the usual FE estimator, we have introduced the approach of
Ahn, Lee, and Schmidt (2013) to pseudo panel data models. The
consistency and conditional asymptotic normality of the new
estimator was proved for pseudo panels with a fixed number

of time series observations and cohorts. Furthermore, we have
discussed the estimation and identification for datasets with a
cohort-specific number of time observations.

Results from the extensive Monte Carlo study suggest that
the estimator that accounts for the multiplicative structure of
the cohort effects has good finite sample properties for small
values of S and T . The results, however, can be sensitive to the
relative importance of the unobserved factors in the total error
component structure.

As an empirical illustration, we have studied labor supply
elasticity based on data from Ecuador. In our analysis, we have
found that the model with multiplicative error structure pro-
vides a better fit to the data than its counterpart with fixed
effects.

As thoroughly discussed by McKenzie (2004) and Verbeek
(2008), different types of asymptotic approximations are avail-
able for pseudo panel data models, depending on their dimen-
sions. In this article, we have mainly investigated the effects
of the error terms with multifactor structure assuming that the
number of cohorts and the time dimension is fixed. This assump-
tion is only sensible for models with limited number of cohorts
but a large number of observations per cohort. However, given
the limited scope of this article we leave the rigorous analysis
of other asymptotic schemes for models with multifactor error
structure for future research.

APPENDIX A: THEORETICAL RESULTS

A.1 Proofs

Proof of Proposition 1. The result of this proposition follows directly
given the DGP is given by

y = vec (FΛ′) + Xθ0 + u.

Plugging in the expression for y into the formula for

θ̂GMMl − θ0 = (
X ′ MΩ M X

)−1
X ′ MΩ M(vec (FΛ′) + u)

= (
X ′ MΩ M X

)−1
X ′ MΩ M(vec (FΛ′)) + oP (1)

= (
X ′

∞ MΩ M X∞
)−1

X ′
∞ MΩ M vec (FΛ′) + oP (1).
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Here the second line follows, as by assumption (A.2) plimN→∞ u =
0ST . Finally, using the notation plimN→∞ X = X∞ we obtain the final
result. �
Proof of Proposition 2. The proof of this proposition is a straightfor-
ward modification of the proof for a simple IV estimator.

CASE I: γ ≥ 0.5:

ζ̂ − ζ0 − ρ

=
∑S

s=1

∑T

t=1 z̄s,t (ε̄s,t − ρ(μs,t /N
γ
s,t ))∑S

s=1

∑T

t=1 z̄2
s,t

= N

N

∑S

s=1

∑T

t=1 z̄s,t (ε̄s,t − ρ(μs,t /N
γ
s,t ))∑S

s=1

∑T

t=1 z̄2
s,t

=
∑S

s=1

∑T

t=1(N/Ns,t )(
√

Ns,t z̄s,t )(
√

Ns,t ε̄s,t − ρ(μs,t /N
γ+0.5
s,t ))∑S

s=1

∑T

t=1(N/Ns,t )
(√

Ns,t z̄s,t
)2 .

From here the desired result follows given that

N/Ns,t → π−1
s,t ,√

Ns,t z̄s,t
d−→ zs,t√

Ns,t ε̄s,t − ρ(μs,t /N
γ+0.5
s,t )

d−→ εs,t

as we assume that all idiosyncratic components are iid and hence the
usual central limit theorem (CLT) applies.

CASE II: γ ∈ [0; 0.5):

N 1/2−γ (ζ̂ − ζ0) = N 1/2+γ

N 2γ

∑S

s=1

∑T

t=1 z̄s,t (ūs,t )∑S

s=1

∑T

t=1 z̄2
s,t

=
∑S

s=1

∑T

t=1(N/Ns,t )1/2+γ (Nγ
s,t z̄s,t )(

√
Ns,t ūs,t )∑S

s=1

∑T

t=1(N/Ns,t )2γ (Nγ
s,t z̄s,t )2

.

By means of Slutsky’s Theorem for the denominator

N
γ
s,t z̄s,t = μs,t + N

γ−1/2
s,t (

√
Ns,t ε̄

(z)
s,t )

p−→ μs,t .

For the numerator, simple CLT for iid data applies√
Ns,t ūs,t = ρ

√
Ns,t ε̄

z
s,t +√

Ns,t ε̄s,t
d−→ ρN (0, 1) + N (0, 1).

The desired result follows by combining the results for the numerator
and denominator

N 1/2−γ (ζ̂ − ζ0)
d−→

∑S

s=1

∑T

t=1 π
−(0.5+γ )
s,t μs,tus,t∑S

s=1

∑T

t=1 π
−2γ
s,t μ2

s,t

,

with us,t ∼ N (0, 1 + ρ2). �



58 Journal of Business & Economic Statistics, January 2018

APPENDIX B: MONTE CARLO RESULTS

Table B.1. Estimation results for T = 5, S = 10. 10,000 MC replications. For ζ0 = 1

Bias RMSE

σ 2
μ {σ 2

f λ; ρ; N̄ ; σf } L0 LFE
1 LFE

2 L1 L2 L̂ L0 LFE
1 LFE

2 L1 L2 L̂

{ 0.1 ; 0.0 ; 150 ; 0.0 } 0.58 0.00 0.00 0.03 0.02 0.03 0.59 0.16 0.17 0.21 0.25 0.22
{ 0.1 ; 0.0 ; 150 ; 0.1 } 0.43 0.00 0.00 0.01 0.01 0.01 0.44 0.19 0.18 0.17 0.21 0.18
{ 0.1 ; 0.0 ; 300 ; 0.0 } 0.39 0.00 0.00 0.02 0.02 0.02 0.40 0.16 0.16 0.20 0.25 0.20
{ 0.1 ; 0.0 ; 300 ; 0.1 } 0.48 0.00 0.00 0.01 0.00 0.00 0.49 0.21 0.19 0.17 0.20 0.16
{ 0.1 ; 0.3 ; 150 ; 0.0 } 0.66 0.30 0.30 0.34 0.33 0.33 0.67 0.34 0.34 0.39 0.41 0.39
{ 0.1 ; 0.3 ; 150 ; 0.1 } 0.47 0.30 0.30 0.23 0.23 0.22 0.48 0.35 0.35 0.30 0.32 0.30
{ 0.1 ; 0.3 ; 300 ; 0.0 } 0.61 0.30 0.30 0.32 0.32 0.32 0.61 0.34 0.34 0.37 0.40 0.37

0.00 { 0.1 ; 0.3 ; 300 ; 0.1 } 0.47 0.30 0.30 0.17 0.19 0.17 0.48 0.36 0.36 0.25 0.29 0.24
{ 0.5 ; 0.0 ; 150 ; 0.0 } 0.58 0.00 0.00 0.00 0.00 0.00 0.62 0.12 0.12 0.13 0.17 0.13
{ 0.5 ; 0.0 ; 150 ; 0.1 } 0.47 0.00 0.00 0.00 0.00 0.00 0.53 0.18 0.18 0.10 0.14 0.11
{ 0.5 ; 0.0 ; 300 ; 0.0 } 0.59 0.00 0.00 0.00 0.00 0.00 0.64 0.12 0.12 0.13 0.17 0.13
{ 0.5 ; 0.0 ; 300 ; 0.1 } 0.51 0.00 0.00 0.00 0.00 0.00 0.56 0.24 0.22 0.10 0.13 0.09
{ 0.5 ; 0.3 ; 150 ; 0.0 } 0.51 0.30 0.30 0.30 0.30 0.30 0.56 0.32 0.32 0.33 0.35 0.33
{ 0.5 ; 0.3 ; 150 ; 0.1 } 0.35 0.30 0.30 0.18 0.20 0.18 0.42 0.35 0.35 0.21 0.25 0.22
{ 0.5 ; 0.3 ; 300 ; 0.0 } 0.56 0.30 0.30 0.30 0.30 0.30 0.61 0.32 0.32 0.33 0.35 0.33
{ 0.5 ; 0.3 ; 300 ; 0.1 } 0.47 0.30 0.30 0.14 0.16 0.14 0.52 0.38 0.37 0.18 0.22 0.17
{ 0.1 ; 0.0 ; 150 ; 0.0 } 0.35 0.00 0.00 0.00 0.00 0.00 0.36 0.06 0.06 0.07 0.09 0.07
{ 0.1 ; 0.0 ; 150 ; 0.1 } 0.51 0.00 0.00 0.01 0.00 0.00 0.52 0.07 0.07 0.09 0.09 0.07
{ 0.1 ; 0.0 ; 300 ; 0.0 } 0.47 0.00 0.00 0.00 0.00 0.00 0.48 0.04 0.04 0.05 0.06 0.05
{ 0.1 ; 0.0 ; 300 ; 0.1 } 0.53 0.00 0.00 0.00 0.00 0.00 0.54 0.06 0.05 0.06 0.06 0.05
{ 0.1 ; 0.3 ; 150 ; 0.0 } 0.52 0.04 0.04 0.04 0.04 0.04 0.53 0.07 0.07 0.08 0.10 0.08
{ 0.1 ; 0.3 ; 150 ; 0.1 } 0.44 0.04 0.04 0.04 0.04 0.04 0.45 0.08 0.08 0.08 0.09 0.07
{ 0.1 ; 0.3 ; 300 ; 0.0 } 0.49 0.02 0.02 0.02 0.02 0.02 0.50 0.05 0.05 0.05 0.07 0.05

0.05 { 0.1 ; 0.3 ; 300 ; 0.1 } 0.42 0.02 0.02 0.02 0.02 0.02 0.43 0.06 0.06 0.05 0.06 0.05
{ 0.5 ; 0.0 ; 150 ; 0.0 } 0.46 0.00 0.00 0.00 0.00 0.00 0.51 0.04 0.05 0.05 0.06 0.05
{ 0.5 ; 0.0 ; 150 ; 0.1 } 0.51 0.00 0.00 0.00 0.00 0.00 0.56 0.07 0.07 0.05 0.06 0.05
{ 0.5 ; 0.0 ; 300 ; 0.0 } 0.44 0.00 0.00 0.00 0.00 0.00 0.49 0.03 0.03 0.03 0.05 0.03
{ 0.5 ; 0.0 ; 300 ; 0.1 } 0.42 0.00 0.00 0.00 0.00 0.00 0.47 0.07 0.06 0.03 0.04 0.03
{ 0.5 ; 0.3 ; 150 ; 0.0 } 0.57 0.04 0.04 0.04 0.04 0.04 0.61 0.06 0.06 0.06 0.08 0.06
{ 0.5 ; 0.3 ; 150 ; 0.1 } 0.41 0.04 0.04 0.03 0.04 0.03 0.47 0.08 0.08 0.06 0.07 0.06
{ 0.5 ; 0.3 ; 300 ; 0.0 } 0.47 0.02 0.02 0.02 0.02 0.02 0.52 0.04 0.04 0.04 0.05 0.04
{ 0.5 ; 0.3 ; 300 ; 0.1 } 0.44 0.02 0.02 0.02 0.02 0.02 0.50 0.07 0.07 0.04 0.05 0.04
{ 0.1 ; 0.0 ; 150 ; 0.0 } 0.45 0.00 0.00 0.00 0.00 0.00 0.46 0.02 0.03 0.03 0.04 0.03
{ 0.1 ; 0.0 ; 150 ; 0.1 } 0.37 0.00 0.00 0.00 0.00 0.00 0.38 0.03 0.03 0.03 0.04 0.03
{ 0.1 ; 0.0 ; 300 ; 0.0 } 0.39 0.00 0.00 0.00 0.00 0.00 0.40 0.02 0.02 0.03 0.03 0.02
{ 0.1 ; 0.0 ; 300 ; 0.1 } 0.35 0.00 0.00 0.00 0.00 0.00 0.36 0.02 0.02 0.02 0.03 0.02
{ 0.1 ; 0.3 ; 150 ; 0.0 } 0.33 0.00 0.00 0.01 0.01 0.01 0.34 0.02 0.03 0.03 0.04 0.03
{ 0.1 ; 0.3 ; 150 ; 0.1 } 0.42 0.01 0.00 0.01 0.01 0.01 0.43 0.03 0.03 0.04 0.04 0.03
{ 0.1 ; 0.3 ; 300 ; 0.0 } 0.44 0.00 0.00 0.00 0.00 0.00 0.45 0.02 0.02 0.03 0.03 0.02

0.30 { 0.1 ; 0.3 ; 300 ; 0.1 } 0.31 0.00 0.00 0.00 0.00 0.00 0.32 0.02 0.02 0.02 0.03 0.02
{ 0.5 ; 0.0 ; 150 ; 0.0 } 0.38 0.00 0.00 0.00 0.00 0.00 0.42 0.02 0.02 0.02 0.03 0.02
{ 0.5 ; 0.0 ; 150 ; 0.1 } 0.33 0.00 0.00 0.00 0.00 0.00 0.38 0.03 0.03 0.02 0.03 0.02
{ 0.5 ; 0.0 ; 300 ; 0.0 } 0.44 0.00 0.00 0.00 0.00 0.00 0.48 0.01 0.01 0.01 0.02 0.01
{ 0.5 ; 0.0 ; 300 ; 0.1 } 0.49 0.00 0.00 0.00 0.00 0.00 0.53 0.03 0.03 0.02 0.02 0.01
{ 0.5 ; 0.3 ; 150 ; 0.0 } 0.45 0.01 0.01 0.01 0.01 0.01 0.49 0.02 0.02 0.02 0.03 0.02
{ 0.5 ; 0.3 ; 150 ; 0.1 } 0.49 0.01 0.01 0.01 0.01 0.01 0.52 0.03 0.03 0.03 0.03 0.02
{ 0.5 ; 0.3 ; 300 ; 0.0 } 0.33 0.00 0.00 0.00 0.00 0.00 0.38 0.01 0.01 0.02 0.02 0.01
{ 0.5 ; 0.3 ; 300 ; 0.1 } 0.38 0.00 0.00 0.00 0.00 0.00 0.42 0.03 0.03 0.02 0.02 0.01

NOTE: Here “L0” is the “GMMl0” estimator; “LFE
1 ” and “LFE

2 ” are the linear “GMMl1” and “GMMl2” estimators; “L1” and “L2” are the nonlinear “GMMn1” and “GMMn2” estimators;
“L̂” is the “GMMo” estimator with optimal number of factors based on BIC.
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Table B.2. Testing results for T = 5, S = 10. 10,000 MC replications. For ζ0 = 1

L0 LFE
1 LFE

2 L1 L2 L̂

σ 2
μ {σ 2

f λ; ρ; N̄ ; σf } J t J t J t J t J t J t W h0 h1 #L = 1

{ 0.1 ; 0.0 ; 150 ; 0.0 } 1 1 0.05 0.04 0.05 0.04 0.08 0.14 0.02 0.14 0.04 0.14 0.08 0.99 0.30 0.94
{ 0.1 ; 0.0 ; 150 ; 0.1 } 1 1 0.39 0.09 0.21 0.06 0.09 0.13 0.02 0.13 0.05 0.13 0.62 0.96 0.47 0.94
{ 0.1 ; 0.0 ; 300 ; 0.0 } 1 1 0.05 0.04 0.05 0.04 0.06 0.15 0.02 0.16 0.04 0.15 0.08 0.97 0.27 0.98
{ 0.1 ; 0.0 ; 300 ; 0.1 } 1 1 0.63 0.13 0.34 0.08 0.07 0.10 0.02 0.12 0.05 0.10 0.80 0.98 0.57 0.98
{ 0.1 ; 0.3 ; 150 ; 0.0 } 1 1 0.04 0.55 0.05 0.51 0.08 0.61 0.02 0.49 0.03 0.60 0.13 0.94 0.29 0.94
{ 0.1 ; 0.3 ; 150 ; 0.1 } 1 1 0.43 0.55 0.19 0.51 0.12 0.50 0.03 0.41 0.06 0.48 0.65 0.88 0.50 0.92
{ 0.1 ; 0.3 ; 300 ; 0.0 } 1 1 0.05 0.55 0.04 0.51 0.05 0.59 0.01 0.49 0.04 0.59 0.08 0.96 0.27 0.98

0.00 { 0.1 ; 0.3 ; 300 ; 0.1 } 1 1 0.67 0.54 0.39 0.50 0.09 0.38 0.03 0.33 0.07 0.38 0.83 0.92 0.60 0.97
{ 0.5 ; 0.0 ; 150 ; 0.0 } 1 1 0.05 0.04 0.05 0.04 0.05 0.06 0.02 0.08 0.04 0.07 0.05 0.99 0.24 0.97
{ 0.5 ; 0.0 ; 150 ; 0.1 } 1 0.99 0.80 0.18 0.69 0.15 0.07 0.06 0.02 0.07 0.05 0.06 0.93 0.99 0.68 0.97
{ 0.5 ; 0.0 ; 300 ; 0.0 } 1 1 0.05 0.04 0.05 0.04 0.05 0.06 0.02 0.07 0.04 0.06 0.05 1 0.23 0.99
{ 0.5 ; 0.0 ; 300 ; 0.1 } 1 1 0.91 0.27 0.82 0.21 0.06 0.06 0.02 0.07 0.05 0.06 0.98 0.99 0.76 0.99
{ 0.5 ; 0.3 ; 150 ; 0.0 } 1 1 0.05 0.78 0.05 0.73 0.05 0.75 0.02 0.60 0.04 0.75 0.07 0.97 0.27 0.97
{ 0.5 ; 0.3 ; 150 ; 0.1 } 1 0.98 0.78 0.70 0.69 0.68 0.09 0.53 0.03 0.44 0.06 0.53 0.91 0.96 0.69 0.95
{ 0.5 ; 0.3 ; 300 ; 0.0 } 1 1 0.05 0.78 0.05 0.74 0.05 0.75 0.02 0.59 0.04 0.75 0.06 0.98 0.26 0.99
{ 0.5 ; 0.3 ; 300 ; 0.1 } 1 1 0.92 0.67 0.85 0.66 0.09 0.42 0.03 0.36 0.07 0.42 0.97 0.98 0.79 0.98
{ 0.1 ; 0.0 ; 150 ; 0.0 } 1 1 0.06 0.05 0.06 0.05 0.10 0.08 0.03 0.09 0.06 0.07 0.12 1 0.27 0.94
{ 0.1 ; 0.0 ; 150 ; 0.1 } 1 1 0.48 0.11 0.19 0.07 0.11 0.08 0.03 0.08 0.06 0.07 0.73 1 0.60 0.93
{ 0.1 ; 0.0 ; 300 ; 0.0 } 1 1 0.06 0.06 0.05 0.05 0.07 0.06 0.02 0.07 0.05 0.06 0.08 1 0.18 0.98
{ 0.1 ; 0.0 ; 300 ; 0.1 } 1 1 0.73 0.18 0.36 0.11 0.08 0.07 0.03 0.08 0.06 0.06 0.90 1 0.72 0.98
{ 0.1 ; 0.3 ; 150 ; 0.0 } 1 1 0.07 0.12 0.06 0.11 0.11 0.14 0.04 0.13 0.06 0.13 0.10 1 0.24 0.94
{ 0.1 ; 0.3 ; 150 ; 0.1 } 1 1 0.47 0.17 0.26 0.14 0.11 0.14 0.04 0.13 0.07 0.13 0.73 1 0.58 0.94
{ 0.1 ; 0.3 ; 300 ; 0.0 } 1 1 0.06 0.09 0.06 0.09 0.08 0.09 0.03 0.10 0.06 0.09 0.07 1 0.19 0.98

0.05 { 0.1 ; 0.3 ; 300 ; 0.1 } 1 1 0.64 0.19 0.38 0.14 0.09 0.09 0.03 0.10 0.07 0.09 0.85 1 0.67 0.98
{ 0.5 ; 0.0 ; 150 ; 0.0 } 1 0.99 0.06 0.05 0.06 0.05 0.07 0.06 0.03 0.07 0.05 0.06 0.07 1 0.15 0.97
{ 0.5 ; 0.0 ; 150 ; 0.1 } 1 1 0.83 0.24 0.70 0.19 0.07 0.06 0.03 0.07 0.05 0.06 0.94 1 0.79 0.97
{ 0.5 ; 0.0 ; 300 ; 0.0 } 1 1 0.06 0.05 0.06 0.05 0.07 0.06 0.02 0.07 0.06 0.06 0.06 1 0.13 0.99
{ 0.5 ; 0.0 ; 300 ; 0.1 } 1 0.99 0.92 0.32 0.85 0.27 0.06 0.06 0.02 0.07 0.05 0.06 0.97 1 0.86 0.99
{ 0.5 ; 0.3 ; 150 ; 0.0 } 1 1 0.08 0.16 0.08 0.15 0.09 0.16 0.03 0.15 0.06 0.16 0.07 1 0.17 0.97
{ 0.5 ; 0.3 ; 150 ; 0.1 } 1 0.99 0.79 0.29 0.70 0.26 0.08 0.15 0.03 0.14 0.06 0.15 0.92 0.99 0.76 0.97
{ 0.5 ; 0.3 ; 300 ; 0.0 } 1 1 0.07 0.11 0.06 0.10 0.07 0.11 0.03 0.11 0.06 0.11 0.07 1 0.14 0.99
{ 0.5 ; 0.3 ; 300 ; 0.1 } 1 0.99 0.92 0.34 0.85 0.30 0.07 0.11 0.03 0.11 0.06 0.10 0.98 1 0.86 0.99
{ 0.1 ; 0.0 ; 150 ; 0.0 } 1 1 0.06 0.05 0.06 0.05 0.09 0.06 0.03 0.08 0.06 0.06 0.08 1 0.17 0.96
{ 0.1 ; 0.0 ; 150 ; 0.1 } 1 1 0.48 0.12 0.26 0.09 0.09 0.06 0.03 0.07 0.06 0.06 0.75 1 0.59 0.95
{ 0.1 ; 0.0 ; 300 ; 0.0 } 1 1 0.06 0.05 0.05 0.05 0.08 0.06 0.03 0.07 0.06 0.06 0.08 1 0.15 0.98
{ 0.1 ; 0.0 ; 300 ; 0.1 } 1 1 0.68 0.17 0.44 0.12 0.07 0.05 0.03 0.07 0.06 0.05 0.87 1 0.70 0.99
{ 0.1 ; 0.3 ; 150 ; 0.0 } 1 1 0.06 0.06 0.06 0.06 0.10 0.07 0.04 0.08 0.06 0.07 0.11 1 0.21 0.95
{ 0.1 ; 0.3 ; 150 ; 0.1 } 1 1 0.53 0.14 0.23 0.09 0.10 0.07 0.03 0.08 0.06 0.06 0.77 1 0.61 0.95
{ 0.1 ; 0.3 ; 300 ; 0.0 } 1 1 0.06 0.05 0.06 0.05 0.07 0.06 0.03 0.07 0.06 0.06 0.07 1 0.12 0.99

0.30 { 0.1 ; 0.3 ; 300 ; 0.1 } 1 1 0.62 0.16 0.39 0.12 0.08 0.06 0.03 0.07 0.06 0.06 0.85 1 0.68 0.98
{ 0.5 ; 0.0 ; 150 ; 0.0 } 1 0.99 0.06 0.05 0.06 0.05 0.07 0.05 0.02 0.07 0.05 0.06 0.06 1 0.12 0.98
{ 0.5 ; 0.0 ; 150 ; 0.1 } 1 0.99 0.80 0.24 0.70 0.19 0.07 0.06 0.03 0.07 0.05 0.06 0.93 1 0.78 0.97
{ 0.5 ; 0.0 ; 300 ; 0.0 } 1 1 0.05 0.05 0.05 0.05 0.06 0.05 0.02 0.07 0.05 0.05 0.06 1 0.10 0.99
{ 0.5 ; 0.0 ; 300 ; 0.1 } 1 1 0.94 0.37 0.85 0.27 0.06 0.05 0.02 0.06 0.05 0.05 0.98 1 0.89 0.99
{ 0.5 ; 0.3 ; 150 ; 0.0 } 1 1 0.06 0.07 0.06 0.07 0.07 0.07 0.03 0.08 0.06 0.07 0.07 1 0.12 0.97
{ 0.5 ; 0.3 ; 150 ; 0.1 } 1 1 0.85 0.27 0.69 0.20 0.07 0.07 0.03 0.08 0.06 0.07 0.95 1 0.81 0.97
{ 0.5 ; 0.3 ; 300 ; 0.0 } 1 0.99 0.06 0.06 0.05 0.06 0.06 0.06 0.03 0.07 0.05 0.06 0.06 1 0.11 0.99
{ 0.5 ; 0.3 ; 300 ; 0.1 } 1 0.99 0.92 0.34 0.86 0.29 0.06 0.06 0.03 0.07 0.06 0.06 0.98 1 0.87 0.99

NOTE: See Table B.1.
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APPENDIX C: THE ENEMDU DATASET

Table C.1. The number of observations per cohort in a particular year

1 2 3 4 5 6 7 8 9 10

2007 264 283 276 308 300 351 322 277 235 191
2008 288 329 383 383 366 353 361 298 267 211
2009 260 317 320 340 335 338 280 241 229 185
2010 318 341 390 417 396 398 390 272 285 202
2011 338 361 339 420 372 356 412 369 321 297
2012 338 359 411 429 420 402 441 387 342 301
2013 240 304 363 437 432 447 525 518 473 467

NOTE: Here 1 denotes the oldest and 10 youngest cohort, respectively.

Table C.2. The average number of individuals of age under 16 in a particular household

1 2 3 4 5 6 7 8 9 10

2007 1.08 1.30 1.57 1.94 2.32 2.21 2.37 2.27 2.08 1.57
2008 0.92 1.47 1.41 1.87 2.18 2.09 2.46 2.18 2.12 1.70
2009 0.93 1.15 1.42 1.60 1.98 1.99 2.39 2.27 2.18 1.60
2010 0.90 1.08 1.30 1.54 1.86 2.05 2.17 2.18 2.37 1.79
2011 0.78 0.82 1.06 1.25 1.55 1.79 1.94 2.17 2.20 1.93
2012 0.80 0.97 0.97 1.21 1.40 1.86 1.92 2.21 2.21 1.94
2013 0.81 0.86 1.04 1.14 1.28 1.77 1.85 2.23 2.27 2.01

NOTE: Here 1 denotes the oldest and 10 youngest cohort, respectively.

Figure C.1. Estimated factors and cohort factor loadings based on model with one time-varying factor in the log − log specification. Age of
each cohort is defined as the middle point in the interval. The factor loadings are estimated using v̂ec Λ = (IS ⊗ ((F̂

′
F̂)−1 F̂

′
))( y − X θ̂ ).
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SUPPLEMENTARY MATERIALS

Supplemental material contains additional material for identification
and estimation of dynamic (possibly unbalanced) pseudo panels, addi-
tional Monte Carlo simulations for the model with one and two factors,
and results for the linear-log specification in the empirical illustration.
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