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Abstract. In the bio-medical domain, a high detection rate of possibly
rare diseases is usually highly desirable while errors in the majority class
(e.g. healthy controls) may be more acceptable. Hence, optimizing the
overall predictive accuracy is often unsuitable. Here, we analyse a large
data set of urine GC/MS measurements from 829 controls and 68 pa-
tients suffering from one of three inborn steroidogenic disorders. We use
2 comparable algorithms able to handle large amounts of missing data.
Furthermore, we compare a variety of different strategies to deal with the
highly imbalanced data, including undersampling, oversampling and the
introduction of class-specific costs.

1 Introduction

Some of the challenges in biomedical data are heterogeneous measurements,
missingness, and imbalanced classes. The bio-medical data analysed in this
paper confronts us with all those problems and this contribution focuses on
the third issue. For rare diseases, where the number of patients available for
studies is limited, the imbalanced class problem becomes prominent. For such
datasets, optimizing the overall class accuracy of the classification technique
is not suitable, since high detection rate of the minority classes is particularly
desirable. Specific genetic mutations result in inherited or inborn disorders of
steroidogenesis, leading to defective production of specific enzymes or a cofac-
tor responsible for catalysing salt and glucose homeostasis, sex differentiation
and sex specific development. These disorders need to be diagnosed as early
as possible, to avoid delays of lifesaving glucocorticoid therapy for adrenal in-
sufficiency, and to facilitate gender allocation and surgical planning in patients
with disordered sex development. In [1] an approach for the computer-aided
diagnosis of the most prevalent condition has been introduced. In this paper we
provide a thorough comparison of state-of-the-art techniques for learning from
imbalanced data by, 1) introducing distinct costs to the training samples [2], or
2) re-sampling the original dataset by either under-sampling the majority class
and/or over-sampling the minority classes [3]. Section 2 introduces the dataset,
the strategies for imbalanced classes including our adaptation with respect to
the missingness, and a short explanation of the classifiers. Section 3 contains
the experiments and results and in the last section we present conclusions.



2 Methods

Here we briefly introduce the data set and the two LVQ variants suitable for
classification confronted with missing data. Finally, we explain the strategies to
handle imbalanced data, the issue we are focusing on in this contribution.

2.1 Data set

We study a large data set collected at the University of Birmingham, compris-
ing urine GC/MS measurements from 829 healthy controls (305 under 1 year of
age) and 118 patients with genetically confirmed steroidogenic disorders. Inborn
steroidogenic disorders is primarily present in the paediatric population. Specif-
ically we consider P450 oxidorectase deficiency (PORD), 5α-reductase type 2
deficiency (SRD5A2),21-hydroxylase deficiency (CYP21A2) with 18, 21 and 29
samples each. CYP21A2 and POR deficiency patients get more similar treat-
ment whereas that for SRD5A2 differs. Therefore, we investigate the multi-class
classification problem and refrain from comparison with ROC-LVQ, which is a
LVQ variant proposed for explicit optimization of the receiver operating char-
acteristics (ROC) in an imbalanced 2-class problem [4]. The data samples are
presented as N = 165 dimensional ratio vectors which are extracted from the
original 342 possible ratios (34 =number of distinct steroid metabolite concen-
trations) using prior knowledge. The measurements in the dataset are very
heterogeneous, due to the large variation in subject age groups (ranging from
neonates, infants, and adults) and the combination of different disease studies.

2.2 Angle LVQ

Angle Learning Vector Quantization (ALVQ) introduced in [1], is an extension to
Generalized Relevance LVQ (GRLVQ) [5, 6]. It focused on solutions for missing
and heterogeneous measurements and the influence of the imbalanced classes was
not systematically investigated. We assume z-score transformed vectorial mea-
surements (zero mean, unit standard deviation) of N=165 dimensions, accompa-
nied by labels {(xi, yi)}ni=1, a number of labelled prototypes {(wm, c(wm))}Mm=1

to represent the classes and relevances R =diag(r) to weight the dimensions.
Classification is performed following a Nearest Prototype Classification (NPC)
scheme, where a new vector is assigned to the class label of its closest prototype.
The dissimilarity of each data sample xi from the nearest correct prototype
with yi = c(wJ) is denoted by dJi and by dKi for the closest wrong prototype
(yi 6= c(wK)). Both, prototypes and relevances R are determined by a supervised
training procedure minimizing the following cost function [5]:

E =
∑n
i=1 µ(s) with µ(s) = (dJi − dKi )/(dJi + dKi ) . (1)

In contrast to GRLVQ, in ALVQ the distances d
{J,K}
i are replaced by angle-based

dissimilarities calculated on the available dimensions of xi.

dLi = Φ

 x>i RwL√
x>i Rxi

√
w>LRwL

 with L ∈ {J,K} (2)

and Φ(b) = gβ(b) =
exp{−β(b− 1)} − 1

exp(2β)− 1
or Φ(b) =

1

2
− b

2
. (3)



The function Φ transforms the weighted dot product b = cos ΘR ∈ [−1, 1] to a
dissimilarity ∈ [0, 1] either linearly or using an exponential function gβ

1 with
slope β. This variant of LVQ is particularly suitable for heterogeneous data with
missingness. More details and the derivatives can be found in [1].

2.3 NaNLVQ

Like ALVQ, NaNLVQ is apt for data with missingness. During training, NaN-
LVQ updates only those dimensions of the prototypes which are available in
the presented sample [7]. NaNLVQ uses the Partial Distance Strategy [8] to
accommodate for incomplete samples by taking into account only the available
dimensions in the presented sample, for calculating the distance between that
sample and the prototype. Conceptually it is equivalent to imputing the missing
value with the current value of the corresponding prototype component [7].

2.4 Undersampling

One of the most popular means to address imbalance is undersampling. Under-
sampling artificially reduces the majority class by randomly selecting t samples
used for training to reduce the difference in comparison to the number of sam-
ples available for the minority class. This method exhibits the risk of discarding
useful data by reducing the size of training set.

2.5 Oversampling with SMOTE

Oversampling artificially increases the minority class by synthesizing new train-
ing samples. In [3] the Synthetic Minority Over-sampling Technique (SMOTE)
has been proposed. Dependent on the desired number of synthetic samples ψ
out of k nearest neighbours are chosen for each sample in each of the classes.
Between these neighbouring samples from the same class a synthetic sample is
generated s = x + α · (xψ − x) with α ∈ [0, 1] and xψ ∈ Nx. Since our data
contains missing values we use the NaNLVQ and Angle LVQ dissimilarities for
the computation of the nearest neighbours with SMOTE.

2.6 Oversampling on the Hypersphere

Angle LVQ classifies on the unit hypersphere, therefore we propose here a
geodesic SMOTE variant generating synthetic samples on the hypershere. We
use an important tool of Riemannian geometry, which is the exponential map
[9, 10]. The exponential map has an origin M which defines the point for the
construction of the tangent space TM of the manifold. Let P be a point on the
manifold and P̂ a point on the tangent space than P̂ = LogMP , P = ExpM P̂
and dg(P,M) = de(P̂ ,M) with dg being the geodesic distance between the points
on the manifold and de being the Euclidean distance on the tangent space. The
Log and Exp notations denote a mapping of points from the manifold to the
tangent space and vice versa. In our case we present a point x from class c on
the unit sphere with fixed length |x| = 1, which becomes the origin of the map
and the tangent space (the centre of the hypersphere is the origin). We find k
nearest neighbours xψ ∈ Nx of the same class as selected sample x using the

1comparing eq. (3) of this paper to that of the conference version one will notice that a
correction in sign has been made to the exponential version of gβ



angle between the vectors θ = cos−1(x>xψ). Each random neighbour xψ is now
projected onto that tangent space using only the present features and the LogM
transformation for spherical manifolds:

x̂ψ =
θ

sin θ
(xψ − x cos θ) (4)

Next, a synthetic sample is produced on the tangent space as before ŝ = x+α ·
(x̂ψ −x). The new angle θ̂ = |ŝ| is then used to project the new sample back to
the unit hypersphere by the ExpM transformation:

s = x cos θ̂ +
sin θ̂

θ̂
ŝ (5)

This procedure is repeated with another sample from the class until the desired
number of training samples is reached for that class.

2.7 Costfunction Weighting

The last strategy for imbalanced classes we analyse here is the introduction of
explicit misclassification costs [2]. In case the classifiers confuse one condition
for another, the patient still receives treatment. However if a healthy person is
classified as a patient then the hormone therapy on him/her will have antago-
nistic effect on his/her health. Similarly, if a patient is misclassified as healthy
then he/she does not receive the life-saving treatment. Therefore, we introduce
a hypothetical cost matrix Γ = γcp with rows corresponding to the actual classes

c and columns denoting the predicted classes p. We assume
∑C
cp γcp = 1 and

include γcp as weighting factors in the cost function:
Ê =

∑n
i=1

γcp(xi)

nc
µ(xi) , (6)

where c = yi is the class label of sample xi, nc defines the number of samples
within that class, and p being the predicted label (label of the nearest prototype).

3 Experiments
We performed 5 fold cross-validation combined with several random initializa-
tions of prototypes in each fold. The ALVQ and NaNLVQ were trained using
comparable settings without regularization and one prototype per class. We ran
2 variants of ALVQ using the linear and exponential dissimilarities (eq. (3)) re-
ferred to as ALVQ and ALVQβ respectively. The models were trained on all 4
classes, however for brevity we report how well the positive class (combination
of the 3 disease classes) can be distinguished from the negative class (healthy).
Note that the full confusion matrix is still available for analysis2. We investigate
Matthews correlation coefficient (MCC) calculated from the confusion matrix,
as proposed for imbalanced classes in [11], and the area under curve (AUC) from
the ROC curve. The experimental settings for comparison are as follows:
E1: Baseline: training on the 5 folds containing the original imbalanced

classes with 5 random initializations in each fold for the LVQ variants.
E2: Undersampling: each of the 5 folds has about 165 healthy controls, and

in each of the random initializations of each fold, 70 or 140 samples are
randomly selected to form the training set.

2mean confusion matrices are in the supplement http://www.cs.rug.nl/∼kbunte/



E3: Oversampling: each class of patients is oversampled with SMOTE by 5
times producing q% (q ∈ {200, 400}) synthetic points in each fold.

E4: Geodesic Oversampling: each class of patients is oversampled with
geodesic SMOTE by 5 times synthesizing q% (q ∈ {200, 400}) new data
points from the training set in each of the folds.

E5: Cost weighting: we train ALVQ on the imbalanced 5 folds with cost
function as described in section 2.7. Here, we use the cost matrix γcp = 10

16
∀(c = 1 ∧ p 6= 1), γcp = 10

16 ∀(p = 1 ∧ c 6= 1) and γcp = 1
16 for the rest.

The results are summarized in Table 1.

Table 1: Mean performance (and std) of the methods in the experiments on the
test set and full data. We report AUC and MCC combining the prediction of
the diseases as positive and the healthy controls as negative class.

Experiment Test set (mean (std)) All data (mean (std))

MCC AUC MCC AUC

Baseline: ALVQ 0.228 (.054) 0.763 (.048) 0.227 (.030) 0.769 (.030)

ALVQβ=1 0.799 (.069) 0.981 (.008) 0.794 (.021) 0.981 (.003)

NaNLVQ 0.708 (.152) 0.933 (.046) 0.753 (.111) 0.937 (.048)

E2(140): ALVQ 0.804 (.058) 0.983 (.016) 0.293 (.025) 0.869 (.014)

ALVQβ=1 0.879 (.031) 0.995 (.006) 0.320 (.030) 0.891 (.017)

NaNLVQ 0.885 (.028) 0.994 (.004) 0.627 (.038) 0.929 (.009)

E2(70): ALVQ 0.825 (.049) 0.968 (.014) 0.437 (.055) 0.925 (.015)

ALVQβ=1 0.913 (.044) 0.987 (.009) 0.421 (.042) 0.938 (.012)

NaNLVQ 0.861 (.059) 0.991 (.011) 0.538 (.061) 0.913 (.015)

E3(200): ALVQ 0.416 (.174) 0.889 (.066) 0.429 (.194) 0.885 (.063)

ALVQβ=1 0.760 (.100) 0.983 (.010) 0.801 (.022) 0.987 (.003)

NaNLVQ 0.800 (.188) 0.955 (.043) 0.844 (.099) 0.963 (.048)

E3(400): ALVQ 0.352 (.082) 0.871 (.077) 0.369 (.054) 0.872 (.056)

ALVQβ=1 0.738 (.068) 0.979 (.008) 0.763 (.001) 0.983 (.002)

NaNLVQ 0.802 (.185) 0.959 (.048) 0.850 (.108) 0.963 (.050)

E4(200): ALVQ 0.298 (.074) 0.823 (.063) 0.304 (.042) 0.830 (.040)

ALVQβ=1 0.765 (.080) 0.981 (.012) 0.797 (.025) 0.986 (.004)

E4(400): ALVQ 0.302 (.069) 0.828 (.050) 0.306 (.031) 0.832 (.029)

ALVQβ=1 0.798 (.072) 0.987 (.007) 0.796 (.020) 0.986 (.003)

E5: ALVQ 0.519 (.090) 0.968 (.021) 0.508 (.087) 0.964 (.014)

ALVQβ=1 0.754 (.086) 0.992 (.006) 0.761 (.047) 0.993 (.002)

First we notice that ALVQ with linear distance conversion performs con-
sistently worse for this data set. NaNLVQ works quite well but cannot reach
the performance of ALVQ with exponential conversion and β = 1. Even in the
baseline setting ignoring the imbalance of the classes the ALVQ has an excel-
lent AUC, but the model with threshold 0 (NPC) in the ROC curve exhibits a



large number of false negatives (FNs) (low MCC). The NPC models using the
strategies to handle the imbalance (sections 2.4 to 2.7) on the other hand cause
a larger number of false positives (FPs) (again, low MCC). MCC is computed
from the NPC, so if the working point on the ROC is very much biased towards
one of the classes it leads to a large FP or FN rate, both decrease the MCC. But
AUC takes all possible working points on the ROC into account and is therefore
more robust measure. We also find that undersampling suffers from omitting
training samples while oversampling performs quite well when the number of
samples in the minority classes is tripled. The cost function based approach
may lead to a lot of FPs, but with an adaptation of the threshold in the ROC
curve this problem can be solved as confirmed by the excellent AUC values.

4 Conclusion
In this contribution we investigated several state-of-the-art strategies to deal
with imbalanced classes. Our bio-medical data set consists of urine metabolome
profiles of healthy controls and several very rare steroidogenic disorders. The
training on the imbalanced data exhibits a lot of FNs, i.e., it misses a lot of
patients, although ALVQβ=1 performed surprisingly well also on the imbalanced
data as shown by the AUC value. We investigated if this could be improved by
undersampling, oversampling, a geodesic variant of oversampling as well as cost
weighting for the imbalanced classes. These approaches led to a decrease in FNs
and increase in FPs, so the MCC remained low, but the AUC improved. From
Table 1, cost weighting method seems to be a promising approach for learning
from imbalanced data. In the future we would like to see the effect of varying
β-value on the performance of ALVQ.
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