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As to Holmes, I observed that he sat frequently for half an hour on
end, with knitted brows and an abstracted air, but he swept the matter
awaywith a wave of his handwhen I mentioned it. “Data! Data! Data!”
he cried impatiently. “I can’t make bricks without clay”.

SIR ARTHUR CONAN DOYLE,
The Adventure of the Copper Beeches





Chapter 0

Preamble

0.1 Overview

The last decades have witnessed a growing interest in the analysis
of relational data. Typically, these data come in the form of a network
specifying a list of relations between individuals or objects and are
represented by means of a graph, which translates objects into nodes
and relations into edges connecting the nodes.

Interest in the study of networks started in 1934, when the psy-
chosociologist Jacob Moreno introduced sociograms as a way to rep-
resent relations between individuals. For many decades, research on
networks wasmostly focused on the study of random graph structures
on the theoretical side, and on qualitative analyses of sociological net-
works as concerns applications. In the Eighties, a more quantitative
approach to the study of social networks was undertaken and many
popular network models (such as the p1 model, exponential random
graphs and stochastic blockmodels) were introduced. Attention, how-
ever, was still restricted to the study of small networks with a few
nodes because of difficulties in data collection and computational lim-
itations.

Recent technological advances such as the development of sensor-
basedmeasurements, next generation sequencing techniques and func-
tional magnetic resonance imaging, as well as the advent and diffusion
of social media, have widely simplified the collection of network data,
fostering the analysis of larger network datasets. Nowadays, networks
are a subject of interest in a varied range of disciplines, including soci-
ology, medicine, biology, neuroscience, finance and engineering. Un-
derstanding relations encoded in large graphs, however, still repre-
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sents a challenging task, and tools that can help to summarize and
simplify complex networks are needed.

In this thesis, wewill present some statistical methods which aim at
providing substantive help in the interpretation of complex networks.
The methods have been tailored so as to take into account features
that are relevant to the specific applications considered.

0.2 Main contributions of the thesis

The main contributions of the thesis can be summarized as follows.

• We propose NEAT, a novel and efficient statistical test for the
analysis of genetic networks that allows to overcome the limita-
tions of existing network enrichment analysis tests. The test has
been implemented in the R package neat, which is freely avail-
able from CRAN (Chapter 2).

• We propose two extensions of stochastic blockmodels for net-
works, which allow to model community structure in networks
while accounting for observed sources of nodal heterogeneity
(Chapter 3) and for both observed and unobserved sources of het-
erogeneity (Chapter 4), respectively. We implement the proposed
extensions in a variable selection framework by making use of
penalized inference methods.

• Weprovide an analysis of collaborations between political parties
in the Italian Parliament, by considering bill cosponsorship net-
works in the Chamber of Deputies from 2001 to 2015 (Chapters 3
and 4).

• Wepropose amodel that allows to detect clusters of graphswithin
a sequence of graphs, based on mixtures of generalized linear
models. We develop two different algorithms (EM and EMSAGC)
to estimate the model (Chapter 5).



Chapter 1

Introduction

1.1 Foreword

Interest towards networks can be dated back at least to 1934, when
Jacob Levy Moreno wrote the book “Who shall survive?” [Moreno,
1934].Morenowas a psychiatrist who though that Freud’s psychoanal-
ysis artificially isolated individuals from their usual social settings; in
contrast to this, he advocated that psychotherapy should reproduce
the social settings that an individual faces, and which could be at the
origin of their traumas. He therefore invented the psychodrama, a the-
atrical representation where the patient is encouraged to perform and
reproduce events from their past.

In line with this view, Moreno developed an interest in the study
of interactions between individuals, and in “Who shall survive?” he
introduced the sociogram as a way to represent relations between in-
dividuals. Using the current terminology, we could say that Moreno
was interested in understanding the process of formation and the fea-
tures of social networks, and that he started to employ graphs (what
he called “sociograms”) to represent these networks.

From Moreno’s perspective, thus, a graph represented a primarily
visual tool that allowed him to gain an insight into a complex tangle
of relations between a limited number of individuals. All along the
82 years that separate us from Moreno, however, scholars from many
fields have increasingly devised a plentiful of networks of different
types and sizes.

Sociologists have long since been interested in the study of the pat-
terns through which relations such as friendship or collaboration can
arise between human beings [Sampson, 1969]. More recently, ecolo-
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gists have started to employ networks to understand how animals re-
late to each other [Shizuka et al., 2014]. Networks are also employed
to model the spread of infectious diseases, in an attempt to find ways
to limit their diffusion [Klovdahl, 1985].

Networks, however, can be used not only to describe relations be-
tween living beings, but also between objects or organizations. In ge-
netics, cell biologists soon realized that genes do not work in isolation,
but they act in a concerted manner to carry out most cellular functions
[Alberts et al., 2004]. Therefore, networks have been employed to rep-
resent functional couplings or regulatory mechanism between genes
[Barabasi and Oltvai, 2004]. Political scientists have used networks to
describe international relations between States [Cranmer et al., 2014].
Engineers, instead, use networks to represent flows of individuals or
goods between different points in space [Guimera et al., 2005], and aim
at optimizing these flows.

The growing interest in network science that the last decades have
witnessed has been fostered by technological advances which have
highly facilitated data collection: think, for example, to the develop-
ment of sensor-based measurements, of next generation sequencing
techniques and of functional magnetic resonance imaging, or to the
large diffusion of social media such as Facebook or Twitter. These de-
velopments have rapidly expanded the focus of network science from
networks with a few nodes (typically a few tens) to networks with
hundreds, thousands or even millions of nodes.

The amount of information that is encoded in large networks chal-
lenges our capacities of understanding: as every node in a graph can
be related to any other node, a graph with n nodes (and without self-
loops) can consist of at most n2−n arrows if directed, and n(n−1)/2
edges if undirected. Visualization of large networks typically leads to
overly complicated pictures, whence it is hard to gain a synthetic in-
sight.

Often in applications, however, the attention can be shifted from
individual nodes to groups of nodes, and one could wonder how these
groups, rather than the original nodes, are related to each other. By
doing so, one can rephrase the original question on how a large num-
ber of individuals or objects interact with each other into the problem
of reconstructing the pattern of interactions between these groups. It
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goes without saying that some information will get lost in the trans-
lation of the original graph into a reduced graph summarizing group-
group relations. Nevertheless, the reduced graph can provide a pow-
erful tool for summarizing complex networks. This thesis will provide
two examples of this, one of which arises in genetics (see Chapter 2)
and the other in political science (see Chapters 3 and 4).

In the final Chapter of this thesis we will shift attention to a differ-
ent problem: instead of focusing on communities of nodes (genes or
individuals) within a network, we will try to summarize a sequence of
networks by seeking clusters of networks (see Chapter 5). Although
they are still quite uncommon, cross-sectional and temporal sequences
of networks have received increasing attention in the last years. When
confronted with multiple network instances, one could wish to sim-
plify the problem by seeking for clusters of homogeneous networks,
so that attention can then be restricted to the interpretation of the fea-
tures of each cluster. Themethod that we propose in Chapter 5 exploits
mixtures of generalized linear models to retrieve such clusters.

The remainder of this introduction is organized as follows: in Sec-
tion 1.2 we will review the concept and some properties of relations,
and we will introduce graphs as a convenient way to represent rela-
tional data. Then, in Section 1.3 we will shortly make a distinction be-
tween the concepts of network and of graph, pointing out how, some-
times, one network can be represented with different types of graphs.
Finally, in Section 1.4 we will briefly outline the contents of the up-
coming chapters.

1.2 Graphs

1.2.1 Relations and their properties

A relationR from a setA ̸= ∅ to a setB ̸= ∅ is a proposition r(x, y)
that is either true or false for any given pair of elements x ∈ A and
y ∈ B. If r(x, y) is true, we say that x is related to y and we write xRy;
otherwise, we write x /Ry. A relation is thus a subset of the Cartesian
product of A and B, A×B.

A relation can be represented in different ways:

• by listing all the pairs (x, y) : xRy (extensive representation);
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• with a Euler-Venn diagram, where for every (x, y) : xRy an
arrow is drawn from x ∈ A to y ∈ B;

• with a Cartesian diagram.

A relation can be defined on a single set by letting A = B. It is
common to classify relations defined on a single set A as

• reflexive if xRx ∀x ∈ A;

• irreflexive if x /Rx ∀x ∈ A;

• symmetric if xRy ⇒ yRx ∀x, y ∈ A;

• anti-symmetric if xRy ⇒ y /Rx ∀x, y ∈ A;

• transitive if xRy ∧ yRz ⇒ xRz ∀x, y, z ∈ A.

1.2.2 Representing relations with graphs

A graph G is typically1 defined as a pair (V,E), where V is the set
of vertices or nodes and E ⊆ V × V is the set of edges or links. Thus,
it is possible to view a graph as a relation on a single set V , whose
extensive representation is nothing but the set E.

Edges in a graph can be directed, or undirected. A directed edge, or
arrow, from a node v to another node w indicates that vRw, whereas
an undirected edge between nodes v and w denotes that vRw∧wRv.

Graphs can be classified according to the type of edges that they
contain. If every edge is undirected, the graph is said to be undirected;
if, instead, every edge is an arrow, the graph is said to be directed.
Finally, if both arrows and undirected edges are present, the graph is
said to be mixed or partially directed.

It follows that a symmetric relation can be represented by means
of an undirected graph, whereas an anti-symmetric relation is rep-
resentable as a directed graph. A relation that is not symmetric, nor
anti-symmetric can, instead, be represented with a mixed graph.

A self-loop is an edge that connects a node to itself. We put a self-
loop around v ∈ V if vRv. Clearly, self-loops are absent in graphs

1Note that graphs different from the ones consider here exist. E.g., a bipartite graph is a triple
(V,W,E) with two sets of vertices V and W and an edge set E ⊆ V × W . Therefore, a bipartite
graph is equivalent to a relation on two sets V and W , whose extensive representation corresponds
to E.
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representing irreflexive relations, whereas they are always present if
the graph represents reflexive relations.

1.2.3 The adjacency matrix of a graph

Graphs allow to associate different values to each relation they rep-
resent. A distinction, then, can be made between binary graphs, where
an edge eij = (vi, vj) can either be present or absent, but every edge
has the same intensity, and edge-valued graphs, where edges not only
can be present or absent but, if present, they can also have different
strength.

Besides Eulero-Venn diagrams, a convenient representation of a
graph can be obtained by means of a square matrix called adjacency
matrix. For a graph with n nodes, the adjacency matrix A is a n × n

matrix whose entries aij are null if no edge is present from node vi
to node vj , and non-null otherwise. For binary graphs aij ∈ {0, 1},
whereas for edge-valued graphs aij ∈ R.

If no self-loops are present, each diagonal element aii of A is null.
The adjacency matrix of an undirected graph is symmetric. In this

case, attention can be restricted to the upper triangle ofA, as the lower
one encodes the same information about the graph.

1.3 One network, multiple graphs?

Even though the terms “graph” and “network” are often used inter-
changeably, they refer to different concepts. A network consists of a
group of individuals or objects which have relations with each other,
whereas a graph is the mathematical abstraction that we employ to
represent it.

As an example, in Chapter 3 we analyse bill cosponsorship net-
works: the network, there, is made by the deputies (themembers of the
Italian Chamber), who relate with each other by cosponsoring bills. It
consists of a known set of individuals, the deputies, who interact with
each other to discuss and elaborate legislative proposals, and who can
eventually decide to cosponsor a bill together. We do not have infor-
mation on the interactions that take place between the deputies until
they cosponsor a bill together. When they do so, they formally state
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their agreement on a proposed legislation and, so, we obtain infor-
mation on their collaboration and joint support to a bill. Thus, we
represent the network of cosponsorships with an undirected, edge-
valued graph, where the value of an edge is given by the number of
cosponsorships that take place between two deputies. Alternatively,
one could consider an undirected binary graph to represent the same
network, placing an edge between two deputies if they have cospon-
sored together at least one bill: in this way, the focus is reduced to
the presence or absence of a relation between pairs of deputies, and
the intensity of relations (when present) is ignored. If specific data on
each bill cosponsored were available, two further alternative repre-
sentations could be considered. First, the process of bill cosponsorship
could be represented with a bipartite graph, where one set of nodes
V contains the deputies and the other oneW consists of the bills that
have been subject to cosponsorships. In such a bipartite graph, links
eij would connect a deputy vi ∈ V to each of the bills wj ∈ W which
they have cosponsored. Second, one could represent each cosponsored
bill as a clique involving each of the deputies who have cosponsored
it. The resulting graph would therefore be defined as a collection of
cliques (rather than an edge set as usual) between deputies.

Besides emphasizing the distinction between the network (the set
of interactions and relations taking place “in reality”) and the graph
(or, better, the graphs!), this example also points out that a network
can sometimes be represented by more than one graph. Which graph
is more suitable for a given statistical analysis depends, clearly, on the
scope of each analysis (and on the available information).

Even if they stand for different concepts, nevertheless the words
network and graph are often used equivalently without loss of clarity.
Awareness of this distinction is however important, as it clarifies that
a graph is nothing but a mathematical abstraction that we employ to
handle the real phenomenon - making it apparent that the translation
of a network into a graph is subject to some simplifications and con-
ventions, and that at the same time a choice between different graph
representations is often possible.
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1.4 Chapter summaries

1.4.1 Outline of Chapter 2

In Chapter 2 we will present a test that allows to assess relations
between groups of genes in genetic networks. This test is motivated by
the need to integrate traditional gene enrichment analysis approaches
for the interpretation of microarray experiments with information on
known interactions between genes.

Gene enrichment analysis (GEA hereafter) seeks for known sets of
genes that can be related to a set of target genes. A known limitation
of GEA is that it bases assessment of enrichment on the level of over-
lap between sets of genes only, ignoring associations and interactions
between genes. The role of gene-gene (and protein-protein) interac-
tions in the regulation of cellular processes, however, is at the basis of
our current understanding of genetic mechanisms, and should thus be
considered as part of enrichment tests. These interactions are typically
represented with gene interaction networks, and the integration of ge-
netic networks into GEA, called network enrichment analysis (NEA),
has been advocated over the last decade [Shojaie andMichailidis, 2010;
Alexeyenko et al., 2012; McCormack et al., 2013].

Existing tests for network enrichment analysis, however, deal only
with undirected networks, they can be computationally slow and are
based on normality assumptions. In Chapter 2, we propose an alterna-
tive Network Enrichment Analysis Test (NEAT) that aims to overcome
these limitations. As a matter of fact, NEAT does not require normality
assumptions, it is computationally more efficient and it can be applied
not only to undirected, but to directed and partially directed networks
as well. By means of simulations and real data analyses, we will show
that NEAT is considerably faster than alternative resampling-based
methods, and that its capacity to detect enrichments is at least as good
as the one of alternative tests.

1.4.2 Outline of Chapter 3

In Chapter 3 we will shift our attention from genetic to social net-
works. In particular, we will model bill cosponsorship networks in the
Italian Chamber of Deputies from 2001 to 2015.
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The attention of political scientists has traditionally been focused
on bill cosponsorship in the US Congress; if compared to it, a distin-
guishing feature of the Italian Chamber is the presence of a large num-
ber of political groups. The primary focus of our analysis will thus be
to infer the pattern of collaborations between these groups.

In order to achieve this result, we propose an extension of stochas-
tic blockmodels for the analysis of edge-valued graphs that views bill
cosponsorship as the result of a Poisson process, and we derive mea-
sures of productivity and collaboration between political parties. We
cope with the large number of model parameters by pursuing a pe-
nalized likelihood approach, which allows us to infer a sparse reduced
graph summarizing collaborations between political parties.

The application of the model allows to point out the evolution from
a highly polarized political arena, in which deputies based collabora-
tions on their identification with left or right-wing values, towards an
increasingly fragmented Parliament, where a rigid separation of polit-
ical groups into coalitions does not hold any more, and collaborations
beyond the perimeter of coalitions have become possible.

1.4.3 Outline of Chapter 4

In Chapter 4 we will tackle the issue of modelling unobserved
sources of nodal heterogeneity within the framework of stochastic
blockmodels.

Besides displaying community structures, social networks typically
feature also a strong heterogeneity among their actors. For example,
in friendship networks it is common to observe that a few individuals
are highly popular, whereas most individuals in the network have a
smaller number of friends.

Despite their capacity to handle networks with community struc-
ture, amajor limitation of stochastic blockmodels is that they are based
on information on groupmembership of nodes only and, thus, they fail
to model nodal heterogeneity consistently. The extension of stochas-
tic blockmodels that we consider in Chapter 3 already allows to model
directly this heterogeneity by including nodal or edge-related covari-
ates. However, sometimes such covariates might not be available, or
they could be insufficient to account for all of the observed hetero-
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geneity. Therefore, in Chapter 4 we will propose a further extension
to the model proposed in Chapter 3, which allows to model possible
unobserved sources of heterogeneity by adding a set of nodal random
effects to the model. We will also consider latent space models, which
are an alternative class of models capable to model nodal heterogene-
ity in networks.

1.4.4 Outline of Chapter 5

Whereas in Chapters 2, 3 and 4 the interest lies in inference of re-
lations between communities within a graph, in Chapter 5 we aim at
modelling a sequence of graphs, and at providing an efficient strategy
to detect cluster of graphs in that sequence.

Although statistical analysis of networks has traditionally focused
on modelling relations in a single network, we expect that the collec-
tion of multiple instances (either in a cross-sectional or a longitudinal
sense) of a network will become common in the near future [Durante
et al., 2016; Matias and Miele, 2017].

Even though one could tackle the study of a sequence of graphs by
modelling each graph separately, this would result in a cumbersome
exercise. As we foresee the possibility that graphs in the sequence
could be similar to a certain degree, it seems reasonable to model them
jointly. By doing this, one can model the sequence in a more parsimo-
nious way, and at the same time they can borrow information among
similar graphs.

Building on the fact thatmany networkmodels can be implemented
within the framework of generalized linear models, in Chapter 5 we
will propose to jointly model all the graphs in the sequence by using
a mixture of generalized linear models, where each component in the
mixture is given by a network model of interest for a given subpopula-
tion of graphs. The proposed model allows to estimate the probability
that each graph belongs to a certain subpopulation, and it can thus
be employed to cluster the graphs within the sequence. Moreover, it
allows to characterize each subpopulation by means of the model es-
timates of the corresponding component.

We will initially tackle model estimation by implementing an esti-
mation procedure based on the EM (Expectation-Maximization) algo-
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rithm, showing that this can sometimes result in a low clustering ac-
curacy. Therefore, we will then propose EMSAGC, an alternative esti-
mation method where we integrate the EMwith Simulated Annealing.
EMSAGC allows a wider exploration of the likelihood surface than the
simple EM, thus resulting in a highly accurate clustering strategy even
in the cases where the EM alone fails to retrieve the correct clusters.
We illustrate the proposed methodology on data on daily interaction
networks between employees of the French Institute for Public Health
Surveillance.
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Chapter 2

NEAT: an efficient network
enrichment analysis test

2.1 Background

The advent of high throughput technologies has driven the devel-
opment of cell biology over the last decades. The diffusion of microar-
rays and next generation sequencing techniques has made available a
large amount of data that can be used to increase our understanding
of gene expression. The need to analyse and interpret these data has
led to the development of new methods to infer relationships between
genes, which require a combination of biological knowledge, statisti-
cal modelling and computational techniques.
When the first data on gene expression became available, they were
usually analysed considering each gene separately. However, researchers
soon realized that genes act in a concerted manner, and that cellu-
lar processes are the result of complex interactions between different
genes and molecules. Nowadays, sets of genes that are responsible for
many cellular functions have been identified, and are collected in pub-
licly available databases [Ashburner et al., 2000; Kanehisa and Goto,
2000].
One of the advantages of these sets of genes, whose function is al-
ready known, is that they can be used to interpret the results of new
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experiments: this has led to the implementation of a large number of
methods for gene enrichment analysis [Huang et al., 2009]. Their aim
is to compare gene expression levels under two different conditions
(experimental vs control), and to detect which sets of genes are dif-
ferentially expressed (enriched) in the experimental condition. To this
end, genes are ordered in a list L in decreasing order of differential
expression, and enrichment is then tested in different ways. Singular
enrichment analysis [Robinson et al., 2002; Beißbarth and Speed, 2004]
tests the over or under-representation of functional gene sets within
the set of genes defined by the first k top genes in L. The major limi-
tations of this approach lie in the fact that the choice of k is arbitrary,
and that the test does not take into account gene expression levels.
Gene set enrichment analysis [Subramanian et al., 2005; Kim and Vol-
sky, 2005] overcomes these limitations, bymaking use of the whole list
L of genes, and testing the tendency of genes belonging to a functional
set to occupy positions at the top (or at the bottom) of L. A limitation
that is common to both single and gene set enrichment analysis, how-
ever, is that these methods base computations on the level of overlap
between sets of genes only, without considering associations and in-
teractions between genes.
Gene networks are an established tool to represent these interactions.
In network inference [De Smet andMarchal, 2010; Marbach et al., 2010],
genes or molecules are represented as nodes of a graph and their inter-
actions are modelled as links between the nodes. These links can be
represented as either a directed or an undirected edge, and a graph
is called directed if all edges are directed, undirected if every edge
is undirected and partially directed (or mixed) otherwise [Lauritzen,
1996]. An undirected edge displays association between two genes,
while a directed edge posits a direction in the relationship between
them. Network estimation represents a difficult task, and many dif-
ferent estimation methods have been proposed [Friedman et al., 2008;
Abegaz and Wit, 2013]. Marbach et al. [2012] classified them into six
groups and pointed out that their predictive performance can vary a
lot within each group and according to the structure of the network. In
order to integrate evidence on gene associations unveiled by a num-
ber of experimental and computational studies into a single network,
curated gene networks for different species have been proposed, in-
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cluding YeastNet [Kim et al., 2013] and FunCoup [Schmitt et al., 2014].
In an attempt to integrate the information on interactions between
genes provided by gene networks into enrichment analyses, researchers
have recently developedmethods for network enrichment analysis [Sho-
jaie and Michailidis, 2010; Glaab et al., 2012; Alexeyenko et al., 2012;
McCormack et al., 2013]. The idea, here, is to test enrichment between
sets of genes in a network. Shojaie andMichailidis [2010] focus mainly
on network inference, proposing to represent the gene network with a
linear mixed model, so that enrichment tests can be then computed by
testing a system of linear hypotheses on the fixed effect parameters
of the model. Glaab et al. [2012], Alexeyenko et al. [2012] and Mc-
Cormack et al. [2013], instead, assume that a gene network is already
available (either from the literature or as the result of a tailored infer-
ential process) and focus their attention on the strategy that can be
used to assess enrichment between sets of nodes. In particular, Glaab
et al. [2012] propose a network enrichment score based on a suitably
defined network distance between two sets of nodes, alongside an em-
pirical method for setting a cut-off on this distance. In contrast to this,
Alexeyenko et al. [2012] and McCormack et al. [2013] derive network
enrichment scores on the basis of statistical tests against the null dis-
tribution of no enrichment. The advantage of the approach proposed
by Alexeyenko et al. and McCormack et al. is that the assessment of
enrichment is based on a significance testing procedure.
The idea of Alexeyenko et al. [2012] and McCormack et al. [2013] is
that the presence of enrichment between two sets of genes, say A

and B, can be assessed by comparing the number of links connect-
ing nodes in A and B with a reference distribution, which models the
number of links between the same two sets in the absence of enrich-
ment. Both Alexeyenko et al. [2012] and McCormack et al. [2013] as-
sume that the reference distribution is approximately normal, and they
obtain its mean and variance by means of permutations, i.e., comput-
ing the mean and variance of the number of links between A and B
in a sequence of random replications of the network. Their tests rely
on algorithms that permute the network, and mainly differ between
themselves for the fact that each algorithm aims to preserve differ-
ent topological properties of the original network in the generation of
network replicates. These methods, however, suffer from three limi-
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tations. First of all, they require the simulation of a large number of
permuted networks, an activity that can be computationally intensive
and highly time consuming (especially for big networks). Furthermore,
they base the computation of the test on a normal approximation for
the reference distribution, whose nature is discrete. McCormack et al.
[2013] show that such an approximation is inaccurate when the ex-
pected number of links betweenA andB is small. A further drawback
of these methods is that they have been implemented so far only for
undirected networks.
In this work we build upon the approach of Alexeyenko et al. [2012]
and McCormack et al. [2013] and propose an alternative test which
we call NEAT (Network Enrichment Analysis Test). The main idea be-
hind this test is that, under the null hypothesis of no enrichment, the
number of links between two gene setsA andB follows an hypergeo-
metric distribution. This enables us tomodel the reference distribution
directly via a discrete distribution, without having to resort to a nor-
mal approximation. NEAT does not require network permutations to
compute mean and variance under the null hypothesis, and is there-
fore faster than the existing resampling-based methods. Moreover, we
develop NEAT not only for undirected, but also for directed and par-
tially directed networks, thus providing a common framework for the
analysis of different types of networks.

2.2 Methods

The starting point of enrichment analyses is the identification of
one or more gene sets of interest. These target gene sets are typically
groups of genes that are differentially expressed between experimental
conditions, but they can also be different types of gene sets: e.g., clus-
ters of genes that are functionally similar in a given time course, or
genes that are bound by a particular protein in a ChIP-chip or ChIP-
seq experiment. Enrichment analysis provides a characterization of
each target gene set by testing whether some known functional gene
sets can be related to it. Methods for gene enrichment analysis assess
the relationship between a target gene set and each functional gene
set simply by considering the overlap of these two groups. In contrast
to this, network enrichment analysis incorporates an evaluation of the
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level of association between genes in the target set and genes in the
functional gene set into the test.
Information on associations and dependences between genes is repre-
sented by a network, which consists of a set ofN nodesV = {v1, ..., vN}
that are connected by edges (links). Each gene is thus represented as
a node vi of the network, and a link between two nodes is drawn
to signify interaction between the corresponding genes. Examples of
genome-wide curated networks that collect known gene associations
are YeastNet [Kim et al., 2013] and FunCoup [Schmitt et al., 2014].
A natural way to study the relation between two sets of genes A and
B in a network is to consider the presence or absence of links con-
necting nodes in the two groups [Alexeyenko et al., 2012; McCormack
et al., 2013]. In the inferred network, we expect that individual links
may be slightly unstable and noisy. However, we do expect that the
inferred links contain a sign of the relationships between gene sets.
So, although links between individual genes in sets A and B may be
noisy, if there is a functional relationship between functions described
by setsA andB we expect the number of links between the two groups
to be larger (or smaller) than expected by chance. If this is the case, we
say that there is enrichment between A and B.
Links between two nodes of a network can be either directed (arrows)
or undirected. The presence of an arrow between two genes implies
a directionality in the relation between them, whereas an undirected
edge does not provide information on the direction of the relation.
The upcoming subsection considers directed networks. In this case,
one can distinguish two cases: whether genes in the target set reg-
ulate genes of the functional set, or genes in the functional gene set
regulate genes in the target set (enrichment from A to B, or from B
to A). This distinction does not occur for undirected networks, which
are the subject of the next subsection: in this case, A and B are ex-
changeable, and we simply talk of enrichment “between” A and B. A
workflow diagram summarizing the input and the output of NEAT is
shown in Figure 2.1.
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A list of target gene sets

(A1, A2, …)

A list of functional gene sets 

For every pair (Ai,Bk):

● a test for enrichment

between Ai and Bk

(undirected networks)

INPUT OUTPUT

A list of functional gene sets 

(gene ontologies, pathways…) 

of interest (B1, B2, …)

A network encoding

known/relevant gene 
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(undirected networks)

● a test for enrichment
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Bk to Ai (directed
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Figure 2.1:Workflow diagram of a typical network enrichment analysis with
NEAT.

2.2.1 Enrichment test for directed networks

In a directed network, we assess the presence of enrichment from
A to B by considering the number of arrows going from genes in A
to genes belonging to B. We denote this by nAB . The observed nAB

can be thought of as a realization from a random variable NAB , with
expected value µAB . To assess the relation from A to B, we compare
µAB with the number of arrows that we would expect to observe from
A to B by chance, which we denote as µ0. We say that there is en-
richment fromA toB if µAB is different from µ0. Furthermore, we say
that there is over-enrichment from A to B if µAB is higher than µ0,
and under-enrichment (or depletion) if µAB is lower than µ0.
We propose a test based on the hypergeometric distribution to assess
the significance of this difference. The motivation behind this choice
is the following. The hypergeometric distribution models the number
of successes in a random sample without replacement: in our case, we
can mark arrows in the network that reach genes in B as “success-
ful”, and the remaining ones as “unsuccessful”. Then, we can view the
arrows that go out from genes in A as a random sample without re-
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placement from the population of arrows present in the graph: if there
is no relation (i.e., no enrichment) between A and B, then the distri-
bution of NAB (the number of successes in the sample) is

NAB ∼ hypergeom(n = oA, K = iB, N = iV ), (2.1)

where the sample size oA is the outdegree ofA (the total number of ar-
rows going out from genes that belong toA), the number of successful
cases in the population iB is the indegree (number of incoming arrows)
of B and the population size iV is the total indegree of the network
(which is equal to the total number of arrows).
It is certainly possible to imagine alternative choices for the null distri-
bution of NAB . Alexeyenko et al. [2012] and McCormack et al. [2013]
assume that NAB is normal with mean µ0 and variance σ2

0 , and they
use network permutations to estimate µ0 and σ2

0 . However, the normal
distribution is continuous and symmetric, so that their choice implies
somehow that the behaviour of NAB should be roughly symmetric,
and could be well approximated with a continuous random variable.
In addition, estimation of µ0 and σ2

0 by means of network permuta-
tions can be highly time consuming. Alternatively, one could consider
forNAB an hypergeometric distribution with different parameters, de-
fined for example, by considering all possible edges in the network
(instead of the edges that are actually present in the network) as a
population. We prefer model (2.1) over this alternative, because the
choice of the parameters therein allows to condition on two quanti-
ties that we consider crucial, which are the outdegree of A and the
indegree of B. Moreover, in our experience so far, we have observed
that tests based on alternative parametrizations often result in poor
performances.
The null mean and variance of NAB can be immediately derived from
model (2.1). In particular, in the absence of enrichment we expect to
observe, on average, µ0 = oA

iB
iV

arrows from nodes inA to nodes inB.
Thus, we expect µ0 to increase as the number of arrows leaving A, or
reachingB, increases. Biological assessment of enrichment can there-
fore be carried out by testing the null hypothesis of no enrichment

H0 : µAB = µ0
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against the alternative hypothesis of enrichment

H1 : µAB ̸= µ0.

In a test with a discrete test statistic and two-sided alternative, such
as the one that we propose, the p-value can be computed in different
ways [Gibbons and Pratt, 1975; Blaker, 2000; Agresti, 2013]. Let T be a
discrete test statistic and t be the observed value ofT . A first possibility
is to compute the p-value for the two-tailed test by doubling the one-
tailed p-value, p1 = 2min[P0(T ≤ t), P0(T ≥ t)], where P0 denotes
the distribution of T under the null hypothesis. An evident drawback
of this formula, however, is that p1 can exceed 1, and therefore p1 does
not represent a probability. Even though a simple modification p2 =
min(p1, 1) could avoid the problem, we prefer to subtract P0(T = t)
from p1 (P0(T = t) is non-null for discrete T , and this is the reason
why p1 can exceed 1) and to compute the p-value using

p = 2min[P0(T < t), P0(T > t)] + P0(T = t) (2.2)
= 2min [P0(NAB > nAB), P0(NAB < nAB)] + P0(NAB = nAB),

which always lies within the interval [0, 1] and differs from p1 by a
factor equal to P0(T = t). A p-value close to 0 can be regarded as evi-
dence of enrichment, because it entails that the number of links from
A toB is significantly smaller or higher than we would expect it to be
in the absence of enrichment. Therefore, for a given type I error prob-
ability α, we conclude that there is evidence of enrichment from A to
B if p < α, while if p ≥ α there is not enough evidence of enrichment.
As an example, consider the network in Figure 2.2. Suppose that we are
interested to test whether there is enrichment from the setA = {1, 4}
to the set B = {3, 5, 7}. It can be observed that there are 5 arrows
going out fromA, and 2 of them reachB. The whole network consists
of 15 arrows, of which 4 reach B. Thus, nAB = 2, oA = 5, iB = 4 and
iV = 15. The idea behind (2.1) is that, if the 5 arrows that are going
out from A are a random sample (without replacement) from the 15
arrows that are present in the network, then the proportion of arrows
reaching B from A should be close to the proportion of arrows reach-
ing B in the whole network, and in the absence of enrichment we
should observe on average µ0 = 1.33 edges. In this case, it seems that
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Figure 2.2: Example: NEAT in directed networks. Left: directed network consist-
ing of 8 nodes connected by 15 arrows. Set A contains nodes 1 and 4 (red) and set B
nodes 3, 5 and 7 (orange). Right: bipartite representation of the same network: it can
be observed that nAB = 2, oA = 5, iB = 4 and iV = 15. It follows that µ0 = 1.33
and p = 0.48.

arrows going out from A tend to reach B more frequently (40%) than
other arrows do (27% of the 15 arrows in the network reachB). How-
ever, the computation of the p-value leads to p = 0.48: the observed
nAB = 2 does not provide enough evidence to reject the null hypoth-
esis, so that the conclusion of the test is that there is no enrichment
from A to B.

We can also consider sets B = {3, 5, 7} and C = {2, 5} (note that
the two groups share gene 5), and test enrichment fromB toC . In this
case, nBC = 3 arrows out of oB = 4 (75%) reach C fromB, whereas in
the whole network iC = 4 arrows out of dV = 15 (27%) reach C . The
null expectation is here µ0 = 1.07; if we fix the type I error probability
equal to α = 5%, the p-value p = 0.03 leads to the conclusion that
there is enrichment from B to C .

2.2.2 Enrichment test for undirected networks

When dealing with undirected networks, the presence of enrich-
ment between A and B is assessed considering the number of edges
that connect genes in A to genes in B. We denote this by nAB . Given
the undirected nature of the links in the network, there is no distinc-
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tion between indegree and outdegree of a node, and it only makes
sense to consider the degree of a node, which is the number of ver-
tices that are linked to that node. The null distribution (2.1) should
thus be adapted accordingly. Let us define the total degree dS of a set
S as the sum of the degrees of nodes that belong to it: then, in the ab-
sence of enrichment we can view nAB as the number of successes in
a random sample of size dA, drawn from a population of size dV . The
null distribution of NAB for undirected networks is thus

NAB ∼ hypergeom(n = dA, K = dB, N = dV ),

where dA, dB and dV are the total degrees of sets A,B and V .
The null hypothesis is then that µAB = µ0 = dA

dB
dV
, the alternative

that µAB ̸= µ0. The p-value is computed using formula (2.2).
As an example, consider the network in Figure 2.3A and suppose that
we are interested to test the presence of enrichment between the pairs
of sets (A,B), (A,C) and (B,C). SetsA andB are linked by nAB = 4
edges, and their degrees are dA = 4 and dB = 15, while dV = 36.
Thus, µ0 = 1.67 and pAB = 0.023. In the same way, it is possible
to compute pAC = 0.465 and pBC = 0.038. Figure 2.3B shows the
relation between the three sets fixing α = 5%: enrichment is present
between the pairs (A,B) and (B,C), but not between sets A and C .

2.2.3 Enrichment test for partially directed networks

A partially directed network (or “mixed” network) is a network
where both directed and undirected edges are present. It is possible to
view such a network as a directed network, where every undirected
edge connecting two nodes v and w represents in fact a pair of ar-
rows, the former going from v to w and the latter from w to v. If such
an adaptation is adopted, model (2.1) can be applied and partially di-
rected networks can be analysed within neat as directed networks.

2.2.4 Software

NEAT is implemented in the R package neat [Signorelli et al.,
2016], which can be freely downloaded from CRAN: https://cran.r-
project.org/package=neat. The manual and a vignette illustrating the
package are also available from the same URL. A copy of the vignette

https://cran.r-project.org/package=neat
https://cran.r-project.org/package=neat
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Figure 2.3: Example: NEAT in undirected networks. Left: undirected network
with 12 nodes. We are interested to infer the relation between sets A (nodes 1 and
5), B (2, 4 and 7) and C (6 and 8). Right: representation of the relations between sets:
enrichment is detected between sets A and B (p = 0.023) and between sets B and C
(p = 0.038), but not between sets A and C (p = 0.465).

and manual for version 1.0 of the package can be found in Appendices
A and B. The package allows users to specify the network in different
formats, it includes functions to plot and summarize the results of the
analysis and is accompanied by a set of data and examples, including
the enrichment analysis of the ESR gene sets that we discuss in Section
2.4.

2.3 Performance evaluation

We assess the performance of NEAT by means of simulations. Ta-
ble 2.1 summarizes some aspects of these simulations, which are the
subject of the next two subsections. The R scripts and data files for
each simulation can be found at https://github.com/m-signo/neat.

We first consider directed networks, and check whether the per-
formance of NEAT is influenced by the degree distribution of the net-
work, or by the level of overlap between sets of nodes. We then con-
sider undirected networks, and carry out a comparison of NEAT with
the NEA test of Alexeyenko et al. [2012] and with the LP, LA, LA+S
and NP tests of McCormack et al. [2013].

https://github.com/m-signo/neat
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Table 2.1: An overview of simulations S1-S5. In Simulations S1 and S2, we com-
pare the performance of NEAT in two directed networks with different degree dis-
tribution. In simulation S3, we check the performance of the test for different levels
of overlap, ranging from 0% to 100%. In Simulations S4 and S5, we compare NEAT
to alternative tests in two undirected networks with different degree distribution.

Overlap:
Simulation Network type Degree distribution Graph density mean maximum

S1 Directed Power law 3% 4% 11.3%
S2 Directed Mixture of 2 Poisson 4% 3.6% 9.5%
S3 Directed Mixture of 2 Poisson 4% - -
S4 Undirected Power law 3% 3.8% 12%
S5 Undirected Mixture of 2 Poisson 4% 3.6% 11%

We compare the performance of the methods under the null hypoth-
esis by checking whether the empirical distribution of p-values in the
absence of enrichment is uniform using the Kolmogorov-Smirnov test,
and by computing the following ratios:

R1 =
Number of enrichments at 1% level

0.01× Number of tests where H0 is true

and
R5 =

Number of enrichments at 5% level
0.05× Number of tests where H0 is true

.

The idea behindR1 andR5 is that if the null hypothesisH0 is true, we
expect a good test to reject it with a frequency that is close to α. So,
the target value for R1 and R5 is 1.
Furthermore, we compare the capacity of different tests to correctly
detect enrichments and non-enrichments by computing specificity and
sensitivity at α = 5% level, and the area under the ROC curve (AUC).
The specificity is the proportion of correctly detected non-enrichments,
and we expect it to be as close as possible to 1−α. The sensitivity in-
dicates the proportion of correctly detected enrichments, whereas the
AUC is a measure of the overall capacity of a test to discriminate en-
richments and non-enrichments across all values of α. Therefore, a
test will show a good performance whenever it achieves a specificity
close to 1 − α, and values of sensitivity and AUC as high as possible
(ideally 1).
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Table 2.2: Performance of NEAT in simulations S1 and S2. pKS denotes the
p-value of the Kolmogorov-Smirnov test for uniform distribution, AUC is an ab-
breviation for “area under the ROC curve”. In both simulations, the distribution of
p-values underH0 is uniform and the specificity is close to the expected 95% value.
Sensitivity and AUC are higher in simulation S2.

Simulation pKS R1 R5 Sensitivity Specificity AUC
S1 0.510 1.56 1.17 73% 94% 0.894
S2 0.125 1.20 1.12 78% 94% 0.927

2.3.1 Simulation with directed networks

In simulations S1 and S2, we generate two random networks with
1000 nodes and with fixed indegree and outdegree distributions using
the algorithm developed by Newman et al. [2001] and implemented by
Csardi and Nepusz [2006]. The indegree and outdegree distributions
of nodes are power law with exponent 4 and minimum degree 20 in
simulation S1, and amixture of two Poisson distributions, with param-
eters λ1 = 40 and λ2 = 100 and weights q1 = 99% and q2 = 1%, in
simulation S2.
We consider 50 sets of nodes whose size ranges between 50 and 100,
and we test enrichment from A to B and from B to A for every pair
of sets: this means that, in total, we compute 50× 49 = 2450 tests. In
the original networks, no preferential attachment (i.e., no enrichment)
between any couple of these sets is present; we generate enrichments
by increasing or reducing the number of arrows for 200 pairs of sets.
In each case, enrichment is created by adding or removing arrows ran-
domly from one group to the other, in such a way that nAB increases
or reduces by a proportion uniformly ranging from 10% to 50%.
Table 2.2 shows that the empirical distribution of p-values in absence
of enrichment is approximately uniform both in simulation S1 and S2.
The sensitivity is higher in simulation S2, whereas the specificity is
close to the target value (95%) in both cases. As a result, the area un-
der the ROC curve is slightly higher in simulation S2. Overall, the test
shows in both cases a good capacity to discriminate enrichments and
non-enrichments.

In simulation S3 we check whether the proportion of overlap be-
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Figure 2.4: Specificity and sensitivity in simulation S3.The plot shows the values
of specificity and sensitivity for different levels of overlap (every point in the plot
is computed on the basis of 1000 tests). We observe that the specificity of the test
does not vary substantially for different levels of overlap, and is always close to 95%
as expected. The sensitivity, instead, slightly reduces as the percentage of overlap
increases.

tween sets A and B, that we measure with the Jaccard index

JAB = |A ∩B|/|A ∪B|,

could have an effect on specificity and sensitivity. We consider the
same network used in simulation S2, and we test enrichment between
pairs of sets with fixed size |A| = |B| = 50, but with increasing over-
lap (we consider |A ∩ B| ∈ {0, 5, 10, 15, ..., 50}). Under H0 we do
not modify the network, whereas underH1 we introduce enrichments
adding 35 arrows going from genes inA to genes inB. For every value
of overlap, we consider 2000 test (H0 is true in 1000 cases, and false in
the remaining 1000). Figure 2.4 shows that the specificity remains con-
stant and close to 95% for any level of overlap; the sensitivity, on the
other hand, is slightly higher when the level of overlap is moderate.
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Table 2.3:Results of simulation S4. The best results for each indicator are in bold.
pKS denotes the p-value of the Kolmogorov-Smirnov test for uniform distribution,
AUC is an abbreviation for “area under the ROC curve”. The distribution of p-values
underH0 is evidently not uniform for NEA and LP. NEAT shows the highest values
of sensitivity and AUC, and its specificity is close to the target value (95%).

Test pKS R1 R5 Sensitivity Specificity AUC
NEAT 0.399 1.33 1.14 69% 94% 0.920
NEA 0.001 0 0.87 68% 96% 0.918
LP 0 2.13 1.51 68% 92% 0.908
LA 0.255 1.60 1.17 60% 94% 0.897
LA+S 0.409 1.87 1.17 63% 94% 0.913
NP 0.037 1.24 1.28 58% 94% 0.884

2.3.2 Simulation with undirected networks

As alternative methods for network enrichment analysis are avail-
able for undirected networks only, we compare NEAT with them in
two simulations where we consider undirected networks with 1000
nodes. We generate two random networks with fixed degree distri-
bution, using the algorithm developed by Newman et al. [2001] and
implemented by Csardi and Nepusz [2006]; the degree distribution
follows a power law in simulation S4 and a mixture of Poisson dis-
tributions in simulation S5, with the same parameters used in simula-
tions S1 and S2. Likewise, we consider 50 sets of nodes, whose sizes
vary between 50 and 100 nodes. We test enrichment between every
pair of sets A and B, so that the total number of comparisons is here
50× 49/2 = 1225. We introduce enrichments for 100 pairs of sets by
adding or removing edges randomly between them, in such a way that
nAB is increased or reduced by a proportion uniformly ranging from
10% to 50%.

Tables 2.3 and 2.4 show the results for simulations S4 and S5, re-
spectively. As concerns the behaviour under the null hypothesis, the
distribution of p-values is uniform in both cases for NEAT and LA, and
in one case for LA+S (simulation S4) and NP (S5). NEA and LP, instead,
do not produce uniform distributions: as it can be observed from Fig-
ure 2.5, the reason is that the distribution is strongly left-skewed for
NEA, whereas for LP the distribution is right-skewed (the same pat-
terns occur also in simulation S5). In both simulations, most of the
methods achieve a specificity close to 95% as expected; comparison
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Table 2.4:Results of simulation S5. The best results for each indicator are in bold.
pKS denotes the p-value of the Kolmogorov-Smirnov test for uniform distribution,
AUC is an abbreviation for “area under the ROC curve”. The distribution of p-values
under H0 can be considered uniform for NEAT, LA and NP, and is questionable for
LA+S. NEAT shows the highest values of sensitivity and AUC, and its specificity is
exactly equal to the target value (95%).

Test pKS R1 R5 Sensitivity Specificity AUC
NEAT 0.343 0.62 0.98 79% 95% 0.925
NEA 0.024 0 0.82 73% 96% 0.912
LP 0 1.33 1.51 78% 92% 0.904
LA 0.111 1.16 1.33 73% 93% 0.908
LA+S 0.024 1.16 1.13 76% 94% 0.910
NP 0.323 1.42 1.16 70% 94% 0.908

Table 2.5: Speed comparison. The table compares the time (in seconds) that each
method required to compute 1225 tests for enrichment in simulations S4 and S5,
using a processor with 2.5 GhZ CPU frequency. NEAT turns out to be by far the
fastest method.

Test Software Simulation S4 Simulation S5
NEAT R package neat 0.6 0.7
NEA R package neaGUI 2125.4 2151.5
LP CrossTalkZ 28.6 44.7
LA CrossTalkZ 14.4 18.0
LA+S CrossTalkZ 21.8 27.6
NP CrossTalkZ 12.9 15.8

with the other tests shows that the sensitivity and AUC of NEAT are
overall good.
Table 2.5 compares the speed of computation for the differentmethods.
NEAT turns out to be the fastest method by far, being 22 times faster
than NP (the fastest alternative) and more than 3000 times faster than
NEA (the slowest alternative). This result is mostly due to the fact that
NEAT does not require the generation of a large number of permuted
networks to compute the test.
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Figure 2.5:Histogram of p-values in absence of enrichment in simulation S4.
The test of Kolmogorov-Smirnov indicates that the distribution is uniform for NEAT
(p = 0.34), LA (p = 0.11) and NP (p = 0.32). The distribution of p-values is highly
left-skewed for NEA, and right-skewed for LP.

2.4 Network enrichment analysis: an application to
yeast

The budding yeast Saccharomyces cerevisiae is a unicellular eukary-
ote organism that can be easily grown in laboratory. Because of these
features, it represents a model organism that has been extensively
studied, and it was the first eukaryote whose genome was completely
sequenced [Goffeau et al., 1996]. Since then, a large number of stud-
ies has aimed to detect associations between genes. In an attempt to
collect these results into a unique source, Kim et al. [2013] developed
YeastNet, an undirected gene network that aims to integrate the results
of a large number of high-throughput studies on Saccharomyces cere-
visiae. In its most recent version (v3), YeastNet comprises 362512 edges
connecting 5808 genes. We use this network of known associations in
the following analyses.
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2.4.1 Network enrichment analysis of environmental stress re-
sponse in yeast

After analysing gene expression patterns of yeast Saccharomyces
cerevisiae in response to different stressful stimuli, Gasch et al. [2000]
inferred the existence of a set of 868 genes that reacted in a similar way
to different, hostile environmental changes. This set of genes, called
Environmental Stress Response (ESR), is believed to constitute a coor-
dinated, initial reaction to the emergence of any hostile condition in
the cell. It consists of two subgroups of genes, containing genes that
are repressed and induced under stressful conditions, respectively.
We take these two gene sets as target sets, and for each of them we
test enrichment with the following functional gene sets: 99 gene sets
that are part of the GO Slim biological process ontology (we do not
consider the groups “biological process” and “other” in the analysis)
and 106 known KEGG pathways.
At α = 1% level, NEAT detects over-enrichment between 23 GO Slim
sets and the set of repressed genes, and between 25 GO Slim sets and
the set of induced genes. Furthermore, 15 KEGG pathways are found
to be over-enriched with the set of repressed ESR genes, and 47 with
the set of induced genes.
Gasch et al. [2000] reports that genes that are repressed in the ESR are
involved in growth related processes, various aspects of RNAmetabolism,
nucleotide biosynthesis, secretion, encoding of ribosomal proteins and
other metabolic processes. These results are in strong agreement with
the list of over-enrichments detected by NEAT, shown in Table 2.6. As
a matter of fact, most of the over-enrichments detected by NEAT are
related to RNA transcription, nucleotide secretion and translation of
ribosomal proteins (rows 1-18 and 24-35 in Table 2.6), growth-related
processes (row 22) and further metabolic processes (rows 23 and 33-
35).
Gasch et al. [2000] observed that inference for the set of genes that are
induced by the ESR is more complicated, because most of the genes
in this group lack functional annotations. It is worthwhile to observe
that NEAT detects a large number of enriched KEGG pathways (47
out of 106). This preliminary observation points out a major feature of
the Environmental Stress Response: the cell reacts to the emergence
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of different hostile conditions by activating a number of known cellu-
lar pathways that involve energy production, metabolic reactions and
molecular transportation (see Table 2.8).
Our results for this gene set do not only match the ones of the origi-
nal study - identifying many processes and pathways that are related
to carbohydrate metabolism (rows 1-3 in Table 2.7 and 1-9 in Table
2.8), fatty acid metabolism (rows 4-6 in Table 2.7 and 10-18 in Table
2.8), mitochondrial functions and cellular redox reactions (rows 5-9 in
Table 2.7 and 19-21 in Table 2.8), protein folding and degradation (10
in Table 2.7 and 22 in Table 2.8) and cellular protection during stress-
ful conditions (rows 11-13 in Table 2.7 and 23 in Table 2.8) - but they
also unveil further enrichments that involve molecular transportation
(rows 3, 6, 14-18 in Table 2.7) and amino-acid metabolism (rows 24-36
in Table 2.8).
Tables 2.9, 2.10 and 2.11 compare the p-values obtained with NEAT
with those obtained with LA+S [McCormack et al., 2013], which, ac-
cording to the conclusions of McCormack et al. [2013] and to our own
simulations, can be considered as the main competitor of NEAT. The
tables show a large overlap between the over-enrichments detected by
the twomethods at a 1% significance level: the twomethods jointly de-
tect 34 over-enrichments (19 GO Slim sets and 15 KEGG pathways) for
the set of repressed ESR genes, and 67 (24 GO Slim sets and 43 KEGG
pathways) for the set of induced ESR genes. There is only a small num-
ber of discrepancies between the two methods and these are mostly
borderline cases. In particular, LA+S detects 4 over-enrichments that
are not detected by NEAT (rows 39 in Table 2.9, 26-27 in Table 2.10
and 48 in Table 2.11), whereas NEAT detects 9 over-enrichments that
are not detected by LA+S (rows 19-22 in Table 2.9, 25 in Table 2.10 and
43-46 in Table 2.11). As concerns computing time, NEAT computed
the required task (410 tests in total) in 23 seconds, whereas the same
computation with LA+S required 1171 seconds. In summary, the two
methods lead to very similar conclusions, but NEAT is considerably
more efficient.
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2.4.2 Network enrichment analysis of GO Slim sets: overlap
does not imply enrichment

Gene ontologies [Ashburner et al., 2000] consist of a large num-
ber of gene sets, which are involved in different cellular functions or
biological processes, or that are active in a specific component of the
cell. These sets of genes are typically employed to enrich sets of differ-
entially expressed genes that have been experimentally detected (the
analysis of the ESR gene sets in the previous subsection provides an ex-
ample of this). However, network enrichment analysis is a more gen-
eral instrument, which allows to assess the relation between pairs of
gene sets in a network. One might wonder, for instance, whether gene
sets within an ontology tend to be strongly related to each other, or
whether there is a strong separation between them.
We consider gene sets in the GO Slim biological process ontology
for Saccharomyces cerevisiae (we once more exclude the two general
groups “biological process” and “other” from the analysis). As a re-
sult of the hierarchical structure of Gene Ontologies, 12 gene sets are
nested within another group. We exclude these 12 sets from the analy-
sis: the remaining 87 gene sets do not have hierarchical relations with
each other, and pairs of these sets display overall a low overlap (1.7 %
on average), which is null in most cases (62% of pairs of sets do not
share genes). If overlapping of sets was taken by itself as evidence of
a relation between two gene sets, one would therefore conclude that
most of these gene sets are unrelated.
If, however, we do not limit our attention to the overlap between pairs
of sets, but consider also known associations between genes in the two
sets as represented in YeastNet [Kim et al., 2013], we obtain a different
conclusion. We have used NEAT to test whether there is enrichment
between each pair of sets. In a random network where no relations be-
tween the sets are present, we would expect to detect 37 enrichments
(on average) out of 3741 tests for α = 1%; instead, we detect 1409 en-
richments, 38 times more than expected. Out of these, 710 are under-
enrichments, and 699 are over-enrichments. An under-enrichment,
here, indicates that two GO Slim sets are poorly connected to each
other: the high number of under-enrichments, therefore, might be not
particularly surprising or interesting, as we do expect that unrelated
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gene sets within the ontology are poorly connected. The high number
of over-enrichments, on the other hand, is striking: this indicates that
many groups within the ontology are highly connected to each other
- something that would occur rather rarely, if there was no relation
between the sets.
This result points out a major difference between gene enrichment
analysis and network enrichment analysis: whereas in the first case
the extent of overlapping between two gene sets is taken by itself as
evidence of enrichment, network enrichment analysis bases the eval-
uation of enrichment on the level of connectivity that exists between
the two sets in a network. Of course, the two facts are not completely
unrelated. Figure 2.6 shows that there is a certain correlation between
overlap of gene sets (Jaccard index) and network enrichment, so that
we tend to find network enrichment in the presence of higher levels of
overlap. This correlation is, however, low (the Pearson correlation co-
efficient between JAB and pAB is -0.15), pointing out that there does
not necessarily have to be enrichment for highly overlapping gene
sets, and vice versa. As an example, the GO Slim sets “cytokinesis”
and “nuclear organization” do not share genes, but are detected as en-
riched (p = 0.0003) in YeastNet. This result can be explained by the
fact that “nuclear organization” includes genes involved in the assem-
bly and disassembly of the nucleus, which is a preliminary step in cell
cytokinesis.

2.5 Conclusion

Network enrichment analysis is a powerful extension of traditional
methods of gene enrichment analysis, that allows to integrate them
with the information on connectivity between genes provided by ge-
netic networks. Whereas gene enrichment analysis bases the test for
enrichment solely on the overlap between two gene sets and ignores
the relationships between individual genes, network enrichment anal-
ysis exploits information on gene-gene interactions by making use of
gene networks, and it is thus capable to detect enrichment even be-
tween two gene sets that do not share genes.

In this Chapter, we have presented a Network Enrichment Analy-
sis Test (NEAT) that aims to overcome some limitations which affect
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Figure 2.6: Relation between overlap (JAB) and p-values. Note that p-values are
represented on a negative log-scale to enhance readability.

the network enrichment tests of Alexeyenko et al. [2012] and McCor-
mack et al. [2013]. First of all, we believe that a normal approximation
does not make justice to the discrete nature of NAB . We have shown
that this approximation can be avoided if one models NAB directly,
using a hypergeometric distribution with suitably specified parame-
ters. In addition, the normal approximation employed by Alexeyenko
et al. [2012] and McCormack et al. [2013] requires the computation
of a large number of network permutations to obtain the mean and
variance underH0: this operation can be very time consuming for big
networks and it makes the computation of the test rather slow. The use
of the hypergeometric distribution, instead, allows to specify the null
distribution of NAB without resorting to permutations, thus speeding
up computations considerably. A further drawback of existing meth-
ods for network enrichment analysis [Shojaie and Michailidis, 2010;
Glaab et al., 2012; Alexeyenko et al., 2012; McCormack et al., 2013] is
that they have been implemented only for undirected networks. We
address this problem by considering different types of networks (di-
rected, undirected and partially directed) and by proposing two differ-
ent parametrizations, which take into account the different nature of
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directed and undirected links.
We believe that NEAT could constitute a flexible and computa-

tionally efficient test for network enrichment analysis. Our simula-
tions show that NEAT has a good capacity to correctly classify enrich-
ments and non-enrichments. Comparison of NEAT with other meth-
ods points out an overall good performance in terms of sensitivity and
of specificity, as well as the computational efficiency of the proposed
method. The examples illustrated in the previous Section show that
NEAT can retrieve enrichments that were detected with gene enrich-
ment analysis, but it can also unveil further enrichments that would be
overlooked, if known associations between genes were ignored. Fur-
thermore, the comparison with the LA+S test of McCormack et al.
[2013], which we take as gold standard among pre-existing tests for
network enrichment analysis, points out that NEAT and LA+S yield
almost identical conclusions, but NEAT is considerably faster (23 sec-
onds vs 19.5 minutes) in producing them.

Even though the focus of this work is on gene regulatory networks,
we remark that NEAT is a rather general test: it can be applied to net-
works that arise in different contexts and disciplines, whenever the
interest is to infer the relationship between groups of vertices. This
can include, for example, other types of biological networks, as well
as social, economic or technological networks.
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Table 2.6: Network enrichment analysis of the repressed ESR gene set. The
table lists the 23 Go Slim BP gene sets and the 15 KEGG pathways which the set of
repressed ESR genes is found to be over-enriched with at 1% significance level.

Gene set nAB µ0 log10p
Go Slim BP sets:

1 cytoplasmic translation 6878 2641.9 <-300
2 ribosomal large subunit biogenesis 3408 1097.8 <-300
3 ribosomal small subunit biogenesis 5861 2073.7 <-300
4 ribosome assembly 1782 621.9 <-300
5 RNA modification 2944 1062.0 <-300
6 rRNA processing 9187 3290.2 <-300
7 tRNA processing 2037 901.0 <-300
8 translational elongation 1786 782.3 -283.8
9 ribosomal subunit export from nucleus 1420 561.4 -281.8
10 translational initiation 939 462.5 -112.1
11 transcription from RNA polymerase III promoter 565 228.4 -107.7
12 snoRNA processing 634 303.3 -82.0
13 regulation of translation 1952 1328.6 -73.5
14 DNA-dependent transcription, termination 774 447.0 -57.5
15 transcription from RNA polymerase I promoter 1005 646.4 -49.5
16 protein alkylation 1063 759.4 -31.4
17 tRNA aminoacylation for protein translation 400 233.1 -29.4
18 peptidyl-amino acid modification 1088 883.0 -13.2
19 nuclear transport 3154 2003.5 -162.4
20 organelle assembly 2090 1362.7 -96.1
21 nucleobase-containing compound transport 1453 1155.4 -20.8
22 cytokinesis 1024 806.9 -16.0
23 vitamin metabolic process 325 274.0 -3.1

KEGG pathways:
24 Ribosome biogenesis in eukaryotes 9824 3661.0 <-300
25 Ribosome 18640 8731.7 <-300
26 RNA polymerase 3057 1541.2 <-300
27 RNA transport 4341 2906.4 -177.6
28 Aminoacyl-tRNA biosynthesis 1433 960.9 -58.2
29 RNA degradation 2560 1939.3 -51.9
30 mRNA surveillance pathway 1768 1413.5 -24.0
31 Pentose phosphate pathway 1126 947.1 -9.7
32 Spliceosome 2649 2523.6 -2.3
33 Purine metabolism 5579 3623.0 -263.6
34 Pyrimidine metabolism 4541 2884.5 -234.9
35 Cyanoamino acid metabolism 218 158.8 -6.3
36 One carbon pool by folate 541 392.5 -15.0
37 Sulfur relay system 238 196.5 -2.9
38 Carbapenem biosynthesis 117 89.8 -2.7
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Table 2.7:Network enrichment analysis of the induced ESR gene set (GO Slim
sets). The table lists the 25 Go Slim BP gene sets which the set of induced ESR genes
is found to be over-enriched with at 1% significance level.

GO Slim BP gene set nAB µ0 log10p
1 carbohydrate metabolic process 1296 671.2 -110.9
2 oligosaccharide metabolic process 442 165.3 -77.3
3 carbohydrate transport 202 65.8 -45.0
4 lipid metabolic process 693 484.4 -19.9
5 peroxisome organization 181 124.8 -6.0
6 lipid transport 120 79.7 -4.9
7 generation of precursor metabolites and energy 585 294.8 -54.0
8 cellular respiration 210 118.4 -14.5
9 proteolysis involved in cellular protein catabolic proc. 639 488.5 -10.9
10 protein folding 476 296.9 -22.7
11 response to oxidative stress 813 242.2 -202.7
12 response to chemical stimulus 1489 885.1 -83.4
13 response to starvation 459 331.4 -11.2
14 transmembrane transport 910 644.4 -24.2
15 endocytosis 395 245.5 -19.3
16 protein targeting 628 478.8 -10.9
17 ion transport 464 380.2 -4.8
18 amino acid transport 137 109.4 -2.1
19 cofactor metabolic process 523 219.0 -73.7
20 nucleobase-containing small molecule metabolic proc. 722 404.5 -49.2
21 membrane invagination 278 120.6 -37.0
22 vacuole organization 335 200.2 -18.9
23 protein maturation 49 27.7 -3.9
24 cell morphogenesis 113 79.4 -3.6
25 sporulation 352 306.4 -2.1



Bibliography 45

Table 2.8: Network enrichment analysis of the induced ESR gene set (KEGG
pathways).The table lists the 47 KEGGpathwayswhich the set of induced ESR genes
is found to be over-enriched with at 1% significance level.

KEGG pathway nAB µ0 log10p

1 Starch and sucrose metabolism 1436 394.2 <-300
2 Pentose and glucuronate interconversions 414 110.7 -119.9
3 Glycolysis / Gluconeogenesis 1235 616.3 -116.5
4 Fructose and mannose metabolism 562 200.0 -106.7
5 Galactose metabolism 511 173.9 -104.5
6 Amino sugar and nucleotide sugar metabolism 567 264.2 -63.4
7 Other glycan degradation 79 11.7 -44.2
8 Pyruvate metabolism 633 355.9 -42.8
9 Propanoate metabolism 189 107.3 -12.9
10 Glycerolipid metabolism 444 172.1 -72.7
11 Peroxisome 633 313.3 -61.2
12 Fatty acid degradation 419 215.0 -37.2
13 Arachidonic acid metabolism 117 36.7 -28.1
14 Sphingolipid metabolism 227 103.6 -27.3
15 Glycerophospholipid metabolism 450 270.9 -24.5
16 alpha-Linolenic acid metabolism 69 27.1 -11.7
17 Fatty acid elongation 138 75.3 -10.8
18 Biosynthesis of unsaturated fatty acids 134 103.9 -2.5
19 Glutathione metabolism 467 204.8 -59.9
20 Citrate cycle (TCA cycle) 487 267.3 -35.6
21 Ubiquinone and other terpenoid-quinone biosynthesis 96 41.8 -13.1
22 Protein processing in endoplasmic reticulum 1121 866.0 -17.4
23 Longevity regulating pathway 987 544.0 -70.6
24 beta-Alanine metabolism 397 104.0 -118.0
25 Taurine and hypotaurine metabolism 132 24.3 -59.4
26 Tyrosine metabolism 382 163.5 -51.8
27 Tryptophan metabolism 292 113.3 -48.2
28 Valine, leucine and isoleucine degradation 276 107.5 -45.3
29 Alanine, aspartate and glutamate metabolism 488 262.2 -38.0
30 Histidine metabolism 267 127.4 -28.8
31 Arginine and proline metabolism 301 154.3 -27.0
32 Lysine degradation 294 150.4 -26.6
33 Phenylalanine metabolism 171 71.4 -25.0
34 Glycine, serine and threonine metabolism 350 264.3 -6.7
35 Cysteine and methionine metabolism 338 285.3 -2.8
36 Arginine biosynthesis 167 134.0 -2.4
37 Butanoate metabolism 460 84.8 -202.8
38 Pentose phosphate pathway 604 288.0 -64.0
39 Regulation of autophagy 303 126.7 -43.3
40 Insulin resistance 337 172.8 -30.1
41 Glyoxylate and dicarboxylate metabolism 368 201.6 -27.3
42 Methane metabolism 435 254.2 -26.2
43 Nicotinate and nicotinamide metabolism 154 99.8 -6.7
44 Nitrogen metabolism 88 52.8 -5.4
45 Thiamine metabolism 57 32.9 -4.1
46 Selenocompound metabolism 122 89.3 -3.2
47 Sulfur metabolism 133 105.3 -2.2
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Table 2.9: Repressed ESR gene set: comparison between NEAT and LA+S. The
table reports the gene sets that are found to be over-enriched (α = 1%) by at least
one of the two methods. µ0 denotes the expected value of NAB in the absence of
enrichment. The last two columns report log10 p-values for the proposed NEAT and
the LA+S test of McCormack et al. [2013], respectively.

µ0 log10 p
Gene set NEAT LA+S NEAT LA+S
GO Slim BP sets:

1 cytoplasmic translation 2641.9 3583.5 <-300 -290.9
2 ribosomal large subunit biogenesis 1097.8 1602.4 <-300 -269.2
3 ribosomal small subunit biogenesis 2073.7 3013.2 <-300 -236.8
4 ribosome assembly 621.9 872.1 <-300 -95.9
5 RNA modification 1062.0 1422.7 <-300 -213.7
6 rRNA processing 3290.2 4623.2 <-300 <-300
7 tRNA processing 901.0 1137.6 <-300 -103.3
8 translational elongation 782.3 1019.5 -283.8 -71.2
9 ribosomal subunit export from nucleus 561.4 693.4 -281.8 -151.2
10 nuclear transport 2003.5 2452.5 -162.4 -33.0
11 translational initiation 462.5 594.8 -112.1 -33.6
12 transcription from RNA polymerase III promoter 228.4 281.6 -107.7 -43.6
13 organelle assembly 1362.7 1719.2 -96.1 -8.0
14 snoRNA processing 303.3 349.8 -82.0 -26.5
15 regulation of translation 1328.6 1577.5 -73.5 -12.9
16 DNA-dependent transcription, termination 447.0 575.2 -57.5 -11.7
17 transcription from RNA polymerase I promoter 646.4 874.2 -49.5 -5.2
18 tRNA aminoacylation for protein translation 233.1 256.7 -29.4 -11.2
19 protein alkylation 759.4 1000.0 -31.4 -1.2
20 nucleobase-containing compound transport 1155.4 1445.1 -20.8 -0.1
21 cytokinesis 806.9 925.9 -16.0 -1.8
22 peptidyl-amino acid modification 883.0 1102.4 -13.2 -0.1
23 vitamin metabolic process 274.0 245.8 -3.1 -5.5

KEGG pathways:
24 Ribosome biogenesis in eukaryotes 3661.0 5212.5 <-300 <-300
25 Ribosome 8731.7 11954.0 <-300 -283.3
26 RNA polymerase 1541.2 2058.0 <-300 -76.1
27 Purine metabolism 3623.0 4136.9 -263.6 -66.9
28 Pyrimidine metabolism 2884.5 3402.5 -234.9 -61.0
29 RNA transport 2906.4 3193.2 -177.6 -75.4
30 Aminoacyl-tRNA biosynthesis 960.9 934.2 -58.2 -49.8
31 RNA degradation 1939.3 2051.3 -51.9 -19.9
32 mRNA surveillance pathway 1413.5 1477.3 -24.0 -12.7
33 One carbon pool by folate 392.5 344.2 -15.0 -19.5
34 Pentose phosphate pathway 947.1 979.2 -9.7 -4.6
35 Cyanoamino acid metabolism 158.8 132.2 -6.3 -7.2
36 Sulfur relay system 196.5 172.7 -2.9 -3.9
37 Carbapenem biosynthesis 89.8 75.1 -2.7 -4.1
38 Spliceosome 2523.6 2432.2 -2.3 -4.1
39 Synthesis and degradation of ketone bodies 39.8 29.8 -0.3 -2.2
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Table 2.10: Induced ESR gene set: comparison between NEAT and LA+S (GO
Slim sets). The table reports the gene sets that are found to be over-enriched (α =
1%) by at least one of the two methods. µ0 denotes the expected value ofNAB in the
absence of enrichment. The last two columns report log10 p-values for the proposed
NEAT and the LA+S test of McCormack et al. [2013], respectively.

µ0 log10 p
GO Slim BP set NEAT LA+S NEAT LA+S

1 response to oxidative stress 242.2 248.5 -202.7 -253.7
2 carbohydrate metabolic process 671.2 663.9 -110.9 -123.3
3 response to chemical stimulus 885.1 912.4 -83.4 -92.8
4 oligosaccharide metabolic process 165.3 158.1 -77.3 -104.5
5 cofactor metabolic process 219.0 225.6 -73.7 -76.2
6 generation of precursor metabolites and energy 294.8 293.4 -54.0 -56.1
7 nucleobase-containing small molecule metabolic proc. 404.5 417.4 -49.2 -41.0
8 carbohydrate transport 65.8 77.7 -45.0 -52.8
9 membrane invagination 120.6 118.3 -37.0 -51.7
10 transmembrane transport 644.4 684.7 -24.2 -16.2
11 protein folding 296.9 296.3 -22.7 -26.6
12 lipid metabolic process 484.4 495.7 -19.9 -23.3
13 endocytosis 245.5 248.7 -19.3 -19.3
14 vacuole organization 200.2 199.7 -18.9 -22.4
15 cellular respiration 118.4 125.2 -14.5 -14.1
16 response to starvation 331.4 318.4 -11.2 -15.8
17 protein targeting 478.8 485.1 -10.9 -15.8
18 proteolysis involved in cellular protein catabolic proc. 488.5 494.1 -10.9 -9.8
19 peroxisome organization 124.8 123.5 -6.0 -6.0
20 lipid transport 79.7 90.4 -4.9 -2.8
21 ion transport 380.2 410.7 -4.8 -2.1
22 protein maturation 27.7 30.9 -3.9 -3.0
23 cell morphogenesis 79.4 80.8 -3.6 -3.7
24 sporulation 306.4 301.7 -2.1 -2.5
25 amino acid transport 109.4 113.0 -2.1 -1.6
26 response to osmotic stress 181.8 178.3 -1.6 -2.1
27 protein phosphorylation 587.6 564.3 -1.4 -2.7
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Table 2.11: Induced ESR gene set: comparison between NEAT and LA+S
(KEGG pathways).

µ0 log10 p
KEGG pathway NEAT LA+S NEAT LA+S

1 Starch and sucrose metabolism 394.2 400.6 <-300 <-300
2 Butanoate metabolism 84.8 98.0 -202.8 <-300
3 Pentose and glucuronate interconversions 110.7 127.5 -119.9 -185.7
4 beta-Alanine metabolism 104.0 122.9 -118.0 -209.8
5 Glycolysis / Gluconeogenesis 616.3 618.7 -116.5 -149.3
6 Fructose and mannose metabolism 200.0 206.2 -106.7 -160.7
7 Galactose metabolism 173.9 193.2 -104.5 -126.4
8 Glycerolipid metabolism 172.1 193.2 -72.7 -103.2
9 Longevity regulating pathway - multiple species 544.0 508.2 -70.6 -79.1
10 Pentose phosphate pathway 288.0 284.2 -64.0 -105.8
11 Amino sugar and nucleotide sugar metabolism 264.2 277.6 -63.4 -66.7
12 Peroxisome 313.3 332.9 -61.2 -55.8
13 Glutathione metabolism 204.8 221.6 -59.9 -77.8
14 Taurine and hypotaurine metabolism 24.3 28.5 -59.4 -92.8
15 Tyrosine metabolism 163.5 169.9 -51.8 -62.6
16 Tryptophan metabolism 113.3 130.9 -48.2 -59.4
17 Valine, leucine and isoleucine degradation 107.5 124.8 -45.3 -56.8
18 Other glycan degradation 11.7 12.9 -44.2 -66.3
19 Regulation of autophagy 126.7 135.2 -43.3 -45.5
20 Pyruvate metabolism 355.9 388.8 -42.8 -41.6
21 Alanine, aspartate and glutamate metabolism 262.2 284.5 -38.0 -36.7
22 Fatty acid degradation 215.0 225.0 -37.2 -43.7
23 Citrate cycle (TCA cycle) 267.3 299.5 -35.6 -32.9
24 Insulin resistance 172.8 176.5 -30.1 -30.4
25 Histidine metabolism 127.4 147.8 -28.8 -25.8
26 Arachidonic acid metabolism 36.7 44.1 -28.1 -40.6
27 Glyoxylate and dicarboxylate metabolism 201.6 224.8 -27.3 -23.7
28 Sphingolipid metabolism 103.6 116.3 -27.3 -26.2
29 Arginine and proline metabolism 154.3 180.2 -27.0 -24.8
30 Lysine degradation 150.4 160.2 -26.6 -31.5
31 Methane metabolism 254.2 262.7 -26.2 -23.7
32 Phenylalanine metabolism 71.4 81.5 -25.0 -26.4
33 Glycerophospholipid metabolism 270.9 285.1 -24.5 -22.3
34 Protein processing in endoplasmic reticulum 866.0 857.1 -17.4 -20.7
35 Ubiquinone and other terpenoid-quinone biosynth. 41.8 47.1 -13.1 -12.3
36 Propanoate metabolism 107.3 122.9 -12.9 -9.9
37 alpha-Linolenic acid metabolism 27.1 30.5 -11.7 -11.2
38 Fatty acid elongation 75.3 76.1 -10.8 -12.9
39 Glycine, serine and threonine metabolism 264.3 281.1 -6.7 -3.5
40 Nicotinate and nicotinamide metabolism 99.8 111.9 -6.7 -4.7
41 Nitrogen metabolism 52.8 60.7 -5.4 -4.0
42 Thiamine metabolism 32.9 36.8 -4.1 -3.2
43 Selenocompound metabolism 89.3 97.0 -3.2 -1.9
44 Cysteine and methionine metabolism 285.3 310.6 -2.8 -1.0
45 Arginine biosynthesis 134.0 154.2 -2.4 -0.6
46 Sulfur metabolism 105.3 121.9 -2.2 -0.5
47 Biosynthesis of unsaturated fatty acids 103.9 102.1 -2.5 -3.1
48 Regulation of mitophagy - yeast 554.4 510.4 -1.6 -5.1



Chapter 3

A penalized inference approach to
stochastic blockmodelling of
community structure in the Italian
Parliament

3.1 Introduction

The legislative process in modern democracies typically involves
three fundamental steps: the proposal of a bill, a discussion on its con-
tents and a final vote on it. Throughout this process, many interac-
tions and collaborations can arise between different political actors,
who join their efforts to support, change or oppose a proposed legisla-
tion. The analysis of these interactions can, then, provide insight into
the features and the mode of operation of different parliaments, and
on the way and the extent to which these interactions can influence
the legislative process.

Two types of data are often considered in this context. The first is
represented by bill cosponsorships networks [Fowler, 2006; Rocca and
Sanchez, 2007; Parigi and Sartori, 2014]. A parliamentarian can spon-
sor a bill individually, or cosponsor it together with other parliamen-
tarians. In the latter case, bill cosponsorship implies a formal collab-
oration between its proponents, who officially state their agreement
and support of the proposed legislation. The second type of legislative
data is given by roll-call votes [Kirkland, 2014; Dal Maso et al., 2014],
in which parliamentarians express their final decision on a bill.

In this Chapter we study bill cosponsorship in the Italian Cham-
ber of Deputies over the last four legislatures, covering the period
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2001-2015. We represent bill cosponsorships by means of a undirected
graph, where a weighted edge displays the number of bills that two
deputies have cosigned together. Compared to other parliaments, such
as the American Congress or the German Bundestag, a distinguishing
feature in the history of the Italian Parliament is the presence of a large
number of political factions. Our aim is to infer a network that sum-
marizes collaborations within and between parties from the network
of bill cosponsorships, whose actors are the deputies.

We tackle this issue by viewing edges eij in the graph as a result
of a Poisson process that explicitly depends on group memberships
of nodes i and j. The resulting model that we propose builds on the
stochastic blockmodels that have been developed for the analysis of
unweighted digraphs in social network analysis (see Section 3.1.1 for
a review). We resort to generalized linear models and derive measures
of group relevance and of attraction or repulsion between groups. Fi-
nally, we propose a penalized inference approach for sparse estima-
tion. We show that with the use of penalized likelihood methods, a
sparse reduced graph representing collaborations (and repulsions) be-
tween political parties can be obtained directly from the signs of the
model parameters.

3.1.1 Stochastic blockmodels

Community membership can play an important role in shaping so-
cial interactions. Social networks are often featured by the presence
of clusters of units that are strongly linked between themselves and
weakly connected to individuals that fall outside their cluster, so that
ignoring the preferential attachment of units based on community
memberships can lead to misleading interpretations of the determi-
nants of network ties. Thus, cluster identification and assessment of
the relation between groups of nodes in a network have been active
topics of research in the analysis of social networks.

Stochastic blockmodels were first introduced as a modification of
the p1 class of models for unweighted digraphs proposed by Holland
and Leinhardt [1981]. LetXij denote a Bernoulli random variable that
takes value 1 if an arrow from node i to node j is present, and is 0
otherwise. The p1 model assumes that pairs of edges or dyads Yij =
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(Xij, Xji) are stochastically independent, and expresses the probabil-
ity to observe the arrow Xij = 1 as a function of four parameters,
representing the density of the graph (θ), the tendency of arrows to be
reciprocated (ρ), expansiveness (αi) and popularity (βj) of nodes i and
j. Fienberg and Wasserman [1981] considered a situation in which a
partition of units into p groups, also called blocks, is available, propos-
ing a more parsimonious representation where αi and βj are replaced
by p expansiveness group effects αr, such that αi = αi′ for every i, i′

belonging to block Br, and p popularity group effects βs.
The definition of stochastic blockmodel was proposed by Holland

et al. [1983]. According to their definition, a probability distribution
for a graph defines a stochastic blockmodel if the random variablesXij

are independent, and the random vectors Xij and Xkl are identically
distributed if nodes i and k are members of the same block Br, and
j and l are in the same block Bs. Stochastic blockmodels imply that
nodes within a block are stochastically equivalent, in the sense that
if nodes i and k belong to the same block Br, any probability state-
ment on the graph is left unchanged by interchanging them. Holland
et al. [1983] criticized themodel proposed by Fienberg andWasserman
[1981] deeming it too restrictive, and advocated that the parameters θ,
αr and βs should be replaced by block parameters θrs.

Later on, Wang and Wong [1987] proposed a network model that
retains the original formulation of the p1 model with individual effects
αi and βj , but also includes a set of parameters φrs associated to each
pair of blocks (Br, Bs).

Anderson et al. [1992] elaborated on the idea of stochastic block-
models, viewing them as “a mapping of approximately equivalent ac-
tors into blocks or positions and a statement regarding the relations
between the positions”. They considered the p1 class of models, and
they summarized relational ties between blocks of units by means of a
reduced graph between the blocks. They obtained such a graph setting
a cutoff c on the predicted probability to observe an arrow from nodes
in block Br to nodes in block Bs, π̂rs, and drawing an arrow from Br

to Bs if π̂rs > c.
Stochastic blockmodels have also been employed for community

detection in networks, rather than to describe relations between some
known groups of nodes that are known a priori. This type of block-
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modelling aims to find clusters of highly interconnected nodes and it
is referred to as a posteriori blockmodelling [Wasserman and Ander-
son, 1987; Nowicki and Snijders, 2001]. Although clusters of nodes are
typically thought to be mutually exclusive, Airoldi et al. [2008] intro-
duced amixedmembership stochastic blockmodel that allowsmultiple
group memberships of nodes.

3.2 Bill cosponsorship in the Italian Parliament

The Italian Parliament is based on a bicameral system in which two
separate assemblies, the Chamber of Deputies and the Senate, play
similar roles in the legislative process. Legislations can be proposed by
different actors (including deputies, senators, the government, regions
and groups of electors); here, we focus on the legislations proposed by
deputies. Each bill can be proposed by a single deputy, or cosponsored
by a group of deputies. In the second case, bill cosponsorship defines a
symmetric relation between deputies, who formally state their agree-
ment on the content of the proposed legislation by cosponsoring it.
Thus, cosponsorship can be taken as a measure of proximity or col-
laboration between deputies.

Bill cosponsorships can be represented as an undirected network
where nodes represent parliamentarians, and the presence of an edge
eij indicates that parliamentarians i and j have cosponsored at least
one legislation. We associate to each edge a weight equal to the num-
ber of bills that the two parliamentarians have sponsored together in
a given time course (typically, one legislature).

In the Italian Chamber, each deputy is required to express their
affiliation to one and only one parliamentary group, which typically
corresponds to a political party or to a coalition of parties. As a con-
sequence, membership of parliamentary groups generates a partition
of deputies into political groups, which we use to assess the patterns
of collaboration between political parties.

Data on bill cosponsorship in 27 parliamentary chambers of 20 Eu-
ropean countries have been recently collected by Briatte [2016], who
has created and published the bill cosponsorship networks aggregated
over the span of legislatures. Here we consider the cosponsorship net-
works for the Italian Chamber of Deputies between the XIV and the
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XVII legislature (2001-2015) and we integrate these data with per-
sonal details on deputies retrieved from the website of the Chamber
of Deputies (http://dati.camera.it).

3.3 Poisson process model of bill cosponsorship

A graph is a pair G = (V,E), which consists of a set of nodes
V = {1, ..., n} connected by a set of edges E ⊆ V × V . Edges repre-
sent relations between nodes, and they can be directed or undirected,
as well as weighted or unweighted. In bill cosponsorship networks,
each node represents a parliamentarian and a weighted undirected
edge between two parliamentarians displays the number of bills that
they have cosponsored together. Thus, hereafter we consider the case
of an undirected graph, where a discrete weight is associated to each
edge. Such a graph can be conveniently represented by means of a
symmetric adjacency matrix A, where we set aij = 0 if deputies i and
j are not connected, and aij equal to the number of cosponsorships
between deputies i and j otherwise. We assume absence of self-loops,
i.e., aii = 0.

We emphasize that alternative representations of bill cosponsor-
ship could be considered as well, as already discussed in Section 1.3.
The choice of the representation with an edge-valued graph is moti-
vated by the availability of data aggregated by legislature. This pre-
vents the possibility to consider both a bipartite graph with links con-
necting deputies to bills, and a graph where a clique is added for each
bill subject to cosponsorship. Although we could consider a binary
graph in its place, this would imply a loss of information on the fre-
quency of collaborations between the deputies.

3.3.1 Data generating process

We view such a graph as the result of the action of a multivariate
Poisson process in a given time course T . Let N(t) be a counting pro-
cess that denotes the number of events that have occurred until time
t. We say that {N(t), t ∈ [0,+∞)} is a univariate Poisson process
with rate λ > 0 if N(0) = 0, N(t) has independent increments (i.e.,
N(t+ s) -N(t) is independent fromN(t) ∀s > 0) andN(t) follows a
Poisson distribution with mean λt.
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We can associate a Poisson processNij(t)with rate λij to each pair
of deputies (i, j) in the graph. At the beginning of the legislature, i.e.
t = 0, no cosponsorships have occurred yet, so that Nij(0) = 0. If
after some time t1 a first cosponsorship takes place between deputies
i and j, we set Nij(t1) = 1. If a second interaction occurs at t2, we
set Nij(t2) = 2, and so on. Thus, Nij(t) denotes the number of bill
cosponsorships that have occurred between i and j at a given time
point t. If we stop the process at t = T , the number of cosponsor-
ships Nij(T ) observed until T between each pair (i, j) of deputies is
a realization from a Poisson distribution with mean µij = λijT and it
defines a weighted graph, where aij = Nij(T ).

Now, suppose that a partition P of deputies into p groups or blocks
is available, and that block membership determines the rates of each
Poisson process, so that we can assume that the interaction rates λij

are homogeneous within each pair of blocks (Br, Bs):

λij = ζrs ∀i ∈ group Br, ∀j ∈ group Bs, with r, s ∈ {1, ..., p}. (3.1)

Under the assumption of independence between the univariate pro-
cesses, Equation (3.1) defines a stochastic blockmodel, because Nij(t)
andNkj(t) are independent, and they are also identically distributed if
i and k belong to the same block. Here, the probability that a randomly
drawn interaction involves any two deputies in groups Br and Bs is

πrs =
nrsζrs∑p

u≤v=1 nuvζuv
,

where nuv = nunv if u ̸= v, nvv = nv(nv − 1)/2 and nv denotes the
number of deputies that belong to group Bv.

Our primary interest is to understandwhich groups aremore active
in the network, and how members from different groups interact with
each other. Thus, we would like to decompose µrs = ζrsT into a base-
line parameter θ0 that controls the overall bill cosponsorship activity
of the network, two effects αr and αs that account for the relative im-
portance (productivity or popularity) of political parties r and s, and
a further effect φrs that accounts for attraction or repulsion between
pairs of parties.

Since a linear relation between µrs and θ0, αr, αs, φrs is impossible
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for the range R+ of µrs, we consider a monotone transformation
g : R+ → R of µrs to be linear in the parameters, i.e.

g(µrs) = θ0 + αr + αs + φrs. (3.2)

This idea is the workhorse of generalized linear models. A convenient
choice for g is represented by the logarithm, but others can be consid-
ered as well.

Model (3.2) assumes that the cosponsorship behaviour is affected
by party membership only, and it may thus be too restrictive [Wang
and Wong, 1987]. For example, we can imagine a data generating pro-
cesswhere, besides partymembership, attributes such as age or gender
difference between deputies play a role in the process of bill cospon-
sorship. If this is the case, a pure stochastic blockmodel would disre-
gard these effects on network formation. In order to cope with such
situations, we can consider the following model:

aij|(i ∈ Br, j ∈ Bs, xij) ∼ Poi(µij = λijT )

g(µij) = θ0 + αr + αs + φrs + xijβ,
(3.3)

where xij is a vector of covariates associated to the couple (i, j) and
β is the vector of parameters related to those covariates.

Similar to the model of Wang and Wong [1987], model (3.3) is not
a proper stochastic blockmodel, because it allows µij ̸= µkj for two
units i, k belonging to the same group Br. Nevertheless, it retains its
focus on the role played by blocks in shaping the network, including
specific sets of parameters αr for block relevance and φrs for interac-
tions within and between blocks. Note that the stochastic blockmodel
in (3.2) can be derived as a particular case of (3.3) by setting β = 0.

3.3.2 Identifiability

Generalized linear models [Nelder and Wedderburn, 1972; McCul-
lagh and Nelder, 1989] relate the mean of the response µ ∈ M to a lin-
ear combination of variables by means of a link function g : M → R,
which transforms µ ∈ M into η = g(µ) ∈ R.
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We model the data generating process in equation (3.2) with

log(µij) = θ0 +

p∑
r=1

αrDr(i) +

p∑
r=1

αrDr(j) +

p∑
r≤s

φrsDrs(i, j), (3.4)

where Dr(i) = I(i ∈ Br) and Drs(i, j) = I(i ∈ Br, j ∈ Bs ∨ i ∈
Bs, j ∈ Br) for r ≤ s = 1, ..., p are dummy variables that indi-
cate whether a unit i belongs to group Br, or whether the pair of
nodes (i, j) implies an interaction between blocks Br and Bs. How-
ever, (3.4) is not identifiable without further contraints. Typically the
way in which identifiability constraints are specified is not particu-
larly important, as each parametrization is equivalent; however, as we
will be penalizing some parameters in later sections, the parametriza-
tion will be important. Thus, we introduce the following set of p + 1
identifiability conditions:

p∑
r=1

αr = 0 and
p∑

s=1

φrs = 0 ∀r = 1, ..., p, (3.5)

where for ease of notation we write φsr = φrs.
If we incorporate these constraints into (3.4) by lettingα1 = −∑p

r=2 αr

and φrr = −∑s̸=r φrs, ∀r = 1, ..., p, (3.4) can be rewritten as

log(µij) = θ0 +

p∑
r=2

αrTr(i) +

p∑
r=2

αrTr(j) +

p∑
r<s

φrsTrs(i, j), (3.6)

where Tr(i) = Dr(i)−D1(i), r ̸= 1 and

Trs(i, j) = Drs(i, j)−Drr(i, j)−Dss(i, j), r ̸= s.

Likewise, it is possible to represent the data generating process in
(3.3) with the following generalized linear model:

log(µij) = θ0 +

p∑
r=2

αrTr(i) +

p∑
r=2

αrTr(j)

+

p∑
r<s

φrsTrs(i, j) + xijβ.

(3.7)
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3.3.3 Extendibility

The model that we propose differs from traditional models, where
the outcome variable refers to a single statistical unit. An edge eij in-
volves, in fact, two statistical units, i and j. This, in turn, implies that
covariates that measure individual features ought to be transformed
into edge attributes before they can be included into (3.6). As an ex-
ample, the sex (F/M) of two nodes gives rise to three possible edges:
edges involving twomales (MM), two females (FF) or onemale and one
female individual (FM). The ages of two individuals could be trans-
formed into their absolute difference, or some other transformation
such as their average, minimum, maximum, etc.

The unusual nature of this model makes us examine its relevant in-
variance properties.Wit andMcCullagh [2001] introduced the concept
of extendibility of a statistical model, arguing that a sensible model is
the one that, depending on the particular circumstances, can accom-
modate further treatments, fewer covariate levels or changes of mea-
surement scale than the ones actually observed. They advocate that
invariance under selection of treatments, merging of covariate levels
and changes ofmeasurement scale should be explicitly discussedwhen
a new statistical model is introduced, and they showed that some com-
monly used models fail in this respect.

In our context, one could wonder whether it is sensible to require
invariancewith respect to group selection (introduction or elimination
of a party), group merging (union of two existing parties) or changes
of the measurement scale for aij . The answer to the first two points is
strictly connected to what we consider to be a group: in the context of
bill cosponsorship networks, each deputy joins a parliamentary group,
so that a block is a group of deputies who share similar political views
and come together to promote the same political agenda. We there-
fore would like our model to retain its structure irrespective of the fact
that certain groups of individuals have been included or excluded from
the analysis. On the other hand, if two parliamentary groups were to
be merged this would produce a new political group, whose features
would be different from any of the two original groups. For these rea-
sons, we require model (3.6) to be invariant under selection of groups,
whereas we do not require invariance under group merging.
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Invariance under selection of groups requires that, if one group -
say Bp - is excluded from model (3.6) and the new model

log(µ′
ij) = θ′0 +

p−1∑
r=2

α′
rTr(i) +

p−1∑
r=2

α′
rTr(j) +

p−1∑
r<s

φ′
rsTrs(i, j), (3.8)

s.t.
p−1∑
r=1

α′
r = 0 and

p−1∑
s=1

φ′
rs = 0 ∀r = 1, ..., p− 1,

is considered, then it is possible to derive the parameters of (3.8) as
a function of the parameters of (3.6). Indeed, this can be achieved by
imposing µ′

rs = µrs, r ≤ s = 1, ..., p−1 (selection requirement), and
solving the resulting system of linear equations.

Finally, one might wonder whether it would be sensible to require
invariance with respect to changes of measurement scale. Since the
edge weights aij are counts, it does not make sense to apply transla-
tions or dilatations to aij . However, we can consider changes of time
scale and ask how this affects the block-means µrs. Let’s consider a
change of time scale from a system A with time expressed as TA and
rates as ζArs to a system B with time TB and rates ζBrs. E.g., system A
could consider days and system B hours as time unit, so that TA =
TB/24 and ζArs = 24ζBrs. More generally, we can let ζArs = kζBrs, k > 0.
SinceTA = k−1TB , the block-meansµrs are not affected by the change
of time system:

µA
rs = TAζArs = k−1TBkζBrs = TBζBrs = µB

rs.

This result implies that the parameters θ0, αr and φrs in (3.2) are left
unchanged, so that the model is invariant with respect to changes of
time scale measurement.

3.4 Inference

3.4.1 Parameter estimation

The sufficient statistics associated tomodel (3.6) consists of the sum
of weights aij and the corresponding number of node pairs involved
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for every pair of blocks (Br, Bs), i.e., ∑
i<j,i∈Br,j∈Bs

aij, nrs

 , r ≤ s ∈ {1, ..., p},

where nrs = nrns if r ̸= s, nrr = nr(nr − 1)/2 and nr denotes the
number of nodes that belong to group Br.

As concerns the extended blockmodel in (3.7), denote by

θ = (θ0, α2, ..., αp, φ12, φ13, ..., φp−1,p, β)

the parameter vector of length q = dim(θ) = p(p + 1)/2 + dim(β)
and let

X = (1, T2(i)+T2(j), ..., Tp(i)+Tp(j), T12(i, j), ..., Tp−1,p(i, j), xij)i<j

and y = (aij)i<j be the corresponding design matrix and response
vector. Hence, the sufficient statistic is given by XTy, as usual in a
generalized linear model.

Model estimation can be performedwithmaximum likelihood. How-
ever, since the number of parameters q included in the model increases
quadratically with the number of groups p, maximum likelihood esti-
mation could lead to solutions with an extremely large number of pa-
rameters, making interpretation cumbersome. Thus, we propose the
use of penalized likelihood methods so as to achieve a parsimonious
solution.

Besides enhancingmodel interpretability, penalized likelihoodmeth-
ods enable us to detect potentially sparse blockmodel generatingmech-
anisms: as an example, one could imagine that a situation of indiffer-
ence between collaboration and repulsion exists between some pairs
of blocks, i.e., that φrs = 0 for some pairs (Br, Bs) in (3.3).

Since the introduction of the lasso [Tibshirani, 1996], penalized in-
ference has become a popular choice for variable selection and the so-
lution of high dimensional problems. Many methods in this field have
been introduced (see Bühlmann and van de Geer [2011] and Fan and Li
[2001] for an overview). In this paper we use the adaptive lasso [Zou,
2006], which is a weighted extension of the Least Absolute Shrink-
age and Selection Operator (lasso) introduced by Tibshirani [1996],
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because it has good consistency properties.
The adaptive lasso aims for a sparse model solution by maximizing

a penalized likelihood that incorporates the loglikelihood of themodel,
and a weighted ℓ1 penalty on the parameters included in the model.
This penalty is multiplied by a tuning parameter δ ≥ 0, which deter-
mines the amount of regularization that is imposed on the parameters.
The adaptive lasso problem for (3.7) is

max
θ

logL(θ)− δ

q∑
j=1

wj|θj|, (3.9)

where L(θ) denotes the likelihood of the model and wj is the weight
associated to the jth element θj of θ. The tuning parameter δ is typ-
ically chosen either by cross-validation, or by minimizing a suitably
defined information criterion. We discuss this issue in more detail in
Section 3.4.2.

Denote by θ∗ a consistent estimator of θ and byN = n(n−1)/2 the
total number of pairs of nodes in the network. The attractive feature
of the adaptive lasso is that if the weight vector is defined as w =
1/|θ∗|γ , and if δ/

√
N → 0 and δN (γ−1)/2 → ∞, then the adaptive

lasso estimator θ̂ is consistent in variable selection (see theorem 4 in
Zou, 2006).

The choice of the parameters that are subject to the ℓ1 penalty
mostly depends on the role and themeaning that we associate to them.
In our view, the parameter φrs expresses the presence of a collabora-
tion or repulsion between units in groups Br and Bs after we have
accounted both for the overall density of the network (θ0), and the
relevance of the groups (αr and αs). In order to retain this interpreta-
tion, we do not penalize θ0 nor αr, r = 1, ..., p, i.e., we set wj = 0 if
j ∈ {1, ..., p}.

On the other hand, we would like to achieve some sparsity in the
representation of relations betweeen groups by penalizing the φrs co-
efficients (r ̸= s), as well as β. For the penalty weights, we compute
the maximum likelihood estimate θ̂ and set wj = 1/|θ̂j|γ , with γ = 2,
for j > p. We employ the R package glmnet [Friedman et al., 2010]
to estimate the penalized generalized linear models discussed in the
next sections.
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3.4.2 Model selection

In a penalized likelihood framework, the tuning parameter δ deter-
mines the amount of regularization that is imposed on the parameters
and, eventually, the level of sparsity of the solution. Two main ap-
proaches are typically employed for the selection of an optimal tuning
parameter δ∗: cross-validation, or minimization of model information
criteria. In the latter case, one seeks for

δ∗ = argmin
δ

(
−2 logLδ(θ̂) + am · hδ

)
, (3.10)

where m denotes the number of observations and hδ the dimension-
ality (to wit, the number of non-null elements) of θ̂. Different choices
have been proposed for am. Alongside Akaike’s information criterion
(AIC), which sets am = 2, and the Bayesian information criterion
(BIC), which takes am = logm, recent proposals include the gener-
alized information criterion (“GIC” hereafter) of Fan and Tang [2013],
where am = log(logm) log hδ, and the modified BIC (“MBIC” here-
after) of Chand [2012], where am =

√
m/hδ.

Here, we consider five simulations to assess the performance of
these criteria in the selection of δ. In each simulation, we generate a se-
quence of networkswith increasing number of nodesn = 50, 100, 150,
..., 500 from a stochastic blockmodel with p = 10 blocks. We set
θ0 = 0.7 and draw αr ∈ U(−0.3, 0.3), r > 1. Moreover, we set some
φrs, r ̸= s coefficients equal to 0, and draw the remaining ones in
such a way that |φrs| ∼ U(cmin, cmax), with cmax = 0.5. Coefficients
α1 and φrr, r = 1, ..., p are subsequently derived from Equation (3.5).
The simulations differ for the number of null φrs coefficients (r ̸= s)
and for the betamin condition (|φrs| ≥ cmin) imposed on the non-null
φrs coefficients; Table 3.1 summarizes the different settings in each
simulation.

We perform model selection over a grid of 100 δ values. Each se-
lection criterion leads to an optimal δ and corresponding model esti-
mates. In order to compare the performance of each criterion in the
selection of models capable to correctly distinguish signals (φrs ̸= 0)
and non-signals (φrs = 0), we compute the accuracy of each solution,
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Table 3.1: An overview of Simulations A-D. In Simulation A, we consider a dense
model (i.e., with high dimensionality h) with a moderate betamin condition imposed
on the non-null φrs coefficients (|φrs| ≥ cmin). We progressively increase the sparsity
of the model in Simulations B and C. In Simulation D we consider a model with
medium sparsity level (like the one in Simulation B), but we make signal detection
harder by imposing a milder betamin condition.

Simulation # (φrs = 0) h Betamin condition
A 10 45 (dense) cmin = 0.2 (moderate)
B 20 35 (medium) cmin = 0.2 (moderate)
C 30 25 (sparse) cmin = 0.2 (moderate)
D 20 35 (medium) cmin = 0.1 (mild)

i.e.
Accuracy =

True positives + True negatives
p(p− 1)/2

,

and we compare it to the maximum achievable accuracy for the set of
100 models considered. As shown in Figure 3.1, every criterion quickly
achieves the maximum accuracy when a dense model is considered
(Simulation A), but the accuracy of cross-validation, AIC and MBIC is
often lower when sparser models are considered (Simulations B and
C), or when signal detection is complicated by the imposition of a
milder betamin condition (Simulation D). Overall, BIC and GIC out-
perform the competing methods and, thus, appear to be the best in-
formation criteria in terms of selection accuracy.

3.4.3 Reduced graph

A focal aspect of stochastic blockmodels is the inference and de-
scription of relations between blocks of individuals in the network. A
graphical representation of the inferred relations between blocks can
be obtained by means of a reduced graph, whose nodes are the blocks.
The idea behind this reduced graph is rather simple: summarize the
original graph by visualizing relations between blocks directly, so as
to achieve a simpler and clearer representation of a large network.

As an example, consider the graph in the left box of Figure 3.2.
Three groups of nodes (sets 1, 4 and 5) appear to be featured by a
strong internal connectivity; besides, nodes within each group tend to
be preferentially linked to nodes belonging to one or two other groups;
e.g., it appears that nodes in set 3 tend to prefer nodes in sets 1 and 2
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Figure 3.1: Results of Simulations A-D. Comparison of the accuracy of mod-
els chosen by 10-fold cross-validation (CV), Akaike’s Information Criterion (AIC),
Bayesian Information Criterion (BIC), the Generalized Information Criterion (GIC)
of Fan and Tang [2013] and the modified BIC (MBIC) of Chand [2012] with the max-
imum achievable accuracy (MAX). Every criterion quickly achieves the maximum
accuracy in Simulation A, where we consider a model with few null φrs. In Sim-
ulations B, C and D, instead, BIC and GIC outperform CV, AIC and MBIC: this is
particularly apparent when a sparser model is considered (Simulation C), or when
signal detection is made harder by the imposition of a milder betamin condition
(Simulation D).
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Figure 3.2: An example of reduced graph. The figure shows an unweighted graph
with 50 nodes, partitioned into 5 groups (A) and a simplified representation of rela-
tions between its groups (B) that we call reduced graph.

to nodes in sets 4 and 5. Based on similar observations, we can attempt
to draw a graph that summarizes our intuition: the graph in the right
box of Figure 3.2 provides an example.

Different strategies to derive a reduced graph from a statisticalmodel
can be considered. Anderson et al. [1992] obtained such a graph set-
ting a cutoff c on the predicted probability to observe an arrow from
nodes in a groupBr to nodes in a groupBs, π̂rs, and drawing an arrow
fromBr toBs if π̂rs > c. The resulting reduced graph links blocks that
are highly connected, but edges therein do not necessarily display col-
laborations between groups. For example, nodes in a group Br could
have overall higher degrees: if this is the case, block Br would be con-
nected to any block, just as a result of the high average degree of nodes
in Br.

Instead, we propose an alternative strategy to derive the reduced
graph, which is based on the parameter estimates φ̂rs in models (3.6)
and (3.7) rather than on µ̂rs (or π̂rs). By doing so, we control for the
average degree of blocks Br and Bs, because an estimate φ̂rs > 0
entails collaboration between nodes in blocks Br and Bs. Thus, we
draw an edge between two blocks Br and Bs if φ̂rs > 0. We can also
derive a reduced graph that displays repulsions by connecting blocks
such that φ̂rs < 0.
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3.5 Analysis of bill cosponsorship networks of the
Italian Chamber of Deputies

We consider now the networks representing bill cosponsorship in
the Italian Chamber of Deputies, which we introduced in Section 3.2.
We focus our attention on the cosponsorship networks of the four leg-
islatures XIV-XVII, covering the period 2001-2015.

During this period, the number of parliamentary groups has ranged
from 8 (XIV and XVI legislatures) to 10 (XVII) and 13 (XV legislature);
in each legislature, a mixed group has always been present, gathering
deputies from small political groups with different political orienta-
tion, which did not meet the requirements (defined in the Chamber’s
regulations) for the creation of a parliamentary group.

We study the dependency between bill cosponsorship and parlia-
mentary groups, controlling for individual features such as gender, age
and the electoral constituency in which the deputy has been elected.
Gender can give rise to edges involving two male (MM), two female
(FF) and a female and a male (FM) deputies; we take MM as refer-
ence. Besides, we consider the age difference of the two deputies, and
an indicator function indicating whether the two deputies have been
elected in the same electoral constituency.

Then, for each legislature we estimate (3.7) with the adaptive lasso,
using BIC to select the tuning parameter δ. Table 3.2 shows the esti-
mates of θ0 and β (standard errors are not shown because their com-
putation and usefullness is still controversial in penalized inference
settings). Note that the intercept θ0 is lower for the XV and XVII leg-
islatures. This is coherent with the fact that whereas legislatures XIV
and XVI lasted 5 years, the XV legislative cycle lasted 2 years only, and
that the data for the current (XVII) legislature refer to a period of less
than 3 years (until the end of 2015)I. Furthermore, bill cosponsorships
turn out to be more frequent between female deputies (FF) and, in gen-
eral, they are more likely to take place if at least one of the deputies
involved is female (FM). The effect of age difference on bill cospon-
sorship is small and negligible, whereas the positive coefficient asso-
ciated to pairs of deputies elected in the same electoral constituency
provides evidence that deputies tend to collaborate also on the basis

IAssuming a fixed rate ζ across legislatures, we would expect µ = Tζ and θ0 to increase with T .
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Table 3.2: Size effects of gender, age and electoral constituency on bill cospon-
sorship. The table displays the estimates of θ0 (unpenalized) and β (penalized) in
model 3.7 for the following legislatures: XIV (2001-2006), XV (2006-2008), XVI (2008-
2013) and XVII (2013-2015).

Covariate Legislature
XIV XV XVI XVII

Intercept (θ0) -2.49 -3.05 -2.53 -3.60
Female-Male (FM) 0.251 0.170 0.174 0.198
Female-Female (FF) 0.998 1.00 0.662 0.606

Age difference 0 0 -0.010 -0.002
Same electoral constituency 0.522 0.490 0.514 0.553

of geographic proximity.
Whereas the effect of covariates in Table 3.2 appears to be qualita-

tively the same over time, the pattern of collaborations between par-
ties changes substantially. The reduced graphs in Figure 3.3 display the
inferred collaborations between parliamentary groups; a self loop in-
dicates that there is a tendency of deputies to cosponsor with deputies
from the same parliamentary group, and node size is proportional to
the relative frequency of cosponsorship (αr) of deputies in each group.
A first, interesting conclusion is that cosponsorships during the XIV
and XV legislatures reflects collaborations within each party, and be-
tween parties that belonged to the same political coalition. In fact, both
legislatures featured strong competition between two coalitions, one
of which (the right-wing in the first case, and the left-wing in the lat-
ter) held the majority in Parliament and could thus govern on its own.
This situation seems to have generated a strong ideological polariza-
tion, which is evident from the pattern of collaborations between the
parliamentary groups.

The division of the Chamber into two coalitions endedwith the XVI
legislature, as a centrist party (UDC) that was not part of any coali-
tion entered the Chamber. The majority was in the hand of the right-
wing coalition, whereas UDC and the left-wing coalition were at the
opposition. Three years later, a group of right-wing deputies formed
FLI, a new political group that abandoned the right-wing coalition
and entered a centrist coalition with UDC. One year later, the right-
wing government resigned and a coalition government, supported by
a heterogeneous coalition of parties, took its place. Besides cosponsor-
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Figure 3.3: Reduced graphs representing collaborations between parliamen-
tary groups based on bill cosponsorship. The graphs display collaborations in-
ferred with model (3.7) (i.e., φ̂rs > 0). White squares denote right-wing parliamen-
tary groups, white circles left-wing groups and darkgrey squares centrist groups. A
darkgrey circle denotes the mixed group, whereas a lightgrey circle the Movimento
5 Stelle. Node size is proportional to the productivity of each parliamentary group
(α̂r).
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Figure 3.4:Reduced graph representing repulsions in the XVI legislature. The
graph displays repulsions inferred with model (3.7) (i.e., φ̂rs < 0). White squares de-
note right-wing parliamentary groups, white circles left-wing groups and darkgrey
squares centrist groups. A darkgrey circle denotes the mixed group, whereas a light-
grey circle the Movimento 5 Stelle. Node size is proportional to the productivity of
each parliamentary group (α̂r).

ships within parliamentary groups, our model detects collaborations
between the main right-wing party (PDL) and each of the smaller par-
ties from the same coalition (including FLI), between two opposition
parties (PD and UDC) and a couple of further collaborations involving
the mixed group. It is also interesting to consider the reduced graph
displaying repulsions (φ̂rs < 0) shown in Figure 3.4: most of the edges
indicate (not surprisingly) that there is few collaboration between par-
ties in different coalitions, but also between UDC and FLI, which allied
towards the end of the legislature. In short, the pattern of bill cospon-
sorships reflects the division between the right-wing majority (FLI,
LN, PDL and P&T) and the opposition (PD, IDV, UDC) of the first half
of the legislature quite clearly, despite the fact that the analysis consid-
ers cosponsorship over the whole legislature span. A possible explana-
tion for this result is that cosponsorship events are more likely to take
place in the first years of each legislature: as a matter of fact, owing
to the long time that is typically necessary for a bill of parliamentary
initiative to be discussed and approved, a bill proposed towards the
end of the legislature is extremely unlikely to be approved, and this
can in turn discourage deputies from proposing bills in the last years
of their mandate.
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The fragmentation in the composition of the Chamber has become
even stronger in the current (XVII) legislature. Since none of the 4
coalitions now represented in the Parliament (left-wing, right-wing,
the centrist Scelta Civica (SC) and theMovimento 5 Stelle (M5S)) could
form a government alone, alliances between parties belonging to dif-
ferent coalitions have arisen, giving rise to heterogeneous parliamen-
tary majorities. In this case, the reduced graph in Figure 3.3 shows that
besides self-loops accounting for a tendency towards within-group
cosponsorship, deputies from different right-wing parties collaborate
with each other. Moreover, deputies from the centrist party SC col-
laborate with deputies belonging to two centrist parties (CD and AP)
which are ideologically alike and are all part of the majority, but be-
long to different political coalitions (left and right-wing, respectively).
Further collaborations are detected between two left-wing parties (PD
and SEL) and between themixed group and various parties. Apart from
a collaboration with the mixed group, deputies from M5S do not seem
to collaborate with any other party.

In short, our analysis of bill cosponsorship networks indicates the
evolution from a highly polarized political arena, in which deputies
based collaborations on their identification with left or right-wing val-
ues, towards an increasingly fragmented Parliament, where a rigid
separation of political groups into coalitions does not seem to hold
any more, and collaborations beyond the perimeter of coalitions have
now become now possible.

3.6 Conclusion and discussion

Community affiliation can deeply affect social behaviour and the
formation of relations between individuals. In social network analysis,
stochastic blockmodels represent a popular approach to assess com-
munity structure in the presence of known community memberships.

In this Chapter, we have developed an extended stochastic block-
model for the analysis of bill cosponsorships in the Italian Parliament.
This model retains the focus on relations between pairs of blocks that
characterizes pure stochastic blockmodels by including parameters for
group productivity (αr) and interactions between pairs of groups (φrs),
but it also allows heterogeneity of units within a block. Because the
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number of parameters increases quadraticallywith the number of groups,
we advocate the use of a penalized estimation approach so as to select
a parsimonious model that displays relevant collaborations and repul-
sions between pairs of blocks only. We represent the inferred collab-
orations and repulsions by means of a reduced graph, which summa-
rizes the relations that exist between blocks.

Our analysis of bill cosponsorship in the Italian Chamber of Deputies
from 2001 to 2015 points out the evolution from a political system
strongly polarized into a left and a right-wing coalition, in which bill
cosponsorship takes place almost exclusively between deputies be-
longing to the same coalition, towards an increasingly fragmented po-
litical arena, with more than two coalitions of parties and in which
collaborations beyond the perimeter of coalitions are now possible.

We remark that our data analysis relies on bill cosponsorship net-
works that are aggregated over the span of each legislature. This does
not allow us to take into account possible changes in membership
of parliamentary groups within a legislature, a practice - known as
trasformismo - that is rather frequent in the Italian Parliament. For
this reason, we have relied on the group memberships of each deputy
as reported by the website http://dati.camera.it. In principle, our model
is capable to handle this situation. If, for example, deputy i has been
member of party Bq for a time span equal to t1 and of party Br for t2,
the number of bills that they have cosponsored with deputy j ∈ Bs is
still a Poisson process:

Nij(t1 + t2) = Nij(t1) +Nij(t2) ∼ Poi(λqst1 + λrst2).

Thus, availability of data disaggregated over time would allow us to
cope with these changes in group membership, providing a more real-
istic account of this phenomenon. Furthermore, this would also entitle
us to model directly the interaction rates λij between deputies, which
(as we pointed out in our comment to the results for the XVI legis-
lature) is unlikely to be constant across the legislature (both because
of procedural issues, and of the changing political environment). In
particular, it would make it possible to verify the hypothesis that most
cosponsorships take place at the beginning of the legislature.

Although the model discussed in this Chapter allows to introduce
heterogeneity in stochastic blockmodels by means of nodal or edge-
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specific covariates, we emphasize that this is not the only way to ex-
tend the stochastic blockmodel. Further extensions include the intro-
duction of a set of nodal effects in the model (we discuss this issue
in Chapter 4), or the relaxation of the conditional independence as-
sumption between the univariate Poisson processes Nij(t) associated
to each pair of deputies (i, j). The latter can be achieved by consider-
ing a different class of network models traditionally defined for binary
graphs, known Exponential Random Graph Models or ERGMs [Frank
and Strauss, 1986]; generalizations of ERGMs (“GERGMs”) to edge-
valued graphs are more recent [Desmarais and Cranmer, 2012]. How-
ever, this extension is currently prevented by the fact that estimation
of such models is computationally intensive and extremely problem-
atic for networks featuring more than (roughly) 100 or 200 nodes.

With particular reference to the bill cosponsorship data analysed
in Section 3.5, the analysis of the standardized residuals of model (3.7)
seems to indicate an unsatisfactory goodness of fit. This can be im-
proved by accounting for further network features that can make the
model more realistic. In particular, in Chapter 4 we provide an at-
tempt to model the observed heterogeneity in the degree distribution
of nodes by introducing a set of nodal random effects; an approach,
this, that allows to improve significantly the goodness of fit of our
model. In Signorelli andWit [2017], instead, we consider further nodal
covariates (seniority and education level of the Deputies) and provide
an attempt to consider also triadic effects in a penalized pseudolikeli-
hood framework.

Even though here we have considered networks where edges are
undirected and weighted, with weights in the set of natural numbers,
themodels that we propose can be easily generalized in two directions.

Directed edges can be handled by introducing a new set of param-
eters so as to distinguish sender and receiver nodes, as well as a pa-
rameter ρ that indicates the tendency of arrows to be reciprocated. As
an example, we can rewrite (3.2) as follows

aij|(i ∈ Br, j ∈ Bs) ∼ Poi(µrs),

log(µrs) = θ0 + ρ+ αr + βs + φrs.

Here, a new set of parameters βs ought to be introduced: whereas αr

is now a measure of productivity of group Br (which the sender node
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i belongs to), βs is a measure of popularity of group Bs (which the
receiver node j belongs to). Furthermore, note that here φrs ̸= φsr, and
that a positive φrs denotes now a collaboration from nodes in group
Br towards nodes in group Bs.

Furthermore, the use of generalized linear models allows to ex-
tend easily model (3.3) beyond Poisson processes. E.g., if the network
is binary (i.e., aij ∈ {0, 1}) it suffices to replace the Poisson with a
Bernoulli distribution, and the log-link with a logit or a probit link
function; if a weighted networkwithweights in the set of real numbers
is at hand, the Poisson distribution can be replaced with any contin-
uous distribution, and the identity function becomes a natural choice
for g.
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Chapter 4

Joint modelling of community
structure and nodal heterogeneity
in networks

4.1 Introduction

In Chapter 3 we have discussed how stochastic blockmodels can
provide a useful insight of the relations between communities of nodes
in a network. We have also observed that traditional stochastic block-
models suffer from a strong limitation, which is the assumption that
nodes in a group have a homogeneous behaviour. Therefore, we have
proposed an extension of stochastic blockmodels that allows to model
heterogeneity between nodes within the same block on the basis of a
set of observed covariates, and we have advocated the use of a penal-
ized inference approach to estimate that model.

Social networks typically feature a strong heterogeneity among
their actors, which is apparent from the fact that their degree distribu-
tion is usually strongly skewed. In friendship networks, it is common
to observe that a few individuals are highly popular, whereas most
individuals in the network have a smaller number of friends. In bill
cosponsorship networks, often a few, highly collaborative parliamen-
tarians tend to cosponsor a large number of bills, whereas their col-
leagues usually cosponsor just a few, selected legislations. In order to
be of practical utility in the analysis of real networks, it is therefore
important that stochastic blockmodels can handle this characteristic
feature of social networks consistently.

Stochastic blockmodels, however, are based on information on group
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membership of nodes only. A first source of information which allows
to model directly this heterogeneity is given by any other individual
covariate besides group membership. As discussed in Section 3.4.1, the
inclusion of covariates in stochastic blockmodels sensitively increases
the computational complexity of the model at hand, but estimation
of the extended blockmodel with covariate information proposed in
Chapter 3 can still be performed on a standard computer with limited
temporary memory (RAM) using the R package glmnet [Friedman
et al., 2010].

There are two reasons, however, that suggest that considering fur-
ther sources of heterogeneity could prove valuable. The foremost is
that in some cases, only information on group membership might be
available, without any further nodal covariates. But even if a limited
number of covariates is available, such as in the case of the bill cospon-
sorship networks for the Italian Parliament that are the subject of
Chapter 3, considering the possibility that there might be further, un-
observed sources of heterogeneity allows for a better model fit.

The inclusion of random effects to model unobserved sources of
heterogeneity is the subject of this Chapter. In Section 4.2 we will dis-
cuss how it is possible to extend the model considered in Chapter 3
so as to include nodal random effects. We will propose a generalized
linear mixed model that allows to achieve such purpose and consider
two alternative inference approaches: a traditional one, based on max-
imum likelihood estimation, and a penalized inference one, in which
(in analogy to Chapter 3) we resort to the adaptive Lasso. Besides com-
paring the results from those two approaches, we will discuss the con-
siderable increase in computational complexity that the inclusion of
random effects in a penalized inference framework currently implies -
a computational burden that, for the time being, seems to prevent (or,
at least, to limit to very small networks) the possibility to carry out the
estimation of an extended stochastic blockmodel with random effects
in a penalized inference setting using a personal computer.

In Section 4.3 we will consider an alternative approach to mod-
elling unobserved sources of heterogeneity in networks based on la-
tent spacemodels for networks [Hoff et al., 2002; Handcock et al., 2007;
Krivitsky et al., 2009]. Latent space models differ in nature from the
stochastic blockmodels discussed in Chapter 3 and Section 4.2, mainly
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because they do not incorporate information on known group mem-
bership of units. Nevertheless, group membership can be used after
model estimation to inspect the position of nodes in the latent space,
and so the latent space model can provide an interesting alternative
to inspect the presence of community structure while accounting for
unobserved sources of heterogeneity across nodes.

4.2 Joint modelling of community structure and
nodal heterogeneity

4.2.1 Background: from GLMs to GLMMs

Awell known feature of generalized linear models [McCullagh and
Nelder, 1989] is the fact that they relate the linear predictor η = Xβ

to the expectation of the response µ = E(Y ) by means of a (mono-
tone continuous and differentiable) link function g: η = g(µ). It is
important to observe that differently from the linear model, general-
ized linear models (GLMs) do not include an error component in the
model.

The inclusion of a random component in GLMs can be achieved
with an extension of GLMs, known as generalized linear mixed mod-
els (GLMMs, McCulloch et al. 2008). GLMMs relate the conditional ex-
pectation of the response Y given the unobserved random component
U , µ = E(Y |U = u), to the sum of the linear predictorXβ and of Zu:

g(µ) = Xβ + Zu,

where u ∼ fU(u) and Z is a known model matrix associated to the
random effects.

Different approaches to the estimation of GLMMs have been pro-
posed. In principle, onewould like tomaximize the log-likelihood func-
tion

ℓ =
∑
i

log f(yi) =
∑
i

log

∫
u

fYi|U(yi|u)fU(u)du. (4.1)

However, optimization of (4.1) is often complicated by the integration
of the random component. Therefore, a host of alternative strategies
for its maximization have been proposed, including penalized quasi-
likelihood, restricted maximum likelihood and the EM algorithm; we
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refer to Dean and Nielsen [2007] and McCulloch et al. [2008] for an
overview.

An alternative approach to the estimation of GLMMswas proposed
by Lee and Nelder [1996]. It consists of the maximization of the hier-
archical likelihood h, which is the joint log-likelihood of y and u (or,
equivalently, the sum of the conditional log-likelihood of y|u and of
the log-density function of u):

h =
∑
i

log f(yi, u) =
∑
i

{log f(yi|u) + log f(u)}. (4.2)

4.2.2 Model specification

In Section 3.3.1 we have introduced the stochastic blockmodel for
edge-valued graphs defined by Equation (3.2). Such a model assumes
exchangeability between those node pairs (i, j)which involve the same
pair of groups (Br, Bs), so that µij = µi′j′ for i, i′ ∈ Br and j, j′ ∈ Bs.
In order to make the model more flexible, we have allowed the ex-
pected number of cosponsorships between two deputies to depend on
a set of covariates xij (Equation (3.3)). Such a model allows for het-
erogeneity of nodes within the same block, which is modelled on the
basis of observed information at the level of nodes or of edges.

Further flexibility can be achieved by considering potential unob-
served sources of heterogeneity. Let ui be a normally distributed ran-
dom effect that refers to node i, such that ui ∼ N

(
0, σ2

)
, and let

ui ⊥⊥ uj if i ̸= j. Like before, we can specify a Poisson GLM with the
logarithm as link function g; besides, we can include nodal random
effects ui, i ∈ {1, ..., n}, which we associate to each node. A GLMM
that extends models (3.2) and (3.3) can thus be defined by the following
data generating process

aij|(i ∈ Br, j ∈ Bs, xij, ui, uj) ∼ Poi(µij)

g(µij) = θ0 + αr + αs + φrs + xijβ + ui + uj
(4.3)

and, after imposing the identifiability constraints in Equation (3.5), it
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can be specified (cfr. Equations (3.6) and (3.7)) as

log(µij) = θ0 +

p∑
r=2

αr [Tr(i) + Tr(j)] +

p∑
r<s

φrsTrs(i, j)

+
n∑

k=1

uk [Ik(i) + Ik(j)] ,

(4.4)

where Ik(i) = 1 if and only if k = i, and Ik(i) = 0 otherwise.

4.2.3 Model estimation

We consider two alternative approaches to the estimation of model
(4.4).

The first one is based on the maximization of the hierarchical like-
lihood of the model [Lee and Nelder, 1996]. We resort to the R package
hglm [Ronnegard et al., 2010] for model fitting.

The second approach that we consider is a penalized likelihood ap-
proach, in analogy to what we have done in Chapter 3. For the same
reasons outlined in Section 3.4, we employ the adaptive Lasso [Zou,
2006] to estimate the model. Because of the random component that
has now been included in the model, the optimization problem takes
form

max
(θ,σ)

logL(θ, σ; y, u)− δ

q∑
j=1

wj|θj|, (4.5)

whereL(θ, σ; y, u) denotes the likelihood of themodel,u = (u1, ..., un)
is the vector of random effects and θ and wj are the same as in Equa-
tion (3.9). The weights wj are defined like in Chapter 3 as well: we
do not penalize θ0 nor αr, r = 1, ..., p, whereas we set w = 1/|θ∗|γ
for β and φ, choosing the maximum likelihood estimator as consistent
estimator θ∗ of θ and γ = 2.

Optimization of problem (4.5) can be performed with the R pack-
age glmmLasso [Groll, 2016], which implements the estimation al-
gorithm presented in Groll and Tutz [2014].
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4.2.4 Results

In this Section we discuss the results of the application of model
(4.4) to data on the bill cosponsorship network for the XVI legislature
of the Italian Chamber, which we already analyzed in Chapter 3.

Maximum likelihood

We begin by estimating the unpenalized generalized linear mixed
model with the R package hglm [Ronnegard et al., 2010], which max-
imizes the hierarchical likelihood (4.2) associated to model (4.4).

Table 4.1 shows the results for the covariates and the random effects
variance. Comparison with the results from the penalized GLM from
Chapter 3 (Table 3.2) shows that the same conclusions can be derived
with respect to the facts that female deputies are more active in bill
cosponsorship than their male colleagues, and that age difference is
substantially irrelevant whereas geographical proximity accounts for
many collaborations between the deputies. The variance of the ran-
dom effects seems relatively small but not negligible.

In Figure 4.1we display a reduced graphwhich differs from the ones
described in Sections 3.4.3 and 3.5. As we are now considering unpe-
nalized φrs coefficients, it is not possible to distinguish relevant collab-
orations fromweak or irrelevant collaborations by shrinking some φrs

to zero. However, we can compare each φrs to its standard error and
distinguish positive coefficients that can be thought to be significantly
different from zero (solid edges) from positive coefficients that are not
significant (dashed edges). It is remarkable to observe that all the edges
in the reduced graph in Figure 3.3 are also present, either as solid or
dashed edges, in the reduced graph which we derive here. Moreover,
the reduced graph for the unpenalized model features some further
edges - a result that is however not surprising, as it is easy to imagine
that some of those coefficients that were shrunk to zero in the penal-
ized GLM might turn out to be positive (although marginally or not
significant) in the unpenalized GLMM, where no penalty is imposed
on them.

Overall, inclusion of random effects in the model does not seem to
alter substantially the conclusions which we derived in Chapter 3 for
the bill cosponsorship network of the XVI legislature.
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Table 4.1: Estimates of covariate effects and random effects variance for the
unpenalized GLMM. The table displays the estimates of θ0, β and σ2 for the bill
cosponsorship network of the XVI legislature (2008-2013). * denotes estimates that
are significant at 5% level and ** estimates significant at 1% level.

Parameter Estimate
Intercept (θ0) -3.298**

Female-Male (FM) 0.258**
Female-Female (FF) 0.800*

Age difference -0.008
Same electoral constituency 0.562**

σ2 0.217

XVI legislature (2008−2013)

FLI

FI

IDV

LN

mixed

PD

P&T

UDC

Figure 4.1: Reduced graph representing collaborations between parliamen-
tary groups based on bill cosponsorship (unpenalized GLMM). The graph dis-
plays collaborations inferred with model 3.7 (i.e., φ̂rs > 0). Solid edges correspond to
those parameter estimates that are significant at 5% level, and dashed edges to those
that are not. Node size is proportional to the productivity of each parliamentary
group (α̂r).
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Penalized likelihood

Estimation of the penalizedGLMMdescribed in Section 4.2.3, which
features both random effects and an ℓ1 penalty imposed on some of the
fixed effects, turns out to be rather challenging.

Fitting model (4.4) with the adaptive Lasso currently represents an
extremely expensive computational task, which cannot be performed
on a personal computer: as its implementation, based on version 1.4.4
of the R package glmmLasso, required an amount of temporary
memory approximately equal to 425 GB, we had to resort to some com-
puters with high memory that are part of Peregrine, the High Perfor-
mance Computing cluster of the University of GroningenI. This has
allowed us to overcome the large memory requirement for the op-
timization (nevertheless, we emphasize the fact that computers with
such an availability of temporary memory are currently rare).

While implementing the computations, we also came across some
numerical issues that seem to indicate the possibility of convergence
to local maxima of the penalized likelihood of the model which we
consider, rather than to the global maximum. In particular, the maxi-
mized likelihood of themodel is not amonotone function of the tuning
parameter, although we would expect the maximized likelihood to in-
crease (or, at least, not to decrease) whenever a smaller delta value is
considered. Therefore, we remark that the results reported hereafter
should be considered with care.

As concerns the covariates, the conclusions are in accordance with
the results from the penalized GLM and the unpenalized GLMM for
age difference and electoral constituency. Instead, they appear to be
different for FM and FF, for which the estimates of the corresponding
fixed effects seem to indicate the irrelevance of sex for the productiv-
ity of deputies in bill cosponsorship. However, note that the average
of random effects for male deputies is equal to z̄M = −0.04, whereas
it is z̄F = 0.163 for female deputies. Consideration of this substantial
difference in the random effects allows to conclude once more that
female deputies cosponsor bills more frequently than their male col-
leagues do.

With respect to the inferred collaborations between parties, the
IInformation on Peregrine can be obtained consulting the following URL:

https://redmine.hpc.rug.nl/redmine/projects/peregrine/wiki.

https://redmine.hpc.rug.nl/redmine/projects/peregrine/wiki
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Table 4.2: Estimates of covariate effects and random effects variance for the
penalized GLMM. The table displays the estimates of θ0, β and σ2 for the bill
cosponsorship network of the XVI legislature (2008-2013).

Parameter Estimate
Intercept (θ0) -2.38

Female-Male (FM) -0.004
Female-Female (FF) -0.043

Age difference -0.014
Same electoral constituency 0.699

σ2 0.684

only positive estimates obtained with this approach are related to col-
laborations within the same party. No positive coefficients are instead
detected with respect to collaborations between parties. A possible ex-
planation for this result is that most of the cosponsorships that take
place between different parties might be due to the most productive
deputies, whose large positive random effects might account for most
of these cosponsorships between parties.

4.3 Latent space models

4.3.1 Modelling networks with latent space models

Latent space models for social networks assume that each individ-
ual i in a network has an unknown position zi in a d-dimensional latent
social space, and that edges are conditionally independent given the
position of individuals in the latent space.

Latent space models were introduced by Hoff et al. [2002], who
considered the case of a binary graph. For an undirected graph with
Y = (Y12, ..., Yn−1,n), where Yij ∈ {0, 1} denotes presence or absence
of an edge between nodes i and j and xij is a vector of covariates
related to the pair (i, j), they assume that each tie is conditionally
independent from the other ones given its positions zi, zj in the latent
space

P (Y |Z,X, θ) =
n∏

i<j=2

P (Yij|zi, zj, xij, θ) (4.6)

and they model the conditional probability of Yij = 1with the follow-
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ing logistic model:

logitP (Yij|zi, zj, xij, θ) = β0 + xijβ − |zi − zj|, (4.7)

where zi ∼ MVNd(0, σ
2
ZId) and | · | is the Euclidean distance (but it

could be any other suitable distance).
Handcock et al. [2007] introduced an extension of this model that

accounts for the presence of community structure in networks, by al-
lowing the nodes to belong to G different clusters and by letting the
latent positions follow a mixture of G multivariate normal distribu-
tions

zi ∼
G∑

g=1

λgMVNd(µg, σ
2
gId), (4.8)

where λg denotes the weight of component g in the mixture, λg ≥ 0
∀g and

∑G
g=1 λg = 1.

Krivitsky et al. [2009] extended the lattermodel by introducing a set
of sociality effects γi, which allow to account for degree heterogeneity
across nodes. Likewise the models of Hoff et al. [2002] and Handcock
et al. [2007], their model is discussed for the case of a binary graph,
but it can be generalized to weighted networks as well. For an undi-
rected graph with edge weights represented as Y = (Y12, ..., Yn−1,n) ∈
IRn(n−1)/2, their model takes form

P (Y |Z,X, θ) =
n∏

i<j=2

f(Yij|zi, zj, xij, θ), (4.9)

where

ηij = g−1 [E(Yij|zi, zj, xij, θ)] = β0+xijβ−|zi−zj|+γi+γj, (4.10)

and γi ∼ N(0, σ2
γ), i = 1, ..., n denote the (independent) sociality

effects.

4.3.2 Estimation of latent space models

Estimation of latent spacemodels is typically performed in a Bayesian
framework. Hoff et al. [2002] proposed to estimate the model defined
by Equations (4.6) and (4.7) following a Bayesian approach that re-
quires the specification of prior distributions both for β0, β and for
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σ2, and an approximate computation of the posterior distribution by
means of Markov Chain Monte Carlo (MCMC) sampling. Handcock
et al. [2007], instead, consider two alternative approaches: a two-stage
maximum likelihood estimation which relies on the
Expectation-Maximization (EM) algorithm, and a Bayesian estimation
approach which also relies on MCMC. Finally, Krivitsky et al. [2009]
proposed to estimate themodel in (4.9) and (4.10) in a Bayesian setting,
by making use of MCMC.

4.3.3 Application to bill cosponsorship networks

Hereinafter, we analyse the bill cosponsorship networks introduced
in Chapter 3 by considering a latent spacemodel for undirected graphs
defined by Equations (4.9) and (4.10), where we take
ηij = log [E(Yij|zi, zj, xij, θ)] and zi ∼ MVNd(0, σ

2
ZId). Since such a

model does not exploit information on memberships of deputies to
parliamentary groups, we will assess the presence of a community
structure with respect to party membership by observing the position
of deputies from different parties in the latent space.

We estimate the model with the R package latentnet [Krivit-
sky and Handcock, 2015], which implements the MCMC estimation
procedure described in Krivitsky et al. [2009]. The results of the appli-
cation of the latent space model are reported in Table 4.3 and Figures
4.2 and 4.3.

Similarly to the models presented in Chapter 3, also here the ef-
fect of covariates (Table 4.3) is relatively stable over time. Once more,
we find strong evidence that cosponsorships are more frequent be-
tween female deputies, but based on this model it is instead ques-
tionable whether female-male (FM) cosponsorships are more frequent
than male-male (MM) ones. Also the irrelevance of age difference and
the tendency to collaborate more with deputies elected in the same
electoral constituency are coherent with the results from Chapter 3.
The variance of the nodal random effects is close to 1 over the whole
period.

With respect to the collaborations between parties, the represen-
tation of deputies in the latent social space (Figures 4.2 and 4.3) can
be compared with the reduced graphs obtained from the extended
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Figure 4.2: Estimates of the latent position of deputies in legislatures XIV and
XV. Colors denote affiliation to political parties, node sizes are proportional to the
estimates of the sociality effects γ̂i.
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Figure 4.3: Estimates of the latent position of deputies in legislatures XVI and
XVII. Colors denote affiliation to political parties, node sizes are proportional to the
estimates of the sociality effects γ̂i.
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Table 4.3: Size effects of gender, age and electoral constituency on bill cospon-
sorship. The table displays the estimates of θ0, β and of the random effects variance
σ2
γ obtained from the latent space model for the following legislatures: XIV (2001-

2006), XV (2006-2008), XVI (2008-2013) and XVII (2013-2015). * denotes estimates
that are significant at 5% level and ** estimates significant at 1% level.

Legislature
Covariates XIV XV XVI XVII

Intercept (θ0) -0.009 -0.151** -0.067* -0.143**
Female-Male (FM) -0.059** -0.058** 0.034** -0.010**
Female-Female (FF) 0.426** 0.421** 0.259** 0.195**

Age difference -0.005** -0.010 -0.008 0.018
Same electoral constituency 0.529** 0.495** 0.544** 0.587**

σ2
γ 0.831 1.008 1.063 1.013

stochastic blockmodel (Figure 3.3).
A first conclusion that can be drawn from the analysis of Figures

4.2 and 4.3 is that deputies tend to form clusters according to their
party membership. This supports the evidence on strong within-party
collaborations already reported in Chapter 3.

For the first two (XIV and XV) legislatures, the polarization be-
tween left-wing and right-wing parties is apparent also from the posi-
tions of deputies in the latent space (Figure 4.2). In particular, for the
XIV legislature almost all deputies from the right-wing coalition have
z1 < 0, and those from the left-wing z1 > 0. For the XV legislature,
most left-wing deputies have z1 < 0, whereas z1 > 0 for right-wing
deputies. Interestingly, members from those parties (DC, IDV, Udeur,
RNP and mixed group) that according to the reduced graph in Figure
3.3 do not seem to collaborate with other parties, have z1 values close
to 0.

The reduced graph for the XVI legislature reported three groups of
collaborations:

• between the main right-wing party (FI) and the other right-wing
groups (LN, FLI, P&T). Here, almost all members of those parties
are on the right in the top plot of Figure 4.3.

• collaborations between the mixed group and IDV and P&T. In-
deed, deputies from those parties mostly occupy the second quar-
ter of the plot (but note the fact that the mixed group seems to
consist of a few separate subgroups);
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• a collaboration between PD andUDC: deputies from those parties
are positioned in and close to the third quarter.

Finally, also the results for the XVII legislature seem to match the
ones from the extended stochastic blockmodel: members from the two
main left-wing parties (PD and SEL) have z2 > 0, whereas members
from right-wing parties (FI, LN, AN and AP) belongmostly to the third
quarter. The collaborations detected between SC and AP and SC and
CD also seem to be corroborated by the proximity of deputies from
those parties in the latent space. Moreover, members from the Movi-
mento 5 Stelle (M5S) tend to lie isolated from the other deputies also
here (fourth quarter).

4.4 Discussion

In this Chapter, we have discussed two alternative strategies to
jointly model community structure and nodal heterogeneity in net-
works. Accounting for both properties is important, as they are con-
currently present in many social networks.

We have begun by proposing an extension to the model which we
proposed in Chapter 3. Such an extension is based on the inclusion
of a set of nodal random effects into the model, so as to account for
possible unobserved sources of degree heterogeneity.

We have considered two alternative approaches to the estimation of
such model and compared the results with the ones on bill cosponsor-
ship networks in Chapter 3. First, we have shown that estimation of an
unpenalized GLMM yields to conclusions that are substantially coher-
ent with the ones obtained from the penalized blockmodel of Chapter
3.

Then, in analogy with the penalized inference approach which we
undertook in Chapter 3, we have introduced a penalty on some of the
fixed effects in model (4.4). We have discussed the computational is-
sues that arise in the fitting of the resulting penalized GLMM, as well
as the fact that this currently limits the potential applicability of such
an approach, which so far cannot be carried out on a (standard) per-
sonal computer.

We have also considered an alternative class of models, latent space
models, which are different in nature from stochastic blockmodels.
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The main assumption behind latent space models is that each individ-
ual in a network has an unknown position in a d-dimensional latent
social space, and that edges are conditionally independent given the
position of individuals in the latent space. Although - differently from
stochastic blockmodels - latent space models do not directly incorpo-
rate information on known group membership of units, this informa-
tion can be used to evaluate the presence of community structures
in the latent space. Application of such a strategy to the bill cospon-
sorship networks of the Italian parliament has pointed out clearly the
presence of community structures induced by partymembership, yield-
ing results that are to a good extent similar to the ones obtained from
the proposed extended stochastic blockmodels.
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Chapter 5

Clustering graphs using mixtures of
generalized linear models

5.1 Introduction

Although there is a long tradition in the study of networks, for
decades the generation and collection of network data represented a
challenging task that limited the practical applicability of network sci-
ence to a single network ofmodest size. Recent technological advances
such as the development of sensor-based measurements, next genera-
tion sequencing techniques and functional magnetic resonance imag-
ing, as well as the advent of social media, have widely simplified the
collection of relational data, fostering the analysis of larger network
datasets.

Statistical modelling of networks has been carried out focusing on
different network features, such as degree distribution, community
structure or network statistics. Different types of models have been
proposed, including the p1 and p2 models [Holland and Leinhardt,
1981; van Duijn et al., 2004], exponential random graphs [Frank and
Strauss, 1986], stochastic blockmodels [Holland et al., 1983; Airoldi
et al., 2008] and latent space models [Hoff et al., 2002].

The increasing availability of network data has also encouraged
the collection of several instances of the same network. One example
is given by longitudinal sequences of networks, where each network
in the sequence represents a snapshot of the network at a given time
point, the sequence thus representing the evolution of a system over
time. Cross-sectional sequences of networks have been considered as
well: in this case, each network can be associated to a different statis-
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tical unit and one might want to assess the extent of similarities and
differences between units therein by comparing their networks.

Most of the research in this field has focused on the dynamic evolu-
tion of a network. Snijders [2001] proposed a stochastic actor-oriented
model where the decision to create or dissolve an edge is based only on
the current state of the network, and not on its previous states. Han-
neke et al. [2010] introduced a dynamic extension of ERGMs, known as
Temporal Exponential Random Graph Model (TERGM). An extension
of the Latent Space Models for dynamic networks has been proposed
by Sewell and Chen [2015]. Matias and Miele [2017], instead, devel-
oped a dynamic stochastic blockmodel, that allows group membership
of units to vary over time.

Statistical modelling of cross-sectional sequences of networks, of-
ten referred to as populations of networks, is more recent. Durante
et al. [2016a] proposed a non-parametric Bayesian approach to char-
acterize the distribution of the population of networks, rather than
that of each network instance, and Durante et al. [2016b] applied this
approach to the comparison of networks representing cosubscription
of services in different agencies of an insurance company.

The availability of network sequences poses new challenges to statis-
ticians. Clearly, modelling each network separately does not appear an
effective strategy: irrespective of whether the sequence is temporal or
cross-sectional, we expect networks therein to be similar to a certain
degree, so that modelling the networks jointly would allow to borrow
information among them. Besides, by jointly modelling the network
sequence one can achieve a much more parsimonious answer than by
repeating separate analyses of each network. In particular, it seems
reasonable to specify a joint statistical model capable to quantify sim-
ilarities and differences between graphs.

In this chapter we propose a strategy to cluster networks, which re-
lies on mixtures of generalized linear models. Mixtures of generalized
linear models [Grün and Leisch, 2008] combinemixturemodels, which
have been used to performmodel based clustering since long, and gen-
eralized linear models, which can be exploited to estimate some pop-
ular network models (such as, for example, the p1 and p2 models and
stochastic blockmodels). We begin by introducing mixtures of gener-
alized linear models and showing how they can be applied so as to
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cluster graphs in Section 5.2. In Section 5.3 we provide an implemen-
tation of the EM algorithm that allows to carry out model estimation,
and we assess its performance with simulations. In order to improve
the performance of the EM algorithm, in Section 5.4 we propose an ex-
tension of the EM based on Simulated Annealing (EMSAGC), and we
show that this allows to improve the accuracy of clustering in cases
where the EM algorithm alone performs poorly. An example appli-
cation is provided in Section 5.5, where we consider daily interaction
networks between employees of the French Institute for Public Health
Surveillance.

5.2 Model specification

5.2.1 Mixtures of generalized linear models

Mixture models have been widely employed to cluster units with a
model based clustering approach, as well as for density estimation. A
finite mixture model postulates that an observation y from a random
variable Y is derived from a mixture of M probability density func-
tions f(y|θm), m ∈ {1, ...,M}, which we call “components” of the
mixture:

y ∼ f(y|Θ) =
M∑

m=1

πmf(y|θm), (5.1)

where πm denotes the prior probability that y belongs to component
f(y|θm) with parameter θm, and Θ = (θ1, ..., θM). Clearly, πm ≥ 0
∀m ∈ {1, ...,M} and

∑M
m=1 πm = 1.

A generalized linear model [McCullagh and Nelder, 1989], on the
other hand, assumes that the density of y belongs to an exponential
dispersion family with natural parameter θ and dispersion parameter
φ, i.e.,

y ∼ f(y|θ, φ) = exp

{
yθ − b(θ)

a(φ)
+ c(y, φ)

}
(5.2)

for suitable choices of a, b and c, and that the conditional expectation
of Y given a vector of covariates x is related to the linear predictor xβ
by a link function g:

η = g[E(Y |x)] = xβ.
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Although they provide two differentways to characterize the distri-
bution of y, mixtures of probability density functions and generalized
linearmodels can be combined by definingmixtures of generalized lin-
ear models [Grün and Leisch, 2008]. This can be achieved by assuming
that an observation y is derived from amixture ofM densities from an
exponential dispersion family, and that the mean µm of each density
can be related to the linear predictor by a link function g:

y ∼ f(y|Θ) =
M∑

m=1

πmf(y|θm, φm)

=
M∑

m=1

πm exp

{
yθm − b(θm)

a(φm)
+ c(y, φm)

}
,

µm = g−1(xβ).

5.2.2 Clustering networks withmixtures of generalized linear
models

Weconsider a sequence ofK undirected graphsS = {G1,G2, ...,GK},
where each graph Gk = (V,Ek), k ∈ {1, ..., K}, defines a specific
set of edges Ek between the same set of v vertices V . Each graph Gk

can be represented by its adjacency matrix Yk, and we represent the
sequence S with an array Y of dimension v×v×K , where each hori-
zontal slice Yk is the adjacency matrix of graph Gk. Therefore, an entry
ykij in Y refers to the presence (and intensity) or absence of edge (i, j)
in the k-th graph Gk.

In principle, we could imagine that each graph Gk with adjacency
matrixYk is drawn from a different distribution f(Y |θk), k ∈ {1, ..., K}
with parameter vector θk:

Yk ∼ f (Y |θk) .

In the presence of many networks, however, this would result in a
cumbersomemodelling exercise, yieldingK different models obtained
from separate analyses of each graph.

In order to avoid that, it seems sensible to consider the existence of
clusters of graphs with similar f (Y |θk): if any such cluster exists, we
would like to borrow information among graphs within that cluster, so
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as to estimate a joint model within the cluster rather than many sep-
arate graph models. As a result, we assume that the graph sequence
S consists of M ≤ K subpopulations of graphs S1, ...,SM , each with
probability density function f (Y |θm) , m ∈ {1, ...,M}. We denote by
Zk ∈ {1, ...,M} the identifying label of graph Gk, such that Zk = m if
Gk ∈ Sm. Since it is unknown which graph belongs to which subpop-
ulation, the identifying labels Z = (Z1, ..., ZK) are latent. Therefore,
we view each graph in the sequence as a random draw from a mixture
model whose components are the densities f (Y |θm)

Yk ∼
M∑

m=1

πmf (Y |θm) , (5.3)

with mixing proportions πm = Pr(Zk = m), m ∈ {1, ...,M} denot-
ing the prior probabilities that a graph belongs to themth subpopula-
tion Sm.

If we let Θ = (θ1, ..., θM), the likelihood of the graph sequence S
with adjacency array Y is thus

L(Y, Z|Θ) = Pr(Y, Z|Θ) =
K∏
k=1

Pr(Yk|Zk,Θ)Pr(Zk|Θ)

=
K∏
k=1

πZk
f (Yk|θZk

) .

(5.4)

As we have pointed out in Chapters 3 and 4, often the densities
f (Y |θm) in Equations (5.3) and (5.4) can be conveniently character-
ized by recurring to generalized linear models. This can be done by
considering densities f from exponential families, and modelling the
conditional expectation of each edge ykij as

ηkij = g
[
E
(
ykij|x, θm

)]
= xijβ. (5.5)

Clearly, it is assumed that each edge ykij in graph Gk is drawn from the
same (unknown) subpopulation Sm; thus, the density of graph Gk can
be obtained as

f (Yk|θZk
) =

∏
i<j

f
(
ykij|θZk

)
. (5.6)
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The use of generalized linear models allows to consider different
network models. For example, if one is interested in clustering graphs
according to their degree distribution, they could consider a p1 model
by letting ηkij = αm

i +αm
j . If a partition of nodes into groups is known,

such as in the case of bill cosponsorship networks, a stochastic block-
model could be specified as well. More generally, if one would simply
like to cluster graphs without assuming a specific networkmodel, they
can specify a model with one parameter for each pair of nodes:

µk
ij = g−1

(
ηkij
)
= γm

ij . (5.7)

5.3 Model estimation with the EM algorithm

5.3.1 Implementation of the EM algorithm

The EMalgorithm [Dempster et al., 1977] represents a popular choice
for the estimation of mixture models. The algorithm allows to maxi-
mize a likelihood L(y, z|θ) in the presence of missing or latent data z,
and it consists of successive iterations of two steps, respectively called
expectation (E) step and maximization (M) step. The expectation step
requires the computation of the conditional expectation of the likeli-
hood L(y, z|θ) given the current estimate of θ and the observed data
y, whereas the maximization step updates the parameter estimates by
maximizing the expected likelihood determined in the E step.

The first algorithm that we consider for the maximization of the
likelihood in Equation (5.4) is given by the following implementation
of the EM algorithm:

• for k ∈ {1, ..., K} and m ∈ {1, ...,M}, define the initial prob-
abilities p1km = Pr(Zk = m). Denote by P 1 the K × M matrix
which collects these probabilities;

• for t = 1, 2, ... and until convergence is reached:

� M step. Given P t, estimate M network models (specified
as GLMs) with weights given by (pt1m, ..., p

t
Km) for the m-th

component, and obtain Θ̂t.
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� E step. Given Θ̂t, derive P t+1 as

pt+1
km =

Pr(Gk|θ̂tm)∑M
j=1 Pr(Gk|θ̂tj)

. (5.8)

5.3.2 Simulations

We assess the performance of the EM algorithm discussed in Sec-
tion 5.3.1 by considering both binary and edge-valued networks. We
consider sequences ofK undirected graphs with v nodes, whereK ∈
{10, 20, 50} and v ∈ {10, 20, 50, 100}, which are generated from a
mixture model consisting of two subpopulations S1 and S2, with mix-
ing proportions π1 = 0.6 and π2 = 0.4. We do not assume a specific
network model, but use instead the “full” model specified by Equation
(5.7), to wit, we associate one parameter to each pair of nodes in every
subpopulation. Once the sequence S = {S1,S2} is generated, we es-
timate a mixture of GLMs with the EM algorithm of Section 5.3.1. We
consider 10 different starting points. Since values of p1k1 or p1k2 close
to 1 imply a quick allocation of graph k to a specific cluster (making
the exploration of possible allocations of a graph in different clusters
harder), we choose more uninformative starting points that set p1k1 and
p1k2 close to (but different from) 0.5.

We assess the performance of the algorithm by considering two in-
dicators. The first is the average accuracy of solutions obtained from
the different starting points, which we denote as Ā. The second is
given by the number of cases in which the likelihood of the solution
is non-inferior to the likelihood of the true solution: we take this indi-
cator as a measure of the performance of the optimization procedure
and we denote it by OP (Optimization Performance).

As concerns sequences of binary graphs, we draw each γm
ij (the

probability of having an edge between nodes i and j in graphs from
subpopulationm) from a uniform distribution ranging from 0.1 to 0.9.
We then employ a mixture of binomial GLMs with logistic link func-
tion to estimate the model.

With respect to edge-valued graphs, we first consider sequences of
networks where each γm

ij , m ∈ {1, 2} is drawn from a Poisson dis-
tribution with mean uniformly ranging in [0.1, 10]. We estimate the
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Table 5.1: Average accuracy (Ā) over 10 different starting points using the EM
algorithm. As a measure of accuracy of the EM algorithm, we average the accuracy
of the solutions obtained from 10 different starting points.

K v Bernoulli Poisson Negative Binomial
10 10 72 % 100% 67%
10 20 81% 100% 70%
10 50 68% 100% 65%
10 100 65 % 100% 66%
20 10 91.5 % 100% 80.5%
20 20 89 % 100% 91%
20 50 85 % 100% 90.5%
20 100 81 % 100% 83.5%
50 10 100 % 100% 96.4%
50 20 100 % 100% 100%
50 50 100 % 100% 100%
50 100 100 % 100% 100%

model using a Poisson GLM with the logarithm as a link function.
In order to assess the performance of the algorithm with respect to

model mispecifications and in presence of sparse graphs, we also con-
sider network sequences generated from a negative binomial distribu-
tion with dispersion parameter φ = 1, so as to account for scenarios
where the degree distribution is strongly overdispersed (but we still
employ a Poisson GLM to estimate the clusters).

The results of the simulation are reported in Tables 5.1 and 5.2.
The EM algorithm performs very well when either a large number of
graphs (K = 50) is available, or in the case of edge-valued graphs with
Poisson distribution. Both the average accuracy and optimization per-
formance of the algorithm are instead poorer for network sequences
with a smaller number of graphs (K = 10 or K = 20), if the graphs
are binary or edge-valued with overdispersed degree distribution.

5.4 Extension of the EM algorithm based on Simu-
lated Annealing (EMSAGC)

5.4.1 Implementation of the EMSAGC algorithm

In order to improve the performance of the EM algorithm presented
in Section 5.3.1, we propose a modified version of that algorithm based
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Table 5.2: Optimization performance (OP) of the EM algorithm. OP is an indi-
cator of the performance of the optimization. It is the number of cases in which the
likelihood of the solution is non inferior to the likelihood of the true solution. As we
consider 10 different starting points, 0 ≤ OP ≤ 10.

K v Bernoulli Poisson Negative Binomial
10 10 3 10 2
10 20 2 10 1
10 50 1 10 1
10 100 1 10 1
20 10 3 10 1
20 20 3 10 8
20 50 4 10 8
20 100 4 10 6
50 10 0 10 10
50 20 10 10 10
50 50 10 10 10
50 100 10 10 10

on SimulatedAnnealing.We call this algorithmEMSAGC (Expectation
Maximization algorithmwith Simulated Annealing for Graph Cluster-
ing).

Simulated Annealing (SA) is a strategy that has been exploited in
order to improve the performance of optimization procedures since
long [Eglese, 1990]. Often, in complex optimization problems the risk
is that one gets trapped in local maxima of the objective function f . SA
attempts to avoid this risk by proposing a move from the current local
maximum x̂ to a proposal x̃, and by allowing a positive probability to
accept the move even when f(x̃) < f(x̂).

The implementation of SA requires the definition of a strategy to
propose a move x̃, as well as the choice of an acceptance probabil-
ity function. Furthermore, many modifications of the basic SA algo-
rithm can be implemented so as to improve the performance of SA (see
Eglese [1990] for an overview); among them, here wemention the pos-
sibilities to “store the best solution so far” and to consider more than
one neighbour at a time.

Therefore, the implementation of SA within the algorithm of Sec-
tion 5.3 requires:

• amethod to select a proposal P̃ t. Here, we obtain P̃ t bymodifying
the vector of probabilities p̃tk = (p̃tk1, ..., p̃

t
kM) for one randomly
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picked graph Gk, k ∈ {1, ..., K} and keeping p̃ts = pts ∀s ̸= k. p̃tk
is chosen in such a way that p̃tkm ∼ U(0, 1) ∀m ∈ {1, ...,M} and∑M

m=1 p̃
t
km = 1.

• the definition of an acceptance function, which we discuss below;

• the definition of any modification to the basic SA algorithm; in
our implementation of the EMSAGC, we modify the algorithm so
as to store the optima determined in each iteration and selecting,
at the end of the iterations, the solution with the highest likeli-
hood.

With respect to the definition of the acceptance function, two gen-
eral properties are desirable. The first is that the probability of accep-
tance should be higher when f(x̃) is closer to f(x̂). The second is
that the probability of acceptance should be higher in the first iter-
ations and then decrease: this is achieved by considering a positive,
decreasing function T (t) of t, called “temperature”, which is higher
in the first iterations of SA and then rapidly decreases in such a way
that T (t) → 0 for t → ∞. The acceptance function that we consider
hereafter is

a(x̂, x̃, T (t)) =

(
f(x̃)

f(x̂)

)1/T (t)

,

which clearly satisfies the two required properties. We take T (t) =
1

log t .
Keeping this in mind, we define the following Expectation Maxi-

mization algorithm with Simulated Annealing for Graph Clustering
(EMSAGC):

1. for k ∈ {1, ..., K} and m ∈ {1, ...,M}, define the initial prob-
abilities p1km = Pr(zkm = 1). Denote by P 1 the K × M matrix
which collects these probabilities;

2. for t = 1, 2, ...:

� M step.
M1. GivenP t, estimateM networkmodels (specified asGLMs)

with weights given by (pt1m, ..., p
t
Km) for the m-th com-

ponent and derive Θ̂t.
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M2. If t ≥ 2 and L(Y, Z|Θ̂t) ≤ L(Y, Z|Θ̂t−1), consider the
alternative state P̃ t and determine Θ̃t:
⋆ if L(Y, Z|Θ̃t) ≥ L(Y, Z|Θ̂t), set Θ̂t = Θ̃t and P t =
P̃ t.

⋆ if L(Y, Z|Θ̃t) < L(Y, Z|Θ̂t), set Θ̂t = Θ̃t and P t =
P̃ t with probability equal to(

logL(Y, Z|Θ̃t)

logL(Y, Z|Θ̂t)

)1/T (t)

, (5.9)

where T (t) = 1
log t .

� E step. Given Θ̂t, derive P t+1 as

P t+1
km =

Pr(Gk|θ̂tm)∑M
j=1 Pr(Gk|θ̂tj)

. (5.10)

3. Choose the best solution within the sequence {Θ̂1, Θ̂2, ..., }, i.e.

Θ̂EMSAGC = argmax
t=1,2,...

L(Y, Z|Θ̂t). (5.11)

5.4.2 Simulations

Here we reconsider the two scenarios which turned out to be prob-
lematic in Section 5.3.2: namely, sequences of binary graphs which we
cluster with mixtures of logistic binomial models, and sequences of
edge-valued graphs with overdispersed degree distribution which we
cluster with mixtures of Poisson GLMs. K , v, π1, π2 and γm

ij are the
same as in Section 5.3.2.

We consider the same starting points as before, but now we apply
EMSAGC instead of the EM. We let the algorithm run for 300 itera-
tions. The results, shown in Tables 5.3 and 5.4, clearly point out that
EMSAGC improves considerably the accuracy (Ā) and the optimiza-
tion performance (OP) of the EM algorithm, leading to a highly accu-
rate clustering strategy even when the number of graphs K is small
(K = 10, 20). Note that the case K = 10, v = 10 still turns out to be
rather problematic: this seems to indicate that when only a few small
graphs are at hand, even application of the EMSAGC might lead to
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Table 5.3: Average accuracy (Ā) over 10 different starting points using the
EMSAGC algorithm. As a measure of accuracy of the EM algorithm, we average
the accuracy of the solutions obtained from 10 different starting points. The number
in brackets denote the variation with respect to the EM algorithm (Table 5.1).

K v Bernoulli Negative Binomial
10 10 74% (+2) 86 % (+19)
10 20 100% (+19) 100% (+30)
10 50 99% (+31) 100% (+35)
10 100 98% (+33) 100% (+34)
20 10 100% (+8.5) 92% (+11.5)
20 20 100% (+11) 100% (+9)
20 50 100% (+15) 100% (+9.5)
20 100 100% (+19) 100% (+16.5)
50 10 100% (=) 98% (+1.6)
50 20 100% (=) 100% (=)
50 50 100% (=) 100% (=)
50 100 100% (=) 100% (=)

inaccurate clusters.

5.5 Example application

We consider data on face-to-face contacts in an office building col-
lected byGénois et al. [2015]. In this study, the employees of the French
Institute for Public Health Surveillance were asked to wear sensors ca-
pable to measure face-to-face interactions that lasted at least 20 sec-
onds. Measurements were collected for two weeks (10 working days)
between June 24 and July 3, 2013.

Here, we focus on the comparison between the daily interaction
networks. These networks are undirected and edge-valued; the edge
weight is the number of interactions occurred between any two em-
ployees in a day. The study involved 92 employees, who belong to 5
different departments. However, for some individuals no daily interac-
tions were recorded for several days (this makes us wonder whether
they were not present, they did not wear the sensors, their sensors
were not working or they simply did not have any interaction). Thus,
we focus our attention only on the 68 employees for which interac-
tions were recorded for more than half of the days considered (i.e., at
least 6 days). These employees belong to four departments, which are
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Table 5.4: Optimization performance (OP) of the EMSAGC algorithm.OP is an
indicator of the performance of the optimization. It is the number of cases in which
the likelihood of the solution is non inferior to the likelihood of the true solution.
As we consider 10 different starting points, 0 ≤ OP ≤ 10. The number in brackets
denote the variation with respect to the EM algorithm (Table 5.2).

K v Bernoulli Negative Binomial
10 10 10 (+7) 9 (+7)
10 20 10 (+8) 10 (+9)
10 50 9 (+8) 10 (+9)
10 100 8 (+7) 10 (+9)
20 10 10 (+7) 8 (+7)
20 20 10 (+7) 10 (+2)
20 50 10 (+6) 10 (+2)
20 100 10 (+6) 10 (+4)
50 10 10 (+10) 10 (=)
50 20 10 (=) 10 (=)
50 50 10 (=) 10 (=)
50 100 10(=) 10 (=)

Table 5.5: Departments considered in our analysis. Three departments are in-
volved in the scientific production of the Institute, whereas one is responsible for
the management of human resources. Two departments are located on the ground
floor, and the remaining two on the first floor.

Abbreviation Department name Type of Dept. Floor
DISQ Scientific and Quality Direction Scientific 0
DMCT Dept. of Chronic Diseases and Traumas Scientific 0
DSE Dept. of Health and Environment Scientific 1
SRH Human Resources Management 1

described in Table 5.5. We remark that the results of the analysis do
not change substantially if we consider only employees who had at
least one interaction in at least 7, 8 or 9 days. They would be differ-
ent, instead, if we were to restrict our attention to the 15 employees
who had at least one interaction every day, because these employees
belong to 3 departments only.

In this application, a known partition of employees in departments
is available.We do not have any further information on the employees,
besides their affiliation to the departments. It is important to take these
two facts into account when choosing the specific network model that
we specify for each subpopulation. In particular, the availability of a
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partition a priori of nodes induces us to consider a stochastic block-
model. However, as discussed in Section 3.1.1, stochastic blockmodels
imply a restrictive assumption of stochastic equivalence of employ-
ees within each department, which appears to be unrealistic. For this
reason, we consider the extended blockmodel with fixed effects pro-
posed byWang andWong [1987]. Themodelwas originally introduced
for binary directed graphs, but here we adapt it to the case of edge-
valued undirected graphs. Denote by (B1, B2, B3, B4) the four depart-
ments in Table 5.5. Then, for any two employees i ∈ Br and j ∈ Bs

(r, s ∈ {1, 2, 3, 4}) we let Yij ∼ Poi(µij), with

log(µij) = αi + αj + φrs,
I (5.12)

where
∑

r≤s φrs = 0.
We attempt to cluster the daily networks into two subpopulations,

and to describe the difference between them. We remark that the aim
of this example is to illustrate the proposed clustering strategy, rather
than that of providing a detailed description of the interaction net-
works at hand. We consider 10 different starting points and for each
of them we run the EMSAGC for 1000 iterations. 7 starting points
yield a solution with loglikelihood equal to -19038, whereas solutions
obtained from the remaining 3 starting points have lower likelihood.
Therefore, this solution can be assumed to be the maximum likelihood
estimate (although there is the possibility that it could be a local max-
imum).

The solution results into the following clusters: a first cluster con-
sists of each of the days in the first week, as well as of Monday and
Tuesday of the second week; the second cluster includes Wednesday,
Thursday and Friday of the second week. Thus, the clustering method
seems to detect a change in the interaction patterns between the first
7 days considered, and the final 3 days.

Table 5.6 compares the estimates of the block-interaction parame-
ters φrs in the two clusters. Overall, we find two changes in the pat-
tern of interaction across departments. On the one hand, it seems that
members of DISQ and DSE were more active within their department
in the first 7 days considered, but then interactedmore with each other

INote that the model could be equivalently parametrized as log(µij) = θ0+αi+αj +φrs under
the additional constraint that

∑v
i=1 αi = 0.
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Table 5.6: Comparison of block-interactions between clusters. Employees in
departments DSE and DISQ interacted more within their department in the first 7
days, and more between each other in the last 3 days (corresponding parameters are
emphasised in bold). Conversely, employees in DMCT and SRH interact more with
each other in the first 7 days, and within their own departments in the last 3 days
(corresponding parameters are underlined).

Parameter Estimates
Cluster 1 Cluster 2

DMCT 0.71 0.86
DSE 0.92 0.58
DISQ 1.43 1.10
SRH 1.83 2.01

DMCT-DSE -0.15 -0.12
DMCT-DISQ -0.22 -0.18
DMCT-SRH -0.34 -0.56
DSE-DISQ -0.24 0.03
DSE-SRH -0.53 -0.49
DISQ-SRH -0.96 -0.96

σ̂2
α 0.030 0.094

in the remaining 3 days. On the other hand, employees in DMCT and
SRH seem to follow the opposite pattern: in the last 3 days, they re-
duce interactions between departments and are more active within
their own department. Moreover, the variance of the fixed effects (σ̂2

α)
appears to be higher in cluster 2: this result indicates that the degree
distribution became more skewed in the last three days.

Finally, note that the pattern of interactions between departments
does not appear to be influenced by their location in the ground or first
floor. Instead, it seems that interactions are stronger between the three
scientific departments (DMCT, DSE and DISQ) and weaker with the
human resources (SRH), which (as a result) features a higher internal
connectivity.

5.6 Concluding remarks and future work

In this Chapter, we have considered a collection of graphs defined
on the same set of vertices, which we have defined by means of a se-
quence of graphs S = {G1,G2, ...,GK} such that Gk = (V,Ek), k ∈
{1, ..., K}.
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Building on the fact that many network models (e.g., the p1 and p2
models and stochastic blockmodels) can be implemented within the
framework of generalized linear models, we have proposed to jointly
model all the graphs in the sequence S using a mixture of general-
ized linear models, where each component f (Y |θm) in the mixture is
given by a network model of interest for a given subpopulation Sm of
graphs. This model allows to estimate the probability that a graph Gk

belongs to a certain subpopulation, and it can thus be used to cluster
the graphs within the sequence. Moreover, it allows to characterize
each subpopulation by means of the model estimates f(Y |θ̂m).

Since the likelihood of the proposed model depends both on ob-
served data (the graphs) and latent variables (the identifying labels in-
dicating which graph belongs to which subpopulation), we have im-
plemented an EM algorithm [Dempster et al., 1977] to estimate the
mixture components and clusters. Our simulations indicate that even
though this algorithm seems to perform generally well when the se-
quence consists of a relatively large number of graphs (K = 50), for
smaller graph sequences (K = 10 or K = 20) the accuracy of the
resulting clustering appears to be rather low for binary graphs and for
edge-valued graphswhose degree distribution is highly overdispersed.

With the aim of improving the performance of the optimization of
the likelihood, as well as the accuracy of the induced clusters, we have
thus proposed an alternative algorithm, which we call EMSAGC. EM-
SAGC is an extension of the EM algorithm, which integrates it with
a Simulated Annealing [Eglese, 1990] strategy. The recourse to Sim-
ulated Annealing is motivated by the need to ensure a wider explo-
ration of the likelihood surface than that performed by the simple EM.
Indeed, EMSAGC appears to improve considerably both the optimiza-
tion, as well as the accuracy of the resulting clusters.

Although the simulations presented in Sections 5.3.2 and 5.4.2 focus
on a scenario where S features the presence of two subpopulations of
graphs, future work includes the evaluation of the performance of the
proposed EM and EMSAGC algorithms in more complex scenarios,
with 3 or more subpopulations.

Further extensions include the use of mixture models to cluster
graphs in conjunction with network models that cannot (or should
not) be specified as generalized linear models, such as (for example)
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Exponential Random Graphs (ERGMs). Since the large number of it-
erations involved in the EMSAGC algorithm would imply the neces-
sity to estimate several ERGMs, the use of computationally intensive
MCMC estimation for ERGMs does not appear to be feasible. On the
other hand, the use of pseudolikelihood estimation would result in
a computationally inexpensive clustering method, but it would yield
biased estimators. A possible solution to this problem could be that
of recurring to a bias-reduced pseudolikelihood estimator for ERGMs
such as the one proposed by Van Duijn et al. [2009], which could pos-
sibly mitigate the bias of pseudolikelihood resulting at the same time
in a computationally feasible estimation procedure.
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An introduction to the R package neat
Mirko Signorelli

Introduction

What’s neat?

neat is the R package that implements NEAT, the Network Enrichment Analysis Test which is presented in
Signorelli, M., Vinciotti, V., Wit, E. C. (2016). NEAT: an efficient network enrichment analysis test. BMC
Bioinformatics, 17:352.

The article is freely available from the website of BMC Bioinformatics.

What’s “network” enrichment analysis?

Network enrichment analysis is an extension of traditional gene enrichment analysis (GEA) tests, which are
typically used to provide a characterization of a target gene set by relating it to gene sets (such as Gene
Ontologies or KEGG pathways) whose function is already known.

A known limitation of GEA tests is that they ignore associations and dependences between genes. The
purpose of network enrichment analysis is thus to integrate GEA tests with information on known relations
between genes, represented by means of a gene network.

Loosely speaking, we can say that network enrichment analysis incorporates genetic networks, with their
information on gene dependences, into gene enrichment tests. Hence, the name “network” enrichment analysis.

Get started

In order to be able to use the package, you need to install it with
install.packages('neat')

and, then, to load it with the command
library('neat')

A first example

Let’s first have a quick look at an example of how a network enrichment analysis can be carried out with
NEAT.

The analysis will typically consist of three steps: preparation of the data, computation of the test and
inspection of the results.

Preparation of the data

Let’s start by loading yeast, a list which contains the data that we will need for the analysis:
data(yeast) # load the data
ls(yeast) # display the content of the list

1



## [1] "esr1" "esr2" "goslimproc" "kegg" "yeastnet"
## [6] "ynetgenes"

Let’s say that we are interested to know whether a set of differentially expressed genes, yeast$esr2, can be
related to some functional gene sets contained in yeast$goslimproc. Let’s focus the attention on two of
these processes, namely ‘response to heat’ and ‘response to starvation’.

Before we can proceed with the analysis, we have to create two lists of gene sets, one (which we will call
induced_genes) containing the set of differentially expressed genes and the other (called functional_sets)
with the functional sets of interest:
induced_genes = list('ESR 2' = yeast$esr2) # set of differentially expressed genes
#(ESR 2 is the set of induced ESR genes)
functional_sets = yeast$goslimproc[c(72,75)] # two functional gene sets of interest:
#response to heat and to starvation

Besides these two lists, we will need two further objects:

• yeast$yeastnet, a two-column matrix that contains YeastNet (a network incorporating known func-
tional couplings between yeast genes, see the help page ?yeast for more details);

• yeast$ynetgenes, a vector containing the names of all the genes that are present in the network.

Computation of the test

The idea behind NEAT is that if two gene sets are related, then in the network we expect them to be
connected by a larger (or smaller) number of links than we would expect to observe by chance. Our null
hypothesis, thus, is that if A and B are unrelated, then links are randomly placed between the two groups, so
that the total number of links between A and B can be assumed to follow an hypergeometric distribution.

If, however, the number of links that we actually observe between A and B turns out to be significantly
different from what we would expect to get if links were placed randomly, then we take this fact as potential
evidence of a relation between the two groups and we say that there is “enrichment" between them.

The computation of the test can be done with the function neat as follows:
test = neat(alist = induced_genes, blist = functional_sets, network = yeast$yeastnet,

nettype = 'undirected', nodes = yeast$ynetgenes, alpha = 0.01)

Analysis of the results

The results are now saved in the object test, which we can display with the command print:
print(test)

## A B nab expected_nab pvalue conclusion
## 1 ESR 2 response_to_heat 86 96.9 0.2518 No enrichment
## 2 ESR 2 response_to_starvation 459 331.4 0.0000 Overenrichment

From the table we can see that the set of differentially expressed genes (ESR 2) is not enriched with respect
to the set of genes involved in response to heating, whereas it is overenriched with respect to the set of
genes that are responsible for response to starvation (that is to say, the observed number of links, 459, is
significantly higher than what we would expect to get by chance, i.e. 331). Thus, we can conclude that genes
in ESR 2 are regulated when the yeast cell is exposed to starvation, but not when exposed to heating.
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A closer look to the package

The core of the package is the function neat:
neat(alist, blist, network, nettype, nodes, alpha = NULL,

anames = NULL, bnames = NULL)

The fundamental arguments of the function are:

• alist and blist, two lists of gene sets;

• network, which can be specified in three different formats;

• nettype, either 'undirected' or 'directed';

• nodes, a vector containing the names of all nodes in the network.

Moreover, three optional arguments are alpha, which allows to specify the significance level of the test, and
anames and bnames (they can be used to name the elements of alist and blist, if not already named).

As a (toy) example, let’s consider a partially directed network with 7 nodes defined by the following adjacency
matrix
A = matrix(0, nrow=7, ncol=7)
labels = letters[1:7]
rownames(A) = labels; colnames(A) = labels
A[1,c(2,3)]=1; A[2,c(5,7)]=1;A[3,c(1,4)]=1;A[4,c(2,5,7)]=1;A[6,c(2,5)]=1;A[7,4]=1
print(A)

## a b c d e f g
## a 0 1 1 0 0 0 0
## b 0 0 0 0 1 0 1
## c 1 0 0 1 0 0 0
## d 0 1 0 0 1 0 1
## e 0 0 0 0 0 0 0
## f 0 1 0 0 1 0 0
## g 0 0 0 1 0 0 0

How to specify the lists of gene sets

Let’s consider three sets of genes {a,e}, {c,g} and {d,f} and suppose we want to test whether there is
enrichment from the first two sets to the third one.

First of all, let’s create a vector for each of the three sets:
set1 = c('a','e')
set2 = c('c','g')
set3 = c('d','f')

As we want to know whether there is enrichment from set1 and set2 to set3, we can create two gene lists,
one (alist) containing set1 and set2 and the other (blist) containing set3:
alist = list('set 1' = set1, 'set 2' = set2)
blist = list('set 3' = set3)

3



Alternative network formats

Above we have defined the network with its adjacency matrix A. However, the network can be passed to neat
in three alternative formats:

• a sparse adjacency matrix, e.g.
library(Matrix)
as(A, 'sparseMatrix')

## 7 x 7 sparse Matrix of class "dgCMatrix"
## a b c d e f g
## a . 1 1 . . . .
## b . . . . 1 . 1
## c 1 . . 1 . . .
## d . 1 . . 1 . 1
## e . . . . . . .
## f . 1 . . 1 . .
## g . . . 1 . . .

• an igraph graph;

• a two-column matrix where every row represents and edge (for directed and mixed networks, parent
nodes must be in the first column, and child nodes in the second), e.g.:

## [,1] [,2]
## [1,] "a" "b"
## [2,] "a" "c"
## [3,] "b" "e"
## [4,] "b" "g"
## [5,] "c" "a"
## [6,] "c" "d"
## [7,] "d" "b"
## [8,] "d" "e"
## [9,] "d" "g"
## [10,] "f" "b"
## [11,] "f" "e"
## [12,] "g" "d"

Network type

Set the argument nettype equal to 'undirected' if an undirected network is at hand, and equal to
'directed' if you are considering a directed or partially directed network.

Compute the test

Once you have prepared the lists of gene sets and the network, what you need is to run neat, without
forgetting to specify the correct nettype (here nettype = 'directed') and the labels of nodes (here nodes
= labels):
test1 = neat(alist = alist, blist = blist, network = A,

nettype = 'directed', nodes = labels)
print(test1)

## A B nab expected_nab pvalue
## 1 set 1 set 3 0 0.3333 0.68181818
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## 2 set 2 set 3 2 0.5000 0.04545455

If you want to add to the results a column specifying the conclusion of the test (overenrichment, no enrichment
or underenrichment) for a given significance level, you use the option alpha:
test2 = neat(alist = alist, blist = blist, network = A,

nettype = 'directed', nodes = labels, alpha = 0.05)
print(test2)

## A B nab expected_nab pvalue conclusion
## 1 set 1 set 3 0 0.3333 0.68181818 No enrichment
## 2 set 2 set 3 2 0.5000 0.04545455 Overenrichment

Further details and material

The aim of this vignette is to provide a quick introduction to the computation of NEAT using R. Here I
focused my attention on the fundamental aspects that one needs to use the package.

Further details, functions and examples can be found in the manual of the package.

The description of the method is available in an article which you can read here. A shorter version of the
paper was presented at the 31st IWSM and published in the Conference proceedings.
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neat-package neat

Description

Includes functions and examples to compute NEAT (Network Enrichment Analysis Test), a network-
based test for genetic enrichment analysis (Signorelli et al., 2016).

Author(s)

Mirko Signorelli

References

Signorelli, M., Vinciotti, V., Wit, E. C. (2016). NEAT: an efficient network enrichment analysis test.
BMC Bioinformatics, 17:352. Url: https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-
016-1203-6.

See Also

neat

neat Performs neat for lists of gene sets

Description

Compute NEAT (Signorelli et al., 2016), a test for network enrichment analysis between/from a
first list of sets (’A sets’) and/to a second list of sets (’B sets’).

Usage

neat(alist, blist = NULL, network, nettype, nodes, alpha = NULL,
anames = NULL, bnames = NULL)

Arguments

alist List of A sets. Each element within the list is a vector of genes and represents a
gene set

blist List of B sets. Each element within the list is a vector of genes and represents a
gene set. If nettype == "undirected", this argument is optional: if provided,
every set of blist is compared with every set of alist; if NULL, the function
compares sets in alist between themselves
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network One of the following objects: an adjacency matrix of class "matrix" (see ’Ex-
ample 1’) or a sparse adjacency matrix of class "dgCMatrix"; an igraph object
(see ’Example 2’); a two-column matrix where every row represents and edge
(for directed networks, parent nodes must be in the first column, and child nodes
in the second)

nettype Either 'directed' or 'undirected'

nodes Vector containing the (ordered) names of all nodes in the network

alpha Significance level of the test (optional). If specified, a column with the conclu-
sion of the test is added to the output

anames Vector of names for the elements of alist (optional: it has to be provided only
if the elements of alist are not named)

bnames Vector of names for the elements of blist (optional: it has to be provided only
if the elements of blist are not named)

Value

A data frame with the following columns:

A A set

B B set

nab observed number of links from A to B

expected_nab expected number of links from A to B (in absence of enrichment)

pvalue p-value of the test

conclusion conclusion of the test (only if alpha is specified): no enrichment, overenrich-
ment or underenrichment

Author(s)

Mirko Signorelli

References

Signorelli, M., Vinciotti, V., Wit, E. C. (2016). NEAT: an efficient network enrichment analysis test.
BMC Bioinformatics, 17:352. Url: https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-
016-1203-6.

See Also

networkmatrix, plot.neat, print.neat, summary.neat

Examples

# Example 1: network given as adjacency matrix:
A = matrix(0, nrow=7, ncol=7)
A[1,c(2,3)]=1; A[2,c(5,7)]=1;A[3,c(1,4)]=1;A[4,c(2,5,7)]=1;A[6,c(2,5)]=1;A[7,4]=1
labels = letters[1:7]
set1 = c('a','e')
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set2 = c('c','g')
set3 = c('d','f')
alist = list('set 1' = set1, 'set 2' = set2)
blist = list('set 3' = set3)

test1 = neat(alist = alist, blist = blist, network=A,
nettype='directed', nodes=labels, alpha=0.05)

print(test1)

# Example 2: network given as igraph object:
library(igraph)
network = erdos.renyi.game(15, 1/3)
set1 = 1:4
set2 = c(2,5,13)
set3 = c(3,9,14)
set4 = c(8,15,20)
alist = list('set 1' = set1, 'set 2' = set2)
blist = list('set 3' = set3, 'set 4' = set4)

test2 = neat(alist, blist, network = network,
nettype='undirected', nodes=seq(1,15), alpha=NULL)

print(test2)

# Example 3: network given as list of links:
networklist = matrix(nrow=13, ncol=2)
networklist[,1]=c('a','a','b','b','c','d','d','d','f','f','f','h','h')
networklist[,2]=c('d','e','e','g','d','b','e','g','a','b','e','c','g')

labels = letters[1:8]
set1 = c('a','b','e')
set2 = c('c','g')
set3 = c('d','f')
set4 = c('a','b','f')
alist = list('set 1' = set1, 'set 2' = set2)
blist = list('set 3' = set3, 'set4' = set4)

test3 = neat(alist, blist, network = networklist,
nettype = 'undirected', nodes=labels, alpha=0.05)

print(test3)

alist = list('set 1' = set1, 'set 2' = set2, 'set 3' = set3)
test4 = neat(alist, network = networklist,

nettype = 'undirected', nodes=labels, alpha=0.05)
print(test4)

# Example 4: ESR data
## Not run:
data(yeast)
esr = list('ESR 1' = yeast$esr1, 'ESR 2' = yeast$esr2)
test = neat(alist = esr, blist = yeast$goslimproc, network = yeast$yeastnet,

nettype = 'undirected', nodes = yeast$ynetgenes, alpha = 0.01)
# Replace with "blist = yeast$kegg" to use kegg pathways
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m = dim(test)[1]
test1 = test[1:(m/2),]
table(test1$conclusion)
plot(test1)
o1=test1[test1$conclusion=='Overenrichment',]
print(o1, nrows='ALL') #display overenrichments

test2 = test[(m/2+1):m,]
table(test2$conclusion)
plot(test2)
o2=test2[test2$conclusion=='Overenrichment',]
print(o2, nrows='ALL') #display overenrichments

## End(Not run)

networkmatrix Creates a network matrix for neat

Description

Internal function, creates a two-column network matrix that can be further processed by neat.

Usage

networkmatrix(network, nodes, nettype)

Arguments

network One of the following objects: an adjacency matrix (class "matrix"), a sparse
adjacency matrix (class "dgCMatrix") or an igraph graph (class "igraph")

nodes Vector containing the (ordered) names of all nodes in the network

nettype Either 'directed' or 'undirected'

Details

This is an internal function, that is called within neat to convert different types of network ob-
jects (see argument ’network’ above) into a standard two-column network matrix, that can then be
processed by neat.

Value

A two-column matrix, where every row represents and edge. For directed networks, parent nodes
must be in the first column, and child nodes in the second.

Author(s)

Mirko Signorelli
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References

Signorelli, M., Vinciotti, V., Wit, E. C. (2016). NEAT: an efficient network enrichment analysis test.
BMC Bioinformatics, 17:352. Url: https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-
016-1203-6.

See Also

neat

Examples

# First case: adjacency matrix
n<-50
adjacency <- matrix(sample(0:1, n^2, replace=TRUE, prob=c(0.9,0.1)), ncol=n)
diag(adjacency) <- 0
lab = paste(rep('gene'),1:n)
head(networkmatrix(adjacency, lab, 'directed'))

# Second case: sparse adjacency matrix
library(Matrix)
sparse_adjacency<-Matrix(adjacency,sparse=TRUE)
head(networkmatrix(sparse_adjacency, lab, 'directed'))

# Third case: igraph object
library(igraph)
igraph_graph = erdos.renyi.game(15, 1/3)
lab = paste(rep('gene'),1:15)
head(networkmatrix(igraph_graph, lab, 'directed'))

plot.neat Plot method of neat

Description

plot method for class "neat".

Usage

## S3 method for class 'neat'
plot(x, nbreaks = 10, ...)

Arguments

x An object of class "neat"

nbreaks Number of breaks to be used in the histogram (default is 10)

... Further arguments passed to or from other methods
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Value

An histogram showing the distribution of p-values and a p-p plot comparing the distribution of
p-values to the uniform distribution.

Author(s)

Mirko Signorelli

References

Signorelli, M., Vinciotti, V., Wit, E. C. (2016). NEAT: an efficient network enrichment analysis test.
BMC Bioinformatics, 17:352. Url: https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-
016-1203-6.

See Also

neat, print.neat, summary.neat

Examples

## Not run:
data(yeast)
esr2 = list('ESR 2' = yeast$esr2)

test = neat(alist = esr2, blist = yeast$goslimproc, network = yeast$yeastnet,
nettype='undirected', nodes = yeast$ynetgenes, alpha = 0.01)

plot(test)

## End(Not run)

print.neat Print method of neat

Description

print method for class "neat".

Usage

## S3 method for class 'neat'
print(x, nrows=10, ...)

Arguments

x An object of class "neat"
nrows Maximum number of results to print (default is 10). It can be either an integer

number or "ALL"
... Further arguments passed to or from other methods
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Value

A dataframe showing the first nrows tests contained in a neat object.

Author(s)

Mirko Signorelli

References

Signorelli, M., Vinciotti, V., Wit, E. C. (2016). NEAT: an efficient network enrichment analysis test.
BMC Bioinformatics, 17:352. Url: https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-
016-1203-6.

See Also

neat, plot.neat, summary.neat

Examples

A = matrix(0, nrow=7, ncol=7)
A[1,c(2,3)]=1; A[2,c(5,7)]=1;A[3,c(1,4)]=1;A[4,c(2,5,7)]=1;A[6,c(2,5)]=1;A[7,4]=1

labels = letters[1:7]
set1 = c('a','e')
set2 = c('c','g')
set3 = c('d','f')
alist = list('set 1' = set1, 'set 2' = set2)
blist = list('set 3' = set3)

test = neat(alist, blist, network=A, nettype='directed', nodes=labels, alpha=0.05)
print(test)

summary.neat Summary method of neat

Description

summary method for class "neat".

Usage

## S3 method for class 'neat'
summary(object, ...)

Arguments

object An object of class "neat"

... Further arguments passed to or from other methods
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Value

The summary.neat function returns the following values:

• the number of tests computed;

• the number of enrichments at 1% and 5% level;

• the p-value of the Kolmogorov-Smirnov test to check if the distribution of p-values is uniform.

Author(s)

Mirko Signorelli

References

Signorelli, M., Vinciotti, V., Wit, E. C. (2016). NEAT: an efficient network enrichment analysis test.
BMC Bioinformatics, 17:352. Url: https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-
016-1203-6.

See Also

neat, plot.neat, summary.neat

Examples

## Not run:
data(yeast)
esr = list('ESR 1' = yeast$esr1, 'ESR 2' = yeast$esr2)
test = neat(alist = esr, blist = yeast$goslimproc, network = yeast$yeastnet,

nettype = 'undirected', nodes = yeast$ynetgenes, alpha = 0.01)

test1 = test[1:99,]
summary(test1)

test2 = test[100:198,]
summary(test2)

## End(Not run)

yeast List collecting various yeast data (see ’description’)

Description

yeast is a list that contains:

yeastnet: network matrix representing Yeastnet-v3 (Kim et al., 2013)

ynetgenes: vector with the names of the genes appearing in yeastnet

esr1: vector containing the first of the two gene sets that constitute the "Environmental Stress
Response" (ESR) reported by Gasch et al. (2012)
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esr2: vector containing the second gene set of the ESR

goslimproc: list containing the gene sets of the GOslim process ontology (Ashburner et al., 2000)
for the buddying yeast Saccaromyces Cerevisiae (groups ’biological process’ and ’other’ are not
included)

kegg: list containing the KEGG pathways (Kanehisa and Goto, 2002) for the buddying yeast Sac-
caromyces Cerevisiae

Format

yeast: list

Source

Ashburner, M., Ball, C. A., Blake, J. A., Botstein, D., Butler, H., Cherry, J. M., Davis, A. P.,
Dolinski, K., Dwight, S. S., Eppig, J. T., et al. (2000). Gene ontology: tool for the unification of
biology. Nat. Genet., 25(1), 25-29.

Gasch, A. P., Spellman, P. T., Kao, C. M., Carmel-Harel, O., Eisen, M. B., Storz, G., Botstein, D.,
and Brown, P. O. (2000). Genomic expression programs in the response of yeast cells to environ-
mental changes. Mol. Biol. Cell, 11(12), 4241-4257.

Kanehisa, M., and Goto, S. (2002). KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic
Acids Res., 28(1), 27-30.

Kim, H., Shin, J., Kim, E., Kim, H., Hwang, S., Shim, J. E., and Lee, I. (2013). Yeastnet v3: a public
database of data-specific and integrated functional gene networks for saccharomyces cerevisiae.
Nucleic Acids Res., 42 (D1), D731-6.

Signorelli, M., Vinciotti, V., Wit, E. C. (2016). NEAT: an efficient network enrichment analysis test.
BMC Bioinformatics, 17:352. Url: https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-
016-1203-6.

References

Ashburner, M., Ball, C. A., Blake, J. A., Botstein, D., Butler, H., Cherry, J. M., Davis, A. P.,
Dolinski, K., Dwight, S. S., Eppig, J. T., et al. (2000). Gene ontology: tool for the unification of
biology. Nat. Genet., 25(1), 25-29.

Gasch, A. P., Spellman, P. T., Kao, C. M., Carmel-Harel, O., Eisen, M. B., Storz, G., Botstein, D.,
and Brown, P. O. (2000). Genomic expression programs in the response of yeast cells to environ-
mental changes. Mol. Biol. Cell, 11(12), 4241-4257.

Kanehisa, M., and Goto, S. (2002). KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic
Acids Res., 28(1), 27-30.

Kim, H., Shin, J., Kim, E., Kim, H., Hwang, S., Shim, J. E., and Lee, I. (2013). Yeastnet v3: a public
database of data-specific and integrated functional gene networks for saccharomyces cerevisiae.
Nucleic Acids Res., 42 (D1), D731-6.

Signorelli, M., Vinciotti, V., Wit, E. C. (2016). NEAT: an efficient network enrichment analysis test.
BMC Bioinformatics, 17:352. Url: https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-
016-1203-6.
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See Also

neat

Examples

## Not run:
data(yeast)
esr = list('ESR 1' = yeast$esr1, 'ESR 2' = yeast$esr2)
test = neat(alist = esr, blist = yeast$goslimproc, network = yeast$yeastnet,

nettype = 'undirected', nodes = yeast$ynetgenes, alpha = 0.01)
# Replace with "blist = yeast$kegg" to use kegg pathways

m = dim(test)[1]
test1 = test[1:(m/2),]
o1=test1[test1$conclusion=='Overenrichment',]
# list of overenrichments for the first ESR set:
print(o1, nrows='ALL')

test2 = test[(m/2+1):m,]
o2=test2[test2$conclusion=='Overenrichment',]
# list of overenrichments for the second ESR set:
print(o2, nrows='ALL')

# the same can be done using KEGG pathways:
keggtest = neat(alist = esr, blist = yeast$kegg, network = yeast$yeastnet,

nettype = 'undirected', nodes = yeast$ynetgenes, alpha = 0.01)

## End(Not run)
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Abstract

Despite a long tradition in the study of graphs and relational data,
for decades the analysis of complex networks was limited by difficul-
ties in data collection and computational burdens. The advent of new
technologies in life sciences, as well as in our daily life, has suddenly
shed light on the many interconnections that our world features, from
friendships and collaborations between individuals or organizations,
to functional couplings between cellular molecules. This has highly fa-
cilitated the collection of relational data, fostering an unprecedented
interest in network science.

Understanding relations encoded in complex networks, however,
still represents a challenging task, and statistical methods that can help
to summarize and simplify complex networks are needed. In this the-
sis we show that often one can gain a deep insight of a network by
focusing their attention on communities, i.e. on clusters of nodes, and
on the relations that exist between them.

We begin by presenting NEAT, a network-based test that allows
to assess relations between gene sets in a gene interaction network.
NEAT extends traditional gene enrichment analysis tests by incorpo-
rating information on interactions between genes and it overcomes
some limitations of existing network enrichment analysis approaches.

Then, we propose two extended stochastic blockmodels that allow
to infer the relations that exist between communities from relations
between pairs of individuals in a social network. We advocate the use
of penalized inference to estimate these models, with the aim of de-
riving a sparse reduced graph between communities. Application of
these models to bill cosponsorship networks in the Italian Chamber
of Deputies allows us to reconstruct the pattern of collaborations be-
tween Italian political parties from 2001 to 2015.

Finally, we propose a novel clustering strategy for sequences of
graphs, based on mixtures of generalized linear models. We show that
the proposed clusteringmethod not only is capable to retrieve subpop-
ulations of networks within a cross-sectional or longitudinal sequence
of networks, but it also allows to directly characterize them by con-
sidering each of the components that form the mixture model.
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Samenvatting
Ondanks een lange traditie in de studie van grafen en relationele

gegevens, werd decennia lang de analyse van complexe netwerken
beperkt door de problemen bij het verzamelen van gegevens en com-
putationele lasten. De komst van nieuwe technologieën in de
levenswetenschappen, maar ook in het dagelijks leven, is het plot-
seling mogelijk de vele verbanden in de wereld, van vriendschap en
samenwerking tussen individuen of organisaties tot functionele kop-
pelingen tussen de cellulaire moleculen, te analyseren. Dit heeft het
verzamelen van relationele gegevens vergemakkelijkt en maakt het
concept van “netwerk” van centraal belang in de wetenschap en in
sociale en economische praktijken.

Inzicht relaties gecodeerd in complexe netwerken echter nog al-
tijd een uitdaging en statistische methoden die kunnen helpen bij het
samenvatten en vereenvoudigen van complexe netwerken zijn urgent
nodig. In dit proefschrift laten we zien dat men vaak een diep inzicht
van een netwerk kan krijgen door zich te richten op de gemeenschap-
pen, dat wil zeggen op clusters van knooppunten, en op de relaties die
er tussen hen bestaan.

We beginnenmet de presentatie van NEAT, een test-netwerk op ba-
sis die het mogelijk maakt om de relaties tussen genenverzamelingen
te evalueren in een gen interactie netwerk. NEAT breidt traditionele
gen verrijking analyse uit door het opnemen van informatie over in-
teracties tussen genen. Het overkomt daarbij een aantal beperkingen
van de bestaande netwerk verrijking benaderingen.

Dan introduceren we een uitbreiding van stochastische blokmod-
ellen die het mogelijk maken om de relaties die bestaan tussen de
gemeenschappen van de betrekkingen tussen paren van individuen
in een sociaal netwerk af te leiden. We pleiten voor het gebruik van
geregulariseerde statistische inferentie van deze modellen, met het
doel het afleiden van een interpreteerbare gereduceerde grafiek tussen
gemeenschappen. We passen deze modellen toe om cosponsorship
netwerken te beschrijven in de Italiaanse Kamer van Afgevaardigden
en om het patroon van de samenwerkingen tussen de Italiaanse poli-
tieke partijen te reconstrueren in de periode van 2001-2015.

Tenslotte stellen we een nieuwe strategie voor het clusteren van
grafen op basis van een mixture van generaliseerde lineaire modellen.
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We tonen aan dat de voorgestelde methode clustering niet alleen in
staat stelt om subpopulaties van netwerken te identificeren, maar ook
om ieder netwerk individueel te karakteriseren.
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