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Abstract 

 

Storage and Retrieval Technique for K-value Estimation 

 

 

 

Ela Pramod Joag, M.S.E. 

The University of Texas at Austin, 2010 

 
Supervisor:  Thomas F. Edgar 

Co-supervisor: Robert H. Flake 

Many chemical processes need large computation time to simulate. It has been 

observed that the speed of a process simulation depends to a large extent on evaluation of 

certain important functions in the system to be simulated. One such function is K-value 

estimation function which involves heavy vapor-liquid equilibrium calculations. Because 

of large number of K-value calculations, there can be a bottleneck in simulation 

convergence. Thus within process simulation applications computational speed is often 

emphasized and accuracy is compromised.   

In situ adaptive tabulation or ISAT, a storage and retrieval technique is proposed 

for speeding up K-value estimation in a process simulator (CHEMCAD®) using the 

input-output data. C language code is developed to implement ISAT algorithm for this 

application.  The C code is then converted into Dynamic link library to be able to be used 
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by main CHEMCAD® code as required. The overall testing with different K-value 

databases gave promising results improving computational time while maintaining 

accuracy.  
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Chapter 1 

  Introduction 

 
Most chemical processes can be mathematically modeled as a system of ordinary 

differential equations (ODEs), differential algebraic equations (DAEs) or partial 

differential equations (PDEs). Behavior of such processes can be studied by simulating 

the mathematical model representing the processes. Depending on the complexity of the 

model, these simulations may require large number of iterations to converge and in some 

cases may not converge at all. High computational time causes delay in calculating 

outputs and affects efficiency of simulation software. Thus different methodologies are 

being developed for computation time reduction while maintaining accuracy of the 

calculations. 

1.1 REDUCING COMPUTATION TIME 

 
Large-scale processes that are modeled using differential algebraic equations 

(DAEs) based on mass and energy balance calculations require excessive computation 

time to simulate. The differential equations describe material and energy balances and the 

algebraic equations usually describe the physical, chemical and thermodynamic 

properties of the system [1], [2].  One approach applied in the past is the model reduction 

technique. Hahn et al. [3] discussed the relevant work in nonlinear model reduction, and 

suggested an optimal model reduction approach which suggests capturing the dominant 

input-output properties of the original system at the operating point. Although the method 
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is simple to implement, the reduced model does not retain exact nonlinear behavior of the 

system. Such model reduction methods cannot reduce the number of algebraic equations. 

In the DAE models algebraic equations outnumber differential equations so model order 

reduction using such techniques is not very beneficial for reducing computational time. 

Hedengren et al. [1] suggested an adaptive order reduction approach for large-scale 

DAEs to include reduction of algebraic equations. 

 Any model reduction method mainly depends on the first-principles model to 

reduce the order, which cannot be performed using only input output data without access 

to the mathematical models. One more effective method to reduce the computation time 

is to make use of artificial neural networks (ANNs) to replace the actual model. However, 

one limitation of neural nets is their inability to extrapolate outside the training domain  

[1], [4], [5], [6], [7]. 

Abrol et al. [7] discussed the work that specifically deals with reducing the 

computational cost of actual industrial simulations, where only data can be generated by 

running the black-box model, without accessing the first-principles model. 

1.2 IN SITU ADAPTIVE TABULATION 

 
In many computer simulations there are several mathematical functions that use a 

certain number of predictive variables to determine a certain number of outputs. If the 

function is deterministic, the same set of predictive input variables will always produce 

the same set of outputs.  

 

   

Function 
Calculations 

Inputs Outputs 
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Figure 1.1 Typical function block 

The block diagram in Figure 1.1 shows a typical function block representing 

mathematical calculations that operate on the input variables to give output variables. 

In simulation models some functions are repeatedly used for different inputs. If 

such functions are deterministic, it is useful to store previously computed outputs of the 

functions for future estimation of values of outputs without doing the function 

calculations again and again. This method is called storage and retrieval. This method 

appears to be very useful when retrieval time is much less than the original function 

calculations.  

Application of a storage and retrieval technique is In situ Adaptive Tabulation or 

ISAT. ISAT was originally developed for direct numerical simulation (DNS) of turbulent 

combustion flames. By shifting control calculations offline an efficient online retrieval is 

possible with significant reduction in time and computational resources. A database of 

input-output values is generated offline by making simulation runs in the desired range of 

operating conditions, and an efficient online retrieval of the stored trajectories is 

performed by locating a close record from the database. Thus ISAT is used for faster 

convergence of process simulation models. To serve the accuracy of the retrieval the 

estimated outputs are accepted only if they are within error tolerance (set by user) of the 

actual outputs. In case the estimated outputs are not within the user-defined error 

tolerance, ISAT automatically controls output errors, which is discussed in detail in the 

next chapter.    

Abrol et al. [7] discussed application of ISAT to large scale dynamic simulations 

of a process simulator (CHEMCAD®) using the input-output data. In the work 
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performed the application of ISAT was extended to large-scale dynamic simulation of an 

actual plant scenario. Various modifications to the algorithm were suggested to improve 

its performance, and to adapt it to a chemical engineering problem without using the first 

principles model. 

It is seen that the speed of a process simulation depends to a large extent on 

evaluation of certain important functions in the system to be simulated. If such functions 

are being executed repeatedly for different sets of data, then the functions can be 

estimated much faster by integrating ISAT algorithm to the function routines. One such 

function is K-value evaluation function in process simulation. K-value is Vapor liquid 

equilibrium ratio. The K-value calculations needed to produce a reasonable overall result 

for process simulation models. This dissertation discusses application of ISAT for 

estimation of K-values in a process simulator (CHEMCAD®) using the input-output data 

without using the first principles model. 

.  

1.3 OVERVIEW OF THIS DISSERTATION 

 
ISAT is proposed here as a method to estimate K-values in CHEMCAD® for 

reducing the time required for converging complex K- value equations for different 

components. C language code is developed using ISAT algorithm for K-Value 

application.  The C code is then converted into Dynamic link library to be able to be used 

by main CHEMCAD® code as and when required. 

The ISAT algorithm is elaborated in Chapter 2. Use of binary trees for database 

organization and binary search method for speedy retrieval is discussed. Chapter 2 gives 
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key steps in the ISAT algorithm discussed in past work, e.g., how ISAT automatically 

controls the output error by performing the other two scenarios, growth or addition, and 

does not compromise on the accuracy. How this algorithm is applied to K-Value 

application is also discussed. 

Chapter 3 introduces K values and its importance in chemical process simulation. 

It then extends application of ISAT to K-value estimation using input-output data only in 

a simulation process. ISAT is suggested as an alternate approach for faster K-value 

estimation without doing actual calculations, thereby improving simulation time of large-

scale dynamic processes.  A flow of the C code is presented to show the details. Chapter 

3 further discusses use of dynamic link library and how the DLL is used for this 

application.     

Chapter 4 discusses the results and conclusions of this thesis work. It summarizes 

the key contributions of the work done here, and also recommends the possible future 

work.  
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Chapter 2 

  ISAT Algorithm 

ISAT (In situ adaptive tabulation) is a storage and retrieval method generally used 

to reduce the penalty of computationally expensive calculations. ISAT algorithm can be 

applied to approximate time-intensive computer simulations of nonlinear functions, 

calculations that require real-time results, or other time-intensive applications. The 

process involves forming a simple lookup of computed solutions (input-outputs) and 

efficient online retrieval from this stored lookup data. So the set of outputs can be 

estimated for given set of inputs without recalculating the actual function calculations. 

As discussed before, ISAT is a storage and retrieval method. Hedengren et al. [8] 

discussed that any storage and retrieval method can be employed to a system if 

• same calculations are performed repeatedly but with different values 

• Retrieval is faster than original calculations 

• The CPU time to generate the database is small compared with retrieval 

savings 

• Storage cost is smaller 

The algorithm essentially involves building a database of input-output values by 

making simulation runs offline, and then searching the database for a close record for any 

future queries. ISAT can perform three scenarios, namely retrieval, growth or addition, 

based on the closest record retrieved from the database. The three scenarios are discussed 
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in detail in the following sections. Depending on the desired accuracy of the trajectories 

the error of tolerance (εtol) on retrieval can be set by the user. 

2.1 DATABASE BUILDING 

Like any other algorithm that makes use of a database, the ISAT algorithm also 

has a phase of training associated with each application. In this training phase ISAT 

builds its own database using the input-output data of an application. This process of 

building and storing database might take time, but this is acceptable considering it is done 

before the online simulation runs. ISAT forms a multiple binary tree structure of the 

database, and once it is ready there can be faster retrievals because of binary search. The 

process of database building is explained in this section. 

2.1.1 ISAT Record 

The basic unit of the ISAT database is the record.  Offline function evaluation 

runs generate the set of data. Using such data sets ISAT records are formed. An ISAT 

record is nothing but a structure of elements including a start vector, a finish vector, a 

sensitivity matrix, and an ellipsoid of accuracy (EOA). The record structure can be 

defined as 

struct record{ 

    float *start; 

  float *finish; 

  float **sensitivity; 

  float **eoa; 
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  int accessed;  } 

Where  

start  is a vector of input variables;  

finish is a vector of output variables 

So that, finish = f (start); 

sensitivity is a matrix that gives the amount that finish changes with a small change in 

start. 

eoa is an ellipsoid of accuracy (M), which is a matrix used to approximate the estimated 

outputs (finish). EOA is elaborated in subsequent sections. 

accessed is a number of times a record is used for retrieval. The table below shows the 

record components and their dimensions: 

Record element Dimension 

start (ɸ) 
mℜ  

finish(f) 
nℜ  

sensitivity (A) 
nxmℜ  

eoa (M) 
mxmℜ  

Table 2.1: ISAT record elements and their dimensions 

 
These records are then stored as leaves of a binary tree.  
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2.1.2 Binary Search Tree 

The records should be organized in computer memory for efficient retrieval. If the 

total number of records is N, then sequential search to find a closest record will take 

O(N) operations to completely search the data. Instead if it is stored on binary search tree 

the search will take only O(log2(N)) operations. [1][7]  

A binary tree is made of nodes and leaves, where each node contains a "left" 

pointer, a "right" pointer, and a data element. The "root" pointer points to the topmost 

node in the tree. The left and right pointers recursively point to smaller sub trees on either 

side. 

The individual ISAT records are the leaves of the binary tree and a node (branch) 

points to two other nodes/ leaves.  All branches divide until a leaf terminates the line. 

[6][7]. 

A binary search tree (BST) or ordered binary tree is a type of binary tree where 

the nodes are arranged in order. ISAT database is arranged in such an ordered binary tree. 

Each node consists of a cutting plane, defined by v and a, used to describe division 

between the records [7]. Figure 2.1 shows a typical node and its two leaves (record1 and 

record2).   
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node 1 

record pointer 

v =start2 – start1 
a= v

T 
(start1+start2)/2 

Left pointer Right pointer 

 
 
 
 
 
 

 

Figure 2.1: A typical node in the tree and its two leaves 

 
A node is nothing but a structure defined as: 

struct node { 

struct record* record_ptr; 

struct node* left; 

struct node* right; 

float *v; 

float a;} 

Where,  

record_ptr is a pointer to the record to be added to the tree; 

left is a pointer pointing to the left leaf of the node; 

right is a pointer pointing to the right leaf of the node; 

The cutting plane is defined by following two equations: 

v = start2- start1                                                                       (2.1) 

a = v
T 

(start1+start2)/2           (2.2) 

record1 
(start1, finish1) 

 

record2 
(start2, finish2) 
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2.1.3 ISAT Record placement in Binary Tree 

An ISAT database is generated in the form of binary search tree. In this process 

one by one ISAT records are added to form a balanced tree. The growth of the binary tree 

involves the creation of a new node.  Consider a case where a record to be added to the 

tree structure in figure 2.1 is record3. See figure 2.2. Now if v*(start3) ≤ a (v and a 

defined above) then record3 is closer to record1 and left pointer is selected. Else if 

v*(start3) > a then record3 is closer to record2 and right pointer is selected.  

 

node 1 

record pointer 

v =start2 – start1 
a= v

T 
(start1+start2)/2 

Left pointer Right pointer 

 
 
 
 
 
 
 

Figure 2.2: Addition of record to the tree 

 

Supposing that record3 is closer to record2, the tree is grown on the right branch 

with the creation of node2. See figure 2.3. 

record1 
(start1, finish1) 

 

record2 
(start2, finish2) 

 

record3 
(start3, finish3) 
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node 1 

record pointer 

v =start2 – start1 
a= v

T 
(start1+start2)/2 

Left pointer Right pointer 

 
 

 
 
 
 
 
 

 
 
 

 
 

 

Figure 2.3: Addition of record to the tree 

 

In this way all records are placed in the tree to prepare the ISAT database from 

given offline input- output data. 

2.2 ISAT RECORD SEARCH IN BINARY TREE 

Once the database is built, ISAT code is ready for quick retrievals of records close 

to the query vector. When accessing the database, the only information that is known is a 

query vector of predictive variables (startquery).  To find a close record to the query 

vector, the binary tree is traversed. While traversing a tree, at a node when v*( startquery) 

≤ a the pointer left is selected for further search.  Likewise, when v*( startquery) > a the 

right pointer is selected. Searching of the database should result in retrieval of a close 

node 2 

record pointer 

v =start3 – start2 
a= v

T 
(start2+start3)/2 

Left pointer Right pointer 

record1 
(start1, finish1) 

 

record2 
(start2, finish2) 

 

record3 
(start3, finish3) 
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record.  Ideally, the closest record would be obtained by minimizing a measure of 

closeness. The measure of closeness is given by the difference between the query vector 

and the stored start vector. Thus, if the closest record searched has initial start vector as 

startstored, the measure of closeness is  

x = |startquery – startstored|           (2.3) 

One of the drawbacks to binary tree searching is that the closest record is not 

always selected.  To overcome this deficiency, multiple binary trees can be used to 

increase the probability of finding the closest record. In this case the records are equally 

divided among the binary trees to maintain a balance in search times.  Once all of the 

binary trees are searched, a sequential search is performed to determine the closest record 

among the ones the binary trees selected. By adjusting the number of binary trees, an 

effective compromise is reached between the accuracy of the sequential search and the 

speed of the binary tree search. Abrol et al. [7] discussed more about multiple binary 

trees for ISAT, however for K-value application a single binary tree is efficient enough to 

give expected results. 

Once a close record is located, ISAT performs one of three scenarios.  These 

scenarios are retrieval, growth, and addition.  These are described in more detail below. 

2.3  ISAT SCENARIOS 

Depending on how close a record is located while searching the database and 

based on a set error of tolerance (εtol), ISAT performs one of the three scenarios: retrieval, 

growth or addition. Before discussing about these scenarios we discuss the concept of 

sensitivity and EOA.  
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Sensitivity 

As mentioned before, sensitivity matrix measures the degree to which the output 

changes, with small changes in inputs. Mathematically sensitivity is defined as 

Sensitivity=  
start

finish

∂

∂
       (2.4)        

 Once a close record has been located, the value of the function can be estimated 

by linear approximation using the sensitivity information. However If the sensitivity 

matrices cannot be estimated accurately, one can make use of ‘constant approximation’ 

instead of linearly approximating the output. In that case the sensitivity matrix A = 0. For 

this application of K-value estimation the constant approximation is considered and the 

outputs are estimated as a finish vector of the closest record found. 

Ellipsoid of accuracy 

Ellipsoid of accuracy (EOA) defines the region of accuracy to control retrieval 

error. It is centered about startstored and consists of all startquery for which the error, is 

less than or equal to the tolerance error, εtol. The value of εtol can be set to any value, but 

lower values improve the trajectory retrieval performed by ISAT. The EOA is defined by 

the following equation.   

x
T
 M x = εtol 

2
              (2.5) 

where measure of closeness, x = |startquery – startstored| and M is the eoa matrix. 

The Figure 2.4 shows an EOA describing the region of accuracy centered on startstored. 
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                     x
T
 M x= εtol 

2
 

 

 

Figure 2.4: Ellipsoid of accuracy 

 

As discussed before for K value application, a constant approximation is used by 

discarding sensitivity matrix (A=0). So the equivalent ellipsoid of accuracy is a circle of 

constant radius equal to the set error of tolerance. In such case the ellipsoids of accuracy 

become highly eccentric for a higher-dimensional space and for functions with high 

degree of nonlinearity [8]. Therefore, a better approach is to use EOAs defined by 

spherical surfaces with the radius being equal to the tolerance error (εtol). 

EOA 

startstored 

startquery 
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Figure 2.5: Constant approximation EOA as a sphere with radius equal to εtol 

 

2.3.1 ISAT Retrieval 

A close record to the query vector (startquery) is located by the binary search as 

discussed in previous section. The automatic error control decides if it is appropriate to 

retrieve or not. The error control is accomplished with the ellipsoid of accuracy (EOA) 

with a center being the startstored. The startquery point lies within the ellipsoid if  

x
T
 M x ≤ εtol 

2
 , where x =  |startquery – startstored|, and εtol is error of tolerance specified 

by user. If this is true then in case of linear approximation, finish vector is estimated by 

equation finishest =finishstored + Ax. 

 In this case of K-value estimation however by constant approximation, the stored 

record (with finishstored) is retrieved as it is. Thus, if the close record falls within the error 

of tolerance, it is retrieved as it is. 

startstored 

εtol 
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If  x
T
 M x > εtol 

2 
 then retrieval cannot be performed. It implies that startquery 

point is outside the EOA. So the record is not close enough and cannot be accepted. 

In this case the actual function calculation should take place to find out actual error. 

 The actual value of the function for the startquery is determined using direct 

integration or by running the actual simulation. Depending on the difference between the 

actual value (finishactual) and that estimated by ISAT (finishest) one of the other two 

scenarios growth or addition of ISAT is carried out.  

It is important to note that there is no computational advantage with growth and 

addition. In both the cases a call to the actual function calculations is needed. So the 

actual advantage of ISAT is when the number of retrievals are far greater than growth or 

addition.  

2.3.2 ISAT Growth  

 If |finish – finishest| ≤  εtol then it means the point is outside of region of accuracy 

but within a specified error tolerance. So the region of accuracy (EOA) can be grown to 

include startquery. This new region is a minimum volume ellipsoid that includes the new 

point, startquery, and the original EOA.  

As shown in figure 2.6 this growth is a minimum area expansion and includes the 

new point (startquery) and the original ellipse. 
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Figure 2.6: Growth of an EOA 

In this case of constant approximation the unit circle can be grown to reach the query 

vector (as shown in figure 2.7) 

 

Figure 2.7: Constant approximation unit circle EOA 

xq 

x1

x2

 

x0 

startstored 

startquery 
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The growth algorithm involves alignment and growth steps. The growth point 

startquery becomes xq after the translation and the EOA is defined in terms of x. 

Graphically, the axes are rotated so that one axis aligns with the growth point.  This 

rotation is important so that the ellipse can be expanded along the aligned axis. When the 

ellipse is transformed back to the original coordinates, xq is on the ellipse perimeter.  In 

addition, the ellipse is a symmetric minimum area expansion that includes the growth 

point and the original ellipse. 

2.3.3 The ISAT Addition 

After actual function calculation is performed, If |finish – finishest| > εtol the EOA 

should not be expanded. Instead a new record should be added to the ISAT database.  The 

growth step should be skipped and the algorithm jumps ahead to the ISAT addition. In 

the addition scenario, the record addition takes place in a same manner as discussed in 

section 2.1.3. This includes addition of a node with a cutting plane defined as 

 v = φq - φ  and  a =  v
T 

(φ q + φ)/2 
 

 

.  
 

 

 

 

Figure 2.8: ISAT addition 

startstored 

startquery 
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2.4 SUMMARY 

 
A detailed description of the in situ adaptive tabulation or ISAT algorithm is 

shown. Various aspects of the algorithm including the binary tree structure for the 

database and the three scenarios, retrieval, growth and addition, are discussed in detail. 
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                                                             Chapter 3 

                      ISAT for K- value Estimation 

The basic routine for vapor-liquid equilibrium calculations in process simulations 

is the temperature-pressure (T-P) flash routine.  All of the well-known process simulation 

applications available today modify a T-P flash routine to provide results which are a 

tradeoff between speed and accuracy. Within these process simulation 

applications, computational speed is often emphasized thus accuracy is compromised.  

3.1 K- VALUE  

K-value is a vapor liquid equilibrium ratio. So for any given process, the K-value 

is a function of the vapor and liquid compositions (yi and xi) of all components, 

temperature (T) and pressure (P) (Equation 3.1). [7] 

 

K = f (xi, yi, T, P)                                                          (3.1) 

The accuracy and speed of a process simulation depends to a large extent on 

evaluation of K-values for the system. Large numbers of T-P flash calculations are 

needed to produce converged results for process simulation models. In flash calculations, 

vapor-liquid equilibrium calculations in a multi-stage distillation column or calculations 

for systems where components undergo reactions involve frequent K-value estimations. 
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Because of such K-value calculations, there can be a bottleneck in simulation 

convergence. 

3.2 ISAT FOR K- VALUE ESTIMATION 

One popularly used process simulator is CHEMCAD®. ISAT is proposed here as 

a method to estimate K-values in CHEMCAD®. A generic database built only for the K-

values of a particular system can be integrated with the calculation engine to speed-up a 

process simulation. A single database for the entire flow sheet with only a few variables 

determined by the number of components (n_c) can be built instead of considering 

databases for all time-intensive unit operations in the process separately. At any 

particular iteration, instead of calculating the K-values, an ISAT database can be used to 

locate a close value much faster, while maintaining the accuracy by controlling the error 

of tolerance. 

Code was developed using C language for implementation of ISAT algorithm for 

K-Value estimation using only input-output data. An example of input-output data of K-

value is shown in table 3.1. This is a specimen data of K-values for two components 

(n_c=2).  So the inputs to the K-value function are temperature, pressure, xi (mole 

fraction in the liquid), yi (mole fraction in the vapor), and the outputs are K-values for 

each component. 

Temperature Pressure x1 x2 y1 y2 K-value1 K-value2

709.66 29.403 0.00468 0.0004 0.00664 0.00795 0.06083 2.96241  

Table 3.1: Specimen K-value database for 2 component system 
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With many runs on the K-value function a large database was obtained prior to 

the actual simulation.  The C code reads the database in text format line by line and 

creates the ISAT database.  Each reading of this text database is used to form start 

(inputs) and finish (outputs, here K-value) vectors of a record, where a record is an ISAT 

database unit discussed in Chapter 2.  One by one all records are placed in the binary tree 

to build up the ISAT database. 

3.3 ISAT FOR K-VALUE ESTIMATION 

Once the ISAT database is built, the program is ready for K-value retrievals. In 

this case the equations for the first principles model for K-value estimation were not 

known so the sensitivity matrix is not considered and the outputs are estimated by 

constant approximation instead of linearly approximating the outputs. In that case the 

sensitivity matrix A = 0, and the equivalent for the ellipsoid of accuracy is a circle of 

constant radius equal to the set error of tolerance. In other words the finish values from 

the retrieved record are considered as expected K-values without any linear 

approximation. 



 24 

 

 

 

 

 

 

 

Figure 3.1: Constant approximations EOA with radius equal to εtol 

 

3.3.1   ISAT C code Algorithm 

The C program consists of four different function routines. These function 

routines are discussed below with their functionalities. Overall inputs to the C program 

are the database input file (.txt), number of components for which the database is 

generated ( n_c), and the error of tolerance (εtol). 

initialize_btree(char * input_file): This is an initialization phase of ISAT database. 

This function routine reads the database text file which has the K-value database 

generated form of the previous runs and forms the ISAT database in a binary tree 

structure.  

ISAT_read(float temperature, float pressure, float*fxmol, float*fymol, float fTolerance, 

int n_c) : Once ISAT database is ready, ISAT_read function is called for actual 

retrieval. A query vector (startquery) provided by CHEMCAD® is accepted to get 

startstored 

εtol 
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inputs (temperature, pressure, xi, yi). This function tries to find set of finish values 

corresponding to start values in the ISAT database and succeeds if finds it within εtol. 

If Equation 3.2 is true, then the retrieved set of data is said to be within error of 

tolerance.  

(startquery – startstored)
T
 eoa (startquery – startstored) ≤ εtol

2
                                   (3.2) 

 If Equation 3.2 is not true, then retrieved K-values are not within error of tolerance. 

In this case actual K-value function should be executed in CHEMCAD®.  

ISAT_add (float temperature, float pressure, float*fxmol, float*fymol, float*fxkv, int 

n_c) : If retrieved K-values are not within error tolerance, then K-values are 

calculated in CHEMCAD®. This function creates a new record of the query vector 

(startquery) and calculated set of K-values, and inserts this new record into the binary 

tree structure. This ensures the binary tree remains updated for any future query of the 

same record. 

ISAT_save (char * input_file): This function is called, to save the new record to the 

original input text file. By doing so, the record is saved permanently to the database 

file. 

3.4   ISAT CODE AS DLL 

A dynamic link library (DLL) is a collection of small programs, any of which can 

be called when needed by a larger program. DLL is a single file that can be shared by 

multiple programs at run time. A DLL file is often given a ".dll" file name suffix. DLL 

files are dynamically linked with the program that uses them during program execution 

rather than being compiled with the main program.  
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DLL files do not get loaded into random access memory (RAM) together with the 

main program, so space is saved in RAM. When a DLL file is needed, then it is loaded 

and run. Use of DLL saves memory and reduces swapping of files. Many processes can 

use a single DLL simultaneously, sharing a single copy of the DLL in memory. In 

contrast, for each application that is built with a static link library (SLL) Windows (or 

Linux) must load a copy of the library code into memory. DLL saves disk space. Many 

applications can share a single copy of the DLL on disk. In contrast, each application 

built with a static link library (SLL) has the library code linked into its executable image 

as a separate copy. Upgrades to the DLL are easier. When the functions in a DLL change, 

the applications that use them do not need to be recompiled or re-linked as long as the 

function arguments and return values do not change. In contrast, statically linked object 

code requires that the application be re-linked when the functions change. 

In this application the ISAT code is used as a DLL for CHEMCAD®. Because of 

above advantages of DLL it is ideal to make ISAT a library file for CHEMCAD®. By 

doing so CHEMCAD® can use ISAT DLL as needed without integrating the code in its 

main code. Figure 3.2 shows the overall flow of data between CHEMCAD® and ISAT. 

In the ideal case CHEMCAD® sends a query vector to ISAT and ISAT finds it in its 

database, and if within tolerance it returns the found record to CHEMCAD®. 
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Figure 3.2: Flow of data when ISAT used as DLL 

3.5   SUMMARY 

K-values and its importance in chemical process simulation and the complexity of 

the T-P calculations are discussed in this chapter. Because of the frequency of time 

dependent K-value calculations there is a need to use a speedup technique at acceptable 

accuracy. ISAT algorithm is applied as a speedup technique to estimate K-values in 

CHEMCAD®. Code was developed using C language for implementation of ISAT 

algorithm for K-Value estimation using only input output data. 

Initially, K-value database file (.txt) is used to build ISAT database (binary tree). 

This can be represented as shown in Figure 3.3. 

   

 

 

CHEMCAD® ISAT Library 
Query Vector 

Return Record 
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Figure 3.3: Initial phase of ISAT code 

 

Once the database is built, the code is ready for retrievals, which is the actual 

operation. CHEMCAD® sends query vector, and sets error of tolerance (εtol). 

Accordingly a closest record is found by ISAT code and returned if within the set error 

tolerance. If not within εtol , CHEMCAD® can calculate K-value with rigorous 

calculations and call ISAT to add the calculated K-values to the database.  

For the ease of operation, ISAT is used as Dynamic Link Library to 

CHEMCAD®, so that ISAT code can be a separate file that can be accessed as and when 

K-values are required. The entire process flow of the C code is shown in Figure 3.4.   

CHEMCAD® ISAT Library 
 
 

Generates Binary 

tree 

Initialize ISAT with 
data file to create the B-
tree 
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Figure 3.4: Operational phase of ISAT code 
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                                                             Chapter 4 

Results, Conclusion and Future Work 

4.1 KEY CONTRIBUTIONS 

The work performed here aims at reducing the computational time required for K-

value calculations in a process simulator, which is an important component of simulation 

of chemical processes. The algorithm used is based on the ‘storage and retrieval’ 

technique called in situ adaptive tabulation or ISAT, originally developed by Pope [9] for 

reducing computational load of combustion calculations. 

 4.1.1 C code for K-value application 

Earlier the ISAT algorithm was developed in MATLAB by Abrol [7] and in 

FORTRAN by Hedengren [1] for different applications. The K-value calculations in 

CHEMCAD® take computation time as low as 1 millisecond. The real advantage of 

ISAT code is when the K-value estimation time is much lower than 1 millisecond. 

Reducing the time below 1 millisecond is difficult in MATLAB because of the high 

runtime. So the algorithm development for K-value application was done in C language. 

Some other advantages of ISAT C code are that it can be easily integrated in any code if 

needed and the code can be converted to library files. 

4.1.2      ISAT as DLL 

The ISAT C code was converted to a dynamic link library (.dll) file. A dynamic-

link library (DLL) is an executable file that acts as a shared library of functions. Dynamic 
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linking provides a way for a process to call a function that is not part of its executable 

code. The executable code for the function is located in a DLL, which contains one or 

more functions that are compiled, linked, and stored separately from the processes that 

use them. DLLs save memory, reduce swapping, save disk space, upgrade easier and 

support multi language programs. 

4.2 ACHIEVEMENTS 

Application of ISAT to K-value estimation has shown promising results. The code 

was tested rigorously for different set of database. The ISAT code gives facility to change 

number of components for which K-values to be estimated. The testing was done for 

different number of components and for large number of readings. 

The actual K-value function calculation in CHEMCAD® takes computational 

time of the order of 1 millisecond while implementation of ISAT gives retrieval time as 

low as 0.05 milliseconds. The accuracy of the retrievals is controlled by the error of 

tolerance (εtol), set by CHEMCAD® for each retrieval. So the computational time is 

reduced by 95%, giving 20 times speed up with desired accuracy.  

4.3 SUMMARY AND POSSIBLE FUTURE WORK 

ISAT code is proved to be an effective tool for computational time reduction. If 

the closest record found by the code is not within the error tolerance (εtol), then the record 

cannot be retrieved to maintain desired accuracy. In this case CHEMCAD® can 

optionally update the ISAT database by calling ISAT_add function. However the real 

advantage of ISAT is when the number of retrievals are more than the additions. 
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There can be a few possible extensions to the work done here. In this work K-

value estimation is done by constant approximation, and the sensitivity matrix is 

considered to be 0. For more precise K-value estimation, sensitivity matrix can be 

calculated using a regression technique discussed by Abrol et al. [7]. When the sensitivity 

matrix is available K-values can be estimated by linear approximation as 

finishest =finishstored + Ax                                                                                    (4.1) 

Where, x = where x =  |startquery – startstored| 

The computational time would further reduced by more optimization of the 

existing c code. 
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