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Abstract 

Adaptive fact learning systems have been developed to make 
optimal use of testing and spacing effects by taking into 
account individual differences in learning efficiency. 
Measures derived from these systems, capturing the 
individual differences, predict later performance in similar 
and different fact learning tasks. Additionally, there is a rich 
body of literature showing that individual differences in 
general cognitive ability or working memory capacity can 
predict scores on achievement tests. If these measures also 
influence fact learning, incorporating them might further 
enhance adaptive systems. However, here we provide 
evidence that performance during fact learning is neither 
related to working memory capacity nor general cognitive 
ability. This means that the individual differences captured by 
our adaptive learning system encapsulate characteristics of 
learners that are independent of their general cognitive ability. 
Consequently, adaptive learning methods should focus 
primarily on memory-related processes.  

Keywords: learning; memory; working memory capacity; 
general cognitive ability; fluid intelligence; individual 
differences; computational modeling 

Introduction 
Research has shown that standardized measures of acquired 
knowledge – such as the Scholastic Aptitude Test – are 
among the best predictors of success in life (e.g., Kuncel & 
Hezlett, 2007, 2010). With an ever-growing body of 
knowledge, life-long learning has become a reality for many 
and acquiring new knowledge efficiently is paramount. 
Computerized learning systems are developed to streamline 
the acquisition of new knowledge and the most successful 
ones stand out because they adapt to the individual 
characteristics of the learner. What is not clear, however, is 
whether only individual differences in memory-related 
processes are relevant to optimize the adaptation or whether 
individual differences in general cognitive ability should be 
taken into account as well. Here, we present data that 
suggest that individual differences in general cognitive 
ability are not required to optimize the fact-learning process 
using the model developed in our lab. 

Few findings in psychology are as reliably reproduced as 
the spacing effect (Donovan & Radosevich, 1999), the 
finding that learning yields better long-term results if 

repetitions are spaced over time rather than crammed 
together. The spacing effect holds over various time scales 
(e.g., Cepeda, Vul, Rohrer, Wixted, & Pashler, 2008), 
indicating that it reflects a fundamental property of the 
human memory system. Therefore, the spacing effect should 
be exploited when we want to optimize fact learning 
(Dempster, 1988). Pavlik and Anderson (2003) extended 
ACT-R's declarative memory module to account for spacing 
effects and subsequently made first steps in using the decay-
based model of human memory to enhance the learning of 
facts (Pavlik & Anderson, 2005, 2008). Their model uses 
trial-by-trial information gathered during learning to devise 
personalized learning schedules on the fly.  

Van Rijn and colleagues (2009) refined the model further 
but the underlying principles are still the same: each item is 
assigned an activation value when it is first presented to the 
learner. The activation decays over time and the model 
strives to schedule a presentation of the item before the 
activation is too low, which would prevent a successful 
retrieval from memory. Throughout the learning session, the 
estimation of each item's activation is continuously fine-
tuned based on the learner's response times to quiz-items. 
Specifically, on each trial, the model's predicted activation 
can be converted to an expected response time, which is 
compared to the observed response time. The discrepancy 
between the two is used to update the estimated decay rate 
of the activation. This way, one decay-related parameter is 
estimated for each item for each learner based on both the 
accuracy and speed of the response. By averaging across the 
item-specific parameters, we can compute a value that 
indicates how quickly, on average, a learner forgets the 
items in a particular set. We will refer to this value as the 
rate of forgetting (for detailed descriptions of the model see 
Sense, Behrens, Meijer, & Van Rijn, 2016; Van Rijn et al., 
2009).  

Nijboer (2011) has shown that the rate of forgetting 
estimated during learning of one set of items is very 
strongly related to subsequent test performance for the same 
set of items and the data presented here confirm this strong 
relationship. More recently, we showed that the rate of 
forgetting is stable over time within material from one topic, 
and relatively stable over materials from different topics, 
which indicates that the rate of forgetting can be estimated 
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reliably (Sense et al., 2016). That is, if the rate of forgetting 
for a learner is estimated while studying a set of Swahili 
words, the rate of forgetting for another set of Swahili 
words will be almost identical when estimated a week later. 
There is a bit more variation if material from another 
domain is studied but the correlation is still high. This 
variation might be caused by differences in difficulty of the 
studied materials or because learners’ ability to learn 
different types of materials varies. The model itself is 
agnostic with regards to the source of the variation between 
individuals and materials (Sense et al., 2016).  

Taken together, this suggests that someone's rate of 
forgetting is a useful and reliable measure of individual 
differences. What is not clear, however, is what exactly the 
rate of forgetting encapsulates. Given the parameter's roots 
in ACT-R's declarative memory module (Anderson, Bothell, 
Lebiere, & Matessa, 1998; Anderson, 2007), one would 
expect that it captures memory-related processes. However, 
for a participant to do well in a laboratory simulation of a 
fact-learning session, more than the memory processes 
modeled by ACT-R's decay functions might be involved. 
Alternative individual difference measures are commonly 
used to study individual differences and have been shown to 
have high predictive power in various aspects of life 
(Kuncel & Hezlett, 2010). The goal of the present study is 
to investigate how the rate of forgetting relates to 
established measures of individual differences. 

Two of the most widely used measures of individual 
differences are working memory capacity (WMC) and 
general cognitive ability or fluid intelligence (gf). There are 
various ways of conceptualizing and measuring both 
concepts. Complex span tasks are commonly used to 
measure WMC (Conway et al., 2005) and there are multiple 
standardized tests to assess general cognitive ability (e.g., 
the Wechsler Adult Intelligence Scale, WAIS). And while 
the two concepts are strongly related to each other 
(Ackerman, Beier, & Boyle, 2005), they are not identical 
(Conway, Kane, & Engle, 2003; Kane, Hambrick, & 
Conway, 2005). 

Kane and colleagues (2007) define WMC as attentional 
processes that enable goal-directed behavior. Conway and 
colleagues (2005) recommend to administer three complex 
span tasks and conceptualize WMC as a composite score 
across those tasks. This way, task-specific components are 
partialled out and the derived score expresses domain 
general attentional processes (Kane et al., 2007). 
Consequently, WMC scores obtained with complex span 
tasks primarily reflect general executive processes (the tasks 
may vary but the objective is similar in other approaches, 
e.g., Cowan et al., 2005). Such WMC scores share variance 
with measures of tests of general cognitive ability because 
they, too, require superior executive attentional processes to 
obtain high scores (Engle, Tuholski, Laughlin, & Conway, 
1999). 

The goal of the current study is to shed light on how the 
rate of forgetting extracted from our model is related to 
these two measures of individual differences. A strong 

relationship between rate of forgetting and either or both 
WMC and general cognitive ability would suggest that the 
model's parameter encapsulates an executive process that is 
akin to what allows individuals to perform well on tests of 
WMC or general cognitive ability. If there were no such 
relationship, however, we would conclude that the rate of 
forgetting reflects a measure of individual difference that 
tells us something about a learner’s memory retention 
capacities that goes beyond how well they can use their 
executive-attentional resources efficiently. 

To this end, we report the findings from an experiment in 
which participants studied a set of facts so their rate of 
forgetting could be estimated. Additionally, they completed 
three complex span tasks (analogous to Foster et al., 2015) 
as well as a test of general cognitive ability. 

Methods 

Procedure 
All participants were invited for two sessions that were 

spaced three days apart.  
Session 1. In the first session participants spent 20 

minutes learning 35 Swahili-Dutch word-pairs. Participants 
were randomly assigned to study with one of two methods: 
either they used digital flashcards or an adaptive learning 
method. As we will focus here on the results of the adaptive 
learning method, we will refrain from further discussion of 
the digital flashcard method. During learning, words were 
introduced on study trials which showed both the cue 
(Swahili word) and the correct response (Dutch word) 
alongside an input field. Initial study trials were self-paced 
and participants proceeded by typing in the Dutch word. All 
subsequent repetitions of an item were test trials which only 
displayed the cue and the input field. Test trials were 
followed by feedback: either a 600 ms display saying 
“correct” or a four second display of a study trial without 
the input field (as recommendd here: Zeelenberg, de Jonge, 
Tabbers, & Pecher, 2015). 

Next, participants completed the three complex span tasks 
used by Foster and colleagues (2015). In these tasks, 
participants are shown items that need to be recalled in the 
correct order at the end of trial. Each to-be-remembered 
item is followed by a distractor, which requires the 
participant to engage executive attentional processes. This is 
to reduce the ability to rehearse to-be-remembered items 
during the distractor task. In the Operation Span task, for 
example, to-be-remembered items are letters and distractors 
are simple equations (e.g., (2 x 2) - 1 = 3), which the 
participant has to make true/false judgments about. The 
order of the tasks was identical across participants (as in 
Foster et al., 2015): first Operation Span, followed by 
Rotation Span, and then Symmetry Span.  

Finally, a test of the word-pairs that were studied at the 
beginning of the session was administered. All 35 Swahili 
cues were shown on screen as a list and the participant had 
to provide the correct Dutch translation. The test was self-
paced and because all words were visible at the same time, 
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participants were able to provide answers in any order they 
preferred. No feedback was provided.  

The duration of complex span tasks varies between 
participants. To ensure that the retention interval between 
the word-learning task and the test was the same across 
participants, a simple lexical decision task was administered 
as a filler task before the test. The task was setup in a way 
that it would terminate as soon as the retention interval was 
80 minutes, irrespective of the number of trials completed. 
For the task, five-letter strings were presented on screen and 
participants had to press one of two buttons to indicate 
whether the string was a Dutch word or not. By using high 
frequency words, the task was made relatively easy to avoid 
fatigue. All but two participants maintained accuracy levels 
above 80% and visual inspection of the response time 
distributions suggests the task was performed consistently. 
The task was chosen because it was easy to check on a trial-
by-trial basis whether participants engaged in the task, and 
could easily be programmed to ensure that all participants 
started with the subsequent test at the same, relative, point 
in time.  The data from the filler task will not be discussed 
further here. 

Session 2. Three days later, participants came back for the 
second session. The second session started with a second 
test of the Swahili-Dutch word-pairs learned at the 
beginning of the first session. The test was identical to the 
one completed at the end of Session 1.  

Subsequently, we assessed the participant’s general 
reasoning abilities by administering the Q1000 Cognitive 
Capacity test on-line. Upon completion of the test, the 
website provided participants with feedback indicating how 
their performance (overall and on the sub-scales) compared 
to that of a norm group. 

Materials 
Swahili-Dutch Word-Pairs. The 35 items were 

randomly sampled from the list of 100 Swahili-English 
word-pairs provided by Nelson and Dunlosky (1994). The 
English responses were translated to Dutch and all 
participants studied the same subset of 35 word-pairs. The 
order in which words were introduced was randomized. 

Complex Span Tasks. The code for the three complex 
span task was obtained from the Engle lab's website and 
used with their permission. It is the same code used by 
Foster and colleagues (2015) but all instructions were 
translated to Dutch. Scores reported in Table 1 are partial-
credit unit scores (Conway et al., 2005).  

General Cognitive Ability. As a measure of general 
cognitive ability, we used Q1000 Capaciteiten Hoog (“High 
Capacity”; university-educated individuals) developed by 
Meurs HRM. The test has been developed for a selection 
context to determine whether a candidate has the necessary 
intellectual ability to perform well in cognitively demanding 
jobs, but has psychometric properties akin to other 
standardized tests of intelligence. There are multiple sub-
scales that are ordered hierarchically with the declared goal 
of measuring general intelligence. In contrast to more 

traditional tests of general cognitive ability, this test can be 
administered, using online tools, in a classroom setting. The 
Committee on Test Affairs Netherlands (COTAN) has 
evaluated the test and concluded that it is a valid and 
reliable measure of general cognitive ability (Van Bebber, 
Lem, & Van Zoelen, 2010). All scores reported here are z-
scores relative to the highest available norm group ("WO"; 
people that completed university education). 

Participants 
A total of 42 participants were recruited from the Dutch 

first-year participant pool at the University of Groningen. 
Of those, 14 were female (33%) and the median age was 19 
(SDage = 1.34; rangeage = [17, 24]). No one indicated any 
familiarity with Swahili. All participants gave informed 
consent and the Ethics Committee Psychology approved the 
study (ID: 15006-N).  

Due to technical issues, data in the Rotation Span task 
was lost for one participant and in the Symmetry Span task 
for another. The composite scores (i.e., WMC) for these two 
individuals are based on the z-score average of the two 
remaining tasks. One participant did not complete the 
second vocabulary test and Q1000 scores were not available 
for 4 participants because the university was closed due to 
extreme weather on the day of the second session. They did 
complete the second test online, though.  

Results 
To express a single measure of working memory capacity 

(WMC), the scores on the three complex span tasks are 
summarized into a single composite score1. This is done by 
calculating a participant's z-score for each task and then 
computing a z-score average (following Foster et al., 2015). 
Table 1 provides descriptive statistics for the scores on the 
individual tasks as well as their partial correlations among 
each other and with the resulting composite score. As 
expected, the complex span tasks correlate with each other 
and are highly correlated with the composite score. All 
correlation coefficients differ significantly from 0 with p < 
.0012. For brevity’s sake, the composite score will be 
referred to as a participant's WMC. 

There is considerable variation, both across items and 
participants, in the estimated parameters that are used to 
compute the rate of forgetting. This indicates that some 
words are more difficult to learn than others and that some 
participants learned the material more easily than others. As 
described in the Introduction, the rate of forgetting is 
obtained by computing the average across all item-specific 
parameters estimated by the model. Across the 42 

                                                             
1 A supplement with the raw data and scripts to compute all 

numbers and generate the plot in this manuscript is available at: 
https://github.com/fsense/cogsci-2016-paper 

2 Bayesian equivalents (Wetzels & Wagenmakers, 2012) were 
computed and ranged from 90 to 2327 in favor of the alternative 
model (that r ≠ 0) for correlation coefficients among the three tasks 
and were all over one billion for the three coefficients listed in row 
four of Table 1. 
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participants, the mean rate of forgetting is .288 with a 
standard deviation of 0.049 (range = [0.186; 0.404]), with 
higher values indicating faster forgetting. The distribution is 
also apparent in Figure 1 and indicates that there are 
considerable individual differences in the rate of forgetting.  

 
Table 1. Descriptive statistics for the complex span tasks 

and their composite score (WMC) as well as the correlations 
between all measures.  

 
 Mean SD Range 1. 2. 3. 
1. OSpan 59.5 9.2 [39, 75]    
2. RotSpan 29.0 7.3 [10, 40] .56   
3. Symspan 31.4 6.9 [14, 42] .64 .54  
4. WMC 0.0 0.8 [-1.6, 1.3] .86 .83 .85 

 
Figure 1 provides an overview of all relevant measures 

and how they relate to each other. The plot depicts the 
distribution of each variable on the diagonal. On the off-
diagonal, scatterplots with fitted linear regression lines are 
shown. The corresponding partial correlations are shown on 
the other off-diagonal, along with p-values expressing the 
probability of observing the data assuming the coefficient is 
0. Also shown are the sample size and the Bayesian 
equivalent of the null-hypothesis significance test (Wetzels 
& Wagenmakers, 2012). The subscript "H0" indicates that 
the Bayes factors quantify the evidence the data provides for 
the null hypothesis (assuming no correlation, i.e., that r = 0) 
relative to the alternative hypothesis and vice versa for 
subscript "H1". 

Participants took one test of the learned word-pairs in 
both sessions but only the test results from the second test 
are included in Figure 1. The scores from the two tests are 
highly correlated (r = .88) and interchangeable3 when it 
comes to the conclusions that can be drawn from Figure 1. 

Since a higher rate of forgetting indicates faster 
forgetting, we would expect all correlations in the left-most 
column of Figure 1 to be negative. This expectation is met 
by the performance on the second test; forgetting items 
more slowly is strongly related to performing well on the 
test. While the signs of the correlation coefficients 
corresponding to working memory capacity (WMC) and 
general cognitive ability (GCA) are also negative, both the 
p-values and the Bayes factors suggest that we can assume 
the correlations are zero. All other correlation coefficients 
have the expected positive sign but the data only provide 
evidence for a non-zero correlation between WMC and 
GCA. 

Thus, the only measure that is related to test performance 
is the rate of forgetting estimated during learning, while the 
individual differences captured by WMC/GCA and the rate 
of forgetting do not seem to share any variance.  

 
                                                             
3 See the Supplement for how the numbers change if scores from 

the first test are used. The scores were lower, on average, on the 
second test as one would expect. But the general trend and 
distribution of the data does not differ much between the two tests. 
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Figure 1. Depicted are the measures of interest: the 
estimated rate of forgetting, the score on the second test, 
general cognitive ability (GCA), and their working memory 
capacity (WMC). 

 

Discussion 
The goal of the present study is to investigate how the 

rate of forgetting estimated during learning with our 
adaptive fact-learning model relates to established measures 
of individual differences. 

The very high correlation between rate of forgetting and 
test scores (see Figure 1) suggests that the parameter 
estimated during learning captures the learner's ability to 
store and retrieve information from memory. Vocabulary 
tests are a common way to assess word-pair learning in 
many school curricula, which gives face validity to the test 
administered here. Being able to predict test performance 
with 74% accuracy (the square of r = -.86; see Figure 1) is 
not only impressive but also denotes that the estimated 
parameter captures meaningful individual differences. We 
have shown recently that the rate of forgetting estimated 
when studying one topic is highly correlated with that 
estimated for another topic – even though we picked the 
materials to be distinct (Sense et al., 2016). This lends 
indirect support to the rate of forgetting as a robust 
individual difference measure but a direct test needs to be 
conducted to verify this idea. 

We could neither establish a correlation between the rate 
of forgetting and someone's WMC nor their general 
cognitive ability. The lack of a correlation suggests that the 
rate of forgetting shares very little to no variance with the 
performance on either complex span tasks or a test of 
general cognitive ability. Since both these tasks make strong 
executive attention demands (Kane et al., 2007), we 
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conclude that the rate of forgetting encapsulates a 
characteristic of the learner that is not analogous to their 
general cognitive ability. 

Earlier work provides additional evidence for the view 
that the rate of forgetting might be independent from 
cognitive span measures. For example, Rosen and Engle 
(1998) had people learn three lists of paired-associates. For 
half the participants, the second list re-used cues from the 
first list but participants had to associate them with different 
responses. This created interference and they were 
interested in whether low and high span participants were 
affected by the experimental manipulation differently. They 
found that low and high span participants learned the first 
list at the same rate, when just the rate of forgetting plays a 
role, but that low span participants' performance suffered a 
lot more from the interference than high span participants'. 
Their experiments suggest that high span participants 
perform better in the interference condition because they 
ward off the intrusions more successfully (also see Brewin 
& Beaton, 2002; however, see Oberauer, Lange, & Engle, 
2004 for contradicting evidence). No such interference 
existed in our experiment and the finding that someone's 
WMC is not linked to their rate of forgetting is consistent 
with the finding that low and high span participants learn 
paired-associates at the same rate (Rosen & Engle, 1998). 
Similarly, Kane and colleagues conclude that WMC 
measured with complex span tasks "does not predict 
variability in all aspects of remembering" (2007, p.32) even 
though there is research that suggests an influence of WMC 
on memory-related processes (e.g., Mall & Morey, 2013). 

Although the Q1000 is not a commonly used test to assess 
general cognitive ability, this study provides further, 
indirect, validation. Working memory capacity (WMC) and 
general cognitive ability are known to be related concepts, 
and in this study we find a correlation in the expected range 
(Ackerman et al., 2005). Nevertheless, it would be good to 
replicate the current findings with more commonly used 
tests of general cognitive ability (e.g., WAIS or Raven's 
advanced progressive matrices). 

Based on the data presented here, we can extrapolate that 
the individual differences captured by someone's rate of 
forgetting are not confounded by their general cognitive 
abilities. We believe, however, that this relationship might 
emerge if a more heterogeneous sample is used. Our 
participants were first-year psychology students at a Dutch 
university, which necessarily restricts the range of general 
cognitive ability in an absolute sense. Figure 1 shows that 
there is a reasonable amount of variation in the data when it 
comes to general cognitive ability but this is due to the fact 
that the test we used is highly sensitive in the higher range 
of the construct it measures. Therefore, it is not 
unreasonable to assume that a relationship between 
someone's ability to learn factual knowledge and their 
general cognitive ability might exist in the general 
population. These results suggest, however, that in more 
restricted ranges, as observed in the population commonly 

used in psychological research, WMC and general cognitive 
ability do not influence fact learning. 

Conclusion 
The data presented here confirm that the rate of forgetting 

estimated by the adaptive fact-learning model developed in 
our lab is an excellent predictor of outcomes on tests of the 
same material. While the common measures of individual 
differences used in this study - working memory capacity 
and general cognitive ability - are related to each other in 
the way we would expect, they do not seem to be related to 
the estimated rate of forgetting. This is interesting because it 
suggests that the rate with which someone acquires and 
retains factual knowledge is not linked to their executive 
attentional capabilities. 

Acknowledgments 
We would like to thank Susan Niessen for her invaluable 
help in planning the experiment, collecting the data, and all 
aspects related to the Q1000 test. We would also like to 
thank Atser Damsma, Anna Leonte, and Rob Nijenkamp for 
their help with the translations and Lukas Preis and Ron 
Woytaszek for their help with data collection. 

A supplement with the raw data and scripts to generate 
the plot and numbers in this manuscript is available at: 
https://github.com/fsense/cogsci-2016-paper 

References  
Ackerman, P. L., Beier, M. E., & Boyle, M. O. (2005). 

Working memory and intelligence: the same or 
different constructs? Psychological Bulletin, 131(1), 
30–60. doi:10.1037/0033-2909.131.1.30 

Anderson, J. R. (2007). How can the human mind occur in 
the physical universe? New York: Oxford University 
Press. 

Anderson, J. R., Bothell, D., Lebiere, C., & Matessa, M. 
(1998). An Integrated Theory of List Memory. 
Journal of Memory and Language, 38(4), 341–380. 

Brewin, C. R., & Beaton,  a. (2002). Thought suppression, 
intelligence, and working memory capacity. 
Behaviour Research and Therapy, 40, 923–930. 
doi:10.1016/S0005-7967(01)00127-9 

Cepeda, N. J., Vul, E., Rohrer, D., Wixted, J. T., & Pashler, 
H. (2008). Spacing effects in learning: a temporal 
ridgeline of optimal retention. Psychological Science, 
19(11), 1095–102. doi:10.1111/j.1467-
9280.2008.02209.x 

Conway, A. R. A., Kane, M. J., Bunting, M. F., Hambrick, 
D. Z., Wilhelm, O., & Engle, R. W. (2005). Working 
memory span tasks: A methodological review and 
user’s guide. Psychonomic Bulletin & Review, 12(5), 
769–786. doi:10.3758/BF03196772 

Conway, A. R. A., Kane, M. J., & Engle, R. W. (2003). 
Working memory capacity and its relation to general 
intelligence. Trends in Cognitive Sciences, 7(12), 
547–552. doi:10.1016/j.tics.2003.10.005 

2505



Cowan, N., Elliott, E. M., Scott Saults, J., Morey, C. C., 
Mattox, S., Hismjatullina, A., & Conway, A. R. A. 
(2005). On the capacity of attention: its estimation and 
its role in working memory and cognitive aptitudes. 
Cognitive Psychology, 51(1), 42–100. 
doi:10.1016/j.cogpsych.2004.12.001 

Dempster, F. N. (1988). The spacing effect: A case study in 
the failure to apply the results of psychological 
research. American Psychologist, 43(8), 627–634. 

Donovan, J. J., & Radosevich, D. J. (1999). A meta-analytic 
review of the distribution of practice effect: Now you 
see it, now you don’t. Journal of Applied Psychology, 
84(5), 795–805. doi:10.1037//0021-9010.84.5.795 

Engle, R. W., Tuholski, S. W., Laughlin, J. E., & Conway, 
A. R. A. (1999). Working memory, short-term 
memory, and general fluid intelligence: a latent-
variable approach. Journal of Experimental 
Psychology. General, 128(3), 309–331. 
doi:10.1037/0096-3445.128.3.309 

Foster, J. L., Shipstead, Z., Harrison, T. L., Hicks, K. L., 
Redick, T. S., & Engle, R. W. (2015). Shortened 
complex span tasks can reliably measure working 
memory capacity. Memory & Cognition, 43(2), 226–
236. doi:10.3758/s13421-014-0461-7 

Kane, M. J., Conway, A. R. A., Hambrick, David Z, & 
Engle, R. W. (2007). Variation in working memory 
capacity as variation in executive attention and 
control. In A. R. A. Conway, C. Jarrold, M. J. Kane, 
& A. T. Miyake (Eds.), Variation in working memory 
(pp. 21–46). New York, NY: Oxford University Press. 
doi:10.1093/acprof 

Kane, M. J., Hambrick, D. Z., & Conway, A. R. a. (2005). 
Working memory capacity and fluid intelligence are 
strongly related constructs: comment on Ackerman, 
Beier, and Boyle (2005). Psychological Bulletin, 
131(1), 66–71; author reply 72–75. doi:10.1037/0033-
2909.131.1.66 

Kuncel, N. R., & Hezlett, S. A. (2007). Standardized tests 
predict graduate students’ success. Science, 315, 
1080–1081. doi:10.1126/science.1136618 

Kuncel, N. R., & Hezlett, S. A. (2010). Fact and Fiction in 
Cognitive Ability Testing for Admissions and Hiring 
Decisions. Current Directions in Psychological 
Science, 19(6), 339–345. 
doi:10.1177/0963721410389459 

Mall, J. T., & Morey, C. C. (2013). High working memory 
capacity predicts less retrieval induced forgetting. 
PloS One, 8(1), e52806. 
doi:10.1371/journal.pone.0052806 

Nelson, T. O., & Dunlosky, J. (1994). Norms of paired-
associate recall during multitrial learning of Swahili-
English translation equivalents. Memory, 2(3), 325–
335. 

Nijboer, M. (2011). Optimal fact learning: Applying 
presentation scheduling to realistic conditions. 
University of Groningen. 

Oberauer, K., Lange, E., & Engle, R. W. (2004). Working 

memory capacity and resistance to interference. 
Journal of Memory and Language, 51(1), 80–96. 
doi:10.1016/j.jml.2004.03.003 

Pavlik, P. I., & Anderson, J. R. (2003). An ACT-R model of 
the spacing effect. In Proceedings of the 5th 
International Conference on Cognitive Modeling (pp. 
177–182). Bamberg. 

Pavlik, P. I., & Anderson, J. R. (2005). Practice and 
forgetting effects on vocabulary memory: An 
activation-based model of the spacing effect. 
Cognitive Science, 29(4), 559–86. 
doi:10.1207/s15516709cog0000_14 

Pavlik, P. I., & Anderson, J. R. (2008). Using a model to 
compute the optimal schedule of practice. Journal of 
Experimental Psychology: Applied, 14(2), 101–17. 
doi:10.1037/1076-898X.14.2.101 

Rosen, V. M., & Engle, R. W. (1998). Working memory 
capacity and suppression. Journal of Memory and 
Language, 39, 418–436. doi:10.1006/jmla.1998.2590 

Sense, F., Behrens, F., Meijer, R. R., & Van Rijn, H. (2016). 
An Individual’s Rate of Forgetting is Stable over 
Time, but Differs Across Materials. Topics in 
Cognitive Science, 8(1), 305–321. 
doi:10.1111/tops.12183 

Van Bebber, J., Lem, J., & Van Zoelen, L. (2010). Q1000 
Capaciteiten Hoog. Woerden: Meurs HRM. 

Van Rijn, H., van Maanen, L., & van Woudenberg, M. 
(2009). Passing the test: Improving learning gains by 
balancing spacing and testing effects. In Proceedings 
of the 9th International Conference on Cognitive 
Modeling (pp. 110–115). 

Wetzels, R., & Wagenmakers, E.-J. (2012). A default 
Bayesian hypothesis test for correlations and partial 
correlations. Psychonomic Bulletin & Review, 19, 
1057–1064. doi:10.3758/s13423-012-0295-x 

Zeelenberg, R., de Jonge, M., Tabbers, H. K., & Pecher, D. 
(2015). The effect of presentation rate on foreign-
language vocabulary learning. Quarterly Journal of 
Experimental Psychology, 68(6), 1101–15. 
doi:10.1080/17470218.2014.975730 

 

2506


