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Functional approximation for the classification of
smooth time series

Friedrich Melchert1,2, Udo Seiffert2, and Michael Biehl1

1 University of Groningen, Johann Bernoulli Institute for Mathematics and Computer
Science, P.O. Box 407, 9700 AK Groningen, The Netherlands

2 Fraunhofer Institute for Factory Operation and Automation IFF, Sandtorstrasse 22,
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Abstract. Time series data are frequently analysed or classified by con-
sidering sequences of observations directly as high-dimensional feature
vectors. The presence of several hundreds or thousands of input dimen-
sions can lead to practical problems. Moreover, standard algorithms are
not readily applicable when the time series data is non-equidistant or
the sampling rate is non-uniform. We present an approach that allows
for a massive reduction of input dimensions and explicitly takes advan-
tage of the functional nature of the data. Furthermore, the application of
standard classification algorithms becomes possible for inhomogeneously
sampled time series. The presented approach is evaluated by applying it
to four publicly available time series datasets.

Keywords: Classification; supervised learning; functional data; time se-
ries; Learning Vector Quantization; relevance learning; dimensionality
reduction; missing values

1 Introduction

The classification of time series data is of interest in various domains including
medicine, finance, entertainment and industry [19]. In many applications the
time series data is sampled with high temporal resolution, resulting in high-
dimensional feature vectors. Traditional classification schemes often display in-
ferior performance when applied to nominally very high-dimensional data. How-
ever, due to temporal correlations, the large number of features does not neces-
sarily correspond to high intrinsic dimension in time series data [18]. Although
a variety of machine learning techniques are able to handle high-dimensional
datasets, most of them were not designed to take advantage of the functional
nature and temporal ordering of the features [8].

Here, we consider an explicit functional representation of time series data
which exploits the correlation of subsequent measurements and reduces the num-
ber of input dimensions drastically. To implement the actual classification task,
different machine learning algorithms can be applied, each having characteris-
tic advantages and disadvantages. Here, we resort to prototype and distance
based classifiers, such as Learning Vector Quantization (LVQ) [10], which are
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straightforward to implement and allow for intuitive interpretation [1,3,4]. The
prototypes in LVQ represent typical exemplars of their corresponding classes.
Together with a suitable distance mesaure, they constitute an efficient classifi-
cation system [3,4].

The choice of an appropriate distance is a key step in the design of any proto-
type based classification system. Although it is computational costly, Dynamic
Time Warping (DTW) [14] is considered a standard choice for comparing time
series [13]. Here, we employ a fast and adaptive quadratic distance measure in
the framework of Generalized Matrix Relevance LVQ (GMLVQ), which is opti-
mized in the training process [15,3]. This is not only more flexible than the use
of fixed, predefined measures, it also facilitates the interpretation of the emerg-
ing distance measure which provides important insights into the structure of the
input data with respect to the classification task [15,16].

Previously, similar variants of relevance LVQ were considered in the context of
short term and long term predictions of time series in [17]. The use of a functional
representation together with GMLVQ in coefficient space was discussed in [11]
for spectral and other functional data. Here, we will transfer and extend this
approach to smooth time series and their specific properties. In particular, we
will show how the functional nature of the data can be exploited to cope with
missing and non-equidistant sampled data.

In the next section we will outline the general framework of time series classi-
fication by combining GMLVQ with functional representations. In section 3 the
performed experiments are described and their results are shown. We conclude
with a discussion of the results and a brief outlook on open research questions.

2 Polynomial approximation of time series

We consider the general classification setup, where a training set of N labeled
feature vectors (xi, yi) ∈ Rd × {1 . . . A}, i = 1 . . . N is used to train a classifier.
Here d denotes the dimension of the data and A the number of different classes
in the dataset. The trained classifier assigns a class label y(x) = 1 . . . A to any
feature vector x.

Furthermore, we assume that the feature vectors xi represent discrete time
series data, which result from sampling an unknown function fi(t) at some known
time points tj . In the following we will assume the time scale to be the interval
t ∈ [−1 . . . 1] and denote the discretized observations as

xi,j = fi (tj) . (1)

Given a suitable set of basis function gk(t) it is possible to represent fi(t) as a
weighted sum of the basis functions:

fi (t) =

∞∑
k=0

ci,kgk(t). (2)

Restricting the number of coefficients to a finite number n, Eq. (2) becomes, in

general, an approximation f̂i(t) of the original function fi(t).
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Although using a Fourier basis is first choice in many signal processing ap-
plications it is most suitable for periodic functions. Here we use Chebyshev
polynomials of the first kind as basis functions. They provide an efficient way
to represent non-periodic smooth functions and have favourable properties with
respect to numerics [6]. The recursive definition reads

T0(x) = 1; T1(x) = x; Tn(x) = 2xTn−1 − Tn−2(x). (3)

The approximation coefficients ci,k can be determined by minimizing a suitable

optimization criterion, e.g. the quadratic error e =
∑d

j=1(fi(tj) − f̂i(tj))
2 or

the maximum deviation e = maxj=1...d(fi(tj) − f̂i(tj)). Here, we exploit the
properties of truncated Chebyshev series to compute the coefficient values in an
efficient way [9]:

ci,k =
2

n+ 1

n∑
l=0

fi(tl)Tk(tl) , with tl = cos

((
l +

1

2

)
π

n+ 1

)
. (4)

Given the maximum degree n, the sampling points tl represent the roots of the
Chebyshev polynomial of degree (n+ 1). Since, in general, the original sampling
points will not match these roots, we perform a simple, linear interpolation of
the original data in order to obtain the values of fi(tl). The linear interpolation
is justified under the assumption that the distance of the tl from the known
sampling points is small compared to the overall length of the time series. It
is, of course, possible to use more powerful interpolation schemes, e.g. Floater
Hormann interpolants [7]. However, using a linear scheme has advantages in
terms of computational effort and, moreover, its invertibility facilitates a suitable
interpretation of the results as demonstrated and discussed below. Note that
approximation quality is not the main goal in the following. The polynomial
representation serves as a method fpr feature extraction in terms of the resulting
coefficients.

We can summarize the transformation from the original data to the space of
approximation coefficients by the equation

ci = SPxi = Ψxi, (5)

where the matrix S ∈ Rn×d represents the linear interpolation of the original
data at the sampling points tl and the matrix P ∈ Rn×n represents the first n
Chebyshev polynomials evaluated at the sampling points tl.

The setup can be easily extended to non-equidistant and non-uniform sam-
pled time series, since no assumption on the number and distribution of the
original sampling points tj is made. An extension to a particular sampling tj,i,
which could be even data point specific, is straightforward according to Eqs.
(1-5) and only affects the interpolation matrix, introducing individual Si.

Under the assumption that the available data results from sampling a smooth
time-dependent function, the presented approach allows for a transformation to
the more abstract space of coefficients. This transformation is also feasible if the
input data is not equidistant (different time intervals between sampled points)
or not uniform (different number of time-points sampled).
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Table 1: Selected datasets from the UCR Time Series Repository [5], together
with the number of samples, sampling points and classes.

Dataset name classes sampling points samples samples
(training) (validation)

ItalyPowerDemand 2 24 67 1029
Plane 7 144 105 105
StarLightCurves 3 1024 1000 8236
Strawberry 2 256 370 613

3 Application to example datasets

In order to evaluate the suggested approach, it is applied to four publicly avail-
able, relatively smooth time series datasets taken from the UCR repository [5].
The selected datasets and their key properties are listed in Table 1. Note that
the repository does not provide detailed information with respect to, e.g., the
interpretation of the values, the meaning of classes or the real world time scales.

For each of the datasets three setups were considered for computer experi-
ments. To obtain a natural baseline for the achievable classification performance
in a first setup (A) the classifiers were trained from the original time series data.

For a second set of experiments (B) the data were transformed to vec-
tors of approximation coefficients and GMLVQ training was performed in this
space. The experiments were repeated for different numbers of coefficients: n =
5, 10, . . . 50.

In the third expermimental setup (C) the original data was manipulated
in order to simulate non-equidistant, non-uniform sampled data. To this end,
a random number (between 20% and 60%) of values was discarded from each
available feature vector. Which values were actually deleted was also chosen ran-
domly and independently for each data point. This resulted in modified feature
vectors with varying number of sampling points and randomized positions of
the available points. The modified dataset {x̃i, ti} was then used to transform
the data to the space of approximation coefficients according to Eqs.(4,5). As in
setup (B), the number of coefficients was varied as n = 5, 10, . . . 50.

In all experiments a corresponding GMLVQ system was trained from the
respective set of labeled feature vectors using the same set of parameters. All
systems comprised one prototype per class. Before each training process the
data was preprocessed in terms of a z-score transformation, yielding zero mean
and unit variance in all dimensions, and therefore equalizing the magnitudes
of the different features. The z-score transformation facilitates the intuitive in-
terpretation of the emerging relevance matrices [15]. The relevance matrix was
initialized as proportional to the identity, while the prototypes were initialized
in the corresponding class-conditional means. As optimization scheme a batch
gradient descent with adaptive step sizes along the lines of [12] was performed
with default parameters as suggested in [2].

The performance of the emerging GMLVQ systems was evaluated as the over-
all classification accuracy with respect to the corresponding validation dataset
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(a) ItalyPowerDemand, d = 24 (b) Plane, d = 144

(c) StarLightCurves, d = 1024 (d) Strawberry, d = 256

Fig. 1: Classification accuracies achieved in the respective validation sets as a
function of the number of approximation coefficients. The solid lines represent
the accuracy achieved in the full set of all available input features (experimental
setup A). Filled circles correspond to accuracies resulting from the classifica-
tion in the space of approximation coefficients (B). Empty squares mark the
results achieved after the randomized deletion of time-points in setting (C). For
comparison the original number of sampling points for each dataset is denoted.

in the UCR archive [5] (cf. Table 1). Validation data underwent the same pre-
processing as the training set in each individual experiment. This includes the
transformation to the space of approximation coefficients and the randomized
deletion of time-points in setting (C). The z-score transformation of the data was
performed with respect to the mean and variance determined from the training
dataset. The results of the experiments are depicted in Figure 1.

4 Results and Discussion

In the example datasets considered here, we observe only insignificant or no
increase of the classification accuracy. However, the transformation of the data
to the space of approximation coefficients yields a massive reduction of input
dimension. The largest reduction (99%) was achieved in the StarLightCurves
dataset when using n = 10 coefficients.

The evaluation of results from setup (C), where up to 60% of the data points
were disregarded, shows that the approach can compensate for missing data
and irregular sampling to a very large extent. In fact, the results show that
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the random removal of time-points had no impact on the overall classification
performance achieved in the considered example problems.

One of the main advantages of prototype based classification is that the pro-
totypes are determined in the domain of the original data. A GMLVQ system
directly trained from time series data, yields interpretable prototypes and rele-
vances with respect to the sampling points of the time series. In the setups (B)
and (C), however, the GMLVQ system is adapted in the more abstract space of
approximation coefficients. Hence, it is not obvious how to interpret prototypes
and relevance matrices adequately. In previous work [11], the interpretation of
prototypes and relevances in the space of coefficients was provided with respect
to the characteristics of the basis functions. Since this is less intuitive than an
interpretation in the original feature space, it is desirable to back-transform pro-
totypes as well as relevance matrices to the original time series representation.
In order to obtain such a transformation we can use the matrix Ψ introduced
in Eq. (5): Including the transformation into the distance measure applied in
GMLVQ [15] we obtain

d(x, z) = (x− z)>Ψ>ΛcΨ(x− z) (6)

where Λc denotes the relevance matrix obtained in coefficient space. This yields
the relation

Λ = Ψ>ΛcΨ (7)

which translates the obtained relevance matrix back to original feature space.
An illustrative example for the prototypes and relevance matrices obtained

in settings (A), (B) and (C) for the Plane dataset is depicted in Fig. 2. Apart
from the implicit smoothening it is evident that, both, prototypes and relevance
profiles are very similar to those obtained in the original feature space. As a
result of the applied normalization steps, the absolute values can be different,
but the general shapes of the relevance profiles are essentially identical. The
comparison of Figs. 2d, 2e, and 2f, does not reveal major differences. Note, in
particular, that although there is a loss of information in experiments (C) due
to the random dilution of time-points, prototypes as well as relevances can be
transformed to a uniformly sampled input space. Therefore we maintain their
interpretability over the complete input space.

5 Summary and Outlook

We have presented an approach for time series classification using a represen-
tation that takes the functional nature of smooth time series into account. Our
computer experiments show that the approximation of the time series with a
suitable set of basis functions yields a massive reduction of input dimensionality
without significant loss of classification accuracy. Furthermore we studied the in-
fluence of irregular, missing data by randomly deleting up to 60% of the values
in each sample. The achieved results show that the functional approximation of
the data can compensate for the missing information to a very large extent. No
significant decrease in classification accuracy was observed.
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(a) Prototypes A (b) Prototypes B (c) Prototypes C

(d) Relevances A (e) Relevances B (f) Relevances C

Fig. 2: Prototypes and relevance profiles emerging from the different setups (A,
B, C). For setting (A) prototypes and relevance profiles directly emerge from the
model, in (B) and (C) they are shown after back-transformation to the original
feature space. The shown results were achieved using n = 20 approximation
coefficients. For the sake of clarity, only the prototypes for the first (solid line)
and second (dashed line) class are shown.

The use of Chebyshev polynomials as basis functions in combination with
a linear resampling of the data constitutes a suitable representation of time se-
ries. Furthermore the transformation of the data can be done in a single matrix
multiplication and therefore has clear advantages over DTW in terms of com-
putational effort. Finally, the linearity and invertibility of the transformation
makes it possible to interpret the GMLVQ system also in the original input
space. The interpretation of prototypes and relevances is maintained over the
full time domain, even for time series with non-equidistant and non-uniform
sampling.

Future work will concern the selection of alternative basis functions for the
analysis of time series and other functional data. An interesting question con-
cerns the choice of an optimal number of approximation coefficients correspond-
ing to a minimum number of adaptive parameters while maintaining close to
optimal accuracy. The presented approach allows for a compact representation
of smooth time series, which should be very useful for the analysis of heteroge-
neous datasets comprising several data modalities.

Acknowledgments. F. Melchert thanks for support through an Ubbo-Emmius
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