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Nonlinear Eigenvalue Approach to Differential Riccati Equations
for Contraction Analysis

Yu Kawano , Member, IEEE, and Toshiyuki Ohtsuka, Member, IEEE

Abstract—In this paper, we extend the eigenvalue method of the
algebraic Riccati equation to the differential Riccati equation (DRE)
in contraction analysis. One of the main results is showing that
solutions to the DRE can be expressed as functions of nonlinear
eigenvectors of the differential Hamiltonian matrix. Moreover,
under an assumption for the differential Hamiltonian matrix, real
symmetry, regularity, and positive semidefiniteness of solutions
are characterized by nonlinear eigenvalues and eigenvectors.

Index Terms—Contraction analysis, differential Riccati
equations (DREs), nonlinear eigenvalues, nonlinear systems.

I. INTRODUCTION

In this paper, we present a novel eigenvalue method for the
differential Riccati equation (DRE) in contraction analysis. Contrac-
tion analysis has been studied intensively in recent decades, which
deals with trajectories of nonlinear systems with respect to one another
[1]–[4]. One of the interesting ideas of contraction theory is consider-
ing an infinitesimal metric instead of a feasible distance function by
lifting a function and vector field on a manifold to a function on its
tangent and cotangent bundles. In such theoretical frameworks, for in-
stance, stability analysis [1], [5], optimal control [2], [3], and balanced
truncation [4] have been studied. In [2]–[4], a Riccati equation that we
call a DRE plays an important role. The DRE is a nonlinear partial
differential equation (nPDE) for an unknown matrix valued function
of the state and time. The DRE can be viewed as an extension of alge-
braic Riccati equations (AREs) and DREs for linear time-invariant and
variant systems rather than as the Hamilton-Jacobi equation (HJE).

One of the most important analysis methods for the ARE is the
eigenvalue method [6]–[8]. This method shows that solutions to the
ARE, a nonlinear algebraic equation, can be described as functions of
eigenvectors of the Hamiltonian matrix, and in terms of eigenvalues and
eigenvectors, real symmetry, regularity, and positive semidefiniteness
of solutions have been studied. This method has been extended to the
DRE for linear periodic systems [9]–[11], which is different from the
equation considered in this paper.

Our main concern in this paper is extending the eigenvalue method
to the DRE in contraction analysis in terms of recently introduced non-
linear eigenvalues and eigenvectors [12]–[14]. First, we demonstrate
that solutions to the DRE can be expressed as functions of nonlinear
right eigenvectors of the corresponding differential Hamiltonian ma-
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trix as in the linear case. Next, we investigate its solution structures
when nonlinear right eigenvectors of the Hamiltonian matrix span the
entire space. In this case, a nonlinear right eigenvalue is also a left
eigenvalue and vice versa, and if λ is an (right or left) eigenvalue of the
Hamiltonian matrix, then −λ, the complex conjugate of λ denoted by
λ∗, and −λ∗ are also eigenvalues similarly to the linear case. Moreover,
we study real symmetry, regularity, and positive semidefiniteness of
solutions to the DRE in terms of nonlinear eigenvalues.

The nonlinear left and right eigenvalues and eigenvectors of the
Jacobian matrix of a vector field correspond to a one-dimensional
(1-D) invariant distributions and codistributions, respectively, in the
time-invariant case. A similar concept can be found in the Koopman
operator theory [15]. The Koopman eigenfunction coincides with an
invariant subset under the Lie derivative of a function. The concepts
of nonlinear eigenvalues are originally introduced in noncommutative
algebra in relation to the pseudolinear transformation (PLT) [16], [17].
The PLT can be interpreted as a generalized notion of linear transforma-
tion to differential one-forms. Noncommutative algebra and the PLT are
used for analysis of linear time-varying and nonlinear control systems
[18], [19]. In contrast to nonlinear systems, there is no application of
such eigenvalues to linear time-varying systems. The DRE of the linear
periodic systems [9]–[11] is not analyzed in terms of such eigenvalues.

Notations: Let R and C be the fields of real and complex numbers,
respectively. Let KR be the field of the real meromporphic functions
in variables x1 , x2 , . . . , xn , t. Let K be the set of functions {a + bj :
a, b ∈ KR }, where j is the imaginary unit, and the domain of definition
of both a and b is Rn × R. Note that KR ⊂ K, and K is a field.
Then, K2n is a vector space over K. The reason why we consider
(not commonly used) field K is that we exploit a concept of nonlinear
eigenvalue of matrix A ∈ Kn×n . As will be shown in Example 2.3, for
constant matrix M ∈ Cn×n , the set of nonlinear eigenvalues contains
the set of eigenvalues in linear algebra. Since a linear eigenvalue can
be a complex number even if M is in Rn×n , nonlinear eigenvalue can
be an element in K even if matrix A is an element in Kn×n

R . Therefore,
we consider field K in this paper.

For a scalar-valued function V (x, t) ∈ K, we denote a row vec-
tor consisting of the partial derivatives of V with respect to xi

(i = 1, 2, . . . , n) as ∂V/∂x, and we denote ∂T V/∂x := (∂V/∂x)T .
For matrix A(x, t) ∈ Kr 1 ×r 2 , rankKA(x, t) = r means that the rank
of A(x, t) over field K is r. In particular, if r1 = r2 = r, A is said to
be regular.

Next, we introduce an operator δf : K → K. By using real
analytic vector-valued function f (x, t) : Rn × R → Rn , operator
δf : K → K is defined as

δf (a(x, t)) =
∂a(x, t)

∂t
+

∂a(x, t)
∂x

f (x, t), a(x, t) ∈ K. (1)

Field K is a differential field with respect to δf . For matrix X(x, t) =
(Xij (x, t)) ∈ Kn×n , δf (X(x, t)) denotes the matrix whose (i, j)th
element is δf (Xij (x, t)). Operator δf coincides with the time deriva-
tive of a function along a solution to ẋ(t) = f (x(t), t) because the
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time derivative of a(x(t), t) is da(x(t), t)/dt = ∂a(x(t), t)/∂t +
(∂a(x(t), t)/∂x)f (x(t), t). In systems and control, in general, we
study a real-valued vector field. Thus, we assume that f is real valued.
Throughout this paper, we leave out arguments of functions when these
are clear from the context.

II. EIGENVALUE APPROACH

A. Differential Riccati Equation

Let each element of A(x, t) ∈ Kn×n
R , R(x, t) = RT (x, t) ∈ Kn×n

R ,
and Q(x, t) = QT (x, t) ∈ Kn×n

R be real analytic. In this paper, we
study the following nPDE for unknown matrix X(x, t) ∈ Kn×n :

δf (X(x, t)) + X(x, t)A(x, t) + AT (x, t)X(x, t)

−X(x, t)R(x, t)X(x, t) = −Q(x, t). (2)

Equation (2) is a generalization of the ARE, and thus we call (2) a
(generalized) DRE. A real symmetric and positive definite solution
X ∈ Kn×n

R plays an important role in systems and control theory such
as that in contraction analysis [1], [2].

Example 2.1: A stabilizing controller is designed by using a solu-
tion to DRE. Consider a time-invariant real analytic system

ẋ(t) = f (x(t)) + Bu(t)

where x ∈ Rn and u ∈ Rm . For A = ∂f/∂x, R = BBT , and sym-
metric and positive definite Q(x) at each x ∈ Rn , suppose that DRE

δf (X) + X
∂f

∂x
+

∂T f

∂x
X − XBBT X = −Q (3)

has a symmetric and positive definite solution X ∈ Kn×n
R at each x ∈

Rn . Here, we show that if X satisfies (∂Xij /∂x)B = 0, and if there
exists a vector-valued function k(x) ∈ Km such that ∂k/∂x = BT X ,
then u = −k(x) is a stabilizing controller. Under these assumptions,
(3) can be rearranged as

δf −B k (X) + X
∂(f − Bk)

∂x
+

∂T (f − Bk)
∂x

X

= −Q − XBBT X.

We notice that V (x, δx) := δxT Xδx is a contraction Riemannian met-
ric for the closed-loop system and its variational system

ẋ = f (x) − Bk(x), (4)

d

dt
δx(t) =

∂(f (x) − Bk(x))
∂x

δx(t).

According to Forni and Sepulchre [1], the closed-loop system is incre-
mentally globally asymptotically stable. Roughly speaking, any pair of
trajectories of the closed-loop system converges to each other. If the
system has an unique equilibrium point, the system is globally asymp-
totically stable. In summary, by solving DRE (3), we can construct a
stabilizing controller u = −k = − ∫

BT Xdx. In [2], a similar result
is obtained for time-varying systems, and the integrability condition of
BT X is dropped by using a line integral.

Other applications of the DRE are, for instance, incremental optimal
control [2] and balanced truncation [4]. In linear systems and control
theory, the optimal controller is designed by solving an ARE. This
result is extended in the contraction framework by using a DRE [2].
Moreover, the so-called differential balanced realization [4] is defined
by using Lyapunov types of equations, which are specific DREs for
R ≡ 0. In optimal control and balanced truncation, symmetric and
positive definite solutions to DREs are used. Since the DRE is an

nPDE for an unknown matrix, the structures of solutions have not been
adequately studied. That is, it is unclear when a symmetric and positive
definite solution exists. Here, our concern is investigating the solution
structures by using nonlinear eigenvalues and eigenvectors [12], [14].
That is, we extend the eigenvalue method of the ARE [6]–[8].

B. Differential Hamiltonian Matrix

Solutions to the ARE are characterized by the eigenvalues and eigen-
vectors of the Hamiltonian matrix. The counterpart of the Hamiltonian
matrix to the DRE is

H(x, t) :=
[

A(x, t) −R(x, t)
−Q(x, t) −AT (x, t)

]

. (5)

We call this H(x, t) ∈ K2n×2n
R a (generalized) differential Hamilto-

nian matrix. Since the elements of A, R = RT , and Q = QT are real
analytic, the elements of H are also.

Next, we show the definition of the nonlinear eigenvalues and eigen-
vectors [12], [14], [17].

Definition 2.2: Consider δf defined in (1). Let M ∈ Kn×n .
1) v ∈ Kn \ {0} is a left eigenvector for M associated with left eigen-

value α ∈ K if vT M + δf (v)T = vT α.
2) w ∈ Kn \ {0} is a right eigenvector for M associated with right

eigenvalue β ∈ K if Mw − δf (w) = βw.
Moreover, the sets of left and right eigenvalues of M are denoted by

lspecf (M ) and rspecf (M ), respectively.
Nonlinear eigenvalues relate to invariant (co-) distributions when

M = ∂f/∂x [3], [12]. The definitions of left and right eigenvalues
are, respectively, rearranged as Lf (vT dx) = α(vT dx) with the Lie
derivative of one-forms along f and [w, f ] = βw with the Lie bracket
of vector fields. Thus, vT dx and w are, respectively, 1-D invariant
codistribution and distribution.

Example 2.3: In the linear case when M is in Rn×n , the first equa-
tion in Definition 2.2 holds for linear eigenvalue α ∈ C and left eigen-
vector v ∈ Cn (or eigenvalue β ∈ C and right eigenvector v ∈ Cn ).
Thus, the linear eigenvalue and eigenvector are a nonlinear eigenvalue
and eigenvector.

Nonlinear eigenvalues have similar properties to those in linear al-
gebra. These are invariant under δf -conjugacy defined below, which
relates to a change of basis over a differential field. Let {v1 , . . . , vn }
and {w1 , . . . , wn } be bases for Kn . Then, there exist matrices
M, N ∈ Kn×n such that [δf (v1 ) . . . δf (vn )] = M [v1 . . . vn ] and
[δf (w1 ) . . . δf (wn )] = N [w1 . . . wn ]. For two bases, there exists a
regular matrix T ∈ Kn×n such that [v1 , . . . , vn ] = T [w1 , . . . , wn ]. By
applying δf from left, we have

M [v1 , . . . , vn ] = (TN + δf (T ))T −1 [v1 , . . . , vn ].

Since {v1 , . . . , vn } is a basis, M = (TN + δf (T ))T −1 . This pair of
matrices (M, N ) is said to be δf -conjugate.

Definition 2.4 ([16], [17]): A pair of matrices (M, N ) ∈ Kn×n ×
Kn×n is δf -conjugate (with respect to T ), if there exists a regular
matrix T ∈ Kn×n such that M = (TN + δf (T ))T −1 holds.

Example 2.5: When n = 1, we have the definition given in [16]
and [17] of δf -conjugation for elements in a, b ∈ K. A pair (a, b) is
δf -conjugate, if b = a + δf (c)/c for nonzero c ∈ K.

Proposition 2.6 ([16], [17] ): Let M be in Kn×n .
1) Let (a, b) ∈ K ×K be δf -conjugate. If a ∈ lspecf (M ) (or

rspecf (M )), then b ∈ lspecf (M ) (or rspecf (M )).
2) If (M, N ) is δf -conjugate, rspecf (M ) = rspecf (N ) and

lspecf (M ) = lspecf (N ).
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Example 2.7: If (M, N ) is δf -conjugate, then we have N =
(T −1M + δf (T −1 ))T , i.e. (N, M ) is also δf -conjugate.

Example 2.8: If both (L, M ) and (M, N ) are δf -conjugate with
respect to regular T, S ∈ Kn×n , respectively. Then, (L, N ) is also
δf -conjugate with respect to TS.

Example 2.9: Consider a system ẋ = f (x) and its variational
system δẋ = (∂f/∂x)δx. After an analytic diffeomorphic co-
ordinate transformation z = ϕ(x), we have δż = (T (∂f/∂x) +
δf (T ))T −1δz, where T := ∂ϕ/∂x. Proposition 2.6 2) implies that
∂f/∂x and (T (∂f/∂x) + δf (T ))T −1 have the same nonlinear left
and right eigenvalues.

Proposition 2.6 1) comes from a scalar multiplication of eigenvec-
tors. For some nonzero a ∈ K, left eigenvalue α, and eigenvector v,
we have

avT M + δf (avT ) = avT M + aδf (vT ) + δf (a)vT

= (α + δf (a)/a)avT .

Then, α + δf (a)/a and av are also left eigenvalue and eigenvector,
respectively. Note that (α, α + δf (a)/a) is δf -conjugate. For a similar
relationship for right eigenvectors, see (19).

C. Main Theorem

Here, we show that solutions to the DRE can be expressed as func-
tions of nonlinear eigenvectors of the corresponding differential Hamil-
tonian matrix H.

Definition 2.10: A linear subspace W ⊂ K2n is said to be right H
invariant if Hw − δf (w) ∈ W for all w ∈ W . We denote the set of
right eigenvalues of H in W by rspecf (H|W ), i.e.,

rspecf (H|W )

:= {β ∈ K : Hw − δf (w) = βw, w ∈ W \ {0}}.
In [3], van der Schaft extends the connection between the Hamilton–

Jacobi equation and Lagrangian submanifold to the DRE and a so-
called Lagrangian subbundle. The H-invariant subspace in this paper
corresponds to the Lagrangian subbundle. In this paper, we study a
more detailed algebraic structure of the H-invariant subspace based on
the following main theorem.

Theorem 2.11: Assume that there exists an n-dimensionalH invari-
ant subspace W ⊂ K2n . Consider matrices U, V ∈ Kn×n such that

W = Im
[

U
V

]

. (6)

If U is regular, X := V U−1 ∈ Kn×n is a solution to (2) and satisfies

rspecf (A − RX) = rspecf (H|W ). (7)

Conversely, if X ∈ Kn×n is a solution to (2), there exist U, V ∈
Kn×n such that U is regular, and X = V U−1 . Moreover, for these
U and V , subspace W ⊂ K2n in (6) is an n-dimensional H invariant
subspace and satisfies (7).

Proof: We prove the first part. Since W is H invariant, there exists
some matrix Λ ∈ Kn×n such that

[
A −R
−Q −AT

] [
U
V

]

−
[

δf (U )
δf (V )

]

=
[

U
V

]

Λ. (8)

By multiplying U−1 from the right, we have
[

A −R
−Q −AT

] [
In

V U−1

]

−
[

δf (U )U−1

δf (V )U−1

]

=
[

In

V U−1

]

UΛU−1 . (9)

Next, by multiplying [V U−1 − In ] from the left, we obtain

δf (V )U−1 − V U−1δf (U )U−1

+ V U−1A + AT V U−1 − V U−1RV U−1 + Q = 0.

It can be shown that δf (V U−1 ) = δf (V )U−1 − V U−1δf (U )U−1 .
Thus, X := V U−1 is a solution to (2).

Next, from the upper half of (9)

A − RX = (UΛ + δf (U ))U−1 . (10)

From Proposition 2.6 2)

rspecf (Λ) = rspecf ((UΛ + δf (U ))U−1 )

= rspecf (A − RX) . (11)

Let r be the maximum number of linearly independent right eigen-
vectors w1 , . . . , wr ∈ W of H associated with right eigenvalues βi

(i = 1, . . . , r). Since W is an n-dimensional subspace, there exist
wr+1 , . . . , wn ∈ W such that spanK{w1 , . . . , wn } = W holds. Let

[
Û

V̂

]

:=
[
w1 · · · wn

]
.

Then, there exists Λ̂ ∈ Kn×n such that
[

A −R
−Q −AT

] [
Û

V̂

]

−
[

δf (Û )
δf (V̂ )

]

=
[

Û

V̂

]

Λ̂,

Λ̂ :=
[

B11 B21

0 B22

]

where B11 = diag{β1 , . . . , βr } and B21 ∈ K(n−r )×r , B22 ∈
K(n−r )×(n−r ) are suitable matrices. Thus,

rspecf (H|W ) = rspecf (B11 ) = rspecf (Λ̂). (12)

From (11) and (12), it remains to show rspecf (Λ) = rspecf (Λ̂). Since

both [UT V T ]T and [ÛT V̂ T ]T consist of bases of W , there exists a
regular matrix T ∈ Kn×n such that

[
U
V

]

=
[

Û

V̂

]

T.

By substituting this equality into (8)

H
[

Û

V̂

]

−
[

δf (Û )
δf (V̂ )

]

=
[

Û

V̂

]

(TΛ + δf (T ))T −1

which implies Λ̂ = (TΛ + δf (T ))T −1 . From Proposition 2.6 2), the
set of right eigenvalues of Λ̂ and Λ are equivalent.

We prove the second part. Let Λ := A − RX . By premultiplying
X , we have, from (2)

XΛ = XA − XRX = −Q − δf (X) − AT X.

The above two equations yield
[

A −R
−Q −AT

] [
In

X

]

−
[

δf (In )
δf (X)

]

=
[

In

X

]

Λ. (13)

Denote U := In and V := X . Then, U is regular, and X = V U−1

holds. Since U is regular, wi ∈ K2n (i = 1, . . . , n) defined by
[w1 , . . . , wn ] := [UT V T ]T spans Kn , and thus W in (6) is an n-
dimensional subspace. From (13), W is H invariant. Finally, it can be
shown that (7) holds similarly to the proof of the first part. �
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Remark 2.12: Solution X ∈ Kn×n
R does not depend on the choice

of basis of W . Every basis of W can be represented with regular matrix
T ∈ Kn×n as

[
U
V

]

T =
[

UT
V T

]

. (14)

Since (V T )(UT )−1 = V U−1 = X holds, X does not depend on the
choice of basis of W .

As demonstrated in Example 2.1, a symmetric and positive definite
solution X ∈ Kn×n

R to a DRE plays an important role in the contraction
analysis. However, it is not guaranteed that a solution X ∈ Kn×n to
(2) has such a property for any n-dimensional H invariant subspace W
in (6). In general, X is a complex-valued function because nonlinear
eigenvalues and eigenvectors of H, i.e., U ∈ Kn×n and V ∈ Kn×n can
be complex-valued functions as in Example 2.13 below. In Section III,
we give a characterization of W defining a symmetric and positive def-
inite solution X ∈ Kn×n

R to a DRE under an assumption for differential
Hamiltonian matrix H.

Theorem 2.11 is an extension of the eigenvalue method for the
ARE because Theorem 2.11 demonstrates that solutions to DRE (2)
can be obtained by using the right eigenvectors of the corresponding
differential Hamiltonian matrix H.

Example 2.13: Based on Example 2.1, consider a stabilization
problem of an RL-circuit with a nonlinear inductor

[
1 + x2

1 0
0 1

]

ẋ = −
[

1 −1
−1 1

]

x +
[

0
1

]

u.

Then, we have

f =

⎡

⎣
−x1 + x2

1 + x2
1

x1 − x2

⎤

⎦ , B =

[
0

1

]

, R = BBT =
[

0 0
0 1

]

,

A =
∂f

∂x
=

⎡

⎣−1 + 2x1x2 − x2
1

(1 + x2
1 )2

1
1 + x2

1
1 −1

⎤

⎦ .

For positive definite Q := diag{3 + 4x2
1 + x4

1 , 1} for all x ∈ R2 , the
differential Hamiltonian matrix is

H =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−1 + 2x1x2 − x2
1

(1 + x2
1 )2

1
1 + x2

1
0 0

1 −1 0 −1

−(3 + 4x2
1 + x4

1 ) 0
1 + 2x1x2 − x2

1

(1 + x2
1 )2 −1

0 −1 − 1
1 + x2

1
1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

The right eigenvalues and eigenvectors of H are

β1 := −2 + x2
1

1 + x2
1
, w1 =

[
1

1 + x2
1

−1 1 + x2
1 0

]T

,

β2 := −2 − 2x1x2 − x2
1 − x4

1 − (x1 − x2 )c(x1 , x1 )
1 + x2

1
,

w2 =

⎡

⎢
⎢
⎢
⎣

1

−1 − x2
1 − (x1 + x2 )c(x1 , x1 )

(1 + x2
1 )(1 + x2

1 − (x1 + x2 )c(x1 , x1 ))

−(x1 + x2 )c(x1 , x1 )

⎤

⎥
⎥
⎥
⎦

where

c(x1 , x2 ) =
∑

{a :a 3 +6a−x 3
1 −3x 1 −3x 2 =0}

(1 + x2
1 )(a − x1 )

a 2 + 3
a 2 + 2

∫ x 1
0 (1 + b2 )(a − b)

a 2 + 3
a 2 + 2 db + 1

.

Since two of solutions to a3 + 6a − x3
1 − 3x1 − 3x2 = 0 are complex-

valued functions, U, V ∈ Kn×n are complex-valued functions. On the
basis of Theorem 2.11, we define

U :=

⎡

⎣
1

1 + x2
1

1

−1 −1 − x2
1 − (x1 + x2 )c(x1 , x2 )

⎤

⎦ ,

V :=
[

1 + x2
1 (1 + x2

1 )(1 + x2
1 − (x1 + x2 )c(x1 , x2 ))

0 −(x1 + x2 )c(x1 , x2 )

]

.

Then, a solution to DRE (3) is

X := V U−1 =
[

2(1 + x2
1 )

2 1 + x2
1

1 + x2
1 1

]

and (∂Xij /∂x)B = 0. Moreover, X ∈ Kn×n
R is positive definite for

all x ∈ R2 while U and V are complex-valued functions. According
to Example 2.1, the feedback controller

u = −
∫ x

0
BT Xdx = − (

x1 + x3
1/3 + x2

)

makes the closed-loop system globally incrementally asymptotically
stable.

III. DETAILED PROPERTIES IN SIMPLE CASE

According to Example 2.1 and Manchester and Slotine [2], a
stabilizing solution to the DRE is real symmetric and positive
(semi)definite. In the linear case, real symmetry, regularity, and positive
(semi)definiteness depend on a choice of n-eigenvectors of the Hamil-
tonian matrix, i.e., an n-dimensional H-invariant subspace. Here, we
study relationships between properties of solutions to the DRE and
nonlinear eigenvalues and eigenvectors of the differential Hamiltonian
matrix. As a first step, in this paper, we assume that the differential
Hamiltonian matrix is simple.

Definition 3.1: A matrix M ∈ Kn×n is said to be left (or right)
simple if there exist n left (or right) eigenvectors v1 , . . . , vn ∈ Kn

such that spanK{v1 , . . . , vn } = Kn .
Note that, for any right eigenvector w ∈ K2n of H, {w} ⊂ K2n is

a 1-D H-invariant subspace. Therefore, simplicity of H implies the
existence of the 2n-dimensional H-invariant subspace.

It can readily be shown that a matrix M is left (or right) simple if
and only if M is δf -conjugate to a diagonal matrix, which yields the
following proposition.

Proposition 3.2: A matrix M ∈ Kn×n is right simple if and only if
it is left simple.

Since left and right simplicity are equivalent properties, a left or
right simple matrix is called simple. Also, its left or right eigenvalue is
called an eigenvalue.

If the differential Hamiltonian matrixH in (5) is simple, it is possible
to show the following.

Theorem 3.3: Let H be simple. Let W ⊂ K2n be an n-dimensional
H invariant subspace.
1) There exist U, V ∈ Kn×n in (6) and λi (i = 1, . . . , n) such that

Λ := diag{λ1 , . . . , λn } holds in (8).
2) Denote λδf as the set of δf -conjugate elements of λ ∈ K. Also,

define for λi (i = 1, . . . , n) in 1)

{λ1 , . . . , λn }δf := {λ ∈ λ
δf

i : i = 1, . . . , n}. (15)

Then, {λ1 , . . . , λn }δf = rspecf (H|W ).
3) −λi , λ

∗
i ,−λ∗

i ∈ rspecf (H|W ) for λi (i = 1, . . . , n) in 1), where
λ∗

i is the complex conjugate of λi .
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4) If H has no eigenvalue on the imaginary axis, then there is at least
one W such that U ∗V is Hermitian, and UT V is symmetric for
any choice of U, V ∈ Kn×n in (6).

5) Suppose that U ∗V is Hermitian or UT V is symmetric for U, V ∈
Kn×n in (6). Then, U is regular if and only if there is no λi

(i = 1, . . . , n) in 1) satisfying

AT v + δf (v) = −λi v, Rv = 0 (16)

for nonzero v ∈ Kn such that [0T , vT ]T ∈ W . Moreover, V is
regular if and only if there is no λi (i = 1, . . . , n) in 1) satisfying

Au − δf (u) = λi u, Qu = 0 (17)

for nonzero u ∈ Kn such that [uT 0T ]T ∈ W .
6) Suppose that U, V, Λ are chosen as in 1). Denote Re(λi ) by the real

part of λi (x, t). Suppose that U, U−1 , V are defined on Rn × R.
Also, suppose that there is symmetric and positive semidefinite
Q̄ ∈ Rn×n such that Q ≥ Q̄ for all (x, t) ∈ Rn × R. If for some
c < 0, Re(λi ) ≤ c (i = 1, . . . , n) for all (x, t) ∈ Rn × R, then
X := V U−1 is symmetric and positive semidefinite for all (x, t) ∈
Rn × R.

Remark 3.4: In Theorem 3.3 4), we mention that the choice of a
pair U, V ∈ Kn×n in (6) is arbitrary. According to Remark 2.12, every
pair U, V satisfying (6) is connected by (14). It is clear that if U ∗V
is Hermitian and UT V is symmetric, then T ∗U ∗V T is Hermitian and
T T UT V T is symmetric.

Theorem 3.3 4) and 5) give characterizations of symmetry and reg-
ularity of a solution to the DRE. Denote Ω := U ∗V and Ω̃ := UT V .
If U is regular, we have

X = V U−1 = (U−1 )∗ΩU−1 = (U−1 )T Ω̃U−1 . (18)

Thus, X ∈ Kn×n
R is real symmetric if both Ω = Ω∗ and Ω̃ = Ω̃T hold,

and if U is regular. Regularity of U is characterized by (16).
Conditions (16) and (17) can be viewed as generalizations of Popov–

Belevitch–Hautus accessibility and observability tests to nonlinear sys-
tems, respectively. In fact, there is no λ such that (16) and (17) hold
if ẋ = f (x) + Bu is locally strongly accessible [20] and if ẋ = f (x),
y = h(x) is locally observable [20] when A = ∂f/∂x, R = BBT ,
and Q = ∂h/∂x [13]. Thus, if these two systems are accessible and
observable as in Example 2.13, and if H has no eigenvalue on the imag-
inary axis, then the DRE has at least one real symmetric and regular
solution. Moreover, if the condition in Theorem 3.3 6) hold, one of real
symmetric solutions is positive definite.

The remainder is dedicated to the proof of Theorem 3.3.

A. Proofs of Theorem 3.3 1) and 2)

Although the number of linearly independent right eigenvectors of
differential Hamiltonian matrix H is at most 2n, the number of eigen-
values can be infinite, which is different from the eigenvalues in linear
algebra. Consider the right eigenvalue λ ∈ K and its associated right
eigenvector w ∈ K2n \ {0} of H. For a ∈ K \ {0}, from the definition
of the right eigenvalue and eigenvector, we have

Haw − δf (aw) = Haw − aδf (w) − δf (a)w

= (λ − δf (a)a−1 )aw. (19)

Thus, λ − δf (a)a−1 and aw are also right eigenvalue and eigenvector,
respectively. These λ and λ − δf (a)a−1 are δf -conjugate.

Consider differential Hamiltonian matrix H. An n-dimensional H
invariant subspace W ⊂ K2n can always be generated by linearly in-
dependent n right eigenvectors, which is demonstrated here. Let W be
generated by w1 , . . . , wn , define Ŵ := [w1 , . . . , wn ] ∈ Kn×n , and let

the column elements of Ŵ2 := [ŵn +1 , . . . , ŵ2n ] ∈ Kn×n be n right
eigenvectors associated with eigenvalues λi (i = n + 1, . . . , 2n) such
that

spanK{w1 , . . . , wn , ŵn +1 , . . . , ŵ2n } = K2n .

Such Ŵ2 always exists because of the simplicity of H. From the defi-
nitions of the n-dimensional H invariant subspace and the right eigen-
value and eigenvector, we have

H [
Ŵ Ŵ2

] − [
δf (Ŵ ) δf (Ŵ2 )

]

=
[
Ŵ Ŵ2

]
[

A11 0
0 A22

]

(20)

where A11 ∈ Kn×n is a suitable matrix, and A22 =
diag{λn +1 , . . . , λ2n }; consequently

[
Ŵ Ŵ2

]−1 (H [
Ŵ Ŵ2

] − [
δf (Ŵ ) δf (Ŵ2 )

])

=
[

A11 0
0 A22

]

.

Since H is simple, A11 is also simple. Let column elements of
Ŵ1 := [ŵ1 , . . . , ŵn ] be linearly independent n right eigenvectors
of A11 associated with eigenvalues λi (i = 1, . . . , n). Also, denote
Λ := diag{λ1 , . . . , λn }. From the definition of right eigenvalues and
eigenvectors, we obtain A11Ŵ1 − δf (Ŵ1 ) = Ŵ1Λ. From this equality
and (20)

HŴ Ŵ1 − δf (Ŵ )Ŵ1 = Ŵ A11Ŵ1 = Ŵ (Ŵ1Λ + δf (Ŵ1 ))

and thus HŴ Ŵ1 − δf (Ŵ Ŵ1 ) = Ŵ Ŵ1Λ. Because of Λ =
diag{λ1 , . . . , λn }, all column elements of regular matrix Ŵ Ŵ1 are
right eigenvectors ofH. In summary, an n-dimensionalH invariant sub-
space can always be generated by linearly independent n right eigenvec-
tors if H is simple, which implies that {λ1 , . . . , λn }δ

f = rspecf (H|W )
holds. Therefore, for simple H, the set rspecf (H|W ) is obtained by
finding n linearly independent right eigenvectors in W while the num-
ber of elements in rspecf (H|W ) can be infinite. Note that a solu-
tion to the DRE is uniquely determined irrespective of the choice
of eigenvalues in rspecf (H|W ). Let λ̂i be δf -conjugate to λi (i =
1, . . . , n). Then, there exists ai such that λ̂i = λi − δf (ai )/ai . Define
Λ̂ := diag{λ̂1 , . . . , λ̂n } and Â = diag{a1 , . . . , an }. In a similar man-
ner to the discussion in (19), HŴ Ŵ1 Â − δf (Ŵ Ŵ1 Â) = Ŵ Ŵ1 ÂΛ̂.
Owing to Remark 2.12, Ŵ Ŵ1 and Ŵ Ŵ1 Â give the same solution X .

B. Proof of Theorem 3.3 3)

Owing to the specific structure of H, we have the following rela-
tionship between the left and right eigenvalues of H, where H does not
need to be simple.

Proposition 3.5: β ∈ K is a right eigenvalue of H if and only if
−β is its left eigenvalue, or equivalently, if and only if −β∗ is its left
eigenvalue, or equivalently, if and only if β∗ is its right eigenvalue.

Proof: First, we show that if β ∈ K is a right eigenvalue, −β is
a left eigenvalue. Let w ∈ K2n be a right eigenvector associated with
right eigenvalue β, i.e., w and β satisfy

Hw − δf (w) = βw. (21)

For matrix J ∈ K2n×2n

J :=
[

0 In

−In 0

]

(22)
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we have J−1H = −HT J−1 . By premultiplying J−1 with both sides
of (21), we have

−HT J−1w − δf (J−1w) = βJ−1w.

Therefore, −β is a left eigenvalue of H with left eigenvector J−1w,
and the converse can readily be shown.

Since H is real analytic, by taking the conjugate transpose instead
of the transpose in the above equations, we can show that β ∈ K is a
right eigenvalue if and only if −β∗ is a left eigenvalue. Finally, from
the above proof, β̂ := −β∗ is a left eigenvalue if and only if −β̂ := β∗

is a right eigenvalue. �
Now, we are ready to prove 3).
Proof of 3): Let H ∈ K2n×2n be simple, and let λ ∈ K be its right

eigenvalue. From Proposition 3.5, −λ, −λ∗, and λ∗ are also right
eigenvalues. �

C. Proof of Theorem 3.3 4)

Let ωi,j and ω̃i,j be the (i, j) elements of Ω := U ∗V and Ω̃ :=
UT V , respectively, i.e.,

ωi,j := u∗
i vj , ω̃i,j := uT

i vj , i, j = 1, 2, . . . , n. (23)

Conditions Ω = Ω∗ and Ω̃ = Ω̃T can be rewritten as

ωi,j − ω∗
j,i = u∗

i vj − v∗
i uj = 0, i, j = 1, 2, . . . , n, (24)

ω̃i,j − ω̃T
j,i = uT

i vj − vT
i uj = 0, i, j = 1, 2, . . . , n. (25)

These conditions are characterized by eigenvalues of H.
Proposition 3.6: Let wi = [uT

i vT
i ]T and wj = [uT

j vT
j ]T ∈ K2n

be right eigenvectors associated with right eigenvalues λi and λj ∈ K of
H, respectively. If λ∗

i and −λj (i, j = 1, . . . , n) are not δf -conjugate,
(24) holds. Also, if λi and −λj (i, j = 1, . . . , n) are not δf -conjugate,
(25) holds.

Proof: We prove that non δf -conjugacy of λ∗
i and −λj (i, j =

1, . . . , n) implies (24) by contraposition. That is, we show that ωi,j −
ω∗

j,i 	= 0 implies that λ∗
i and −λj are δf -conjugate. For J in (22),

HT J + JH = 0 holds. Since elements ofH are real analytic functions,
the definition of the right eigenvalue and eigenvector

Hwj = δf (wj ) + λj wj (26)

yields

w∗
i HT = δf (w∗

i ) + λ∗
i w

∗
i . (27)

By computing w∗
i (HT J + JH)wj with (26) and (27), we have

w∗
i (HT J + JH)wj

= (δf (w∗
i ) + λ∗

i w
∗
i )Jwj + w∗

i J(δf (wj ) + λj wj ) = 0.

From (22) and wi = [uT
i vT

i ]T , we have

(δf (w∗
i ) + λ∗

i w
∗
i )Jwj + w∗

i J(δf (wj ) + λj wj )

= δf (u∗
i vj − v∗

i uj ) + (λ∗
i + λj )(u∗

i vj − v∗
i uj ).

From (23) and u∗
i vj − v∗

i uj = ωi,j − ω∗
j,i 	= 0, the equality can be

rewritten as

δf (ωi,j − ω∗
j,i ) + (λ∗

i + λj )(ωi,j − ω∗
j,i ) = 0,

λ∗
i + δf (ωi,j − ω∗

j,i )(ωi,j − ω∗
j,i )

−1 = −λj .

Thus, λ∗
i and −λj are δf -conjugate. In a similar manner, it is possible

to show that (25) holds if λi and −λj (i, j = 1, . . . , n) are not δf -
conjugate. �

To proceed further analysis, we investigate δf -conjugacy of pairs of
(λ,−λ) and (λ,−λ∗).

Proposition 3.7: Differential Hamiltonian matrix H has no left (or
right) nonlinear eigenvalue on the imaginary axis if and only if for any
left (or right) nonlinear eigenvalue λ of H, neither pair (λ,−λ) nor
(λ,−λ∗) is δf -conjugate.

Proof: (Necessity) We prove by contraposition. First, suppose that
(λ,−λ) is δ-conjugate. Then, there exists nonzero a ∈ K such that
2λ = δ(a)/a, which implies λ = δ(a1/2 )/a1/2 . Thus, (λ, 0) is δf -
conjugate with respect to a1/2 . From Proposition 2.6 1), 0 is a
left (or right) eigenvalue of H. Next, suppose that (λ,−λ∗) is δf -
conjugate. Then, 2Re(λ) = λ + λ∗ = δ(a)/a for some nonzero a ∈
K. Compute 4Re(λ) = 2Re(λ) + 2Re(λ)∗ = δ(a)/a + δ(a∗)/a∗ =
δ(aa∗)/(aa∗), where aa∗ is real valued, and consequently 4λ −
δ(aa∗)/(aa∗) = 4jIm(λ). Thus, (λ, jIm(λ)) is δf -conjugate with re-
spect to (aa∗)1/4 . Therefore, H has a left (or right) eigenvalue on the
imaginary axis.

(Sufficiency) We prove by contraposition. Let λ be a left (or
right) eigenvalue of H on the imaginary axis. Then, λ = −λ∗. That
is, (λ,−λ∗) is δf -conjugate. Moreover, if λ = 0, (λ,−λ) is δf -
conjugate. �

Now, we are ready to prove 4).
Proof of 4): Let {w1 , . . . , w2n } be the set of linearly independent

eigenvectors of H associated with eigenvalues λ1 , . . . , λ2n . Here, we
show that w1 , . . . , wn can be chosen such that neither (λi ,−λ∗

j ) nor
(λi ,−λj ) is δf -conjugate for any i, j = 1, . . . , n. Then, Proposition
3.6 implies that U ∗V is Hermitian, and UT V is symmetric for W =
spanK{w1 , . . . , wn }.

Let {a1 , . . . , ar } be the set of eigenvalues, where (ai , aj ) is not
δf -conjugate for any i 	= j, such that each λi (i = 1, . . . , 2n) is δf -
conjugate to one of its elements. First, we focus on a1 . According
to Theorem 3.3 3), −a1 , a∗

1 , and −a∗
1 are also eigenvalues of H.

From Proposition 3.7, (a1 ,−a1 ) is not δf -conjugate. That is, one of
a2 , . . . , ar can be chosen as −a1 . Here, we chose a2 = −a1 without
loss of generality. Moreover, if (a1 , a

∗
1 ) is not δf -conjugate, any pair

(b, c) (b 	= c; b, c ∈ {a1 ,−a1 , a
∗
1 ,−a∗

1}) is not δf -conjugate. Then, we
can chose a3 = a∗

1 and a4 = −a∗
1 without loss of generality.

We proceed similar procedure for a5 , . . . , ar . Then, we no-
tice that r is an even number, i.e., r = 2r̂ for some r̂. Consider
{a1 , a3 , . . . , a2 r̂−1}. Then, neither (ai ,−aj ) nor (ai ,−a∗

j ) (i, j =
1, 3, . . . , 2r̂ − 1) is δf -conjugate. Also, for the set {a2 , a4 , . . . , a2 r̂ },
neither (ai ,−aj ) nor (ai ,−a∗

j ) (i, j = 2, 4, . . . , 2r̂) is δf -conjugate.
Therefore, if we construct W by using the eigenvectors of H as-
sociated with the eigenvalues, which are δf -conjugate to one of
a1 , a3 , . . . , a2 r̂−1 or the eigenvectors associated with the eigenval-
ues, which are δf -conjugate to one of a2 , a4 , . . . , a2 r̂ , then λi (i =
1, . . . , n) satisfy conditions in Proposition 3.6. �

D. Proof of Theorem 3.3 5)

Proof: Here, we prove 5) only for regularity of V when U ∗V is
Hermitian. In a similar manner, we can prove the other cases.

(Sufficiency) We prove this by contraposition. Let V be not regular.
There exists a nonzero v such that

V v = 0. (28)

The lower half of (8) is−QU − AT V − δf (V ) = V Λ. By multiplying
v, we have, from (28)

− QUv − δf (V )v = V Λv. (29)
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Note that from (28), δf (V v) = δf (V )v + V δf (v) = 0 holds, which
yields −δf (V )v = V δf (v). By using this, (29) can be rewritten as

− QUv + V δf (v) = V Λv. (30)

By premultiplying v∗U ∗, from U ∗V = V ∗U , we obtain

−v∗U ∗QUv + v∗V ∗Uδf (v) = v∗V ∗UΛv.

Since V v = 0, the above equation implies

QUv = 0 (31)

and thus, from (30)

V (Λv − δf (v)) = 0. (32)

Note that (31) and (32) hold for all v satisfying V v = 0.
Next, we show the existence of λ and nonzero v̂ satisfying V v̂ = 0

and

Λv̂ − δf (v̂) = λv̂. (33)

We assume that v1 , the first element of v, is nonzero. Then, from (28),
we have V (v/v1 ) = 0 and from (32)

(1/v1 )V (Λv − δf (v)) = V (Λ(v/v1 ) − δf (v)/v1 ) = 0.

Also, by using δf (v/v1 ) = δf (v)/v1 + δf (1/v1 )v and (28), we obtain

V (Λ(v/v1 ) − δf (v/v1 ) + δf (1/v1 )v)

= V (Λ(v/v1 ) − δf (v/v1 ))

= V (Λ(v/v1 ) − δf (v/v1 ) − λ1 (v/v1 )) = 0.

This equality can also be expressed as V v̄ = 0, where

v̄ :=

⎡

⎢
⎢
⎢
⎣

λ1

λ2 (v2/v1 )
...

λn (vn /v1 )

⎤

⎥
⎥
⎥
⎦
−

⎡

⎢
⎢
⎢
⎣

0
δf (v2/v1 )

...
δf (vn /v1 )

⎤

⎥
⎥
⎥
⎦
−

⎡

⎢
⎢
⎢
⎣

λ1

λ1 (v2/v1 )
...

λ1 (vn /v1 )

⎤

⎥
⎥
⎥
⎦

.

If v̄ = 0, let v̂ := v/v1 and λ := λ1 . Then, v̂ and λ satisfy V v̂ = 0
and (33). Otherwise, let v := v̄. Then v1 , the first element of v, is zero.
This v satisfies V v = 0 and thus (32). We assume that v2 , the second
element of v, is nonzero and repeat the above procedure for v. Finally,
there exists i ≤ n such that v = [0 · · · 0 vi 0 · · · 0]T (vi 	= 0). For
v̂ := v/vi and λ = λi , V v̂ = 0 and (33) hold. In summary, there exist
λ and nonzero v̂ satisfying V v̂ = 0 and (33).

From the upper half of (8), V v̂ = 0 and (33), we have

AUv̂ + RV v̂ − δf (U )v̂ = UΛv̂,

AUv̂ − δf (U )v̂ − Uδf (v̂) = λUv̂,

AUv̂ − δf (Uv̂) = λUv̂

where Uv̂ 	= 0. Otherwise, [UT V T ]T v̂ = 0, i.e., the column vectors
of [UT V T ]T are linearly dependent, which contradicts that W ⊂ K2n

in Theorem 2.11 is an n-dimensional subspace. Since v̂ satisfies (31),
i.e., QUv̂ = 0, (17) holds for w := Uv̂ and λ.

(Necessity) Here, we prove by contraposition. That is, we show that if
there is some λi in Theorem 3.3 1) satisfying (17) for nonzero u ∈ Kn

such that [uT 0T ]T ∈ W , then V is not regular. Let wi ∈ W (i =
1, . . . , n) be a right eigenvector of H associated with an eigenvalue λi

(i = 1, . . . , n). If we choose λi (i = 1, . . . , n) such that Theorem 3.3
1) holds, we have

[
U
V

]

=
[
w1 · · · wn

]
. (34)

for U, V in (6). In fact, one of wi can be chosen as [uT 0T ]T as follows.
For λi and nonzero u satisfying (17), we have

[
A R
−Q −AT

] [
u
0

]

−
[

δf (u)
0

]

= λi

[
u
0

]

which implies that [uT 0T ]T is a right eigenvector of H associated
with λi . Furthermore, since [uT 0T ]T ∈ W , one of wi can be chosen
as wi = [uT 0T ]T . Then, V is not regular for a basis {w1 , . . . , wn } of
W . Note that from Remark 2.12, regularity of V does not depend on
the choice of basis. �

E. Proof of Theorem 3.3 6)

Proof: From (18), if U is regular, positive semidefiniteness of X
and U ∗V are equivalent. Here, we prove positive semidefiniteness of
U ∗V . By respectively multiplying the upper and lower parts of (8) by
V ∗ and U ∗ from left

V ∗AU − V ∗RV − V ∗δf (U ) = V ∗UΛ, (35)

−U ∗QU − U ∗AT V − U ∗δf (V ) = U ∗V Λ. (36)

By adding the complex conjugate of (36) to (35)

δf (V ∗U ) + V ∗UΛ + Λ∗V ∗U = −V ∗RV − U ∗QU. (37)

From the assumption for Q, there exists a symmetric and positive
semidefinite matrix Ū ∈ Rn×n such that−V ∗RV + U ∗QU ≤ −Ū for
all (x, t) ∈ Rn × R. Consider linear time-varying system dδz/dt =
Λ(φ(x0 , t), t)δz along trajectory φ(x0 , t) of ẋ = f (x, t) with the ini-
tial condition x(t0 ) = x0 . Then, we have, from (37)

d

dt
(δz∗(t)V ∗(φ(x0 , t), t)U (φ(x0 , t), t)δz(t))

≤ −δz∗(t)Ū δz(t). (38)

Since Re(λi ) < c (i = 1, . . . , n), i.e., Re(Λ) < cIn for all (x, t) ∈
Rn × R, the linear time-varying system is uniformly asymptotically
stable at the origin [21]. Therefore, a time integral of (38) is

δz∗(t0 )V ∗(x0 , t0 )U (x0 , t0 )δz(t0 )

=
∫ ∞

t0

δz∗(t)Ū δz(t)dt ≥ 0

for any δz(t0 ) ∈ Rn . Therefore, V ∗U is symmetric and positive
semidefinite at each (x0 , t0 ) ∈ Rn × R. �

IV. CONCLUSION

In this paper, we presented a nonlinear eigenvalue method for the
DRE for contraction analysis. First, we showed that all solutions to the
DRE can be expressed as functions of nonlinear eigenvectors of the cor-
responding differential Hamiltonian matrix. Next, in the simple case,
we studied solution structures, e.g., real symmetry and regularity. Fu-
ture work includes relaxing the simplicity assumption and constructing
methods for finding nonlinear eigenvectors of the Hamiltonian matrix.
As a solution method to the HJE, the generating function method [22],
[23] is known. For the ARE, this method is useful for finding other
eigenvectors of a Hamiltonian matrix from its eigenvectors, and this
method may be extended to the DRE.
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