
 

 

 University of Groningen

Large scale continuous integration and delivery
Stahl, Daniel

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2017

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Stahl, D. (2017). Large scale continuous integration and delivery: Making great software better and faster.
University of Groningen.

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license.
More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-
amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 12-10-2022

https://research.rug.nl/en/publications/4d6041a4-3691-4263-be7b-99c5edc738b5


Chapter 6. Modeling Continuous Integration Practice 
Differences in Industry Software Development

This chapter is published as:
Ståhl,  D.,  & Bosch, J.  (2014).  Modeling continuous integration practice differences  in  industry
software development. Journal of Systems and Software, 87, 48-59.

Abstract
Continuous integration is a software practice where developers integrate frequently, at least daily.
While this is an ostensibly simple concept, it does leave ample room for interpretation: what is it the
developers integrate with, what happens when they do, and what happens before they do? These are
all open questions with regards to the details of how one implements the practice of continuous
integration, and it is conceivable that not all such implementations in the industry are alike. In this
paper  we  show  through  a  literature  review  that  there  are  differences  in  how  the  practice  of
continuous integration is interpreted and implemented from case to case. Based on these findings
we propose a descriptive model for documenting and thereby better understanding implementations
of the continuous integration practice and their  differences.  The application of the model to an
industry software development project is then described in an illustrative case study.

6.1 Introduction

Continuous integration has, not least as one of the extreme programming practices [Beck 1999],
become  popular  in  software  development.  It  is  reported  to  improve  release  frequency  and
predictability  [Goodman  2008],  increase  developer  productivity  [Miller  2008]  and  improve
communication [Downs 2010], among other benefits. In previous work we found that the proposed
benefits of continuous integration are disparate not only in literature: there are also great differences
in the extent to which practitioners in industry software development projects have experienced
those  benefits  [Ståhl  2013].  Consequently,  we asked ourselves  whether  this  disparity  might  be
because of differences in the way the continuous integration practice itself had been implemented in
different projects, be it because the concept had been interpreted differently or because the project
context restricted the freedom of that implementation. Indeed, among the four projects included in
the study there were indications that this may be the case, but as that study was not intended for this
new  research  question  it  did  not  contain  sufficient  data  to  satisfactorily  answer  whether  such
differences manifest in software development at large. 

Consequently,  we  decided  to  establish  whether  there  are  also  differences  in  continuous
integration  descriptions  found  in  the  literature,  and  if  so,  in  which  regards  the  described
implementations differ. In this paper we show the results of the systematic review conducted in
order to answer this question, along with a proposed descriptive model for continuous integration
practice variants based on its findings. 

In this work we have focused on process related differences, rather than differences in tooling.
While  we  recognize  that  tooling  may  improve  or  otherwise  affect  a  continuous  integration
implementation,  the  practice  of  continuous  integration  itself  requires  no  particular  tools  at  all
[Fowler 2006]. Consequently we regard tools to be of secondary importance, but not of primary
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interest. Furthermore, we have not included contextual factors such as the size and longevity of the
projects, the business environment or similar parameters. While they may conceivably correlate
with variations in continuous integration practice – indeed, we consider the investigation of such
correlations an important field of study in itself – they are not themselves aspects of continuous
integration.

The contribution of  this  paper  is  twofold.  First,  it  shows that  there is  not  one homogeneous
practice of continuous integration. Rather there are variation points – those evident in literature are
presented and discussed individually in this article – with the term continuous integration acting as
an umbrella for a number of variants. This is important, because when consequences of continuous
integration are reported and discussed, it must be understood that such consequences potentially
may not  apply to  the  practice  of  continuous integration  as  a  whole,  but  rather  be  related  to  a
particular variant of it. Therefore, the second contribution of this article is that a descriptive model
that addresses all the variation points uncovered in the study is proposed. Such a model enables
better study and evaluation of continuous integration and can thereby bring a finer granularity to our
understanding of the practice.

The remainder of this paper is structured as follows. In the next section the research method is
described. Then the aspects of continuous integration described in literature, and the statements
pertaining to those aspects, are presented and analyzed in Section 6.3. In Section 6.4 the proposed
model is described, and then applied to a software development project in an illustrative case study
in Section 6.5. The paper is then concluded in Section 6.6.

6.2 Research Method

The research was conducted by first reviewing existing articles on continuous integration to find
differing  descriptions  of  the  practice,  with  the  purpose  of  identifying  aspects  where  there  is
contention in published literature. In other words, we searched for aspects (represented by clusters
of statements,  see Section 6.2.2) where different  attributes or characteristics  of the practice are
evident, as such areas can then be considered to constitute potential variation points. To exemplify,
some  sources  describe  how  checks  and  barriers  are  implemented  to  prevent  non-correctional
changes to be integrated on top of a broken build, whereas others relate how anyone is able to
contribute anything at any time (see Section 6.3.2.8). As these are clearly differing views, this area
is considered a variation point in the practice of continuous integration. In contrast, aspects where
differing views are either not evident (see e.g. Section 6.3.1.4) or only addressed by a single source
(see e.g. Section 6.3.1.5) are not regarded as potential variation points, the reasoning being that
there appears to be consensus in the industry or that there is insufficient source material to reliably
assess  them. Based on this  literature review a model  for  the description and documentation of
continuous integration implementations was then constructed, intended as a guide to help ensure
that the variation points discovered in the literature review are covered.

6.2.1 Systematic Review

As  a  result  of  observations  of  dramatically  different  experiences  of  continuous  integration
benefits [Ståhl 2013], and our assumption that this may be caused by differences between industry
software  development  projects  in  how the  concept  of  continuous  integration  is  interpreted  and
implemented,  we wanted to find an answer to  the question of "Is  there disparity or contention
evident in the descriptions of various aspects of the software development practice of continuous
integration  found  in  literature?".  To  answer  this  question  we  conducted  a  systematic  review
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[Kitchenham 2004], where a review protocol was created and informally reviewed by colleagues.
The protocol described the research question above, the sources to be searched (the IEEEXplore
and Inspec databases), the exclusion and inclusion criteria of the review (see Table  17) and the
method of extracting and clustering descriptive statements found in the publications (see Section
6.2.2). Following this the sources were searched (October 2012), with ACM subsequently being
added for completeness, for publications relating to the software practice of continuous integration. 

The  search  terms  yielded  64,  79  and  45  results  in  IEEE,  Inspec  and  ACM  respectively.
Combined, these result sets contained 112 unique items. Exclusion criteria EC1, EC2 and EC3 (see
Table  17) were applied to this set, and the abstracts of the remainder were studied to determine
whether they dealt with the software practice of continuous integration, or pertained to other fields
of research (exclusion criterion EC4). This left a set of 76 publications. 

Finally,  these  76  publications  were  reviewed  in  full  in  search  of  descriptions  of  continuous
integration practices (exclusion criterion EC5). Such descriptions were found in 46 of the reviewed
articles.

Inclusion criteria

IC1 Papers, technical reports, theses, industry white papers and 
presentations with the terms "continuous integration" and 
"software" in their titles or abstracts.

Exclusion criteria

EC1 Where studies were published multiple times (e.g. first as a 
conference paper and then as a journal article)  only the most 
recent publication was included.

EC2 Material not available to us in English or Swedish.

EC3 Posters for industry talks lacking content beyond abstract and/or 
references.

EC4 Material that does not address the software practice of continuous 
integration, or only mentions it in passing.

EC5 Material that does not describe one or more aspects of how 
continuous integration practices are, can or should be 
implemented.

Table 17: Inclusion and exclusion criteria of the literature review.

6.2.2 Analysis of Literature

Statements as to the nature of continuous integration found in the 46 publications of the literature
review were extracted and clustered in groups addressing similar aspects, where one statement may
be included in more than one cluster. This yielded 180 discrete, descriptive statements pertaining to
one or more aspect of continuous integration and 22 clusters (see Table  18). Following this, any
group not containing any disparity in their statements were culled. In other words, only groups of
statements  describing  aspects  of  continuous  integration  where  contention  was  evident  were
preserved.  This  could  either  manifest  as  multiple  statements  in  disagreement,  or  as  statements
themselves identifying disparity. Additionally, clusters containing statements from only one unique
source were culled.
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Cluster Statements Unique 
sources

Contention Claimed 
disparity

C1 Build duration 10 9 Yes Yes

C2 Build frequency 10 8 Yes No

C3 Build triggering 32 29 Yes Yes

C4 Build version selection 2 2 No No

C5 Component dependency 
versioning

6 3 No No

C6 Definition of failure and 
success

8 6 Yes No

C7 Fault duration 5 5 Yes Yes

C8 Fault frequency 1 1 No Yes

C9 Fault handling 9 9 Yes No

C10 Fault responsibility 6 5 No No

C11 Integration frequency 7 7 Yes

C12 Integration on broken builds 6 6 Yes No

C13 Integration serialization and 
batching

6 6 Yes Yes

C14 Integration target 8 6 Yes Yes

C15 Lifecycle phasing 1 1 No Yes

C16 Modularization 17 11 Yes Yes

C17 Pre-integration procedure 16 12 Yes Yes

C18 Process management 1 1 No No

C19 Scope 50 40 Yes No

C20 Status communication 19 16 Yes Yes

C21 Test separation 11 9 Yes Yes

C22 Testing of new functionality 10 9 Yes Yes

Table  18: Clusters of descriptive statements extracted from literature, shown alongside the
number of constituent statements, the number of unique sources from which those statements
were extracted, whether there exists contention between the sources and whether there are
within the cluster single sources claiming disparity of implementations, respectively.

It  shall  be  noted  that  determining  what  in  this  context  constitutes  an  aspect  of  continuous
integration  practice  –  and  thereby  a  cluster  –  is  ultimately  a  call  of  judgment.  Particularly,
automation is not included, even though it is frequently brought up by papers discussing continuous
integration, e.g. stating that "test cases [...] will be folded into the automated regression test suite"
[Sturdevant  2007], that "an automated integration server not only makes integration easy, it also
guarantees that an integration build will happen" [Rogers 2004], "the build process has to be fully
automated" [Dösinger 2012] or that "the build process is initiated automatically" [Pesola 2011] to
mention a  few. For  the purposes  of this  study,  we have taken the position that  the practice of
continuous integration is by definition automated, as described by Martin Fowler: "Each integration
is verified by an automated build" [Fowler 2006]. Indeed, from the literature included in this study,
we have not found reason to reconsider this position. One source goes so far as to consider it a
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criterion  for  success  that  "all  [continuous  integration]  steps  pass  without  error  or  human
intervention"  [Rasmusson  2004],  and  so  questions  of  e.g.  whether  test  cases  are  included  in
automated test  suites rather  becomes a  matter  of the scope of continuous integration,  which is
covered by its own statement cluster (see Section 6.3.2.13).

6.2.3 Proposing a Model

Based on the analysis of the literature review, a model for documenting continuous integration
was created. The purpose of this model was to cover all the statement clusters displaying contention
or disparity, thereby answering all the relevant questions that may set one particular instance of
continuous integration apart from another, yet at the same time being practical to use.

The benefit to researchers from using such a model is that it may help focus attention on the
aspects of continuous integration that act as differentiators, and it provides a method for managing
the multitude of continuous integration variants in existence. The benefit to software development
professionals – to practitioners of continuous integration – is that it lists choices that they can make
– and possibly have already made, consciously or unconsciously – with regards to implementing
continuous integration. Such information can be an important factor in successfully improving one's
development process.

6.3 Statement Clusters

This section describes each of the clusters of statements found in the literature (see Section 6.2).
In Section 6.3.1, those clusters that were culled from the set are presented. Then, in Section 6.3.2,
the preserved clusters are discussed.

6.3.1 Culled Clusters

Clusters either not containing more than one unique source, or not found to display disparity or
contention were culled from the set. These are described and discussed below.

6.3.1.1 Build Version Selection

It  is pointed out in [v. d. Storm 2008] that "the continuous integration system should always
attempt to build the latest version of the software", while [v. d. Storm 2007] states that "if the latest
build  of  a  component  has  failed  [...]  an  earlier  successful  build  is  used  instead".  While  these
perspectives  seem to  differ,  it  shall  be  understood  that  they  deal  with  different  contexts:  one
discusses source code revision, while the other concerns itself with handling component failures in
a  modularized  environment.  Therefore there  is  no contention  between them – indeed,  they are
entirely compatible with each other – and this cluster was therefore culled.

6.3.1.2 Component Dependency Versioning

One topic found in several of the papers is that of modularization of the product, and whether to
rebuild the entire product upon integration of new changes, or only those components affected by
the change (see Section 6.3.2.11). In the latter case, some articles discuss version handling of such
components. It is stated that each component shall be built individually, with new versions made
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available for every such build [Roberts 2004]. It is also said that component dependencies shall be
on the latest available version and that only one version of any one component may occur in a
system configuration [v. d. Storm 2008]. Furthermore, if a component build fails, then the latest
working version shall be used for dependencies in its stead [v. d. Storm 2007].

There  is  only  a  small  number  of  articles  addressing  this  aspect  –  which  is  not  altogether
surprising, as it is only relevant in a component oriented continuous integration setup – and no
direct contention between them.

6.3.1.4 Fault Frequency

The issue of fault frequency in continuous integration is discussed by [Brooks 2008], where two
development teams have been compared. Among other findings, it  is pointed out that one team
suffered much more frequent build failures than the other. It is readily conceivable that, while being
a  complex  factor  dependent  on  multiple  parameters,  the  frequency  of  errors  in  continuous
integration can have an impact on the development effort. Lacking additional sources, however, this
cluster was culled from the set.

6.3.1.4 Fault Responsibility

Multiple  sources  describe  how  developers  causing  faults  in  continuous  integration  are  also
responsible  for  correcting  those  faults  [Miller  2008,  Yuksel  2009],  e.g.  stating  that  it  is  "the
responsibility of [the last person who checked in code] to ensure that a reported bug is resolved
immediately" [Ablett 2007]. Additionally, the practice of developers not leaving work until their
changes have been successfully verified is mentioned [Miller 2008, Rogers 2004]. No statements
contradicting these stated practices were found in the study, with the exception of [Janus 2012],
describing how a "Quality Manager" interprets the produced code analysis metrics. This, however,
is only for non-critical violations of coding standards, and so we find that this cluster does not
display any contention or disparity.

6.3.1.5 Lifecycle Phasing

It is stated in [Holck 2003] that continuous integration may be performed "during a phase of
integration and tests; or it may be part of iterative methods". While other sources in the study do not
explicitly  discuss  this  –  causing  this  cluster  to  be  culled  –  it  shall  be  noted  that,  in  our
understanding, it is implicit in many of the studied publications that continuous integration takes
place during, if not necessarily limited to, development.

6.3.1.6 Process Management

In  [Holck  2003] it  is  noted  that  the  degree  of  control  over  continuous integration  processes
differs,  giving  examples  of  projects  using  "less  structured  processes"  as  opposed  to  "central
management of the build process". This aspect was, however, not highlighted by other sources in
study.
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6.3.2 Preserved clusters

Statement  clusters  containing  more  than  one  unique  source  and  either  displaying  contention
between sources,  or containing sources  themselves acknowledging diversity in  implementations
were preserved. These clusters are presented and discussed below.

6.3.2.1 Build Duration

Some publications in the study give more or less exact figures for the duration of "builds" (where
the scope of what a build entails varies, see Section 6.3.2.13); time from check-in to notification of
verdict can be "several minutes" [Downs 2010] or "a few minutes" [Woskowski 2012], or the time
required to compile and run tests can be over an hour [Yuksel 2009]. Some articles highlight that
build  duration  does  vary from project  to  project  [Brooks  2008]  and that  this  can  be  of  some
importance, as a too long duration means that "continuous integration starts to break down" [Rogers
2004] and the build time must be quick enough to "allow the CI server to keep up with the changes
and return feedback to the software engineers while their memory of the changes is still  fresh"
[Dösinger  2012].  Others  discuss  separating  quick  test  suites  from  slower  ones  to  provide
incremental feedback [Roberts 2004], removing slow tests altogether from the regular continuous
integration  builds  and  instead  running  them  on  a  separate  schedule  [Holmes  2006],  or  how
parallelism caused by modularization can affect build durations [v. d. Storm 2008], as it is remarked
that "the primary factor influencing the build time is the increasing number of tests" [Rogers 2004].

From this it is clear that not only is build duration a variation point for continuous integration and
considered to be of great importance; it is also not an independent variable. Instead, it is highly
dependent on what is included in the build. This would pose a problem if one were to attempt
classification and comparison of continuous integration implementations, as any measurement of
build duration would also have to take into account what is actually achieved in that duration. The
abstract  concept  as  such,  represented  by  this  statement  cluster,  however,  is  preserved  for  the
purposes of this study.

6.3.2.2 Build Frequency

It  shall  be  noted  that  for  the  purposes  of  this  study,  we  make  a  distinction  between  build
frequency and integration frequency (see Section 6.3.2.7). By the former we mean the frequency at
which continuous integration "builds" (regardless of the scope of those builds) are performed, while
the integration frequency refers to how often changes are brought into the product development
mainline (typically in the form of source code changes). We consider these to be two crucially
different activities which may or may not be synchronized. 

The  build  frequencies  described  in  literature  vary.  Some  mention  "multiple  builds  per  day"
[Stolberg 2009] or "every few hours" [Rogers 2003], in contrast to the daily builds practiced by
others [Holck 2007]. Yet the frequency does not just vary between projects, it may also vary within
the same project. Separation of slow activities into more infrequent cycles is described [Holmes
2006,  Downs 2010,  Woskowski  2012,  Long 2008]  as  well  as  performing "weekly integration"
builds while modules are tested in isolation "several times a day" [Tingling 2007].
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6.3.2.3 Build Triggering

The vast majority of statements on how continuous integration builds are triggered describe how
source code changes cause a build to start [Liu 2009; Bowyer 2006, Holmes 2006, Ablett 2007,
Rogers 2003, Rogers 2004, Sturdevant 2007, Stolberg 2009, Kim 2009a, Kim 2009b, Pesola 2011,
Cohan 2008, Janus 2012, v. d. Storm 2007, Woskowski 2012, Dösinger 2012, v. d. Storm 2005,
Matsumoto 2012, Gatrell 2009, Gestwicki 2012]. This is not always the case, however: builds can
be executed at a certain time each day [Holck 2007], or a mixed approach where some activities run
on a fixed schedule while others are triggered by source code changes can be used [Tingling 2007,
Hoffman 2009, Downs 2010, Woskowski 2012]. 

Another setup is where multiple activities are chained together in a sequence. A source code
change  triggers  the  first  activity  [Yuksel  2009],  while  subsequent  activities  are  triggered  by
"successful execution and evaluation of prior events" [Hill 2008]. There is reason to believe that
this  may be more common than the number of explicit  statements suggests,  as it  is  sometimes
hinted at or implied, e.g. stating that when "a step in the process fails, further process steps are
skipped" [Dösinger 2012]. Though such a statement is not unambiguous enough to be counted to
the statement cluster total, it does imply that there are process steps which are triggered by the
success of upstream steps.

In a modularized scenario, where each component has its own continuous integration, a build can
also be triggered by a new version of a component dependency being made available [Roberts 2004,
v. d. Storm 2007].

6.3.2.4 Definition of Failure and Success

What is considered a failure in a continuous integration build is touched upon by several sources.
Commonly,  if  any test  fails  during the build,  then the build as a whole is  failed [Ablett  2007,
Rasmusson 2004],  with some sources explicitly mentioning that compilation must  also succeed
[Downs 2010, Janus 2012, Yuksel 2009] (although it may be argued that compilation errors are
implicitly not allowed, even where the source does not explicitly state it).

This zero tolerance toward test failures is not ubiquitous, however: it is put forward that for most
teams "it is fine to permit acceptance tests to break over the course of the iteration as long as the
team ensures that the tests are all passing prior to the end of the iteration" [Rogers 2004]. Yet others
impose additional requirements before they will consider a build to be successful, such as a certain
level of test coverage [Yuksel 2009] or the absence of severe static code analysis warnings [Janus
2012].

6.3.2.5 Fault Duration

Fault duration – that is, how long a detected fault persists before it is successfully addressed – is
not extensively discussed in the studied sources, but there are statements indicating differences. One
example is a comparatively strict  approach where "if  any compilation errors or any test  failure
occurs, the relevant developer should solve the problem in less than 30 min or revert the check-in"
[Yuksel 2009], whereas another notes that "the great majority of build breaks were fixed within an
hour"  [Miller  2008],  without  explicitly  stating  any  similarly  precise  rules.  Much  longer  fault
durations are also described: "there were several occasions when [...] the code was broken for up to
two weeks" [Tingling 2007]. Indeed, [Brooks 2008] recognizes that build failure length differs:
while some would be "stuck for hours because of a broken build", others have "very few of these
problems".
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Yet the question of fault duration is dependent on that of the definition of failure and success, as
demonstrated by one source claiming that typically not all types of test failures need to be fixed
immediately,  but  can  be  left  until  "the  end  of  the  iteration"  [Rogers  2004].  Consequently,  the
question of fault duration only really becomes meaningful in a context where "fault" is well defined.
That being said, there are clear differences in fault duration as it is described by the sources in our
study, and consequently the cluster is preserved.

6.3.2.6 Fault handling

How faults, once detected, are handled (e.g. given what priority by whom) is touched upon by a
number of sources. Several describe a policy of fault fixing being given top priority, either as the
personal responsibility of the developer committing the fault [Yuksel 2009] (a policy which would
arguably presume that the offending commit can always be identified), as the responsibility of the
developers "that have committed Source Code since the last successful integration" [Janus 2012], or
as the responsibility of the last developer to check in code, who is then responsible "to ensure that
[the fault] is resolved immediately, for example by reverting to an older version or by fixing the
problem in another way" [Ablett 2007]. Another source describes how "after an initial investigation,
one developer would fix the build while the rest of the team continued with their work" [Miller
2008], hinting at a more flexible delegation of work.

Some sources display a slightly more relaxed attitude with regards to faults, however. It is stated
that there's a difference between types of tests, some of which may not be a priority to fix [Rogers
2004]. One source describes a development team displaying a certain extent of ambivalence: while
fixing faults is not a top priority, broken builds cause a number of problems unless fixed quickly –
e.g. promoting a "laissez-faire attitude" and hiding other problems – and it is suggested that perhaps
"a team policy could be instituted to make the broken build the highest priority, ahead of any other
work items" [Downs 2010]. In a multi-step integration setup it is furthermore stated that if one step
fails, then "further steps are skipped" [Dösinger 2012].

In other words, while sources take a similar position on the question of responsibility per se (see
Section 6.3.1.4), there are different views on the methods used and priority given to addressing
these faults.

As something of a special case in this context, if one uses a modularized continuous integration
implementation with separate builds per component, it is mentioned that if a component build fails,
then the latest successful build of that component is used by downstream dependencies [v. d. Storm
2007].

In  conclusion,  there  are  clear  differences  in  how  one  reacts  to  and  handles  a  continuous
integration fault once it has been detected, even though this, as is indeed the case with other aspects,
is not an independent variable. As the definition of a fault (see Section 6.3.2.4) or whether one uses
modularized  continuous  integration  (see  Section  6.3.2.11)  varies,  so  the  very meaning of  fault
handling is not constant.

6.3.2.7 Integration Frequency

Integration frequency,  as opposed to build frequency (see Section 6.3.2.2),  is  described by a
number of sources. It is claimed that "on average developers check in once a day" [Miller 2008],
and that  while  the  integration  frequency "will  vary from project  to  project,  from developer  to
developer, and from modification to modification [...] a good rule of thumb [is that] developers
should integrate their changes once every few hours and at least once per day" [Rogers 2004]. Other
sources conclude that this implies that there will be multiple integrations per day [Watanabe 2012],
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relating how "on average, a version was submitted to the source control system every hour over the
period  studied"  [Gatrell  2009],  although  presumably  this  would  depend  on  the  number  of
developers co-existing in the same source context.

While not mentioning any figures, other sources simply claim that integration should be "frequent
and timely" [Baumeister 2011] or "[performed] regularly and early" [Dösinger 2012]. Meanwhile,
[v. d. Storm 2008] states that even though current usage of the term continuous integration often
does not consider the frequency at which check-ins are made, "continuous integration proper [...]
includes the continuous checking in of changes, however small they may be”.

To conclude,  we do not consider contention to be evident in this  cluster – not least  because
several of the sources are very vague – but it still fulfills the preservation criteria, as disparity is
claimed.

6.3.2.8 Integration on Broken Builds

There are different approaches as to whether commits on top of revisions that failed in continuous
integration are acceptable or not. Several sources describe how commits are not allowed unless the
latest continuous integration build was successful [v. d. Storm 2008], saying that "once the build is
broken other developers cannot check in their work" [Miller 2008], that "all merge requests [are
refused]  unless  they contain a  special  tag [identifying  them as  fixes]"  [Lacoste  2009] and that
"developers not working directly on fixing the problem are not permitted to commit their changes
[because] it  could greatly complicate  the problems for the people engaged in fixing the build"
[Rogers, 2004]. 

Others are less concerned. In "decentralized" continuous integration, developers are allowed to
"add contributions to the development version at any time" [Holck 2007]. In another case, check-ins
on broken builds were not prevented, even though it  was suggested that this sometimes caused
problems,  since  "new code  could  conceivably be  problematic  too,  but  the  confounding factors
would make it difficult to determine exactly where the problem was" [Downs 2010].

To  summarize,  the  consensus  appears  to  be  that  code  commits  on  broken  builds  can  be
problematic,  but  whether  enough so  to  actively try to  prevent  it  (by process  or  by automated
blocking of unwanted check-ins) is contended.

6.3.2.9 Integration Serialization and Batching

While it is common to let committed changes trigger new builds (see Section 6.3.2.3), it's an open
question how one handles a situation where multiple changes are made during the time span of a
single build. This can be particularly relevant in a context of slow build times and high integration
frequency. This is discussed by [Rasmusson 2004], pointing out that there are different approaches
to serialization and batching: the check-in process can be serialized in order to minimize failures
and  "avoiding all  integration  conflicts",  as  opposed to  "the  more  normal  free  flowing practice
whereby any developer can optimistically check-in as soon as they have run the build locally and all
tests pass". One source states that polling for changes implies "batching the revisions to be tested"
[Lacoste  2009],  while  another  claims  that  "every  commit  should  build  the  mainline  on  an
integration machine" [Stolberg 2009], with references to tooling used for achieving this.

It shall also be noted that in a situation where activities (particularly tests, see Section 6.3.2.15)
are separated into stages it is possible that those stages are not executed at the same frequency
[Tingling  2007,  Hoffman 2009,  Downs  2010],  in  effect  batching  changes  in  between  different
integration activities.
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6.3.2.10 Integration Target

The integration target  aspect  concerns where developers check in their  changes.  Most of the
publications in the study do not explicitly deal with this, but rather state that, for example, a change
in the source code repository triggers a build (see Section 6.3.2.3) without specifying where in the
repository those changes are made. There are, however, some that go into details.

One method is that of every commit resulting in a new build on the product "mainline" [Stolberg
2009] and letting developers check in to the development version at any time [Holck 2007]. It is
described how "all the development teams [were moved] into one common code branch – no private
branches" and "each code check-in is now immediately integrated" [Goodman 2008].

Multiple branches are also used, however. One variant is the pattern of a single development
branch into which new changes are merged, and a "stable" branch into which "all the revisions
vetted  by  [the  continuous  integration]  are  pushed",  the  latest  version  of  which  is  used  for
deployment [Lacoste 2009]. Another variant is to let each team in a multi-team project integrate
internally,  using  their  own integration  server,  before  integrating  with  the  project  at  large  (as  a
response to problems encountered when attempting to scale continuous integration) [Rogers, 2004].
However, the same source continues, this "creates the problem of cross-team integration" where
"teams are potentially building up an integration debt". Indeed, another source relates how, when
implementing continuous integration, the initial  decision was made "that each individual Scrum
team should have a dedicated and private server", but "as integration issues were being discovered
very late" they put "all teams onto a single server environment again" [Sutherland 2011].

6.3.2.11 Modularization

While  there  are  sources  making  explicit  statements  that  their  continuous  integration  is  not
modularized [Rasmusson 2004], e.g. claiming that "the entire software is built [and] tested" upon
changes [Ablett 2007] or that "testing in the CI process focuses only on 'local' projects" [Dösinger
2012], it is our understanding that sources where this topic is not discussed generally presume a
non-modularized approach. For the most part,  the sources that do deal with modularization are
positive examples, in that they either explain how continuous integration can be modularized or
describe examples of such modularization.

In such sources, it is related how products can be composed of "hundreds of components with
complicated dependency relationship[s]" and "the source code of each [component] is controlled
independently" [Kim 2008]. Expanding on this concept, another source describes how components
rely on pre-built artifacts of their dependencies, and "integrating the whole application then means
building the topmost component in the dependency hierarchy" [v. d. Storm 2008]. Furthermore it is
stated that each component has its own continuous integration cycle, following which it is published
to be tested in combination with other components [Roberts 2004], that "continuous integration can
be  seen  as  a  [directed  acyclic  graph],  where  nodes  correspond  to  package  builds  and  edges
correspond to dependencies among packages" [Beaumont 2012] and that components are rebuilt if
they themselves  are  changed,  or  one of  their  dependencies  change [v.  d.  Storm 2007].  Similar
concepts are also discussed by [Rogers 2004].

Additionally, a modularized approach to continuous integration is claimed to impact feedback
times.  It  is  described how "modules  were  tested  in  isolation  and embedded into  the  program"
[Tingling 2007] and that such a practice enables faster feedback, because "instead of building the
complete system on every change", only the components that have affecting changes are rebuilt [v.
d. Storm 2008]. In a similar vein, it is claimed that while a single source repository is often assumed
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in  continuous  integration,  this  in  fact  scales  poorly,  thus  motivating  a  modularized  approach
[Roberts 2004]. To facilitate testing of components in such an environment, "surrogates" can be
used "to simulate the behaviors of unavailable components" [Liu 2009], and it is described how
tests can be executed in several steps: first by component, then for the system at large [Kim 2008].

It  is  noteworthy  how,  unlike  most  continuous  integration  aspects  in  this  study,  statements
pertaining to modularization are mostly found in sources explicitly focused on that very problem. In
contrast, few other sources mention it at all. This leads us to the conclusion that in many cases, non-
modularized continuous integration is the default alternative, possibly even adopted without being
consciously chosen.

6.3.2.12 Pre-Integration Procedure

The pre-integration procedure of continuous integration refers to which actions are prescribed
prior to performing an integration, e.g. by checking in source code. In some cases, these procedures
can be practically non-existent, with one source arguing that the benefit of continuous integration
can be measured as the time saved by developers not compiling and testing before checking in
[Miller 2008]. Others offer the option without prescribing any mandatory process, with developers
running small  subsets of tests  rather  than waiting for the centrally executed test  suite [Holmes
2006].  It  is  also  related  how developers  "typically  [...]  run  tests  before  checking  in  changes"
[Brooks 2008] and that "developers could ensure their check-in [...] both by manually compiling the
code [...] and by executing the set of unit tests, [but] few did so" [Downs 2010]. These examples
appear to share the sentiment that "fundamentally, it  needs to be acceptable to break the build"
[Rogers 2004]. 

Other sources provide examples or mandatory pre-integration procedures, where developers are
obliged "to integrate their own contributions properly" [Holck 2007]. This can take various forms,
such as reviews before checking in [Downs 2010, Janus 2012], running light-weight "developer
builds" [Rasmusson 2004], performing "a pre-check [...] before committing" [Woskowski 2012] or
"[ensuring that] all corresponding unit tests are successful" [Alyahya 2012]. One source stresses the
importance  of  testing  before  integration,  fearing  that  the  alternative  "would  be  a  nightmare"
[Lacoste 2009], while [Yuksel 2009] describes a checklist of mandatory activities, where before
committing any code, the developers must compile the whole system, design and code the needed
unit and integration tests, and finally execute the entire unit and integration test suites. 

Clearly, there are stark contrasts in what procedures are required before integrating. One source
remarks on this, stating that it is "a common approach [to] institute a strict and thorough pre-commit
procedure that will make it as hard as possible for developers to break the build", but that such
procedures  also  have  negative  side  effects  [Rogers  2004].  The  automation  of  pre-integration
procedures is also discussed, since the developers "may forget [or] may not follow the practices"
[Alyahya 2012].

6.3.2.13 Scope

By scoping of continuous integration we refer to the amount and type of activities included in the
practice, either as part of a single "build", or separated into several stages (see Section 6.3.2.15).
Typically  the  compilation  (where  applicable)  of  source  code  followed  by  testing  is  included
[Alyahya 2012, Miller 2008, Liuet 2009, Bowyer 2006, Kim 2008, Holmes 2006, v. d. Storm 2008,
Ablett 2007, Hill 2008, Holck 2007, Rogers 2003, Rogers 2004, Sturdevant 2007, Stolberg 2009,
Roberts  2004, Tingling 2007,  Sunindyo 2010, Kim 2009a,  Kim 2009b,  Pesola 2011,  Goodman
2008, Rasmusson 2004, Beaumont 2012, Cannizzo 2008, Hoffman 2009, Moreira 2010, Downs
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2010,  Cohan  2008,  Huang  2008,  Brooks  2008,  Janus  2012,  v.  d.  Storm  2007,  Yuksel  2009,
Matsumoto  2012,  Lier  2012]  –  even  in  sources  that  do  not  explicitly  state  this,  it  is  to  our
understanding  often  implicitly  the  case.  The  tests  are  frequently  combined  with  static  and/or
dynamic code analysis [Miller 2008, Holmes 2006, Hill 2008, Kim 2009a, Cannizzo 2008, Moreira
2010, Woskowski 2012], even though this can be considered to be "Continuous Measurement" and
therefore not part of the scope of continuous integration itself [Janus 2012].

The types of tests executed varies: some only run automated unit test suites [Miller 2008, Bowyer
2006, Hill 2008, Moreira 2010], others also run integration tests [Alyahya 2012, Liu 2009, Holmes
2006, Downs 2010, Huang 2008, Woskowski 2012, Baumeister 2011, Watanabe 2012], functional
and/or non-functional system tests  [Holmes 2006, Sturdevant 2007, Cannizzo 2008, Baumeister
2011]  and/or  acceptance  tests  [Holmes  2006,  Stolberg  2009,  Roberts  2004,  Cannizzo  2008,
Watanabe 2012].  Continuous  integration  can  also involve creating installation  packages  [Miller
2008, Pesola 2011, Cohan 2008, Gestwicki 2012], so that a release "boils down to selecting the
desired build" [v. d. Storm 2007], and deploying the project [Ablett 2007, Rogers 2003, Stolberg
2009, Sunindyoet 2010, Pesola 2011, Goodman 2008, Moreiraet 2010, Cohan 2008, Dösinger 2012,
Lier 2012, Gestwicki 2012]. It shall be noted, however, that the term "deployment" in this context is
loosely defined and may refer to different activities.

In  conclusion,  we  consider  merely  compiling  and  unit  testing  to  be  the  basic  continuous
integration "build" activities. Then, other activities can be added on top of this, including but not
limited  to  various  types  of  more  advanced  testing,  code  analysis,  packaging  and  deployment.
Indeed, it's essentially possible "to chuck everything into [the build], including the kitchen sink"
[Rogers 2004].

6.3.2.14 Status Communication

There are various approaches to communicating the continuous integration status, e.g. sending
notifications  of  build  failures  [Dösinger  2012,  Matsumoto  2012],  in  development  projects.
Dispatching e-mails is common [Sturdevant 2007, Stolberg 2009, Kim 2009a, Kim 2009b, Hoffman
2009, Downs 2010, Gestwicki 2012], either notifying the last person to check in [Ablett 2007],
"relevant developers" [Yuksel 2009] or "the whole development [project]" [Lacoste 2009]. Other
communication methods can be used, such as RSS [Stolberg 2009] web pages [v. d. Storm 2005] or
dashboards [Baumeister 2011]. This may then be displayed on "information radiators" [Ablett 2007,
Goodman  2008,  Hoffman  2009,  Downs  2010],  making  the  current  status  visible  to  all  in  the
vicinity. Other methods include differently colored lava lamps and robotic dogs walking up to the
responsible  developers,  "[displaying]  to  the team that  it  is  not  happy with that  developer,  in  a
friendly, funny and playful way" [Ablett 2007].

One  source  extensively  discusses  and  evaluates  differences  in  notification  methods,  and
concludes  that  a  combination of  multiple  communication channels  can  have a  great  impact  on
awareness of and responsiveness to broken builds [Downs 2012].

6.3.2.15 Test Separation

Test separation refers to the practice of segmenting test suites into multiple parallel or sequential
activities. Similar to the case of modularization (see Section 6.3.2.11), sources that touch upon this
issue tend to be positive examples, and it is difficult to find explicit statements to the effect that
testing is not separated, although to our understanding this is the case in a number of the articles in
the  study.  That  being  said,  one source  argues  that  even though it's  common to have  "a  single
integration  process  that  compiles  the  code,  runs  the  unit  tests  and  the  acceptance  tests,  builds
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deployment  packages  for  QA and  the  customer,  validates  code  coverage  and  checks  coding
standards amongst other things" [Rogers 2004], this is not necessarily a good thing, as they increase
the  build  duration  (see  Section  6.3.2.1)  and  thereby  delay  feedback.  Consequently,  tests  are
sometimes separated into multiple activities.

One separation  approach is  to  "segment  tests  by functional  area and to  only run those tests
thought to be affected by the code change" [Brooks 2008] or to split test suites by components [Kim
2008]. Commonly tests are separated into sequential stages based on the time it takes to execute
them and the context in which they run [Sturdevant 2007, Sunindyo 2010, Brooks 2008, Yuksel
2009], e.g. "one an 'express build' that just runs unit tests to give a basic idea of the success of an
integration;  another  a  longer  'full'  build  that  actually runs  database processes,  acceptance  tests,
deployments, etc." [Roberts 2004], or slower tests are performed on a different schedule altogether
[Tingling 2007, Woskowski 2012]. Another source states in passing that continuous integration "is
the automation of sequential build process steps" [Dösinger 2012], which could be interpreted as
implying that automated steps are linked together in a chain of sequential stages, but is ultimately
too ambiguous to be included in the statement cluster.

6.3.2.16 Testing of New Functionality

Some sources in the study describe testing in continuous integration as primarily safe-guarding
legacy functionality  [Downs  2010]  by "[testing]  against  a  suite  of  automated  regression  tests"
[Ablett 2007]. Continuous integration can, however, be used for validating new functionality as
well, by creating the automated test cases before the production code is implemented [Liu 2009,
Holmes 2006,  Yuksel  2009],  or in  parallel  with the implementation [Sturdevant  2007,  Stolberg
2009, Tingling 2007, Goodman 2008]. Some sources discuss the use of test-driven development,
e.g. stating that "writing failing unit tests prior to writing any production code, then writing only
enough production code to make the test pass" is required practice [Gestwicki 2012], yet do not
explicitly describe the practice in  relation to  continuous integration and could therefore not  be
included in the statement cluster.

6.4 A Descriptive Model

It  is  apparent  that  continuous  integration  implementations  vary  in  a  multitude  of  ways.
Consequently, we conclude that to derive more value from studies and discussions on continuous
integration  and  its  effects,  more  comprehensive  information  about  the  actual  particular
implementation or implementations at  hand is  required.  In this  section we propose a model,  or
guide, for how to better document the practice, that is designed to address every one of the variation
points discovered in the systematic review (see Section 6.3.2). The model consists of two parts: the
Integration Flow Anatomy – depicting activity and input nodes and their relationships (see Section
6.4.1) – and the node attributes applying to those nodes (see Section 6.4.2). Both of these parts,
together forming the complete descriptive model, are detailed in turn below, as well as how they
were designed and which variation points they cover. Following this there is a discussion on how to
use a subset of the attributes and possible constraints (see Section 6.4.3).

As an alternative to defining a new model, existing ways of representing variability were also
considered,  with  particular  attention  paid  to  the  COVAMOF  framework  [Sinnema  2004].  We
consider the problem of representing activities, their scope, relationships and characteristics in a
software  integration  process,  however,  to  be  a  much  simpler  one  than  that  of  modeling  e.g.
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variability, dependencies and interactions of software components. In addition, not all concepts (e.g.
dependencies  and  realizations)  necessarily  translate  well  across  the  problem  domains.
Consequently, we have opted for the model described in this section.

6.4.1 Integration Flow Anatomy

A number of statements found in the systematic review touch upon how a "build" may consist of
large numbers of interconnected steps, performing various tasks, which conditionally trigger each
other.  These  steps  may  be  executed  in  parallel  or  in  sequence,  or  run  on  different  schedules
altogether. They may concern themselves with the entire product, or with separate components. As
one of the articles in the study explains, this can be thought of as a directed acyclic graph (DAG)
[Beaumont 2012].

We find that by using such a DAG to depict the steps, or activities, of an integration process,
several questions can be answered. Therefore, a meta-model was constructed with the aim of being
able  to  accurately  reflect  all  the  variants  possible  from the  variation  points  discovered  in  the
systematic review. This meta-model is shown in Figure 18. It consists of two types of nodes: Input
(e.g. source code) and Activity (e.g. execution of test cases). Activities may be triggered by either
input or activity nodes, with the conditions under which the trigger is activated (e.g. the source
activity succeeded or failed) documented. Furthermore, both activity and input nodes contain a set
of attributes describing their scope and characteristics.
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variation points (see Section 4.4.2), but both sub-sets and super-sets are conceivable.



The  nodes  themselves  and  their  triggering  relationships  can  be  used  to  answer  questions
pertaining to the variation points of modularization and build triggering (see Sections 6.3.2.11 and
6.3.2.3, respectively). Section 6.4.2 describes how the remainder of the variation points are covered
by adding attributes to the nodes.

6.4.2 Node attributes

This section presents a set of attributes, grouped into themes, for the activity and input nodes of
the Integration Flow Anatomy (see Section 6.4.1). These attributes are derived from the variation
points uncovered in the literature review (see Section 6.3.2). As each group of attributes is presented
below the reasoning behind it and the variation points addressed by each attribute is explained.

It shall be noted that, when applying the model, the actual attribute set used may vary – with the
information conveyed by the descriptive model varying accordingly – depending on the scope and
purpose  of  the  application  of  the  model.  A  study  focusing,  for  example,  solely  on  the
communication aspects of a particular integration flow may choose to exclude attributes deemed
irrelevant to that purpose. This is further discussed in Section 6.4.3.

6.4.2.1 Scope Attributes

The scope theme of attributes applies to the activity nodes and addresses the scope (see Section
6.3.2.13),  test  separation  (see  Section  6.3.2.15)  and  testing  of  new  functionality  (see  Section
6.3.2.16). The following attributes are designed to fully cover these variation points:

• legacy-testing: a list of testing activities applied to legacy code. Different nomenclature is
used by different sources – testing activities mentioned by articles in the study include e.g.
unit, acceptance, system, integration, performance and function tests.

• new-functionality-testing: a list of testing activities applied to functionality that is not yet
fully implemented or considered legacy. Definitions of what constitutes legacy may vary.

• analysis: a list of analysis activities carried out, e.g. static code analysis or test coverage
measurements.

• packaging: a  boolean  signifying  whether  the  product  is  packaged  and  made  ready for
deployment.

• deployment: a list of environments (e.g. a lab environment or live customer systems) to
which the product is deployed as part of this activity.

The  legacy-testing  and  new-functionality-testing  attributes  are  derived  from  both  the  test
separation and testing of new functionality variation points. Since test activities may be split across
multiple different steps, it's important to document in the DAG which nodes contain which types of
testing. Also, since it's evident that projects treat testing of new functionality differently, the test
activities  need  to  be  documented  in  two  separate  attributes  for  legacy  and  new  functionality,
respectively. 

The analysis, packaging and deployment attributes all address the scope variation point. Apart
from testing, these are the three areas where the systematic review shows that the scope differs, and
so these attributes are included in order to clearly show which, if any, of the tasks of analysis,
packaging and deployment are performed in any given activity node.
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6.4.2.2 Build Characteristics Attributes

The  build  characteristics  theme  contains  questions  pertaining  to  build  duration  (see  Section
6.3.2.1),  build  frequency  (see  Section  6.3.2.2),  integration  frequency  (see  Section  6.3.2.7),
integration on broken builds (see Section 6.3.2.8) and integration serialization and batching (see
Section  6.3.2.9).  To  answer  these  questions,  we  propose  that  the  following  attributes  shall  be
applied to the activity nodes:

• duration: the average duration of the activity.

• execution-frequency: the execution frequency of the activity.

• trigger-frequency: the triggering frequency of the activity.

• batching-allowed: a boolean signifying whether integrations may be batched into single
builds.

• trigger-modifiers: a list  of descriptions of possible modifiers to the activity's  triggering
behavior.

The duration attribute reflects the time required to execute an activity and addresses the build
duration variation point. Similarly to the scope of the entire continuous integration being equal to
the union of its constituent parts, its duration is then equal to the total duration of the activity nodes
on its critical path.

Furthermore, though seemingly similar, execution-frequency and trigger-frequency are treated
as  separate  attributes,  corresponding  to  the  separate  variation  points  of  build  frequency  and
integration frequency. The former documents how often an activity is executed, whereas the latter
how often  it  is  triggered.  Depending on the type  of  trigger  this  metric  obviously has  different
meanings: in a situation where the trigger is a source code change it shows the frequency at which
new content is integrated, whereas if it's a new version of a component being published it shows the
frequency at which that component is being made available for integration with the larger system.
Regardless  it's  informative  –  in  particular,  it's  relevant  to  the  batching-allowed attribute
(corresponding  to  the  variation  point  of  integration  serialization  and  batching):  where  the
integration frequency is higher than the build frequency, does one batch those integrations into a
single build or not?

Finally,  the  trigger-modifiers attribute  is  derived  from the  variation  point  of  integration  on
broken builds. Here any impact of the activity's state or context on the trigger, e.g. failures blocking
new incoming changes unless they are flagged as fixes, should be documented.

6.4.2.3 Result Handling Attributes

Like the build characteristics theme of attributes (see Section 6.4.2.2), result handling attributes
apply to each individual activity node (see Section 6.4.1). This theme covers the definition of failure
and success (see Section 6.3.2.4), fault handling (see Section 6.3.2.6), fault duration (see Section
6.3.2.5) and status communication (see Section 6.3.2.14). In order to address these variation points,
we propose the following attributes:

• result-definition: a list of possible results and their definitions.

• status-communication: a description of when, how and to whom the activity's status is
communicated.

• fault-handling: a description of how discovered faults are addressed: by whom, and given
what priority.
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• fault-duration: the average duration of unbroken faulty status of the activity.

The result-definition attribute describes what is considered e.g. a faulty or successful execution
of  the activity.  As possible  outcomes may vary,  a description shall  be given per outcome.  The
status-communication,  fault-handling and  fault-duration attributes  all  address  their
corresponding variation points.

6.4.2.4 Input node attributes

This section describes the proposed attributes that apply to the input nodes of the model. The
relevant variation points in this context are pre-integration procedure (see Section 6.3.2.12) and
integration target (see Section 6.3.2.10). From these the following two attributes are derived:

• pre-integration-procedure: a  description  of  the  procedure  required  before  integrating
changes.

• integration-target: a description of where the integration takes place (e.g. which branch
and the rules governing it).

The  pre-integration-procedure attribute describes what, if anything, the developer must do in
order to integrate, and thereby create the change-set that serves as input to the activities of the
integration flow. The integration-target attribute, on the other hand, describes whether the context
of that integration is e.g. a team branch or a "mainline" branch.

6.4.3 Attribute Selection and Constraints

We recognize that it is not always desirable, practical or even possible to assemble all the data
required by the full list of attributes proposed above. This is the reason why the meta-model does
not  prescribe  any  mandatory  attributes.  Obviously,  the  more  complete  the  model,  the  more
information and potential value it brings, but none of the proposed attributes explicitly requires any
of the other in order to be valid or meaningful. A hypothetical descriptive model containing only a
sub-set of attributes is shown in Figure 19 to serve as a simple illustrative example.
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On a further  note,  we have  not  identified  any definite  constraints  in  the sense of  invalid  or
impossible attribute combinations creating invalid areas in the attribute space. However, this does
not rule out that such areas, or areas that in practice are unpopulated, exist. In future work, we
intend to investigate this further by means of gathering empirical data through multiple-case studies
(see Section 6.6.4.3).

6.5 Illustrative Case Study

This section describes how the model proposed in Section 6.4 was applied to a development
project, in this article referred to as Project A, within Ericsson AB. The assembled model and its
data is not presented in its entirety in this article – instead, the purpose is to illustrate the steps
involved in assembling the model and to present an example of how those steps may play out and
the insights such an exercise may provide.

It shall be understood that the descriptive model (see Section 6.4) is not based on this case study,
but on a systematic review (see Section 6.2.1). Neither is it intended as a complete validation of the
model, beyond demonstrating that it can be applied with positive results. Furthermore, conducting
the case study did not give cause for revising the model.

6.5.1. Project A

In Project A, multiple development teams are responsible for developing one of the components
of a network node, with non-trivial integration dependencies to the other components of the node.
The project was chosen as a case study candidate when one of the authors was invited to assist in
improving its continuous integration implementation. In that situation, the model was used in order
to establish the baseline implementation, and as a basis for identifying and planning improvement
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activities. Based on the multiple continuous integration case studies conducted in previous work
[Ståhl  2013]  and  our  experience  of  industry  software  development,  we  deemed  the  project
representative  of  industry practice  and therefore  suitable  to  serve  as  an  illustrative  example  of
application of the model.

6.5.2. Sketching the Integration Flow Anatomy

The first step of building the model was to sketch the Integration Flow Anatomy. This was done
in front of a whiteboard, in collaboration with engineers working in the project, by analyzing the
actual  activities  configured  in  Jenkins,  their  continuous  integration  tool.  By studying  how the
Jenkins activities, or Projects, related to each other and their contents we were quickly able to create
a graph of the component's entire flow (see Figure 20), including its internal delivery to another part
of the organization, and also determine the scope attributes of the activity nodes. During this work it
soon became evident that the emerging anatomy had not been entirely clear to the project members
themselves  beforehand,  which  shows  that  this  in  itself  can  be  a  rewarding  exercise  from  an
educational point of view. It was also discovered that the delivery from D1 (see Figure 20) to the
receiving  organization  was  done  manually  and  that  not  much  data  on  this  was  available.
Consequently this was identified by the engineers as a prioritized area of the project's integration to
improve.

6.5.3 Determining the Input Node Attributes

Following the Integration Flow Anatomy, the attributes of the input node was discussed. This
took the form of an unstructured interview between the authors and the project's engineers, with the
authors asking for descriptions of the current  pre-integration-procedure and  integration-target
(see Section 6.4.2.4) in Project A. With regards to the integration-target attribute, it was suggested
by the engineers themselves that the current implementation, where a "develop" branch was used
both as the integration branch for all the developers and as the release branch from which deliveries
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Figure 20: The Integration Flow Anatomy of Project A. Activity D1 was followed by a manual
delivery to another part of the organization, which was outside the scope of the case study.
The figure only shows the anatomy itself, with all node attributes deliberately left out.



were picked, might prove to be unsuitable in the future. It was agreed, however, that in the project's
current early stage of development this solution was adequate, but that it may have to be revised in
the future.

6.5.4 Determining the Activity Node Attributes

All  the  build  characteristics  attributes  (see  Section  6.4.2.2)  for  the  activity  nodes  could  be
gathered  by the  authors  themselves  by analyzing  the  configuration  of  the  project's  continuous
integration tool, Jenkins. One insight gained while collecting the trigger-modifiers information was
that the first activity, A1, was in Jenkins configured as being part of the same "Project" (the entity
used to configure an activity in Jenkins) as D1, meaning that A1 would not be ready to start work on
new changes until all other activities had finished. The consequence of this was that the entire flow
became serial, in the sense that it was unable to work on more than a single change-set at any given
time. It was concluded that this was a problem that should be addressed, not least because it caused
under-utilization of available hardware.

Furthermore, this example illustrates how activities in the Integration Flow Anatomy may not
necessarily  map  directly  to  e.g.  Jenkins  Projects  –  rather,  the  activities  in  the  model  should
correspond to how the project members themselves would conceptually describe their integration
flow. It may be argued, then, that if that description does not easily translate into how the activity
entities of one's continuous integration tool are configured, then this should be seen as an indication
that there may be a problem with said configuration, as indeed turned out to be the case in the
studied project.

Finally, in a second session, the result handling attributes (see Section 6.4.2.3) of each activity in
the integration flow was discussed with the project's engineers. In this project, the result handling of
all  the activities  in  the  flow were similar  –  for  instance,  the status  of  all  activities  considered
relevant  were  visualized  in  real  time  using  a  special  information  radiator  functionality  in  the
continuous integration tool, thereby made available to all stakeholders. Also, while failure in any
activity would  cause  mails  to  be  sent  out  to  all  developers  and project  support  staff,  it  was  a
dedicated team's responsibility to act on those failures, and then escalate to developers if deemed
necessary. Though it was said that this may not be the best solution, and that it would be better if the
developers themselves had the mindset to take that responsibility directly, the result handling in the
project was considered satisfactory and no urgent improvement needs were identified.

6.6 Conclusion

This section presents the conclusions of the conducted literature review, the model proposal, the
illustrative case study and remaining questions left unanswered.

6.6.1 Disagreements in Related Work

It is clear from the conducted literature review that there is currently no consensus on continuous
integration as a single, homogeneous practice. Out of the 22 statement clusters synthesized from
statements extracted from the included articles, differences and/or disagreements were evident in all
but six (see Section 6.3). Not only does this mean that, in order to make a meaningful comparison
of software development projects, simply stating that they use continuous integration is insufficient
information as we instead need to ask ourselves what kind of continuous integration is used. It also
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means  that,  taking  into  account  the  dramatic  differences  in  experienced  continuous  integration
effects  [Ståhl  2013],  we  need  to  ask  which  aspects  or  variants  of  continuous  integration  any
proposed benefit (or disadvantage) is an effect of. For this purpose, based on the findings in our
study, we have proposed a descriptive model for better documentation of continuous integration
variants.

6.6.2 Model Proposal

In this paper we have proposed a descriptive model of continuous integration implementations,
based on variation points evident in literature. We believe that using this model will enable us to
better understand implementations of continuous integration and how they compare to each other.
This in turn is a prerequisite for studying correlations between differences in those implementations
and differences in their experienced effects. If we are to reach a level of understanding where a
development  project  is  able  to  pro-actively  and  confidently  design  its  continuous  integration
according to the benefits it wishes to maximize, then this is an important step on that path. That
being said, it is also clear that applying the model to one's own integration flow, with or without
comparing it to others, can be a valuable and educational experience, as it may provide insights into
one's own development process.

6.6.3 Model Validation

We have demonstrated through an illustrative case study the applicability of the model proposed
in this article to an industry development project, and that tangible benefits can be derived from it.
Not only did the model bring to light the actual anatomy and characteristics of the integration flow
in the project – something that had thitherto been an opaque part of the environment for a number of
the project members – but it was also able to indicate areas where opportunities for improvement
could be found and served as a basis for the planning of activities to pursue those improvements.

That being said, however, while the research presented in this article demonstrates that disparity
in multiple areas exists, the sample size is insufficient to fully understand their distribution and
consequently the actual space of variations. Also, we do not assume that we have identified every
possible variation point in this research. There may still be important differentiators not yet included
in the model, particularly as continuous integration as exercised by practitioners may well evolve in
the future. Therefore, additional data provided by further case studies would help in improving our
understanding of not only the value ranges and statistical distribution of the model's attributes, but
could also uncover attributes that are as of yet missing. Based on the case studies conducted in
previous work [Ståhl 2013] and our professional experience we expect such case studies to allow
refinement of the proposed model, but not lead to major disruption.

In conclusion, we would consider future case studies applying the model to a larger number of
industry software development projects to be an important contribution, both in that they would
serve to further validate and refine the model and at the same time provide additional data points in
the study of continuous integration itself – in particular, we find that comparative case studies of
multiple implementations are lacking in contemporary literature.

6.6.4 Open Questions for Further Research

A number of questions still remain unanswered in the field of continuous integration.
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6.6.4.1  Correlations  Between  Differences  in  Practice  and  Differences  in
Experience

In previous work [Ståhl 2013] we have identified disagreement among software development
professionals  as  to  the  benefits  of  continuous  integration  experienced  in  their  projects.  In  the
research  presented  in  this  article  we  have  further  demonstrated  that  continuous  integration
implementations themselves may differ. Consequently, what we ask ourselves is whether there is a
correlation  between  these  differences  in  experience  on  the  one  hand,  and  differences  in
implementation on the other. Would it be possible to improve our understanding in such a way that
we cannot only present a model for describing variants of the practice, but also demonstrate that
these variants allow for different effects? If so, could that be used to allow industry professionals to
decide which flavor of continuous integration they should strive for, based on the benefits they
prioritize?

We are still  far  from such an understanding of the practice.  In order to get there we need a
sufficient body of data detailing both experienced effects and the variation points of continuous
integration in a number of projects utilizing continuous integration. We therefore propose that case
studies be performed in this area.

6.6.4.2 Contextual Differences

Software development projects obviously differ in more ways than in how they have chosen or
been able to implement continuous integration. They may be of varying size, longevity, budget,
organizational structure, competence setup, geographic distribution etc. While the number of such
conceivable variation points may be nearly infinite, it is nevertheless possible that some of them
interact with the variation points of continuous integration. It may be that certain contextual factors
enable or are enabled by particular variants of continuous integration, or that they influence the very
interpretation of the continuous integration concept.

We believe that case studies investigating such relationships in the industry would be a valuable
contribution in this area.

6.6.4.3 Internal Constraints and Correlations of the Model

We have proposed a model containing a number of attributes, grouped into themes, covering the
variation points  where we have shown that  continuous integration implementations  can and do
differ. What is not understood is how, if at all, these variation points correlate. It is conceivable that
some variants enable or disable each other, or certain variants tend to manifest together, allowing us
to cluster them an identify "typical species" of continuous integration. Conversely, it is possible that
constraints exist such that certain areas of the combinatorial space created by these attributes are
invalid, or unpopulated in practice.

It could also be that some of the variation points identified in this research are so tightly coupled
that  they can be better  understood as  different  manifestations  of  the same underlying  practice,
thereby allowing variation points to be merged and the model simplified.

Our understanding of these questions would be furthered by access to larger sets of empirical
data. To this end, we propose multiple-case studies to be conducted, where the proposed model is
applied and any constraints and correlations are searched for.
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