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Working memory (WM) is a core cognitive function critical for flex-
ible, intelligent behavior1. Until recently, it was widely assumed that 
information is maintained in WM by maintaining specific activity 
states that represent the specific memoranda2,3. However, accumulat-
ing evidence increasingly shows that successful maintenance in WM is 
not strictly dependent on an unbroken chain of corresponding delay 
activity4 and that item-specific activity states could reflect other cog-
nitive processes. For example, in monkey studies, persistent activity 
ramps up with expectation of the probe5–8. Similarly, in humans, it 
has been shown that unattended WM content is not reflected in the 
neural signal, even when it is still clearly maintained9–11. Evidence 
for WM in the absence of persistent delay activity suggests that WM 
can be maintained in activity-silent neural states4.

Recent theories acknowledge that brain activity is highly dynamic, 
even when the contents of working memory remain stable12. Multiple 
neurophysiological mechanisms could underlie such dynamics13–15. 
According to a dynamic coding model of WM4, behaviorally relevant 
sensory input drives a memory-item-specific neural response, which 
triggers an item-specific change in the functional state of the system. 
Depending on the precise neural mechanism, this functional state 
could be activity-silent (for example, short-term synaptic plastic-
ity14,16–19) and maintained throughout the memory delay to serve 
as the neural context for subsequent processing. Items in WM would 
be read out via the context-dependent response to a probe stimulus 
during recall13,20. Crucially, this model predicts that dynamic hidden 
states are constructed when new information is encoded and dis-
solved as soon as it is forgotten. This model also predicts that dynamic  
hidden states should determine the quality of a representation  
maintained in WM.

To probe hidden neural states, we developed a functional pertur-
bation approach to ‘ping’ the brain. Analogously to the use of active 

sonar (or echolocation), the response to a well-characterized impulse 
stimulus can be used to infer the current state of the system4,13.  
We recently validated this general approach using noninvasive electro-
encephalography (EEG) in a proof-of-principle study21. The presenta-
tion of a high-contrast neutral visual stimulus evoked neural activity 
that clearly discriminated the previously presented visual stimulus. 
Here we exploit this approach to track the functional dynamics of 
hidden states for WM.

Across two experiments, we showed that the content of WM 
could be decoded from the impulse response during the main-
tenance interval, while forgotten information left effectively no 
trace. In Experiment 2, we demonstrated robust hidden-state rep-
resentations for unattended content in WM, providing a plausible 
mechanism for maintenance that is independent of the activity  
associated with the focus of attention. Finally, we also found evidence 
that the quality of working memory varied with the decodability  
of these hidden states.

RESULTS
Experiment 1
In Experiment 1, 30 human participants performed a visual WM task 
while EEG was recorded. At the beginning of each trial (Fig. 1a), two 
memory items were presented, but a retrospective cue (retro-cue) 
presented during the delay instructed participants which item would 
actually be probed22,23. The other item could be simply forgotten. The 
retro-cue in this design was essential to differentiate WM from basic 
stimulation history24. During a subsequent memory delay, we then 
presented a high-contrast ‘impulse’ stimulus. Memory performance 
for the cued item was tested after the impulse by a centrally presented 
memory probe (Fig. 1b). Time–frequency decomposition of lateralized  
activity in posterior sensors (Fig. 1c) showed significant lateralization 
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Dynamic hidden states underlying working-memory-
guided behavior
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Recent theoretical models propose that working memory is mediated by rapid transitions in ‘activity-silent’ neural states (for 
example, short-term synaptic plasticity). According to the dynamic coding framework, such hidden state transitions flexibly 
configure memory networks for memory-guided behavior and dissolve them equally fast to allow forgetting. We developed a 
perturbation approach to measure mnemonic hidden states in an electroencephalogram. By ‘pinging’ the brain during maintenance, 
we show that memory-item-specific information is decodable from the impulse response, even in the absence of attention and 
lingering delay activity. Moreover, hidden memories are remarkably flexible: an instruction cue that directs people to forget one 
item is sufficient to wipe the corresponding trace from the hidden state. In contrast, temporarily unattended items remain robustly 
coded in the hidden state, decoupling attentional focus from cue-directed forgetting. Finally, the strength of hidden-state coding 
predicts the accuracy of working-memory-guided behavior, including memory precision.
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in the alpha range (8–12 Hz) after the presentation of the cue (per-
mutation test, n = 30, P < 0.001, corrected; cluster-forming threshold  
P < 0.05). This pattern was consistent with a shift in spatial attention25 
according to the retro-cue, which confirmed that the cue manipula-
tion was effective.

Decoding parametric memory items. To decode the memory items 
used in this experiment, we developed a parametric variant of dis-
tance-based discrimination (Fig. 2a–d and Online Methods). As 
shown in Figure 2a, this capitalized on the parametric structure of 
the stimulus space26, whilst maintaining the statistical advantages  
of the Mahalanobis distance metric used in previous EEG and  
magnetoencephalography decoding studies21,27 (Online Methods).  
To summarize briefly here: for a given trial, we compared the activ-
ity pattern across electrodes to the corresponding activity pattern 
observed in the remaining trials, averaged by orientation-difference to 
the test trial (at a bin width of 30°). This procedure was repeated for all 
trials and all timepoints. If the pattern of activity contained informa-
tion about item orientation, we expect greater pattern dissimilarity 
(i.e., Mahalanobis distance) at larger angular differences. Figure 2b 
shows distance as a function of reference angle and time after the pres-
entation of the left and right items separately. Distance values were 
then converted into a decoding accuracy score (Fig. 2c) and averaged 
across both items at each timepoint (Fig. 2d). Item orientation could 
be decoded from 56 ms until 1,026 ms after onset (permutation test, 
n = 30, P < 0.001, corrected; cluster-forming threshold P < 0.05). 
This was consistent with previous empirical evidence that EEG is 
sufficiently sensitive to detect subtle differences in scalp-level activity 
patterns associated with different stimulus orientation21. The cur-
rent decoding results further validated the utility of multivariate pat-
tern analysis for two simultaneously presented orientation gratings.  

For completeness, we also decoded item-specific orientation during 
the retro-cue epoch (Supplementary Fig. 1).

Pinging hidden states. On the basis of the dynamic coding frame-
work, we hypothesized that the input–output mapping of neural cir-
cuits maintaining information in WM should systematically reflect 
the memory content4. We tested this using an impulse stimulus to ping 
potentially hidden neural states (Fig. 2e). As predicted, the impulse-
specific response clearly differentiated the content of WM (Fig. 2f), 
even though the driving input (ping) was held constant on each trial. 
The decodability of the cued item showed a significant cluster from 
148 to 398 ms after impulse stimulus onset (permutation test, n = 30, 
P = 0.002, corrected; cluster-forming threshold P < 0.05). Average 
decodability from 100 to 500 ms was also significant (P = 0.004),  
and cued-item decoding was also higher than task-irrelevant (uncued) 
item decoding (cluster: 216 to 386 ms, P = 0.009, corrected; average:  
P = 0.028). Indeed, the uncued item showed no evidence for decoding 
(no corrected clusters; average: P = 0.687), suggesting that content can 
be rapidly purged from WM when instructed, leaving effectively no 
trace in the neural state.

To test whether the impulse response reflects a literal ‘reactivation’ of 
item-specific activity observed during encoding (for example, Fig. 2b),  
we also examined whether a classifier trained on the activity elicited 
by the memory stimuli during encoding could be used to decode the 
memory item during the impulse epoch (and vice versa). However, 
we found no evidence for significant cross-generalization between 
discriminative activity patterns during encoding and discrimina-
tive activity driven by the impulse (corrected clusters, P > 0.347).  
We propose that the impulse stimulus simply acts as a functional  
ping to recover hidden states, rather than a literal reactivation of a 
latent representation21.
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Trial-wise variability in decoding the impulse response also pre-
dicted variability in WM performance. Higher-decoding trials of  
the cued item were accompanied by higher performance than low-
decoding trials (permutation test, n = 30, P = 0.043; Fig. 3a). There 
was also a complementary cost for decoding the uncued item (i.e., a 
high decoding score for the uncued item led to a decrease in accu-
racy on the cued item; P = 0.002; Fig. 3b), suggesting that partici-
pants might have failed to discard the uncued item (or simply did 
not use the cue properly) on some trials, contributing to error in 
performance. Finally, the difference between the accuracy effect of the  
cued and the uncued item was also significant (permutation test,  
n = 30, P < 0.001).

In principle, the relationship between trial-wise decoding and WM 
performance may rest on an increase in the guess rate (i.e., due to 
forgetting or failure to encode), a reduction in precision or both28,29. 
To separate these possible contributions, we modeled the behavioral 
profile over degrees of angular rotation between the memory item and 
the probe stimulus (Online Methods; http://www.palamedestoolbox.
org)30. We found that the link to behavior was most likely driven by a 
decrease in precision (the slope parameter of the model) for weakly 

encoded hidden states of WM (permutation test, n = 30, P = 0.023, 
one-tailed; Fig. 3a), while no evidence for an effect in guess rate (the 
asymptote parameter) was found (P = 0.867, one-tailed). Modeling 
the observed uncued item accuracy effect was inconclusive (Fig. 3b), 
with no evidence for either a precision or guess rate effect (P = 0.443 
and P = 0.184, respectively, one-tailed). Finally, we found no evidence 
that trial-wise item decoding during the initial presentation of the 
memory stimuli related to memory performance (Supplementary 
Fig. 2a), further suggesting that the relationship between accuracy 
and decoding triggered by the impulse was not due to a failure to 
encode the memory item.

Experiment 2
Recently, it has been proposed that information in WM can be rep-
resented in qualitatively different states31–33, with attended items 
encoded in activity states measurable with standard recordings of 
delay activity, whereas activity-silent states could underlie the repre-
sentation of currently unattended information in WM. In Experiment 
2 (n = 19 subjects) we tested whether unattended but nevertheless 
remembered information in WM can still be decoded from the 
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impulse response. Again, two memory items were presented at the 
start of the trial, but both were ultimately relevant as they would 
both be probed. Priority was manipulated by blocking the order in 
which items would be probed (Fig. 4a) and instructing participants 
accordingly. Because there was no other clue as to which item was 
being probed first or second, nonrandom responses indicated that 
participants used this blocked information (Fig. 4b). This was further 
supported by lateralized changes in alpha power (Fig. 4c). During and 
shortly after the initial presentation of the memory stimuli, there was 
a relative decrease in power at sensors contralateral to the initially 
prioritized item, consistent with selective allocation of attention (per-
mutation test, n = 19, P = 0.023, corrected; cluster-forming threshold 
P < 0.05). Moreover, this pattern reversed after the response to the 
first item (P = 0.009, corrected), consistent with the assumption that 
participants then shifted the originally deprioritized item into the 
focus of attention in WM in preparation for the second probe34.

Decoding during stimulus presentation. We first analyzed decoding 
during the initial processing of the memory stimuli. The results were 
plotted separately as a function of test time (early or late in the trial), 
as this could be meaningfully classified from the beginning of the trial 
(Fig. 5a). As expected, decoding the prioritized item (cluster: 74 to 
1,200 ms, P < 0.001, corrected; cluster-forming threshold P < 0.05;  
average: P < 0.001), relative to the deprioritized item (cluster: 82 
to 542 ms, corrected, P < 0.001, corrected; average, P < 0.001) was 
more robust (average: P = 0.013). While decoding of the unattended 
item dropped to chance relatively quickly after item presentation, 
the attended item showed significant decoding until the end of the 
epoch, replicating previous evidence showing that maintenance  
of only attended WM items is represented in the recorded brain  
activity patterns9–11.

The difference between attended and unattended item-maintenance  
in WM was even more apparent when comparing their cross-temporal  
decoding matrices. Minimal cross-temporal generalization during 
and shortly after memory item presentation suggested highly dynamic 
item encoding: orientation-discriminative patterns change over time. 
This was supported by significant dynamic coding clusters during 
item encoding for both the early- and late-tested items, where off-
diagonal timepoints showed significantly lower decodability than 
both corresponding on-diagonal timepoints (permutation test, n = 19,  
cluster-defining threshold P < 0.05, corrected significance level P < 0.05;  
Fig. 5b and Online Methods). However, the attended item clearly 
showed a more time-invariant decoding pattern at the end of the epoch 
than the unattended item, apparent due to both significantly higher 
decodability on the same timepoint as well as cross-timepoint decod-
ing (n = 19, P = 0.023, corrected; cluster-forming threshold P < 0.05;  
Fig. 5b). This further suggests that while the attended item also had a 
corresponding WM maintenance signature in stable activity patterns, 
the unattended item did not.

Decoding of the impulse responses. Critically, we found that both 
the attended (clusters: 80 to 308 ms, P = 0.004; and 332 ms to 434 
ms, P = 0.031, corrected; average: P < 0.001) and unattended items 
(cluster: 172 to 306 ms, P = 0.011, corrected; average: P = 0.045) were 
decodable in the first impulse response (Fig. 6a). This contrasted with 
the clear cueing differences observed in Experiment 1 and suggested 
that multiple items can be encoded in hidden states and revealed by 
the impulse, even if only one item is in the focus of attention. It is 
worth noting, however, that the decodability of the attended item 
was significantly higher than that of the unattended item (average:  
P = 0.031), consistent with the behavioral evidence for relatively  
better memory for the initially prioritized item.

We found no evidence for a relationship between trial-wise differ-
ences in alpha lateralization and WM item decodability of the impulse 
response for either the attended or unattended item (Supplementary 
Fig. 3). This further suggests that the item-specific impulse response 
does not even vary with trial-wise differences in the focus of attention.

We also found that the remaining relevant and initially unattended 
item could also be decoded in the second impulse response (cluster: 
196 to 326 ms, P = 0.016, corrected; average: P = 0.012), while decod-
ing the initially prioritized item failed to reach significance in this 
epoch (clusters: P > 0.109, corrected; average: P = 0.112; Fig. 6b). The 
now-deprioritized item was presumably cleared from the hidden state 
because it was no longer relevant, similarly to the forgetting observed 
after the retro-cue from Experiment 1.

Again, we also tested for cross-generalization between the deco-
dable patterns of the memory-items epoch (Fig. 5a) and the impulse 
epochs (Fig. 6a,b). However, as in Experiment 1, we found no evidence  
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that the impulse literally reactivated activity patterns associated with 
initial encoding for either item (all corrected clusters: P > 0.32).

There was also a positive relationship between trial-wise decoding 
of the attended items at the first and at the second impulse with WM 
performance (early: P = 0.038, Fig. 6c; late: P = 0.04; Fig. 6d), replicat-
ing and extending the findings of Experiment 1. As in Experiment 1,  
we modeled the behavioral profile to test whether the positive rela-
tionship between decoding and task performance was due to an 

increase in precision and/or a decrease in the guess rate. While the 
modeling results were inconclusive for the early-tested item (preci-
sion: P = 0.399, one-tailed; guess rate: P = 0.329, one-tailed; Fig. 6c), 
there was evidence for an effect of WM precision for the late item 
(precision: P = 0.006, one-tailed; guess rate: P = 0.942, one-tailed; 
Fig. 6d), replicating the precision effect of Experiment 1. Note that 
there was again no relationship between accuracy and item decoding 
during the encoding phase (Supplementary Fig. 2b).
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P < 0.05, corrected significance level P < 0.05).
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Experiment 3
We developed the impulse perturbation approach to reveal oth-
erwise hidden neural states, without necessarily transforming the 
mnemonic representation4,21. This contrasts with other studies using 
retro-cues10,11,31 or transcranial magnetic stimulation35 to reactivate a 
latent item in working memory. However, to test whether our impulse 
stimulus actually did result in a behaviorally relevant transformation 
of the memory item (i.e., from a functionally latent to active state), 
we conducted an additional behavioral experiment (n = 20 subjects). 
Adapting the design of Experiment 1, we now varied the presentation 
of the stimulus-onset asynchrony (SOA) between impulse and probe 
onset in Experiment 3 (SOA from 0 to 500 ms; Supplementary Fig. 4a). 
If the increase in impulse-specific decodability observed in both EEG 
experiments reflected a functional reactivation of an otherwise latent 
memory item, there should be a corresponding benefit to behavior.

A repeated-measures ANOVA provided no evidence for an effect 
of SOA (F4,76 = 1.184, P = 0.325). Uncorrected paired comparisons 
between the no-impulse condition (SOA 0 ms) and all other SOAs  
also provided no evidence for an impulse-specific effect on accuracy 
for any SOA (permutation test, n = 20, all P > 0.12; Supplementary 
Fig. 4b). This suggests that our impulse stimulus was effective for 
pinging activity silent neural states without resulting in any behavio-
rally relevant transformation of the mnemonic representation.

DISCUSSION
Recent theoretical models of WM predict a key role for activity-silent 
neural states in maintaining item-specific information4,17,18. This 
raises a particular challenge for contemporary neuroscience, which 
is dominated by measurement and analysis of neural activation states. 
Here we addressed this challenge using a perturbation approach to 
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Figure 6 Attended and unattended WM items in early and late epochs and their relationship with behavioral performance. (a) Item decoding of the 
early- (blue) and late-tested items (red) during the first impulse epoch. Colored bars on top indicate significant decoding clusters of the corresponding 
items (permutation test, n = 19, cluster-defining threshold P < 0.05, corrected significance level P < 0.05). Error shading, 95% CI of the mean. 
Boxplots and superimposed circles with error bars (mean and 95% CI of the mean) represent average decodability from 100 ms after stimulus onset 
until the end of the epoch. Significant average decoding and average differences between the decodability of the early and late item are marked by 
an asterisk (permutation test, n = 19, tested-early: P < 0.001; tested-late: P = 0.045; difference: P = 0.031). Black and blue bar on the x axis shows 
onset of the first impulse. (b) Item decoding during the second impulse epoch; same conventions as a. Significant average decoding of the late item 
is marked by an asterisk (permutation test, n = 19, P = 0.016). Black and red bar on the x axis shows onset of the second impulse. (c) Left: boxplot, 
superimposed circles and error bars represent the differences in overall WM task performance between high- and low-decoding trials of early-tested 
items during the first impulse. Right: proportion of clockwise responses for high- and low-decoding trials as a function of the angular difference between 
the memory item and the probe. Error bars are 95% CI of the mean. Inset: boxplot and error bars for the difference in the slope parameter (a measure 
of memory precision) between high- and low-decoding trials. (d) As in c but for decoding the late-tested item during the late impulse. Significant 
differences in accuracy and/or precision between high- and low-decoding trials are highlighted by asterisks (permutation test, n = 19, early-tested 
item during first impulse: P = 0.038 for accuracy; late-tested item during second impulse: P = 0.0404 and P = 0.006 for accuracy and precision, 
respectively, two-sided and one-sided for accuracy and precision tests, respectively). In boxplots, horizontal line indicates the median; box outlines show 
25th and 75th percentiles, and whiskers indicate 1.5× the interquartile range. Extreme values are shown separately (crosses).©
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reveal hidden neural states that encode the contents of WM. We 
showed that the response to an impulse stimulus faithfully reflected 
item-specific information in WM. We further demonstrated that the 
impulse response reflected both attended and unattended items in 
WM, yet recently forgotten information left no detectable traces in the 
hidden state. Behavioral modeling further suggested that the hidden-
state coding determined the quality of information in WM.

Previous evidence from nonhuman primates shows that a neutral 
visual stimulus presented during the WM delay period can elicit dis-
tinct patterns of neural activity that depend on recent visual input36. 
Although the previous work could not deconfound previous sensory 
stimulation and WM proper, the observed effect helped motivate a 
dynamic coding model for WM4. According to this framework, dis-
tinct memoranda are associated with distinct changes in the neural 
response profile, which would be readable to downstream systems 
from the state-dependent response to a retrieval probe4,18. Crucially, 
WM depends on the maintenance of the item-specific neural response 
profile, rather than an explicit representation of an item in a persistent 
activity state. We now provide direct evidence for a WM-dependent 
impulse response decoupled from previous stimulation history and 
further demonstrate that this WM state is highly flexible and coupled 
to behavioral performance. The hidden state for a specific item can 
be rapidly cleared if it is no longer relevant to the task, providing a 
striking neural correlate of directed forgetting in WM.

Recent retro-cuing evidence suggests that prioritizing one WM 
item relative to other task-relevant items improves neural decoding 
of the cued item, whereas decoding of unattended items drops to 
chance levels even though the unattended information is still ulti-
mately task-relevant and retrievable at the end of the trial10. Item-
specific delay activity therefore seems to reflect the focus of attention, 
rather than WM per se31. The impulse response reported here clearly 
differed from the typical profile observed for decoding delay activ-
ity patterns. In Experiment 2, both attended and unattended items 
could be decoded from the impulse response of the hidden state as 
long as they were both still ultimately required for task performance. 
This suggests that if the information was successfully maintained in 
WM, there was a corresponding trace in the hidden state, irrespective 
of attentional priority. These results highlight the flexibility of WM, 
independently of attention-switching between specific items in WM. 
Activity states appear to track the focus of attention10,11,31, whereas 
hidden states, as revealed by the impulse response, more closely track 
the actual contents of WM.

Exactly how the proposed hidden state can be used for WM-guided 
behavior remains an important open question. Computationally, 
supervised learning could determine the mapping between the mem-
ory-dependent probe response and the correct behavioral response37, 
but such a learning strategy seems implausible for real-world behav-
ior. Trial-and-error learning of arbitrary patterns does not seem a 
realistic model for WM, at least for humans. Instead, the inherent 
dynamics could establish a history-dependent match filter20, which 
would be capable of transforming probe input to a common decision 
signal (i.e., match versus no-match or, in our case, clockwise versus 
counterclockwise). In Myers et al.27, such a mechanism was shown 
to generate two distinct decision-related signals in an orientation 
detection task: a signed (i.e., directional) and unsigned difference 
signal, even though the signed difference was actually irrelevant to 
behavior in that task. A similar process could underpin WM encod-
ing in hidden states. The hidden state could establish a flexible, task 
dependent circuit for WM-dependent decision-making38. When the 
probe stimulus is presented, the hidden state transforms the input to 
decision-relevant output: for example, direction of angular rotation. 

However, because the impulse stimulus used in these experiments 
does not contain decision-relevant features, the impulse response 
reflects an input–output transformation of the arbitrary input.

It may be noted that, although the response to an arbitrary input 
is sufficient to read out the hidden state, it is unlikely to constitute 
an explicit reactivation of the memory representation. In contrast, 
retro-cueing can convert an unattended item to a prioritized state 
in preparation for recall22. Similarly, a recent transcranial magnetic 
stimulation study suggests that stimulation of the visual cortex can 
also render an item active from its latent state35. We find no evidence 
that our impulse stimulus reactivated the same pattern associated 
with stimulus processing. Moreover, a further behavioral experiment 
designed to test the possible behavioral consequences of our impulse 
stimulus provided no evidence that it interacted with the mnemonic 
representation. Rather, we argue that the impulse response simply ‘ech-
oed’ the representational structure of the hidden state but did not drive 
an explicit transformation of latent memories to a prioritized state.

It has long been assumed that WM maintenance depends on per-
sistent neural activity2. Instead, we propose that activity-silent neu-
ral states are sufficient to bridge memory delays. Activity-dependent 
transformations in hidden states determine the temporary coding 
properties of memory networks, i.e., dynamic coding4,36. WM deci-
sions are made by the state-dependent response to subsequent input. 
However, WM is also classically associated with active manipulation 
of content in short-term memory1. We argue that such transforma-
tions are activity-dependent but that the results of the transforma-
tion can be maintained in short term memory via latent network 
states. This alternative account does not ignore previous evidence 
for decodable activity during mnemonic delays but rather attributes 
such evidence to focused attention35, periodic18 or stochastic17 updat-
ing, and/or response preparation8. Notably, our current results also 
showed that cue-directed forgetting can rapidly wipe the mnemonic 
representation from the hidden state. Rapid construction and dis-
solution of hidden states places important constraints on the basic 
mechanisms of hidden-state coding.

Although the present study addressed a specific model of WM, it 
is worth noting that the general impulse response approach for infer-
ring otherwise silent neural states could also be particularly fruitful 
for exploring other tonic cognitive states, such as task set, attention 
and expectation. It is becoming increasingly apparent that we need to 
look beyond simple measures of neural activity and consider a richer 
diversity of neural states that underpin context-dependent behavior. 
Here we focus on perturbation to illuminate hidden states, but future 
work will also profit from more direct measures of functionally rel-
evant hidden states (for example, synaptic efficacy, membrane poten-
tials, extracellular transmitter concentrations). This will require more 
sophisticated measurements in awake behaving animals, coupled with 
noninvasive approaches like those described here for human studies.

METhODS
Methods, including statements of data availability and any associated 
accession codes and references, are available in the online version of 
the paper.

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.
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ONLINE METhODS
Participants. Thirty healthy adults (13 female, mean age 24.9 years, range  
18–38 years) were included in the analyses of Experiment 1, 19 adults (10 female,  
mean age 24.7 years, range 18–39 years) in Experiment 2 and 20 adults in 
Experiment 3 (13 female, mean age 21, range 18–29 years). During data collection 
and preprocessing, four additional participants in Experiment 1, one additional 
participant of Experiment 2 and six additional participants of Experiment 3 were 
excluded from all analyses due to either low average performance on the memory 
task (below 60% accuracy) or excessive eye movements (more than 30% of trials 
contaminated). No statistical methods were used to predetermine sample sizes, 
but our sample sizes are similar to those reported in previous publications21,28. 
All participants of Experiment 1 and 2 received monetary compensation of 
£10/h, and participation in Experiment 3 contributed to course credits. All par-
ticipants gave written informed consent. Experiments 1 and 2 were approved by 
the Central University Research Ethics Committee of the University of Oxford 
and Experiment 3 was approved by the Departmental Ethical Committee of the 
University of Groningen.

Apparatus and stimuli. The experimental stimuli were generated and controlled 
by Psychtoolbox39, a freely available Matlab extension. The stimuli were presented 
on a 23-inch (58.42-cm) screen running at 100 Hz and a resolution of 1,920 by 
1,080 in Experiment 1; on a 22-inch (55.88-cm) screen at a resolution of 1,680 
by 1,050 in Experiment 2; and on a 19-inch (48.26-cm) CRT screen running at 
100 Hz and a resolution of 1,280 by 1,024 in Experiment 3. Viewing distance was 
set at 64 cm in Experiment 1, 67.5 cm in Experiment 2 and approximately 60 cm 
(not controlled) in Experiment 3, to ensure that the visual angles of stimuli were 
the same across experiments even though the screen parameters were different. 
A standard keyboard was used for response input by the participants.

All reported stimuli were the same in all experiments, unless explicitly men-
tioned otherwise. A gray background (RGB = 128, 128, 128; 20.5 cd/m2; 28.6 
cd/m2 in Experiment 3) was maintained throughout the experiments. A black 
fixation dot with a white outline (0.242°) was presented in the center of the screen 
throughout all trials. Memory items and memory probes were sine-wave grat-
ings presented at 20% contrast, with a diameter of 6.69° and spatial frequency 
of 0.65 cycles per degree. The phase was randomized within and across trials. 
The memory items were presented at 6.69° eccentricity, and for each trial the 
orientations were randomly selected without replacement from a uniform dis-
tribution of orientations. The impulse stimulus was three adjacent ‘bull’s-eyes’ in 
Experiment 1. Each bull’s-eye was of the same size and spatial frequency as the 
memory items. To reduce strain on the eyes, and to minimize forward masking 
in Experiment 3, the impulse stimulus in Experiments 2 and 3 consisted of three 
adjacent white circles. In Experiment 1 and 2 the probes had the same contrast 
and spatial frequency as the memory items and were presented in the center 
of the screen. In Experiment 3 the probe screen included a high contrast black 
and white square-wave grating in the center and two white lateralized circles on 
the outside (the same location and size as the preceding lateral impulse circles). 
The angle differences between a memory item and the corresponding memory 
probe were uniformly distributed across seven angle differences in Experiment 1  
(±3°, ± 7°, ± 12°, ± 18°, ± 25°, ± 33°, ± 42°), six angle differences in Experiment 2 
(±5°, ± 10°, ± 16° ± 24°, ± 26°, ± 32°, ± 40°) and a single angle difference (±16°) 
in Experiment 3.

Procedure. Experiment 1. Participants completed a retro-cue visual working 
memory task. Each trial began with the onset of a fixation dot at the center 
of the screen. After 1,000 ms, the memory item array was shown for 250 ms, 
consisting of two randomly oriented low-contrast gratings left and right of fixa-
tion. After a delay of 800 ms an arrow was shown for 200 ms in the center of the 
screen, pointing either to the left or to the right, and thus cueing which of the two 
previously presented items would be tested. The number of left and right cued 
trials was equal and the order was randomized for each participant. The impulse 
stimulus was presented for 100 ms, 900 ms after the offset of the retro-cue. After 
another delay of 400 ms, the memory probe was shown for 250 ms. Participants 
were instructed to indicate if the orientation of the probe relative to the orienta-
tion of the memory item was rotated clockwise by pressing the ‘m’ key with the 
right index finger or counter-clockwise by pressing the ‘c’ key with the left index 
finger. A high or low frequency feedback tone was played after response, indi-
cating if the answer was correct or incorrect, respectively. The next trial started 

within 400–700 ms (determined randomly). Participants completed 1,344 trials 
in total, which took approximately 3 h (including breaks). Trial conditions were 
randomized across the whole session. See Figure 1a for a trial schematic.

Experiment 2. Participants completed a visual working memory task in which 
two items were serially tested. The experiment began by instructing the partici-
pant which of the two memory items would be tested early and which one would 
be tested late. This rule never changed within a session. Each trial began with the 
onset of a fixation dot at the center of the screen. After 1,000 ms, the memory 
item array was shown for 250 ms, consisting of two randomly oriented low- 
contrast gratings left and right of fixation. After a delay of 950 ms, the first impulse 
was presented for 100 ms. After a delay of 500 ms, the first memory probe was 
presented for 250 ms, probing the first item. The response input was the same 
as in Experiment 1. After a fixed delay of 1,750 ms after the offset of the first 
probe, the second impulse was shown for 100 ms. Following a delay of 400 ms,  
the second memory probe was presented for 250 ms, probing the late-tested 
item. After the second response, two feedback tones were played, one for each 
response, separately indicating whether the first and second answers were correct. 
Participants completed two sessions of the task on two separate days, separated 
by approximately 1–2 weeks. The testing order of the memory items was fixed 
within each session and switched between sessions (i.e., if the left item tested first 
in one session, the right item was tested first in the other session). The order of 
the testing rule between sessions (i.e., whether the left item was tested first in the  
first session or in the second session) was counterbalanced across participants 
(odd-numbered participants were tested on the left first, even-numbered were 
tested on the right first). Each session consisted of 864 trials and lasted approxi-
mately 3 h including breaks. See Figure 3a for a trial schematic.

Experiment 3. The task was almost the same as in Experiment 1, including  
the same timings of the memory items, cue, probe and overall trial duration. 
The one key difference was the timing of the impulse stimulus. While the delay 
between cue offset and probe onset was held constant at 1,400 ms across all tri-
als (the same as in Experiment 1), the SOA between impulse and probe onset 
was 0, 50, 100, 250 or 500 ms (determined pseudorandomly across the session).  
No impulse was shown in the 0 ms SOA condition. The impulse remained on  
the screen until the probe stimulus was presented. This was to ensure the least 
possible interference from the impulse on probe processing (i.e., rapid onset 
and offset of the white circles immediately before probe presentation could 
deteriorate probe visibility), as well as keeping the different SOA conditions as 
similar as possible (longer SOA would include an additional offset). Participants 
completed 280 trials (approximately 30 min). See Supplementary Figure 4a for  
a trial schematic.

Data collection and analyses were not performed blind to the conditions  
of the experiments. Due to the within-subject design in all three experiments, 
randomization of conditions between subjects was not applicable.

eeg acquisition. The EEG signal was acquired from 61 Ag/AgCl sintered elec-
trodes (EasyCap, Herrsching, Germany) laid out according to the extended 
international 10–20 system. Data was recorded at 1,000 Hz using a NeuroScan 
SynAmps RT amplifier and Scan 4.5 software in Experiment 1 and Curry 7 soft-
ware in Experiment 2 (Compumedics NeuroScan, Charlotte, NC). The anterior 
midline frontal electrodes (AFz) served as the ground. Bipolar electrooculog-
raphy (EOG) was recorded from electrodes placed above and below the right 
eye, to the left of the left eye and to the right of the right eye. The impedances of 
all electrodes were kept below 5 k. Online, the EEG was referenced to the right 
mastoid and filtered using a 200-Hz low-pass filter.

eeg preprocessing. Offline, the data was re-referenced to the average of both 
mastoids, down-sampled to 500 Hz and bandpass filtered (0.1 Hz high-pass and 
40 Hz low-pass) using EEGLAB40. The data was then epoched to the onset of the 
memory items and the impulse. In Experiment 1, the memory item epoch was 
from −200 ms to 1,050 ms, relative to onset, and in Experiment 2 from −200 ms  
to 1,200 ms. The impulse epochs were from −200 ms to 500 ms relative to 
onset in both experiments. Additionally, for the purpose of artifact rejection, 
including rejection of trials containing saccadic eye movements before the 
time of interest (see below), the cue segment in Experiment 1 was also epoched 
(−200 ms to 1,100 ms).

Subsequent artifact detection and trial rejection focused exclusively on the 17 
posterior channels that were included in the analyses (P7, P5, P3, P1, Pz, P4, P6, 
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P8, PO7, PO3, POz, PO4, PO8, O1, Oz and O2) and the EOGs. Each trial of each 
epoch was individually visually inspected for blinks, saccades and nonstereotyped 
artifacts. Trials from individual epochs were rejected from analyses involving 
that epoch if it contained any of the above-mentioned artifacts. Furthermore, 
impulse-epoch trials were also excluded from corresponding analyses if the EOG 
signal suggested that saccades occurred during any of the previous epochs of that 
trial. In Experiment 1, this exclusion procedure was applied to the cue-epoch as 
well. In Experiment 2, late-impulse trials were also excluded if no response was 
registered for the preceding probe. For the decoding analyses, each epoch was 
baselined using the average signal from −200 ms to 0 ms before stimulus onset. 
The multivariate data were also demeaned at each timepoint by subtracting the 
average voltage for all posterior channels included in the analyses.

time–frequency decomposition and lateralization analysis. In order to explore 
alpha power (8–12-Hz) lateralization25,41, the spectral power from 6 to 16 Hz 
(in steps of 0.5 Hz) of the EEG signal was computed using Hanning tapers with 
time-windows of 5 cycles per frequency (in steps of 10 ms) using the Matlab 
toolbox FieldTrip42. We included the whole experimental trial, ranging from 
1,000 ms before memory item onset until 1,500 ms after (second) probe onset 
(−1,000 to +4,150 ms relative to memory items in Experiment 1 and −1,000 
to +5,800 ms relative to memory items in Experiment 2). The power was log-
transformed, and lateralization was computed by subtracting the average power 
of the ipsilateral posterior electrodes from the average power of the contralateral 
posterior electrodes in relation to the cued memory item in Experiment 1 and to 
the early-tested item in Experiment 2 (P7, P5, P3, P1, PO7, PO3 and O1 versus 
P8, P5, P6, P4, P2, PO8, PO4 and O2).

Significant clusters of lateralization were determined using a cluster-corrected 
nonparametric sign-permutation test43. In both experiments, the whole trial was 
included in this analysis (−100 to +3,150 ms relative to memory items onset in 
Experiment 1 and −100 to +4,800 ms in Experiment 2).

orientation decoding. To test whether the activity pattern of the posterior 
EEG channels of interest contained orientation-specific activity, we used the 
Mahalanobis distance44 to compute the trial-wise distances between the full 
range of possible orientations and quantify to what extent the computed distances 
adhered to the parametric circular space of the orientations11. This approach is an 
extension of the pairwise distance approach we used before21 and is conceptually 
similar to the population tuning curve model26.

The left and right presented items were decoded separately and independ-
ently within each participant and experimental session. All 17 posterior chan-
nels (see above) were used for all decoding analyses. The procedure followed a 
leave-one-trial-out cross-validation approach to compute the trial-wise deco-
dability of the orientation of interest. The activity pattern of a single test trial 
at a particular timepoint was compared to the pattern of all other trials at the 
same timepoint. These were averaged into 12 orientation bins relative to the 
orientation of the test trial, each containing trials with orientations within a 
range of 30° and centered around −75°, −60°, −45°, −30°, −15°, 0°, 15°, 30°, 45°, 
60°, 75° and 90°. The Mahalanobis distances between the test trial and each 
orientation bin was computed using the covariance estimated from all trials, 
excluding the test trial, using a shrinkage estimator45. To simplify visualization 
and interpretation, the 12 resulting distances were mean-centered and the sign 
was reversed, resulting in a visual representation of a tuning curve. Higher 
values correspond to greater relative similarity between the test trial and the 
averaged train trials within a particular orientation bin, and lower values cor-
respond to greater dissimilarity.

Next, the vector means of the tuning curves were computed11. First, the cosine 
of the center of each orientation bin (θ) was rescaled to the range −180 to 180. It 
was then multiplied by the corresponding sign-reversed distances (d(θ)) before 
the mean of the resulting 12 values was taken, which made up the decoding 
accuracy (da). 

da d= mean( ( )cos( ))q q2

A high value reflects evidence for orientation tuning: the difference between 
the test trial and train trials with a similar orientation is smaller than between the 
test trial and train trials with different orientations. This procedure was repeated 
for all trials and all timepoints. See Supplementary Software for the custom 
Matlab function used to decode orientations using Mahalanobis distance.

(1)(1)

The decoding values were averaged over all trials and smoothed over time with 
a Gaussian smoothing kernel (s.d. = 16 ms) for visualization and time-resolved 
significance testing.

Cluster-corrected sign-permutation significance tests were carried out 
within the memory items epoch (0 to 1,050 ms in Experiment 1; 0 to 1,200 ms in 
Experiment 2) and impulse epochs separately (0 to 500 ms in both experiments), 
to explore the significant decoding time-course. Additionally, to assess the overall 
decodability within an epoch, the decoding values were averaged over time (from 
100 ms after stimulus onset until the end of the epoch) and then submitted to a 
two-sided permutation test.

Relationship between behavior and decoding. The trial-wise average decoding 
scores after memory items presentation (100 to 1,050 ms in Experiment 1 and 
100 to 1,200 ms in Experiment 2) and impulse presentation (100 ms to 500 ms) 
was median split. Nonresponse trials (to the early probe in Experiment 2) were 
excluded from this analysis. The average behavioral accuracies of high- and low-
decoding trials were statistically compared using a two-sided permutation test.

Behavioral modeling. To further explore the relationship between WM  
task performance and trial-wise decoding, we modeled the behavioral perform-
ance as a function of the difference in degrees between the orientation of the 
memory item and the probe using the following model, which was fit to each 
participant separately30. 

y erfc x= +
−

× − −



l

l b a
( )

( )
1 2

2 2

where erfc is the complementary Gaussian error function, λ is the asymptote, 
β is the slope and α is the threshold/bias parameter. The model fitting was per-
formed using the Palamedes Matlab toolbox (http://www.palamedestoolbox.
org/). The asymptote represents the guess rate, where a higher value reflects a 
higher probability that no information about the probed item is maintained in 
WM, resulting in a higher probability for mistakes even when the angular differ-
ence between the probe and the memory item is large. The slope is interpreted as 
the memory precision, where a high precision reflects a relatively high proportion 
of correct responses at small degree rotations between the probe and memory 
item. The asymptote and slope parameters were both unconstrained across the 
high- and low-decoding conditions. A single bias parameter was used, which was 
included (instead of fixing it at 0) because cumulative-likelihood tests46 showed 
better model fits for all cases (Experiment 1: n = 30, χ2

30 = 135.978, P < 0.001; 
Experiment 2, n = 19, early accuracy: χ2

19 = 215.351, P < 0.001; late accuracy: 
χ2

19 = 33.69, P = 0.02).
The unconstrained model parameters (slope and asymptote) were subse-

quently compared between high- and low-decoding trials. Since the behavioral 
modeling was carried out as a direct follow up to the average accuracy effects 
observed in both experiments (two-sided tests), we had clear expectations about 
the directionality of the effects. For the positive relationship between decoding 
and accuracy observed for the cued item in Experiment 1 and for both tests in 
Experiment 2, we expected that decoding should have a negative relationship 
with the guess rate (i.e., lower guess rates for higher decoding) and/or a positive 
relationship with precision (higher precision for higher decoding) and vice versa 
for the negative accuracy effect of the uncued item in Experiment 1. Therefore, 
all tests of model parameter comparisons between high- and low-decoding trials 
were one-sided.

cross-temporal decoding. We also explored the cross-temporal dynamics of 
stimulus processing and maintenance as a function of item priority in Experiment 
2 and the cross-generalization between impulse and memory presentation epochs 
in both experiments. The decoding approach was the same as described above, 
except classifiers trained at each time point were tested at every other time point, 
resulting in two-dimensional cross-temporal decoding matrices47.

If the decoding patterns are stationary, it should not matter whether training/
testing is performed using the same time points. In contrast, decoding often 
appears dynamic: training and testing on the same timepoints results in higher 
decoding scores than training and testing on different timepoints (i.e., minimal 
cross-temporal generalization). We tested for this hallmark feature of dynamic 
coding using a nonparametric test used previously27. The decodability at each 

(2)(2)
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cross-temporal timepoint tx,y was compared to the pair of decodabilities at the 
corresponding within timepoints (tx,x and ty,y) with two separate permutation 
tests. A significant difference in both was taken as evidence for dynamic coding. 
Timepoints of significant dynamic coding were corrected for multiple compari-
sons using a two-dimensional cluster-based permutation test.

Significance testing. To determine statistical significance, we used the nonpara-
metric sign-permutation test43 (with one exception; see discussion of ANOVA 
below), which does not make assumptions about the underlying distribution. 
Since the null hypotheses of all tests corresponded to no effect (i.e., no difference 
in power lateralization, no difference in decodability, etc.), the sign of the data of 
each participant was randomly flipped with a probability of 50% 50,000 times. The 
resulting distribution was used to derive the P value of the null hypothesis that the 
mean effect was equal to 0. All tests were two-sided, unless otherwise stated.

For time-series and frequency data, the above procedure was repeated for each 
timepoint and frequency (when applicable). To correct for multiple comparisons 
over time and/or frequencies, a cluster-based permutation test was subsequently 
used, with 50,000 permutations (5,000 for cross-temporal decoding, due to com-
puter memory limitations) and using a cluster-forming threshold and cluster 
significance threshold of P < 0.05. Tests concerning the average of specific time-
windows (including decoding-behavior relationships) were performed to test 
unique and independent hypotheses, and therefore no corrections were applied. 
The sample sizes for all tests were n = 30 in Experiment 1, n = 19 in Experiment 2 
and n = 20 in Experiment 3. The 95% confidence intervals of the error bars were 
determined by bootstrapping from the corresponding data 50,000 times.

The boxplots used in our figures follow the standard conventions. The middle 
line represents the median, the box the first and third quartile, and the whisk-
ers all data within 1.5× the interquartile range of the lower and upper quartile. 
Where appropriate, data points outside this range are displayed individually 
(small crosses).

A repeated measures ANOVA was used to analyze the behavioral data of 
Experiment 3. The normality and equal-variances assumptions were tested 
with the Shapiro-Wilk test of normality and Mauchly’s test of sphericity,  

respectively. Neither test provided evidence for assumption violations of the data. 
A Supplementary methods checklist is available.

Data availability. The data that support the finding of this study are publically 
available at http://datasharedrive.blogspot.co.uk/2017/03/dynamic-hidden-
states-underlying.html. All necessary task/condition information has been pro-
vided within a self-contained format, as specified in the OECD Principles and 
Guidelines for Access to Research Data from Public Funding48.

code availability. The custom Matlab orientation decoding function is provided 
with the paper (Supplementary Software). All complete custom Matlab routines 
used to generate the figures of this paper are available at http://datasharedrive. 
blogspot.co.uk/2017/03/dynamic-hidden-states-underlying.html.
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