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Abstract. Search and rescue is often time and labour intensive. We
present a system to be used in drones to make search and rescue operations
more effective. The system uses a drone downward facing camera to detect
people and to evaluate potential sites as being safe or not for the drone to
land. Histogram of Oriented Gradients (HOG) features are extracted and
a Support Vector Machine (SVM) is used as classifier. Our results show
good performance on classifying frames as containing people (Sensitivity
> 78%, Specificity > 83%), and distinguishing between safe and dangerous
landing sites (Sensitivity > 87%, Specificity > 98%).

1 Introduction

Finding missing persons is a time consuming and labour intensive task. A swarm
of autonomous drones (or Unmanned Aerial Vehicles - UAVs) could potentially
increase the chances of finding missing persons while reducing rescue time, thus
increasing the overall survival chance. Should those UAVs be able to detect
missing persons autonomously, the location of interest could be reported to res-
cue workers that could then concentrate their search efforts on areas where it is
likely that they will find people.

In case of extreme weather conditions and to save battery power (which is
an important limiting factor), it might be useful to land the drone and resume
operations right after weather conditions are favorable again. Dangerous landing
may cause serious damage to the drone and may harm people nearby. It can also
become very difficult to retrieve the drone and/or data if it is in an unreachable
location, such as under water. Therefore, if the drone is to fly autonomously, it
is expected that it lands on a safe place. Moreover, even for remotely operated
drones, a safe landing site detection system could be used to assist the pilot.

On the use of UAVs to classify terrain, the authors of [1] utilize a Radio
Controlled model helicopter equipped with a downwards pointing camera to
classify terrain as safe or unsafe. Their methods consist of a Fuzzy Rule Based
classifier and a modified version of the Scale-Invariant Feature Transform (SIFT).
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In [2] the authors show the use a quadcopter to identify 6 different types of
terrain. Their methods make use of random forests and a modified version
of Speeded Up Robust Features (SURF) they call Terrain-SURF. They reach
promising results, up to a sensitivity of 99.6% at their highest resolution (and
highest training time). However, they have not focused on suitable landing sites
or minimizing false positives. Regarding human detection, a lot of research has
been done from an eye-height perspective [3, 4] while others have used an in-
flight perspective [5, 6]. The in-flight perspective resembles a bird’s-eye-view
while the top-down perspective is more akin to satellite images [5].

In this paper we describe the development of a system that is able to au-
tonomously detect humans in images obtained from a drone’s downwards facing
camera. With such a system, the drone could automatically send to the res-
cue teams the GPS coordinates where it detected people. Moreover, using the
images from the same camera, we propose another system to allow a UAV to
distinguish between safe and dangerous landing sites. The method that is used
in both systems is similar to the one presented in [3]. We use the Histogram
of Oriented Gradients (HOG) as main feature extractor and a Support Vector
Machine (SVM) [7] as a classifier. In this paper we deal only with the computer
vision aspect of the system.

2 Methodology

We first created our own datasets: one for the human detection system and
another for the landing site classification system. To populate the datasets we
used a Parrot AR.Drone 2.0 quadrotor, which has a 60 fps vertical QVGA camera
pointing downwards. Video streamed from the camera was obtained via Wi-Fi
connection and was processed on an external computer. Instead of storing a
video feed, we stored still images at 5 frames per second.

The human detection data set contains 1451 images, of which 186 include
people. The training set consists of images from the data set that have been
labelled as either negative (no person in the image - 1056 images) or as positive
(one or more people in the image - 148 images). During training the positive
examples are also flipped either horizontally, vertically or both to obtain 592
positive examples. The images weren’t tightly cropped, but there are usually 4
pixels surrounding the person. The test set contains 247 images of which just
38 include people.

The landing site classification data includes 4560 images of terrain, taken
from heights ranging from little above the ground up to 5 meters in the air. Of
the 4560 images, 2110 represent grass, 1642 represent road, 518 represent water
and 109 represent bushes. The remaining 181 images consist of combinations
between these (e.g. part grass, part water). Images were manually labeled by
stating the types of terrain. Safe sites belong to grass and road terrains.



2.1 Human Detection

For training, positive labels were created by cropping people out of images and
saving them as positive labels. A first round of training was done by generating
HOG descriptors for the positive labels (the labelled images were scaled so that
each example image is of the same size). From each negatively labelled image
10 random windows were taken and scaled to the common size to extract HOG
descriptors. The SVM was trained on the descriptors extracted from the labeled
windows obtained during this step.

After training the HOG-SVM classifier, we use it in detector mode by using a
sliding window approach. If the output of the classifier is higher than a threshold
than a human is supposed to be detected. To improve the detector, we performed
a second round of training. For this we picked 10% of the negative images
at random. These images were then scanned using the SVM obtained in the
previous step, by examining if the SVM detects people. The descriptor of each
window that has been given a positive label was collected. It is guaranteed that
these windows are actually negatives since the images of the second round of
training only contain negatives, therefore we use these descriptors to correct the
SVM on the errors that it made. These descriptors were added to the previously
obtained descriptors and the combined set was used to retrain the SVM.

The amount of positive windows were tracked on a per pixel basis creating
a 2D histogram as shown in Figure 1. This is converted to a binary image
by setting a minimum number of per-pixel positives that should constitute a
positive. The positive areas in the binary image are converted into rectangular
bounding boxes. If any of the dimensions of a bounding box is below a minimum
size then it is discarded. This approach ensures that the occasional false positives
do not influence the classification of an image.

Three models with different parameters and preprocessing methods were
made so that we could compare their classification performance. The ‘Default’
model was used as a baseline. It does no preprocessing on images and uses color-
HOG descriptors. It scales windows down to a common size of 64 × 64 pixels
before creating the descriptors. The color-HOG first calculates the slopes in each
channel of the RGB image and then selects the channel with the largest slope for
each pixel. This means that it flattens the information in the 3 color channels to
a single channel, but it does it in a way that doesn’t loose as much information
as with a straight conversion to grey scale. It uses a cell size of 8 × 8 pixels,
blocks are 2× 2 cells large, the number of orientation bins in the histograms is
9. The second model is the ‘Grey scale’. Its parameters are the same, but the
image is converted to grey scale before the extraction of regular HOG features.
The third model uses a common window size of 80 × 80 pixels and a cell size
of 8 × 8 pixels, which is about the ideal size to describe appendages [3]. This
model is refered to as ‘Large window’. All cells are normalized per block using
the L2-norm (Euclidian normalization).



Fig. 1: Images as shown in detector mode. The original image is on top while
the 2D histogram is on the bottom. The bounding boxes indicate where the
detector has found positives after applying a threshold.

2.2 Classification of Landing Sites

For classifying if the area under the drone is a safe or unsafe landing site, the
whole image of the downward pointing camera is used. For extracting HOG
features from the dataset for classification of landing sites, 25 non-overlapping
blocks of 2 × 2 cells were used, each cell being 72 × 72 pixels in size, and 9
orientation bins (between 0 and 180 degrees). This results in a vector of 900
elements. Cells are normalized per block using the L2-norm.

Adding color as a feature vector might provide an advantage in distinguishing
certain types of terrain, and tell safe landing sites from dangerous ones. To
incorporate color, a color histogram was made. First, the image is converted
from RGB to HSV (Hue, Saturation and Value). The HSV Histogram also has
cells of 72 × 72 pixels, blocks of 2 × 2 cells and 9 bins. The hue is divided
between the bins, so that every bin represents a spectrum of colors (between
(#bin−1

hue
and #bin

hue
)). For every pixel in every cell, the hue and saturation are

extracted. The value of the saturation (between 0 and 1) is then added to the
bin the hue belongs to. Again, every block of cells is normalized using the L2-
Norm. The result is a histogram of equal size to the HOG descriptor with similar
parameters, represented in a vector of 900 elements.

An example is regarded positive if the drone could land safely on the location
represented by the image. If landing may prove dangerous, the example is re-
garded a negative. For landing safely, an ideal classifier should have a very high
specificity (minimizing false positives) and a reasonable sensitivity (and thus
retaining a small amount of false negatives). That means the system should
avoid labeling a dangerous site as safe, while relaxing on labeling a safe landing
site as unsafe. Optimization was done by providing a cost value matrix which
states the cost of classifying dangerous areas as safe to be 100, while the cost
for classifying false negatives were kept as 1. Several 10-fold cross validations
are performed on the dataset. The cross validations vary in the kernel function
used (linear, or 2nd, 3rd or 4th order polynomial) and the feature extractors used
(HOG, HSV color histogram or both HOG and HSV color histogram).



Fig. 2: ROC curves for different models of the human detector (left) and dan-
gerous landing sites misclassified as safe (right).

3 Results and Discussion

3.1 Human Detection

First we show the results of detecting one or more persons in an image or none.
Receiver Operating Characteristic (ROC) curves that show the classification
performance of the different human detection models can be found in Figure 2
(left). The Grey scale model has the worst performance while the Large window
performs the best, with Sensitivity > 78% and Specificity > 83%. The Area
Under the Curve (AUC) of the models are: 0.79 for the Default model, 0.73 for
the Grey scale model and 0.83 for the Large window model.

The performance of the models on classifying entire images is quite good.
The Grey scale model is slightly faster than the Default model but it does not
perform as well, although the difference in performance is not significant. The
Large window model has a higher AUC but is not significantly better than the
Default model and it is slower than the other models.

An effect of the small amount of data is that the detector does not only
detect persons. The models detect high contrast areas which are often relatively
wide. One of the common false positives is the heads of shadows cast by people.
These false positives do indicate that the detector has not learned to only model
persons. Much more data with many other visible objects need to be used in
order to improve the people detector in a real-world application.

3.2 Landing Site Classification

The lowest amount of false positives, and the highest true negative rate is reached
by a linear SVM trained on HOG-descriptors, without color histogram. It has an
average specificity (true negative rate) of 98.7% and a sensitivity of 87.6%. The
examples that were misclassified mostly consist of combinations of water and



grass. Polynomial SVMs tend to work better with both HOG-descriptors and
color histograms. The polynomial SVMs with both HOG-descriptors and color
histograms reach high sensitivity (99.6 to 99.8%), while they retain an acceptable
specificity (95.2 to 96.0%). In contrary to the linear SVM with HOG-descriptors,
the images misclassified by polynomial SVMs do often include purely water and
bushes, rather than a transition between grass and water.

Examples of the misclassified images for both linear and polynomial SVMs
can be found in Figure 2 (right). The top images are bushes and part water/part
grass, and were misclassified by a linear SVM trained on HOG-descriptors only.
The bottom images are water and bushes, and were misclassified by the 2nd,
3rd and 4th order polynomial SVMs trained on both HOG-descriptors and color
histograms.

4 Conclusion

We have presented the development of a computer vision system to be used
in drones that assist on search and rescue operations. The system uses HOG
features and SVM classifiers to detect people and to evaluate the safety of poten-
tial landing sites. Our experiments show that the developed method has good
performance on classifying frames as containing people, and a very good per-
formance to correctly identify dangerous landing sites. The developed detectors
show great promise for use in search and rescue drones. Future work will focus
on improving the run time, implementing the system in an onboard computer
and training the system on more data to increase variety and prevent overfitting.
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