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Data: Applications to PCA and PLS-DA of Omics Data
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ABSTRACT: Sample size determination is a fundamental step in the
design of experiments. Methods for sample size determination are
abundant for univariate analysis methods, but scarce in the multivariate
case. Omics data are multivariate in nature and are commonly investi-
gated using multivariate statistical methods, such as principal component
analysis (PCA) and partial least-squares discriminant analysis (PLS-DA).
No simple approaches to sample size determination exist for PCA and
PLS-DA. In this paper we will introduce important concepts and offer
strategies for (minimally) required sample size estimation when planning
experiments to be analyzed using PCA and/or PLS-DA.

KEYWORDS: loading estimation, covariance estimation, eigenvalue distribution, random matrix theory, hypothesis testing,
dimensionality, multivariate analysis, power analysis

■ INTRODUCTION

Data originating from high-throughput experimental techniques
are usually multivariate in nature and being analyzed using multi-
variate statistical methods. In metabolomics and proteomics,
principal component analysis (PCA) and partial least-squares
discriminant analysis (PLS-DA) have been so far the most com-
monly used types of analysis, and they occupy, for historical reasons,
a special place among the tools available to the practitioners in these
fields.1 Great efforts have been made in the past to make the omics
community aware of the merits and demerits of these techniques
and to provide extensions and new approaches to overcome bottle-
necks and limitations.1−4

In the context of metabolomics and proteomics data analysis,
the issue of sample size determination has seldom been addressed.
In contrast, in other omics disciplines, such as genomics and
genetics, there is abundant literature on this topic. The reason for
this is obvious. In most cases (but not always), genomics data are
treated in a univariate fashion; that is, each dependent variable is
considered separately (for instance using a t-test or analysis of
variance (ANOVA)). In this setting, theoretical tools are readily
available and new ones have been developed.5−11 When data are
analyzed using a multivariate approach, such as PCA, the problem
complicates considerably. Tools for sample size determination in
the multivariate case are available in the form of power analysis,
but only for the multivariate extensions of the classical t test
(i.e., Hotelling T2) and ANOVA (i.e., Multivariate ANOVA
(MANOVA)). This means that no simple approach to power
analysis exists for PCA and PLS-DA and, as a consequence, it may
happen that many studies are underpowered.

There is mounting evidence that a vast majority of published
clinical research suffers from low statistical power, owing to
limited sample size and other design issues, yielding serious
concerns about the generalizability of results.12−17 Because meta-
analysis and retrospective studies are common in the biomedical,
behavioral, and social disciplines, but less commonly employed
among the metabolomics and proteomics disciplines, it is unknown
to what extent studies are underpowered in this area. Notably, the
importance is being acknowledged, as indicated by the fact that the
last release of the popular Metaboanalyst (www.metaboanalyst.ca)
server for metabolomics analysis now offers a module for power
analysis and sample size estimation in the conventional ANOVA/
MANOVA setting.18 Therefore, some reflections on sample size
estimation in PCA and PLS-DA seem timely.
Sample size determination and power analysis are intertwined.

For this reason we set the scene by recalling some basic concepts
and terminology of hypothesis testing and power analysis. We
proceed by discussing two major topics for PCA. The first is the
problem of determining the (minimal) sample size to obtain
stable and reproducible component loading estimations. The
importance of this issue for the generalizability of results to the
population is widely acknowledged in the social sciences, espe-
cially in the PCA related common factor analysis context,19−21

but it has received little attention in the omics field. The second
topic addressed is determining the minimal sample size required
to assess the dimensionality of a data set, which is also relevant in
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derived applications of PCA, such as in deconvolution/curve
resolution. The first topic is investigated empirically by making
use of simulated and real life omics data, and the second is
addressed from a more formal theoretical point of view, building
upon both recent results from advanced multivariate statistical
inference theory and a vast array of simulations. A Mathematical
Appendix provides the reader with more details and references
about the technical details.
In the PLS-DA framework we first show analogies between the

discrimination problem in the classical case-control setting and
hypothesis testing. Then we propose a simulation strategy for
sample size estimation, incorporating the definition of multi-
variate effect as derived from the MANOVA practice, when PLS
is used for discrimination. We conclude with some final
considerations and new directions for further investigation.

■ MATERIALS AND METHODS

Experimental data

We make use of four experimental data sets obtained with
different analytical platforms on different biofluids.
Data set D.1. Serum blood metabolites were measured

during the large scale metabolomics project on twins
TwinGene.22 We considered here 2139 spectra and an array of
133 metabolites. Data were downloaded from the Metabolights
public repository23 (www.ebi.ac.uk/metabolights) with acces-
sion number MTBLS93. This is a designed case-cohort of inci-
dent coronary heart disease, diabetes, dementia, and ischemic
stroke events and a matched subcohort (controls) stratified on
age and sex which resulted in the inclusion, for metabolomics
profiling, of 2139 individuals out of 12591 from the TwinGene
project. For full details on the study protocol, sample collection,
chromatography and GC-MS experiments and metabolites
identification and quantification see the original publication24

and the Metabolights accession page.
Data set D.2. Serum blood metabolites (29 quantified) that

were measured on 864 adult healthy blood donor volunteers.
The study investigates a highly homogeneous cohort where no
obvious clustering of subjects could be observed in the quantified
serum metabolites. For full details on the study protocol, sample
collection, NMR experiments and metabolites identification and
quantification see.25,26

Data set D.3. Urine NMR spectra (bucketed) were collected
for 22 subjects over a period of three months. Two different
subdata sets were considered; D.3A: containinig the NMR
bucketed spectra (0.004 ppm bin width) for 22 subjects (data
size: 733 × 1225 after removal of water and urea resonances
and empty regions) and D.3B: containing data for 31 subjects
(0.02 bucketing, data size: 1604 × 490).
This was a normality study aiming to investigate subject-

specific metabolic urinary profiles in healthy subjects who
provided ∼40 urine samples each. For full details on the study
protocol, sample collection, NMR experiments see the original
publications.27−29 Data set D.3B is used only in the analysis
shown in Figure 8.
Data set D.4. Quantified urine NMR metabolites (62 quan-

tified) measured on 79 urine samples from pigs (Sus scrofa
domesticus). Data were downloaded from the Metabolights
public repository with accession number MTBLS123.
The study investigated carbohydrate prefeed in pigs under-

going simulated polytrauma and hemorrhagic shock with
resuscitation with the aim of determining whether the metabolic
response to shock is dependent on fed state. The experimental

setup was as follows: 64 Yorkshire pigs were divided into two
experimental groups: fasted and prefed in addition to two control
groups. Experimental animals were subjected to a standardized
hemorrhagic shock protocol, including pulmonary contusion and
liver crush injury. Multiple urine samples were collected at dif-
ferent time points during the study. For full details on the study
protocol, sample collection, chromatography and MS experi-
ments and metabolites identification and quantification see the
original publication27 and the Metabolights accession page.

Data preprocessing

Urine data were normalized to correct for differences in urine
volume. NMR spectra of data set D.3 were normalized to creatine
peak before a bucketing of 0.004 and 0.02 ppm. Quantified NMR
metabolite concentrations of data set D.4 were normalized to
total urine output as provided by the original publication.27

Data were centered but not scaled before analysis. Scaling affects
the data structure and the variance in the data. As a consequence,
loading estimations will be affected. For a discussion of the impact
of scaling on loading estimation, we refer to.30

Software

Power calculations for the Hotelling T2 test has been performed
with the G*power 3 software33,34 available at www.gpower.hhu.
de/en.html. All other calculations have been performed in
the Matlab environment (MATLAB 8.5, The MathWorks, Inc.,
Natick, MA, US).
Matlab code for determining the sample size for the cases in

PCA and PLS-DA considered, is available at semantics.systems-
biology.nl.
The PLS-DA models has been estimated using in house-

scripted routines. Model optimization has been carried out by
means of a double cross-validation scheme.31,32

■ SAMPLE SIZE DETERMINATION, POWER ANALYSIS
AND RELATED CONCEPTS

Before moving to PCA and PLS-DA applications, we recall some
basic concepts of power analysis.

Univariate case

The power of a statistical test is defined as the probability
of rejecting the null hypothesis H0 when it is actually false.
The power of a statistical test is determined by the interplay of
three parameters: sample size, Type I error, which is the prob-
ability of rejecting H0 when actually true, and effect size, which is
the quantity that indexes the degree of deviation from H0 in the
underlying population.33

The Type I error, also known as the significance level or α,
is to be specified by the investigator; typical values specified are
0.01 and 0.05. The concept of effect size is crucial in power
analysis. It relates to the population parameter that one is
interested in assessing by performing the experiments. The
specific effect size to consider has to be tailored to the statistical
test procedure involved. Power analysis can be performed, for
example, for tests involving means, proportions, regression
coefficients and correlations. Usually for those scenarios more
than a single definition of effect size is available.33,35,36

We focus on a priori power analysis, in which the experimenter
is interested in determining the minimal number of samples to
attain a given power, say 0.80, for a specific statistical procedure,
given the specified Type I error and effect size.
To introduce the core ideas of power analysis we will consider

a case-control scenario. The interest may then be to assess the
equivalence of the means of the groups, making the difference in
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population means a natural parameter of interest. When testing
the difference with a two-sample t-test, the effect size d can be
defined as

μ μ
σ

=
−

d 1 2
(1)

where μ1 and μ2 are the population means of the two groups and
σ2 is the pooled variance. To compute d, one needs to know the
population means and their variances. This may seem counter-
intuitive because these are the quantities of interest, which are to
be estimated on the basis of the study conducted. Arriving at a
reasonable effect size for the power analysis is an educated guess
which should be based on the researcher’s expectations.
As the effect size d is a standardized measure, its value can be

directly interpreted. In the behavioral sciences, Cohen’s defi-
nitions for effect size37 are usually utilized and there is general
consensus on which effects can be considered large (d ∼ 0.8),
medium (d∼ 0.5), small (d∼ 0.5), and trivial (d < 0.2) effects;38-
trivial effects are effects that can be detected statistically but may
be not relevant from a content point of view (see reference39).
How this nomenclature transfers to the biological sciences is
open to discussion: we are not aware of such studies concerning
metabolomics/proteomics, thus it is difficult to deliberate on
what value of d should be considered, for instance, for a medium
effect. However, Cohen’s definition has found some application
in metabolomics studies40 (for that matter, this was the only
paper we could find with an embryonic power analysis in the
metabolomics field). Some indications of what can be considered
a trivial effect (i.e. biologically non relevant) in the case of meta-
bolomics will be provided in the section dedicated to PLS-DA.

Multivariate case

When hundreds to thousands of variables are measured simul-
taneously on complex biological systems, one is often interested
in extracting information that relies not only on the mean level of
the variables (e.g., metabolites, peptides) but also in the mutual
relationships among these variables.
Many models for the univariate case can be extended to the

multivariate case, when more than one variable (metabolite) is
measured in one or more groups. For the two-group case the
Hotelling T2 test (i.e., the multivariate extension of the classical
t-test) can be used; multigroup cases and complex experimental
designs involving repeated measures or different experimental
factors are addressed with MANOVA (Multivariate Analysis of
Variance), or variants thereof.
Estimating effects in the multivariate case is less straightfor-

ward than in the univariate counterpart. For example, for the T2

test, one needs knowledge of the population variance-covariance
matrix Σ, rather than only the variance as in the t-test. Under the
assumption of equality of covariance matrices across the groups,
set w = μ1 − μ2, and the multivariate effect size is given by the
formula

Δ = Σ−w wT 1 (2)

where Σ is a p × p symmetrical matrix.33 In eq 2, the matrix Σ
plays the role of σ in eq 1. Multivariate effects are more difficult to
understand than their univariate counterparts, because they are
a function of the population means and standard deviations,
as well as the strength of the relationships between the variables,
described by the off-diagonal terms of the variance-covariance
matrix Σ.

Sample size determination for PCA and PLS

When data are going to be analyzed using PCA or PLS, the
matter complicates considerably. PCA and PLS are typically
viewed as summarizing and exploratory, rather than as testing
procedures. This implies that it is uncommon to interpret the
model parameters as statistical effects, i.e. as quantities that index
the degree of deviation from H0 in the underlying population.
Although defining the null hypotheses and alternative hypoth-
eses in this context may be complicated, it is, by any means,
possible. A further complication arises because no obvious single
definition for the effect size is available, as many parameters
defining the multivariate model can be considered as parameters
of interest: one can be interested in the loadings, the number of
components that best fit the data, or a given amount of variance
explained by the model. The fact that for most parameters the
theoretical null distribution is unknown, is not prohibitive,
because they could be empirically estimated by a resampling
procedure, as permutation or bootstrapping. However, even
when the power analysis problem cannot be explicitly stated, the
problem remains of determing the (minimal) number of samples
needed to obtain an accurate estimation (according to some rule
that will be defined) of the parameters of interest. For PCA we
will consider the stability of the loadings and the number of
significant components (i.e., the significant variance explained by
the model). The latter problem is addressed in the context of
hypothesis testing.
For PLS-DA we will consider the discrimination accuracy of

the model and we will show how the discrimination problem can
be rephrased in terms of hypothesis testing language and classical
power analysis. Working in this setting we will show how the
concept of trivial effect (i.e., non relevant biological effects) may
become of importance when designing experiments to be analyzed
with PLS-DA.

■ PRINCIPAL COMPONENT ANALYSIS
The reason for focusing on principal component analysis is
2-fold. First, the use of PCA is ubiquitous in the analysis of omics
data where the aim is summarizing the information as well as
possible using a limited number of variables.1 Second, recent
theoretical developments open the way to power analysis in a
PCA context.
Given a n × p (objects × variables) data matrix X the PCA

model is

= +X TP ET (3)

where T is the score matrix of size n × k, containing the
projections of the observations onto the k-dimensional PCA
subspace, P the loading matrix of size p × k and E the residual
matrix of size n × p. The principal components and loadings can
be found using a singular value decomposition of X, but the PCA
problem can be solved also by considering the eigendecompo-
sition of the covariance matrix of X.
In omics literature it is customary to show score plots resulting

from PCA with the aim of showing patterns in the data (such as,
clustering of different groups). Although this may be instructive,
it should be recalled that the interpretation of a PCA model is
dependent upon the loadings. The loadings describe the relative
importance of each variable to the model and are pivotal to
understand the patterns seen in the score plot. In this light it
is clear that it is crucial to obtain a reliable estimation of
the loadings. Moreover it should be noted that the objects
(i.e., subjects providing samples in a study) are usually con-
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sidered to be randomly sampled from a certain population, with
the aim to form a sample that is representative of the population
under study. In this case it is of interest to consider how close the
estimated loadings typically are to those in the population, and
thus to what extent the results obtained on the sample can be
generalized to the overall population. This leads to the question
of determining the number of samples that are needed to obtain a
stable (and accurate) estimation of the population loadings. This
problem will be addressed in the section Sample size estimation
for the loadings in PCA.
Another critical aspect in PCA is the choice for the number of

components k. This is often based on either interpretational
issues or criteria that are directly related to the eigenvalues of
the covariance matrix associated with the principal components.
In the section Sample size estimation for the determination of the
number of components in PCA, we address the related problem
of estimating the number of samples needed to reliably estimate
the number of components in a PCA model. These two aspects
are intertwined and it can be argued that no stability can be
reached for nonsignificant components (i.e., components account-
ing only for noise). However, since the two problems are addressed
using different numerical and theoretical approaches they are
presented here as two different subjects.

Sample size estimation for the loadings in PCA

We start with a simulated example, where data matrices X are
generated with two leading components by considering a
diagonal p × p population covariance matrix Σ of the form

λ

λ
Σ =

⎡

⎣

⎢⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥⎥

0

1
...

0 1

1

2

(4)

with λ1 > λ2 > 1. In this case, the p − 2 variables associated with
population eigenvalues equal to 1 (λi = 1 with i > 2) describe
noise. This particular model is known as the spiked covariance
model41 and describes a situation in which all variables are
uncorrelated and the information is concentrated within a few
variables (two, in this case). This simple framework allows the
development of extremely powerful and widely applicable
statistical methods, which will be introduced and used in the
next sections. Under this model, the population loading matrixΠ
(that can be obtained by an eigendecomposition of Σ) is a p × p
diagonal matrix with standard deviations on the diagonal.
To illustrate the effect of sample size on the estimation of PCA

loadings we implemented a simulation schemes as follows. We
fixed the population eigenvalues λ1 and λ2 to 10 and 8, respec-
tively. We generated sets of sample data matrices X of different
size n, with n in the range 50 to 2000, and different number of
variables p, taking p with values 50, 100, and 500. Each generated
data matrix X is decomposed via PCA.
The resulting sample loadings P on the principal components

are Procrustes rotated toward the known population loadings (to
account for the arbitrary rotational ambiguity of the loadings).
The rotated loadings are then compared with the known popu-
lation loadings using a measure of congruence, Tucker’s ϕ.42

Tucker’s ϕ (see Mathematical Appendix for a definition) takes
values from −1 to 1, with 1 (and −1) indicating perfect con-
gruence (though opposite in sign), and values closer to 0 indicating
smaller degrees of congruence. The exercise is repeated 100 times to
provide an indication of the variability introduced by the sampling

procedure. The sample loadings should converge to the population
loadings as the sample size n increases, and hence the congruence
should converge to 1. Figure 1 shows the results of this exercise for

data generated under a multivariate normal distribution N(0,Σ).
Results are the same using a nonsymmetrical distribution (not
shown), indicating that they may hold generalizability to other
distributions.
As expected, the sample loadings P approximate the popu-

lation loadingsΠ as the sample size increases: around 300 objects
are needed to obtain a congruence >0.9, which is an accepted
value in the behavioral sciences to establish equivalence between
two sets of loadings.43

This implies that, based on this simulation scheme,∼ 300 objects
should be considered to build a PCA model when the focus of the
analysis is to generalize the results obtained from a sample to the
population level. Results in Figure 1 further suggest, in line with
earlier findings,44 that the ratio between the numbers of variables
and observations influences the loading estimation. It appears that
for a given sample size the congruence is lower when the number of
variables is higher, and that this effect is larger for smaller sample
sizes. It should be also considered that increasing the number of
variables will increase the variance in the data. The first two com-
ponents explain a fixed amount of variance (i.e., 10 + 8), while the
remaining components explain increasing amounts of variance
(32, 482, and 982 for the three cases). Adding variables, which
are non informative in this case, also increases the difficulty of the
problem as a result of the curse of dimensionality.
Analytical formulas exist for the estimation of confidence inter-

vals for loadings in specific situations,45−47 while the bootstrap
approach can be used for all types of loadings. This problem is
discussed in reference48 for a PCA setting and in reference49 in the
closely related multilevel simultaneous component analysis.50−52

The pattern illustrated by simulation also holds in the case of
real experimental data. We consider the large metabolomics data
set D.1 (2139 × 133) (see Materials and Methods section) and
take as population loadings those obtained by fitting a PCA

Figure 1. Estimation of the loadings of the first two principal components
as a function of the sample size. Data are randomly generated under a PCA
model with 2 components using different numbers of variables (from top
to bottom: 50, 500, and 1000). The mean and the error bar (given as ±1
standard deviation) are calculated over 100 replications for each value of
the sample size. Loadings for each model are Procrustes rotated to a target
(the known population loadings) before calculations of Tucker’s ϕ.
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model on the full data set. Subsets of different size are obtained
by random sampling from the full data set. Again we consider
samples sizes in the range 50 to 2000; loadings are Procrustes
rotated toward the loadings obtained fitting a PCA model on the
full experimental data set(s). Results are shown in Figure 2A.

For the first four components it can be seen that loadings
converge toward the population loadings with increasing sample
size, and that as many as 300−400 samples are needed to obtain a
congruence larger than 0.9. We have repeated the same exercise
with data set D.3A for which the number of variables far exceeds
the number of observations (1225 versus 733); results are presented
in Figure 2B: in this case as many as ∼75 samples are needed to
obtain a congruence larger than 0.9 for the first component.
Tables 1 and 2 summarize the results of similar exercises on the

four experimental data sets (D.1 and D.2, D.3A, D.4) for the first
and second component, respectively. It appears that the level of
congruence attainable depends both on the number of samples

and on other factors, including the nature of the data, the order of
components considered and the variance explained. For instance,
for data set D.2 as few as 25 samples are needed to obtain a stable
estimation of the loadings for the first component, while this
increases to 300 for data sets D.1. Herewith, the inherent struc-
ture of data seems to play a crucial role, and also the way the data
are presented. For instance when NMR data are bucketed, higher
covariances between bucketed variables than metabolites can be
expected, since many bucketed variables may represent the same
compound increasing the degree of covariation.
It is interesting to note that the congruence level attainable

with a given sample size n seems to diminish with increasing
order of components. For instance in the case of data set D.4,
n = 300 samples are needed to obtain an average congruence
∼0.9 for the loadings of the first component; to obtain a similar
level of congruence for the second component, n = 400 are
needed. It should be noted that we have chosen the 0.9 threshold
as a reference for discussion and that such a value should be
considered, given the application, the data at hand, and the
resources available. For instance, considering data set D.1, it
would probably be a waste of resources to acquire and measure
300 samples to increase the congruence from 0.8, which can
already be obtained with 150 samples.
Figure 3 shows the estimated loadings of the first 15 variables

of the experimental data set D.1 over 100 replications for
four different samples sizes. For a small sample size (n ∼ 50), the
sampling variability of the loadings is huge. This implies that a
PCA model obtained on such a small data set holds limited
generalizability. For some variables the loading estimate ranges
from 0 (no importance to the model) to 0.2. This can have a
dramatic effect on the biological interpretation of the data, since
variables usually have some biological meaning (such as being
metabolites or protein concentrations).
As loadings can be derived from the covariance matrix via an

eigendecomposition, the problem of loading estimation is related
to the problem of estimating the population covariance matrix
starting from the experimental data: an inaccurate estimation of
the covariance matrix will result in nonaccurate estimation of the
loadings and thus in a lack of generalizability. This ubiquitous
problem in data analysis1,53−55 and bioinformatics (especially in
the network inference context56) can be stated by asking how
many samples N are needed to guarantee an estimation of the
covariance matrix with a fixed accuracy. Using arguments from
advanced probability theory, it has been shown that N ∼ O(p);
that is, N is smaller than or equal to A × p, where A is some
positive constant57,58 or even p × log2(p),

59 depending on distri-
butional properties and on the structure of the covariancematrices.
It is noteworthy that these limiting values are consistent with what
was observed in the simulations for loading estimates, and this is in
line with some older results:60 It should be noted thatN≥ p unless
some structure is imposed on the covariance matrix or some
shrinkage or thresholding is applied: in such cases the sample size
required can be on the order of log2(p) < p.53,57,61,62 However,
as our simulation shows, a good agreement for metabolomics
applications can also be derived with a smaller number of samples.
We provide a Matlab function (TuckerLoadingEstim.m) to

evaluate the accuracy and the stability of loadings through
numerical simulation. The function takes as input the population
covariance matrix or the eigenvalues of the population covariance
matrix. Random data (normally distributed by default, but any
distribution could be used) with the prespecified covariance/
loading structure is generated with different sample sizes, and the
agreement between the k-th sample and population loadings

Figure 2. Estimation of the loadings of the first four principal
components as a function of the sample size (n) for real data. Data
are sampled without replacement from two experimental data sets
(Panel A: Data set D.1, of size 2139 × 133; Panel B: Data set D.3, of size
733 × 1225). The mean and the error bar (given as ±1 standard
deviation) are calculated over 100 replications for each value of the
sample size.
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(expressed in terms of the Tucker’s ϕ) is plotted/tabulated
as a function of the sample size. Tucker’s ϕ ≥ 0.9 is taken as a
threshold for good agreement.

Sample size for the determination of the number of
components in PCA

The variation observed in the data can be split into the
informative variation, which is related to the biology of the
problem, and the noninformative variation, denoted as noise.
The complete set of (p) principal components of a given data set
captures both types. To disentangle both types of variation, one
relies on the crucial assumption that the informative variation is
linked to a relatively large variation and the noninformative
variation to a relatively little and/or about equal variation. This
implies that the first few components (i.e., having large variance)
capture the relevant information while higher order components
(i.e., having small and/or about equal variance) describe noise.
A fundamental problem in PCA is thus how to determine the
number of relevant components. The literature on this topic is
abundant, and many solutions, either statistical or numerical,
have been proposed (see, for instance, refs 63−66 for an over-
view). Here we consider a statistical procedure to determine the
number of relevant components based on results and approaches
from modern Random Matrix Theory. This statistical frame-
work, which we will introduce with a minimal formulation, allows
for sample size determination in PCA when the problem is the
following: How many samples are needed to build a PCA model
for which the number of relevant components can be reliably
inferred? Stated otherwise: what is the minimal sample size
required to correctly assess how many components describe
meaningful information with a specific probability?

The Tracy−Widom test

Recall that the variance of a component is given by the cor-
responding eigenvalue of the covariance matrix: with reference to
eq 4 the variance for the first component is given by λ1, that for
the second by λ2, and so on. In PCA it is customary to give the
proportion of variance explained by each component (vei for the
i-th component), which is simply defined as

λ
λ

=
∑

vei
i

q
p

q (5)

In every day practice the population covariance matrix Σ is
unknown, and we can only access the sample covariance matrix S,
which is defined as

=S X XT (6)

Based on the sample covariance matrix, we can compute the
(ordered) sample eigenvalues l1 > l2 > ... > lp. The matrix S is
usually fed to the PCA algorithm. A beautiful result from
Johnstone41 shows (see Mathematical Appendix for a full
statement) that if data is randomly generated under a
multivariate model with Σ = I, the sample eigenvalues, when
properly normalized to L1 (see eq 15 in the Appendix), are
distributed like the Tracy−Widom distribution;67,68 this is
illustrated in Figure 4, panel A. The situation in which Σ = I
implies that (i) all population eigenvales are equal to 1; (ii) each
component explains the same amount of variance 1/p (cf., eq 5);
and (iii) all variables are uncorrelated. Thus, Σ = I represents
the situation in which all components describe pure noise; thus,
the Tracy−Widom distribution describes the distribution of the
largest eigenvalue associated with noise. Stated otherwise, the

Table 1. Summary of Results for the Congruence of Loadings for the First Component of Four Different Experimental Data Setsa

Data set D.1 Data set D.2 Data set D.3A Data set D.4

Serum metabolites MS
(2139 × 133)

Serum metabolites qNMR
(864 × 29)

Urine bucketed
(733 × 1225)

Urine qNMR
(343 × 62)

Sample size n ϕ %var ϕ %var ϕ %var ϕ %var

5 0.331 44.5 0.825 77.5 0.651 62.9 0.783 86.1
25 0.507 20.8 0.977 71.9 0.893 41.8 0.744 68.8
50 0.657 19.2 0.99 70.1 0.941 39.3 0.798 61.8
100 0.759 17.7 0.996 70.3 0.979 37.8 0.855 57.7
150 0.795 16.5 0.998 70.2 0.988 37.9 0.95 57.8
200 0.876 16.1 0.998 70.4 0.989 37.3 0.967 56.8
250 0.871 15.5 0.999 70.6 0.994 37.2 0.989 56.3
300 0.919 15.6 0.999 70.6 0.995 37.3 0.996 56.2
350 0.915 15.1 0.999 70.7 0.996 37.2
400 0.955 15.7 0.999 70.7 0.997 37.1
450 0.933 14.9 0.999 70.5 0.998 37.1
500 0.961 15.4 1 70.7 0.998 37.2
550 0.97 15.3 1 70.6 0.999 37.1
600 0.948 15.1 1 70.5 0.999 37
650 0.974 15.1 1 70.6 1 37.1
700 0.98 15 1 70.5 1 37
750 0.978 15 1 70.6
800 0.976 14.8 1 70.7
850 0.983 15 1 70.6
900 0.986 15.1 1 70.5
950 0.989 15.1 1 70.6
1000 0.988 14.9
1050 0.987 15

an indicates the total number of samples used to build the model; %var indicated the variance explained by the 1st component; ϕ is the Tucker’s
congruence coefficient.43 %var and ϕ values are averaged over 100 repetitions for each n. For more details on the procedure, see the text.
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Tracy−Widom distribution gives a null model against which
to test the sample eigenvalues. The P-value is the proportion
under the Tracy−Widom distribution associated with the nor-
malized (see eq 15 in the Appendix) sample eigenvalue L1
or larger. If this P-value is smaller than the significance level
α, the first component is deemed significant. Here we limit

ourselves to the first eigenvalue, but results hold true also for
higher order eigenvalues. The complete testing procedure for
higher order eigenvalues, first presented by Johnstone41 and
reviewed and adapted by several other authors,69−71 is outlined
in the Mathematical Appendix. The L1 for some real data is
shown in Figure 4 panel B. For the first eigenvalue the dif-
ference between what is expected in the absence of informa-
tion in the data (i.e., the distribution in panel A) and what
is observed in the real data is large; this is associated with a low
P-value, and thus a significant first component for a PCAmodel
for this data set. The testing procedure has been derived
working under the spiked model in eq 4. Good performances of
the test have been found on a large number of different simu-
lated data sets including covariance structures other than the
spiked model.66

Toward a power analysis in PCA

When considering a Tracy−Widom testing procedure, the
population effect of interest is the population eigenvalue asso-
ciated with the first component. To introduce a power analysis
for the first eigenvalue with a Tracy−Widom test, we first need to
present the so-called Baik−Ben Arous−Pećhe ́ (BBP) conjecture,
which we state in a simplified form. The BBP conjecture72

concerns the behavior of the largest sample eigenvalue and has
been found to have implications in data analysis.70 Its importance
here lies in the fact that it has implications for power analysis in a
PCA setting.
Let us consider the situation in which the first population

eigenvalue λ1 > 1 and all other eigenvalues are equal to 1 and
(n,p) → ∞, with a finite limit of the ratio p/n.

Table 2. Summary of Results for the Congruence of Loadings for the SecondComponent of FourDifferent Experimental Data Setsa

Data set D.1 Data set D.2 Data set D.3A Data set D.4

Serum metabolites MS
(2139 × 133)

Serum metabolites qNMR
(864 × 29)

Urine bucketed
(733 × 1225)

Urine qNMR
(343 × 62)

Sample size n ϕ %var ϕ %var ϕ %var ϕ %var

5 0.258 25.8 0.7 18.3 0.467 23.4 0.404 12.7
25 0.421 13.8 0.959 21.1 0.806 22.7 0.737 24.4
50 0.464 11.8 0.985 20.7 0.93 21.3 0.789 30.7
100 0.625 11.1 0.993 21.7 0.96 21.6 0.814 35.4
150 0.757 10.8 0.996 21.2 0.975 21.4 0.929 37
200 0.839 10.8 0.997 21.2 0.983 21.6 0.978 37.9
250 0.863 10.7 0.998 21.7 0.989 21.3 0.989 37.8
300 0.872 10.6 0.998 21.4 0.991 21.2 0.997 38.9
350 0.888 10.8 0.998 21 0.993 21.3
400 0.932 10.8 0.999 21.2 0.996 21.4
450 0.95 10.8 0.999 21.1 0.996 21.4
500 0.946 10.7 0.999 21 0.997 21.3
550 0.954 10.7 0.999 21.2 0.998 21.3
600 0.959 10.7 1 21 0.999 21.3
650 0.973 10.7 1 21.1 0.999 21.3
700 0.963 10.7 1 21.2 1 21.3
750 0.976 10.7 1 21.2
800 0.976 10.7 1 21.1
850 0.977 10.7 1 21.1
900 0.982 10.6 1 21.2
950 0.985 10.6 1 21.2
1000 0.985 10.6
1050 0.986 10.7

an indicates the total number of samples used to build the model; %var indicates the variance explained by the 2nd component; ϕ is the Tucker’s
congruence coefficient.43 %var and ϕ values are averaged over 100 repetitions for each n. For more details on the procedure, see the text.

Figure 3. Box plot representation of the loading estimation (first
principal component) for the first 15 variables of the data set D.1 as a
function of sample size. The variability observed for a small sample size
(n = 50) is remarkably large. Red crosses indicate outliers; outliers are
larger than q3 + 1.5(q3 − q1) or smaller than q1 − 1.5(q3 − q1), where
q1 and q3 are the 25th and 75th percentiles, respectively.
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1. If

λ < +
p
n

11 (7)

then l1, when properly normalized to L1, will have the same
distribution as when λ1 = 1; that is, it will be Tracy−Widom
distributed.

2. If

λ ≥ +
p
n

11 (8)

then L1 will be almost surely detectable; that is, it will be well
separated from the eigenvalues describing the noise.
We refer to the quantity + p n1 / as the BBP threshold.

The BBP conjecture provides the following limits of convergence
for the sample eigenvalues under conditions (1) and (2):

λ→ + ≤ +
⎛
⎝⎜

⎞
⎠⎟l

p
n

p
n

1 if 11

2

1
(9)

λ
λ

λ→ +
−

> +
⎛
⎝⎜

⎞
⎠⎟l

p
n

p
n

1
1

1
if 11 1

1
1

(10)

This indicates that the behavior of the sample eigenvalues
depends on whether the corresponding population eigenvalues
are below or above the BBP threshold. This effect is shown
graphically in Figure 5, panel A, where the sample eigenvalues are
plotted together with the population eigenvalues. Statement

Figure 4. (A) Plot of the Tracy−Widom probability density function
(pdf, see eq 20 in the Appendix), describing the distribution of the
largest eigenvalue (normalized using eq 16) of the covariance matrix of
random N(0,I) data of size n × p. (B) Distribution of the largest
eigenvalue (normalized using eq 16) of sample covariance matrices
obtained by random sampling from the full data set D.1.

Figure 5. (A) Illustration of the BBP phase transition: here p = 50 and
n = 200. The population eigenvalues are λ1 = 2.5, λ2 = 1.5, and λj = 1 for
j > 2; the BBP threshold is 1.5. Blue boxes indicate the population
eigenvalues; black boxes indicate the sample eigenvalues (over 50
replicates), and red triangles indicate the theoretical limits for the sample
eigenvalues as given by eq 8. This figure is an adaptation of Figure 3 in
the review paper by Paul.91 (B) Average P-value of the Tracy−Widom
test for the first principal component (computed across 200 replicates)
as a function of λ1, for four data sizes, with p = 25, 50,
250, 500, and n = p. The vertical line indicates the phase transition.
The change of behavior is evident at the BBP threshold (2 for all four
data matrices, see eq 8): if the population eigenvalue is above the BBP
threshold, the power of the test increases dramatically, as indicated by
the sharp reduction of the P-values associated with the test. (C) Box
plots of the P-values for the same Tracy−Widom tests as depicted in part
B, for p = 500, to show the variability across the 200 replicates, as a
function of λ1.
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(2) was proved for real data,73 while Paul74 showed that, in the
real case, L1 will be normally distributed. This result is stated for
λ1, but it holds true also for higher order eigenvalues. It should be
noted that λ1 here plays the role of the effective estimate of
interest. Assuming the k-th sample eigenvalue to be a good repre-
sentation of the corresponding population eigenvalue, eq 8
could, in principle, also be used as a posteriori test to avoid the
inclusion of nonsignificant components.
Power of the Tracy−Widom test

From eq 8 it follows that the possibility of detecting structure in
the data is completely determined by the size of the eigenvalue(s)
of the population covariance matrix. This has repercussions on
the ability of a Tracy−Widom test to detect structure in the data.
If λ1 is below the BBP threshold, l1 (and thus L1) is Tracy−Widom
distributed and it is indistinguishable from noise. To illustrate this
phenomenon, we simulated square data matrices (i.e., n = p, thus
associated with a BBP threshold equal to 2 (see eq 7) of four sizes
(p = 25, 50, 250, 500) and different population eigenvalues λ1
(from 1 to 3, with steps of 0.1), and 200 replicates per condition.
For each simulated data set, we performed the Tracy−Widom test
for the first principal component. In Figure 5, panel B, the average
P-value across the 200 replicates is plotted against the population
eigenvalue λ1, for the four sizes. It appears that, below the BBP
threshold, there is little chance to have a significant component,
while this chance increases sharply above the BBP threshold.
Figure 5, panel C shows the variability in the P-values when per-
forming such an exercise.
If λ1 is above the BBP threshold, the detection becomes

feasible. This means that the power of the test depends on the
magnitude of the population eigenvalue and it increases with λ1,
as in any statistical test. This is shown in Figure 6, panel A, where
the empirical power of the Tracy−Widom test is plotted against
λ1, the effective size. As expected, the power increases with the
effective size itself, but it also strongly depends on the number of
variables considered. Given the same effective size, the power
becomes larger with increasing size of the data matrices, that is
the ratio p/n. Note that, for λ1 = 1, the H0 is true, rendering the
term powerstrictly speakingto be incorrect; the represented
probability refers to the actual Type I error.
Sample size estimation for PCA

Equation 8 provides a direct way to estimate the absolute
minimally required sample size in a PCA application for the
detection of λ1. Suppose that λ1 is known a priori (or some sort of
educated guess is available, as it always must be when performing
a power analysis). Then solving eq 8 for n gives the absolute
minimal sample size Nt required for detecting λ1

λ
≥

−
N

p
( 1)t

1
2

(11)

Thus, the possibility of detecting λ1 depends on the ratio between
the sample size and the number of variables. The latter usually
depends on the measurement platform and is typically deter-
mined by the experimental setting: in targeted metabolomics and
metabonomics, p is usually in the range of 10 to 500 (although
binning techniques allow manipulation of the actual number of
variables (bin) to be analyzed); in genomics, it is 10000−50000;
and in genetics, it can easily reach 106, while the experimenter can
decide on how many samples to consider in the study.
Above the absolute minimal sample size Nt, increasing the

sample size yields an increase in power of the test. From the BBP
conjecture, it is inferred that increasing the sample size is useful
only if λ1 is above the detection limit because if λ1 is below the

detection limit it will be distributed like noise. If λ1 is above the
BBP threshold, increasing the sample size enhances the conver-
gence of the sample eigenvalue(s) to the population eigenvalues.
Figure 6, panel B illustrates the power of a TW test, as a

function of sample size for a given value of λ1. As expected, the

Figure 6. (A) Power of the Tracy−Widom test for the first sample
eigenvalues, as a function of the magnitude of the first largest popu-
lation eigenvalue (λ1) for four data matrices, with p = 25, 50, 100, 250,
and n = p. (B) Power of the Tracy−Widom test for the first sample
eigenvalue as a function of the sample size, for the number of variables
p = 25, 50, 100, 250, and n = p, with λ1 fixed at 1.5. (C) (Log of)
minimal sample size as a function of the first population eigenvalue
(λ1) and the number of variables p. These three quantities are interrelated
through eq 9.
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power increases with the sample size, and strongly depends
on the ratio p/n (here we consider square matrices). This
indicates that if the number of samples cannot be increased, then
reducing the number of variables measured can increase the
power of the test. Figure 6, panel C gives the minimal sample size
Nt as a function of both λ1 and p;Nt diverges rapidly as λ1→ 1 and
p increases.
To make use of the BBP conjecture and the power of the TW

test to estimate the sample size needed to assess the significance
of a component, one needs to have an estimation of the popu-
lation eigenvalues of the empirical data at hand. This should
preferably be done on the basis of existing data. Alternatively,
it could be based on the collected data, which would make the
power analysis a posteriori, with the associated risk of unrealistic
results because of sampling fluctuations.
We provide a Matlab script (empowerTW.m) to evaluate the

empirical power of a Tracy−Widom test for the first component:
the function takes as input the data matrix dimensions and the
value of the largest population eigenvalue and calculates whether
the signal is below or above the BBP threshold; in the latter case,
the empirical power of the test (at both the 0.01 and 0.05 levels)
is tabulated.

■ PARTIAL LEAST-SQUARES DISCRIMINANT
ANALYSIS

In many metabolomics applications, the interest is in
discriminating between two or more groups (like in a classical
case-control setting) with the aim of selecting variables (i.e.,
metabolites) important to the biological problem under study.
This is mostly done in a multivariate context by making use of
discriminating techniques, such as partial least-squares discrim-
inant analysis (PLS-DA)75 or principal component discriminant
analysis (PCA-DA).76 PLS-DA (and its extensions as kernel
PLS-DA,77 orthogonal PLS-DA,78 and multilevel PLS-DA79) is
ubiquitous in themetabolomics literature, but we restrict ourselves
to PLS-DA, for the sake of simplicity. Our considerations apply
generally to the other methods mentioned.
Relationships between classification and hypothesis testing

In PLS-DA, discrimination turns into a classification problem: if a
difference exists between two groups (labeled 0 for controls and
1 for cases), is it possible to build a model that can correctly
classify unknown samples. The problem of how to build and opti-
mize such a PLS-DA model has been widely reviewed;31,32,80−82

here we assume that the model has been properly defined
(see Material and Methods).
The quality of a classification model can be assessed by con-

sidering the sensitivity attained by the model, which is defined as

=
+

sensitivity
TP

TP FN (12)

where TP and FN are the number of true positives and false
negatives, respectively. Sensitivity can be interpreted as the prob-
ability of a correct classification of case samples. This bears some
resemblance to the power of a statistical test,83 which is the prob-
ability of rejecting H0 when actually false. As the power of a
statistical test increases with the sample size, legitimate questions
are whether also the sensitivity of a PLS-DA model increases with
the sample size, andwhether it is possible to provide indications for
sample size determination in the PLS-DA setting.
A strategy for sample size determination in PLS-DA

Wewill illustrate that the sensitivity of a PLS-DAmodel, given an
effect size, increases with the number of samples considered.

We simulate a case-control study, where the data for the two
groups are generated under the multivariate normal model with
N(μ1,Σ) andN(μ2,Σ).Σ is the 133× 133 population covariance
matrix set to be equal to the covariance matrix of the experimental
data set D.1; μ1 is the multivariate population mean of the Control
group (133× 1) set equal to themean of the data setD.1 data;μ2 is
mean of the Case group and is constructed as

μ μ= + d2 1 (13)

where d is a p × 1 vector whose elements are set equal to d,
considering values of d equal to 0, 0.1, 0.2, and 0.4 to simulate
different situations; d describes the magnitude of the separation
between the two groups. However, it cannot be considered as
expressing themultivariate effect fully, because then the covariance
structure should be taken into account as well.
Given d, we built a series of PLS-DA models using an

increasing number of samples per group (from 25 controls +
25 cases to 500 controls + 500 cases). Here PLS-DA is used
to discriminate between two groups: this is a common problem
in multivariate statistics that can be addressed using a standard
Hotelling T2 test for which the power can be analytically calculated.
Nonetheless, the T2 and PLS-DA tests test different hy-

potheses, although the aim is the same (assessing difference
between groups): by using the Hotelling’s test, evidence can
only be provided that some linear combination of the popu-
lation means (of the measured variables) exists for which a
nonzero difference between the groups exists. In contrast, in
PLS-DA, sensitivity relates to the correctness of classification
of individuals, embedding the predictive power of the model.
Herewith, also the specificity of the model needs to be taken
into account:

=
+

specificity
TN

TN FP
because the sensitivity alone is not enough to judge the overall
quality of the model. This bears resemblance to a statistical
test, where the power attained can be judged only by taking
into account the significance level considered. In the
classification context, combined measures of sensitivity and
specificity (i.e., power and significance) could be considered,
such as ROC curves (sensitivity versus 1 − specif icity) or the
AUROC, which is the area under the ROC curve. Indeed, the
latter measure has been suggested to optimize the PLS-DA
model.31

Figure 7 shows the sensitivity (panel A) and specificity (panel B)
of a PLS-DAmodel as a function of sample size for different values
of d (0, 0.1, 0.2, 0.4). As expected, the sensitivity and specificity
increase both with the sample size and with the magnitude of the
separation. Further, the variability of the results decreases with the
sample size and magnitude of the separation. This indicates that
increasing the sample size not only increases the power, but also
increases the stability of the classification solution. Panel C shows
the power of the T2 Hotelling test, which also increases with
sample size and the effect size, as expected.
One could be tempted to compare directly the two methods as

a function of effect size and sample size. However, this cannot be
done, as the two methods depart from different principles.
In classification, sensitivity and specificity measure the correct-
ness of individual classifications. In a statistical test, alpha and
beta indicate the error probability for a null-hypothesis, for example
concerning the difference in means in the population. By increasing
the sample size, the power for the Hotelling T2 would come
arbitrarily close to 1, whereas the maximal achievable sensitivity
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obtained by a PLS-DA model is limited by the Bayes overlap
between the case/control distributions.

Determining effect size in a PLS-DA context

The overall quality of a PLS-DA model is influenced by many
factors, such as the number of components selected, the cross-
validation strategy used when building the model, and the
optimization criterion.31 Thus, sample size is only one of the
factors that affects sensitivity. Nonetheless, if all other parameters
have been carefully chosen, simulations can be performed to
obtain at least a rough estimation of the sample size required
to attain a certain sensitivity given an effect size, as shown in
Figure 8. This would require the knowledge (or at least an
educated guess) of the population means and the variance-
covariance matrix Σ, just as in a power analysis for Hotelling
T2 and other multivariate tests. Thus, the problem here is
the a priori knowledge of Σ underlying a given (biological)
phenomon: the number of different covariance patterns between
p variables (say metabolites) that can occur in reality is virtually
infinite. Population means also need to be estimated a priori.
This appears to be feasible in empirical practice, because the
range of concentrations that can be expected for metabolites is
usually bounded by physiological constraints that can be easily
obtained.
If estimating a multivariate effect may seem unfeasible, it is

certainly possible to provide a lower bound, by making use of
simulations and real experimental data. By this we mean that it is
possible to obtain an estimation of what can be considered to be a
trivial effect, i.e. biologically nonrelevant.
To set the scene, we start considering a case-control setting

where data from both groups is from a multinormal distribution
N(0,I) and thus the two groups are completely equivalent.
The multivariate effect can be calculated using eq 2; note that, in
this case, we set Σ equal to the identity matrix (thus, all variables
are uncorrelated and are just the sum of the squares of w).
One could be tempted to infer that, given w, the effect of Δ is
mimimum for Σ = I (uncorrelated variables) but it is easy to
generate random covariance matrices (with Σ ≠ I) for which the
corresponding Δ is smaller than the one obtained for Σ = I.
By taking different realizations of the two groups, a distribution
of effects under the null hypothesis can be created (μ1 = μ2). This
is shown in the first panel of Figure 8.
The situation Σ = Imay appear rather unrealistic, as biological

and omics data, in particular, usually show complex correlation
patterns; for this reason, it is useful to repeat the same exercise
using real data to estimate Δ; Σ is not known, but it can be
approximated with the covariance matrix calculated from the
data. Figure 8 shows also the dynamic ranges of effect obtained
from NMR and MS metabolomics experiments on plasma, serum,
and urine, using both quantified metabolite concentrations and
buckets. Here the two groups are obtained by random sampling
from larger experimental data sets (more details are provided
in the figure caption; see the Materials and Methods for the
data description). It can be noted that the effective size under the
condition of equivalence of the two groups (i.e., the distribution
of biologically relevant effects) seems to depend on the platform
used (here, MS or NMR), and this should be considered when
setting up simulations. It is interesting to note that, on average,
trivial effects obtained from real data are not very dissimilar from
those obtained from simulated data, indicating that using Σ = I
may be a reasonable choice. However, it should be noted that
Cohen’s definition of trivial effects (which are defined, we recall,
for the univariate case) does not transfer to the multivariate case,
at least for what concerns the data explored here (average trivial
effects range here from 0.4 to 1.5, which in a behaviorial setting
would correspond to medium to very large effects).

Figure 7. Sensitivity (A) and specificity (B) of a PLS-DA model as a
function of the total sample size for the discrimination between two
group in a case-control design; d1 = 0, d2 = 0.1, d3 = 0.2, and d4 = 0.4.
(Equal size groups; thus each group size is half of the total sample size.)
(C) Power of T2 Hotelling test (calculated) as a function of the total
sample size (same as PLS-DA case) with a significance level α = 0.05.
The d values correspond to multivariate effectsΔ (as defined by eq 2) of
0, 1.2, 2.4, and 4.9, respectively.
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■ CONCLUSIONS
In this paper we offered some ideas and suggestions for sample
size estimation in a multivariate setting considering principal
component analysis and partial least-squares discriminant analysis.
The results offered for PCA are grounded by solid statistical
characterization of the distributional properties of the PCA
solution. It is possible, at a certain point, to treat PCA as an
inferential method deriving formulas for sample size estimation
or numerical recipes for simulation.
We presented here results obtained on experimental data

stemming from metabolomics experiments. However, the meth-
odologies proposed are general and can be applied to a large
variety of data. Random matrix theory based methods and
the Tracy−Widom limits have been successfully applied in
genetics70 and econometrics84 and are being discussed in the
chemometrics field.40,66,69,71

The distributional properties of the PLS-DA solutions are not
statistically characterized. Nonetheless, the discrimination prob-
lem bears an analogy with classical hypothesis testing. This renders
it possible to define power analysis in the PLS-DA context by
borrowing the concept of effect from multivariate mean testing.
The ideas introduced here regarding PLS-DA warrant further
investigation. For instance, it would be interesting to investigate
how the sample size and variable to sample ratio may influence
the PLS loadings, the regression coefficients, or other measures
derived from the PLS models, such as VIPs or sensitivity ratios.

■ MATHEMATICAL APPENDIX

Definition of Tucker’s ϕ

The Tucker’s congruence coefficient ϕ42,85 for two loading
vectors x and y is defined as

ϕ =
∑ ·

∑ ·∑

y x

y x
i i i

i i i i
2 2

(14)

A congruence ϕ > 0.9 is an accepted value to establish
equivalence between two sets of loadings.43

Johnstone’s theorem

In a ground-breaking paper with the programmatic title “On the
distribution of the largest eigenvalue in principal component
analysis”,41 Johnstone established a link between RMT and
inferential multivariate statistics, demonstrating that the limiting
distribution of the largest eigenvalues of large random covariance
matrices, when properly centered and scaled, is the Tracy−Widom
distribution (see Figure 4, bottom panel for a graphical
illustration). This result is summarized by the following
fundamental theorem:
Theorem 1 (Johnstone)41

Let the entries of the columns Xj of a n × p matrix X be
identical and independently distributed random variables with
Gaussian distribution N(0,I), and let l1 be the largest eigenvalue
of the n × p sample covariance matrix C = XTX. Define the
centering and scaling parameters

μ = − +n p( 1 )np
2

σ = − +
−

+
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟n p

n p
( 1 )

1
1

1
np

1/3

(15)

If

γ=
→∞

n
p

lim
n p( , )

with γ in (0,1), then the statistic

μ

σ
=

−
L

l np

np
1

1

(16)

is distributed like the Tracy−Widom distribution F1(s,1).

Figure 8. Distributions of biologically nonrelevant effects for simulated (random) and real data. Serum MS (data set D.1), serum NMR quantified
(qNMR, data set D.2), urine NMR (data set D.3B, bucketed), and urine qNMR (data set D.4). See Materials and Methods for more details about the
data sets. To arrive at a distribution of the nonrelevant effects, the data sets are randomly split into two groups and the multivariate effects are calculated
using eq 2. As the two groups are biologically equivalent, the observed difference should be considered biologically nonrelevant.
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This theorem holds true with dimensions going to infinity.
However, the Tracy−Widom limit holds also for the finite case41

(n and p as small as 5), providing an excellent approximation of
the distribution of the largest eigenvalue of random covariance
matrices. It has also been generalized to the case in which the data
matrix entries have an arbitrary symmetric distribution. Further
generalizations concern rectangular matrices,86 different asymp-
totic behaviour depending on the ratio n/p (and p/n),87 and
non-identity of the population covariance matrix.72,73,88

The Tracy−Widom testing procedure

The procedure to determine the number of components in a
PCA model introduced by Johnstone41 consists of a series of
nested tests for the null hypothesis

kH : at least components0

against the alternative

−kH : at most 1 components1

The procedure for assessing the signficance of the k-th
component (i.e. the k-th sample eigenvalue lk) is given by

τ μ σ> + α− − −l k x( )[ ]k n p k n p k
2

, 1 , (17)

where μn,p‑k and σn,p‑k are given by eq 13 and x1‑α is the Tracy−
Widom percentile value corresponding to an α confidence
threshold: common values are x90 = 0.4501, x95 = 0.9793, and
x99 = 2.0234. The parameter τ2(k) is obtained from the sample
eigenvalues of the sample covariance matrix S (see eq 6)

∑τ =
− − =

k
n p k

l( )
1

( 1) r k

p

r
2

(18)

Other approaches have been proposed to estimate τ2(k); see, for
instance, the KN methods.69 If eq 17 is satisfied, the H0 is not
rejected: the procedure is repeated until H0 is rejected and the
estimated number of components K at a significant level α is
given by

τ μ σ= > + −α− − −K l k xargmin{ ( )[ ]} 1
k

k n p k n p k
2

, 1 ,
(19)

The Tracy−Widom distribution

In two key papers, Tracy and Widom67,68 demonstrated that the
function

∫= − + −
∞

⎜ ⎟⎛
⎝

⎞
⎠F s x x s x dx( , 1) exp

1
2

q( ) ( )q ( )
s

1
2

(20)

is the limiting distribution of the largest eigenvalue of a certain
class of p × p random matrices (the so called Gaussian orthog-
onal ensemble, GOE). The function q(x) appearing in eq 20 is
the unique Hastings−McLeod solution89 of the nonlinear
Painleve ́ differential equation

= +d
dt

x tq x q xq( ) ( ) 2 ( )
2

2
3

(21)

satisfying the boundary condition q(x)∼ Ai(x) when x→∞ and
Ai(x) is the Airy function.90 The distribution F1(s,1) is the now-
called Tracy−Widom distribution (see Figure 1, panel A). F1(s,1)
was found by Johnstone (see Theorem 1) to be the limiting
distribution of the largest eigenvalues of random covariance
matrices.
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■ NOTATION
A, matrix (bold uppercase); a, column vector (bold lowercase);
a, scalar (italic lower case); Σ, population covariance matrix;
S, sample covariance matrix; Π, population loading matrix;
I, identity matrix (1’s on the diagonal, 0’s otherwise); λi, population
eigenvalue associated with the i-th component; li, sample eigen-
value associated with the i-th component; Li, Tracy−Widom
statistic; n, number of samples (observations, objects); p, number
of variables

■ REFERENCES
(1) Saccenti, E.; Hoefsloot, H. C.; Smilde, A. K.; Westerhuis, J. A.;
Hendriks, M. M. Reflections on univariate and multivariate analysis of
metabolomics data. Metabolomics 2014, 10, 361−374.
(2) Trygg, J.; Gullberg, J.; Johansson, A.; Jonsson, P.; Moritz, T.
Chemometrics in metabolomicsan introduction. In Plant metab-
olomics; Springer: 2006; pp 117−128.
(3) Kjeldahl, K.; Bro, R. Some common misunderstandings in
chemometrics. J. Chemom. 2010, 24, 558−564.
(4) Worley, B.; Powers, R. Multivariate analysis in metabolomics. Curr.
Metabolomics 2013, 1, 92−107.
(5) Hwang, D.; Schmitt, W.; Stephanopoulos, G.; Stephanopoulos, G.
Determination of minimum sample size and discriminatory expression
patterns in microarray data. Bioinformatics 2002, 18, 1184−1193.
(6) Pawitan, Y.; Michiels, S.; Koscielny, A.; Gusnanto, S.; Ploner, A.
False discovery rate, sensitivity and sample size for microarray studies.
Bioinformatics 2005, 21, 3017−24.
(7) Li, S.; Bigler, J.; Lampe, J.; Potter, J.; Feng, Z. Fdr-controlling
testing procedures and sample size determination for microarrays. Stat.
Med. 2005, 24, 2267−2280.
(8) Muller, P.; Parmigiani, G.; Robert, C.; Rousseau, J. Optimal sample
size for multiple testing: the case of gene expression microarrays. J. Am.
Stat. Assoc. 2004, 99, 990−1001.
(9) Jung, S.-H.; Young, S. S. Power and sample size calculation for
microarray studies. Journal of Biopharmaceutical Statistics 2012, 22, 30−
42.
(10) Lin, W.; Hsueh, H.; Chen, J. Power and sample size estimation in
microarray studies. BMC Bioinf. 2010, 11, 48.
(11) Lee, M.-L.; Whitmore, G. Power and sample size for microarray
studies. Stat. Med. 2002, 21, 3543−3570.
(12) Ioannidis, J. P. Why most published research findings are false.
PLoS medicine 2005, 2, e124.
(13) Eng, J. Sample Size Estimation: HowMany Individuals Should Be
Studied? 1. Radiology 2003, 227, 309−313.
(14) Moher, D.; Dulberg, C. S.; Wells, G. A. Statistical power, sample
size, and their reporting in randomized controlled trials. Jama 1994, 272,
122−124.
(15) Freiman, J. A.; Chalmers, T. C.; Smith, H., Jr; Kuebler, R. R. The
importance of beta, the type II error and sample size in the design and
interpretation of the randomized control trial. Survey of 71″ negative″
trials. N. Engl. J. Med. 1978, 299, 690−694.

Journal of Proteome Research Article

DOI: 10.1021/acs.jproteome.5b01029
J. Proteome Res. 2016, 15, 2379−2393

2391

mailto:esaccenti@gmail.com
http://dx.doi.org/10.1021/acs.jproteome.5b01029


(16) Button, K. S.; Ioannidis, J. P.; Mokrysz, C.; Nosek, B. A.; Flint, J.;
Robinson, E. S.; Munafo,̀ M. R. Power failure: why small sample size
undermines the reliability of neuroscience. Nat. Rev. Neurosci. 2013, 14,
365−376.
(17) Ransohoff, D. F.; Gourlay, M. L. Sources of Bias in Specimens for
Research About Molecular Markers for Cancer. J. Clin. Oncol. 2010, 28,
698−704.
(18) Xia, J.; Sinelnikov, I. V.; Han, B.; Wishart, D. S. MetaboAnalyst
3.0making metabolomics more meaningful. Nucleic Acids Res. 2015,
43, W251.
(19) MacCallum, R. C.; Widaman, K. F.; Zhang, S.; Hong, S. Sample
size in factor analysis. Psychological methods 1999, 4, 84.
(20) Tanaka, J. S. ″How big is big enough?″: Sample size and goodness
of fit in structural equation models with latent variables.Child Dev. 1987,
58, 134−146.
(21) Jung, S.; Lee, S. Exploratory factor analysis for small samples.
Behavior research methods 2011, 43, 701−709.
(22) Magnusson, P. K.; Almqvist, C.; Rahman, I.; Ganna, A.; Viktorin,
A.; Walum, H.; Halldner, L.; Lundström, S.; Ulleń, F.; Lan̊gström, N.
The Swedish Twin Registry: establishment of a biobank and other
recent developments. Twin Res. Hum. Genet. 2013, 16, 317−329.
(23) Haug, K.; Salek, R. M.; Conesa, P.; Hastings, J.; de Matos, P.;
Rijnbeek, M.; Mahendraker, T.; Williams, M.; Neumann, S.; Rocca-
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