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No Future Without the Past? Predicting Churn in the Face of Customer Privacy  

Abstract 

For customer-centric firms, churn prediction plays a central role in churn management programs. 

Methodological advances have emphasized the use of customer panel data to model the dynamic 

evolution of a customer base to improve churn predictions. However, pressure from policy 

makers and the public geared to reducing the storage of customer data has led to firms’ ‘self-

policing’ by limiting data storage, rendering panel data methods infeasible. We remedy these 

problems by developing a method that captures the dynamic evolution of a customer base 

without relying on the availability past data. Instead, using a recursively updated  model our 

approach requires only knowledge of past model parameters. This generalized mixture of 

Kalman filters model maintains the accuracy of churn predictions compared to existing panel 

data methods when data from the past is available. In the absence of past data, applications in the 

insurance and telecommunications industry establish superior predictive performance compared 

to simpler benchmarks. These improvements arise because the proposed method captures the 

same dynamics and unobserved heterogeneity present in customer databases as advanced 

methods, while achieving privacy preserving data minimization and data anonymization. We 

therefore conclude that privacy preservation does not have to come at the cost of analytical 

operations. 

 

Keywords: churn prediction, database marketing, customer relationship management, data 

privacy, Kalman filter, mixture model 
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1. INTRODUCTION 

For firms that rely on customers as their principal asset, the defection of customers, or churn, is a 

chief concern. This concern has exacerbated itself in the past decade as customers have become 

more aware of switching opportunities and switching barriers have fallen as a result of increasing 

market transparency and government deregulation. Annual churn rates can be as high as 63% 

(Blattberg, Kim, and Neslin 2008, p. 609), which illustrates the extent to which customer churn 

can affect a firm’s customer base. Therefore, focusing on retention is more beneficial in terms of 

firm value than, for example, increasing profit margins or lowering acquisition costs (Gupta, 

Lehman, and Stuart 2004). Top executives recognize these benefits, reporting that customer 

retention is their top priority in terms of marketing spending (Forbes 2011). 

Firms use churn management programs to stimulate customer retention. These programs 

center on identifying customers at risk of churning and targeting them with a marketing program 

geared to increasing behavioral loyalty using retention incentives such as special offers and 

discounts (Ascarza, Iyengar and Schleicher 2016; Lemmens and Gupta 2013). To identify at-risk 

customers, firms form churn propensities using statistical models calibrated on historical churn 

data. After ranking these churn probabilities, the customers with the highest probabilities are 

selected for inclusion in the retention program. 

Because predicting churn plays a vital role in the design of effective churn management 

programs, researchers are continually exploring more accurate ways of forming these 

propensities. The most popular methods used in practice are logistic regression and classification 

trees, which use cross-sectional data and have been shown to have a good short-term predictive 

performance (Neslin et al. 2006; Risselada, Verhoef, and Bijmolt 2010). More recently, Ascarza 

and Hardie (2013) presented an approach that takes advantage of the richness of modern 
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databases and model the dynamic evolution of customers in a customer base while accounting 

for unobserved customer heterogeneity using a Hidden Markov model (HMM) and panel data on 

customer churn behavior. They show that such an approach provides better short- and long-term 

predictions of churn than a range of benchmark models.  

While the richness and size of modern customer databases offer opportunities for firms, 

as illustrated by the previous example and numerous (big) data driven firms, this development 

has also raised policy maker and public awareness that increasing amounts of customer data are 

stored and linked at the expense of customer privacy. Policy makers in both the United States 

(PCAST 2014; Podesta et al. 2014) and Europe (General Data Protection Regulation, European 

Parliament 2013) have, or are planning to, put forward legislation to regulate the storage of 

individual customer data for prolonged periods of time. At the same time, public awareness of 

privacy has also increased, for example due to the high profile Google Spain v. AEPD and Mario 

Costeja González case (CJEU C-131/12 2014) on the right to be forgotten. Consequently, this 

legislative and public awareness has also heigthened firm attention on the privacy topic 

(Marketing Science Institute 2016), and raised the question how to balance the need for analytics 

with customer privacy (Boulding et al. 2005; Rust and Chung 2006; Verhoef, Kooge and Walk 

2016). This trend of heightened attention is exacerbated by potential negative consequences for 

firms that ignoring this topic carries, from loss of consumer trust (Bart et al. 2005; Deighton 

2005) or changing customer behavior (Lewis 2005) to negative stock market valuations 

(Acquisti, Friedman, and Telang 2006). The combination of governmental and public pressure 

has led to firms’ “self-policing” (Wedel and Kannan 2016). These firms incorporate privacy 

preserving measures into practice at the cost of analytical operations, limiting their capability to 

provide detailed insights on past customer behavior (Blattberg, Kim and Neslin 2008, p. 78; 
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Verhoef, Kooge and Walk 2016). Such firm behavior is in line with the prediction of economic 

theory showing that there is customer demand for privacy which firms should acknowledge 

(Rust, Kannan, and Peng 2002). Wedel and Kannan (2016) state two important privacy 

preserving measures such firms take: data minimization (i.e. limiting the amount of data 

collected, and disposing of unneeded data) and data anonymization (i.e. assuring that data can 

not be connected to specific individuals). In practice, for many firms data minimization results in 

limiting data storage periods, and removing customer data after this period. In addition, data is 

analyzed anonymously or at aggregated levels to maintan data anonymization (Verhoef, Kooge 

and Walk 2016). Customers value firms that take these steps, as data usage, data security and 

(length of) data storage are listed as the most important concerns when sharing personal 

information (DMA 2015). One well-documented example of a firm that applied these principles 

is that of data broker Choicepoint (e.g. Acquisti, Friedman, and Telang 2006; Culnan and 

Williams 2009; Otto, Antón, and Baumer 2007), which anonymized and voluntarily stopped 

collecting and removed data from their systems (Culnan and Williams 2009). Similarly, the 

European Internet service provider who provided one of the datasets for this study stores 

customer data for a year only, like many others in this industry. Interviews by the authors with 

several firms in a variety of other industries confirmed this trend, with the majority of the 

interviewed firms indicating that customer privacy played a large or very large part in their 

decision to store customer data.  

 In this article, our goal is to provide a method for churn prediction that combines the 

principles of data anonymization and data minimization while retaining the strong predictive 

ability and richness of state-of-the-art churn models (e.g. Ascarza and Hardie 2013). We thus 

strike a balance between two seemingly incompatible objectives (Marketing Science Institute 
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2016; Rust and Chung 2006; Rust and Huang 2014). In doing so, we show that privacy 

preservation does not have to come at the cost of analytical operations (as suggested by e.g. 

Blattberg, Kim and Neslin 2008, p. 78; Wedel and Kannan 2016). To this end we develop a 

generalized mixture of Kalman filters (GMOK) model. This dynamic state-space model accounts 

for unobserved heterogeneity, while its recursive nature requires only knowledge of past model 

parameters to generate churn predictions. Our approach achieves data anonymization by 

aggregating information from prior periods into the model parameters, thereby not requiring the 

storage of privacy-sensitive individual-level panel data on past customer behavior (as in e.g. 

Ascarza and Hardie 2013). Instead, it merely requires new cross-sectional information from the 

current period to update the model. After inclusion in the model the data need not be stored, 

which achieves data minimization. 

We compare our approach to several other methods besides the HMM as introduced by 

Ascarza and Hardie (2013). These include logistic regression and classification trees due to their 

extensive usage in practice and good short-term predictive performance (Neslin et al. 2006). In 

addition, we investigate to what extent the introduction of either dynamics (i.e. using data from 

prior periods) or unobserved customer heterogeneity improves model performance compared to 

models that include neither component (logistic regression and classification trees) or models 

that include both components (GMOK and HMM). In Table 1 we provide an overview of the 

models included in this study and their respective model traits.  

We consider two “worlds” in which our models are estimated: the panel data world, and 

the cross-sectional world. The reason for this is that some of the models we consider were 

developed with full past data availability in mind using panel data (notably the HMM, see Table 

1), while others were developed without reliance on past data using cross-sectional data only 
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(notably the GMOK model, see Table 1). While we can estimate cross-sectional models on panel 

data by considering each panel wave as a separate cross-section, we can not estimate panel data 

models on cross-sectional data as the same customers need not be present in every cross-section. 

Consequently, when past data is unavailable, panel data models collapse due to the absence of 

information on the same customers in prior periods, while cross-sectional models remain 

feasible. We show that the GMOK model has similar performance to the HMM in the panel data 

world while outperforming the simpler benchmark models. Importantly, the GMOK model 

retains this good performance in the cross-sectional world where past data is unavailable, while 

the HMM cannot be estimated (see Table 1).  This way we show that when past is unavailable, 

analytical operations need not suffer, provided adequate modeling techniques are applied. 

Model  Type of Data 
Required 

Includes Data from  
Prior Periods (t-1)? 

Includes 
Heterogeneity? 

Aggregate Level 
Data Storage? 

GMOK (Repeated) 
Cross-Sectional 

   

Hidden Markov 
Model (HMM) 
 

Panel   - 

Dynamics Only 
Model 
 

(Repeated) 
Cross-Sectional 

 -  

Heterogeneity 
Only Model 
 

Cross-Sectional -  - 

Classification Tree 
 

Cross-Sectional - - - 

Logit Model 
 

Cross-Sectional - - -  

Table 1: Overview of Models Included in this Study and Their Traits 

As an additional benefit of our approach compared to simpler benchmarks, in periods 

following the period of model estimation, the decline in predictive accuracy is negligible 

compared with existing methods: whereas existing methods show an average decline in 

predictive performance of 20% after two periods (Risselada, Verhoef, and Bijmolt 2010), this 
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decline is only 1-3% on average for our approach. This increased accuracy results in cost savings 

for firms, as time- and resource-intensive tasks such as data collection, data preparation, and 

model estimation can be performed less often because the same model can be used repeatedly 

without loss of performance.  

The remainder of this article unfolds as follows: First, we motivate the conceptual 

development of our approach according to current practices and prior research in this field. In 

line with these observations, we develop our model to fulfill the criteria we identified with regard 

to privacy and model requirements. Next, we offer an empirical illustration of this model in the 

insurance industry and compare its performance with a selection of benchmark models. Here, we 

first compare all the models in the panel data world, and subsequently compare their 

performance in the cross-sectional world. In the setting of the cross-sectional world, we also 

validate our findings using a second data set from the telecommunications industry. We conclude 

with a discussion of our findings and specify directions for further research. 

 

2. RESEARCH BACKGROUND 

To understand the practical requirements for churn prediction, we first discuss how churn 

prediction is performed in practice—specifically, which methods practitioners use. Next, we 

argue that we can preserve the important methodological features recent studies have uncovered 

in a setting in which access to past data is limited. 

 

2.1 Churn Prediction Practice 

By predicting churn before its actual occurrence, marketers can proactively target activities 

toward those customers at risk of churning to convince them to stay with a firm. This approach 
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can reduce the costs associated with churn (Blattberg, Kim, and Neslin 2008, p. 611; Neslin et al. 

2006). Targeting is achieved by attaching a churn propensity to each customer in the customer 

base. Subsequently, a retention program is designed to cater to a selected subgroup of customers 

using their churn propensity as starting point (Blattberg, Kim and Neslin 2008, p. 615; Ganesh, 

Arnold, and Reynolds 2000). 

Several methods can determine these probabilities, all of which predict future churn on 

the basis of historical churn data. The most popular and best-performing methods are logistic 

regression and classification trees (Neslin et al. 2006). These methods can be further improved 

by using model averaging algorithms such as bagging and boosting (Lemmens and Croux 2006; 

Risselada, Verhoef, and Bijmolt 2010). A common characteristic of these prior methods is their 

reliance on cross-sectional data. A limitation of cross-sectional data is the unavailability of past 

periods. If the model is not reestimated with new data but instead is reused beyond the period of 

estimation (as often happens in practical situations
1
), predictive inference suffers quickly 

(Risselada, Verhoef, and Bijmolt 2010). The latter study also indicates that the parameters of 

churn models are not stable over time; they vary in size, sign, and significance over the periods 

investigated, which illustrates the consequences of this information loss. To remedy this 

problem, Ascarza and Hardie (2013) develop a dynamic hidden Markov model (HMM) using a 

panel of customers to capture past customer behavior and unobserved customer heterogeneity. 

These authors show the improved predictive ability of churn of such a model for up to five 

subsequent periods. Thus, a dynamic model can alleviate the problems associated with cross-

sectional approaches. A downside of this approach however is the reliance on customer panel 

                                                           
1
 With reuse we mean that a model that was estimated in a prior time period is used without modifications in a 

later time period. That is, the parameter estimates that were obtained from the prior model are saved and used to 
generate churn propensities for a new, current dataset. In our interviews, two-thirds of the practitioners 
interviewed indicated they operate in this way. 
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data. Limiting the storage of customer data for prolonged periods of time to comply with 

legislative and public pressure renders constructing and maintaining such panels infeasible (e.g. 

Wedel and Kannan 2016). 

The main limitation of panel data methods thus lies in their reliance on the past 

information of single customers to make inferences. Next, we argue that an alternative approach 

that aggregates information about individual customers can capture the same model traits 

investigated by Ascarza and Hardie (2013). In so doing, we attenuate the limitations of panel 

data models in the face of stricter compliance with regulations, i.e. data anonymization and data 

minimization. 

 

2.2 Balancing data limitations with model performance 

In order to develop a method that fulfills the criteria of data anonymization and data 

minimization while retaining a good predictive performance, we need to consider an approach 

that can balance these requirements. In Figure 1 we therefore outline our approach to develop 

such a model. In order to retain a good predictive performance, we first analyze the model traits 

that have emerged from prior research and are associated with model performance. 

Subsequently, we accommodate these traits in a framework that accounts for data 

anonymization and data minimization. 

 The main differences between the cross-sectional methods (i.e. logistic regression and 

classification trees) discussed previously and the model of Ascarza and Hardie (2013) are 

twofold: The latter model accounts for 1) information from prior periods (dynamics), and for 2) 

unobserved customer heterogeneity (see also Table 1). These traits capture the relevant 

characteristics of the underlying data generating process. Therefore, inclusion of these traits is a 
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necessary and sufficient condition for an accurate model (e.g. Jerath, Fader and Hardie 2016; 

Wedel and Kannan 2016), while exclusion will reduce model performance (e.g. Zhao, Zhao and 

Song 2009).  

Figure 1: Overview of Model Development
2
 

 

However, these traits need not be captured at the individual level as in Ascarza and Hardie 

(2013). We propose to account for these traits at the aggregate instead of individual level similar 

to Jerath, Fader and Hardie (2016). However, instead of adapting the data format as these 

authors suggest, we adapt the model framework to accommodate these model traits. By 

accounting for these traits at the aggregate level we achieve the condition of data anonymization 

(see Figure 1). We account for these model traits at the aggregate level as follows: First, instead 

of capturing heterogeneity at the individual customer level, we allow for customer segments. 

Ascarza and Hardie (2013) support this with their finding that there exist three clusters that 

                                                           
2
 Our model process works as follows: At time period t, the individual level information serves as input for our 

model (Box 1). At this point, data is fed into the model (Box 2), in which it is aggregated. As such, we achieve data 
anonymization. Once fed into the model, data is no longer required, and can be removed (data minimization). At 
time t + 1, the model can be used on new individual data for inference at that time point (Box 3). 
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exhibit a different evolution of customer behavior over time. Second, we then capture the 

dynamics of the data generating process by allowing time-varying parameters within these 

segments through a state-space framework. Hence, both unobserved heterogeneity and dynamics 

are captured at an aggregate instead of individual level.   

An important motivation to use the state-space framework is its recursive nature. This 

way, a state-space model is updated once new information becomes available. More 

importantly, the information from prior periods is retained in the model parameters. It is this 

feature that allows for data minimization, as data from prior periods is no longer required once it 

is incorporated in the model parameters. Subsequently, in period t + 1 inference at the individual 

level can be made by assigning customers to relevant segments based on their characteristics 

(see Figure 1).  

 Aggregate analysis combined with indidual level inference also alleviates the data 

requirements. Instead of panel data capturing the behavior of individual customers, this 

approach merely requires repeated cross-sectional data to capture the aggregate customer base 

traits of dynamics and customer heterogeneity.  

 

3. METHODOLOGY 

In this section we translate the observations of the previous section into a modeling 

framework that can be used to predict churn. In particular, we develop a generalized mixture of 

Kalman filters (GMOK) model that takes into account all sources of variation among customers 

and sources of variation over time using repeated cross-sectional data from the customer 

database. We first describe how we model the dynamics and then extend the model with 

unobserved heterogeneity. 
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3.1 Churn Dynamics Model 

The starting point for our model is the standard logistic regression model, which we 

extend with time-varying parameters to allow for carry-over of past information (dynamics). By 

taking the logit model as a starting point, we follow existing literature indicating its good 

performance when predicting customer churn (e.g., Neslin et al. 2006). We apply a state-space 

approach to allow for time-varying parameters in the logit model (for prior applications, see, e.g., 

Cain 2005; Naik, Mantrala, and Sawyer 1998; Osinga, Leeflang, and Wieringa 2010). Our basic 

model specification thus becomes 

(1)  𝜋𝑖𝑡 = 𝑃(𝑦𝑖𝑡 = 1) = Λ(𝑋𝑖𝑡𝛽𝑡) =
exp (𝑋𝑖𝑡𝛽𝑡)

1 + exp (𝑋𝑖𝑡𝛽𝑡)
 , 

(2)   𝛽𝑡 = 𝛽𝑡−1 +  𝜁𝑡 ,  𝜁𝑡  ~ 𝑁(0, 𝑄𝑡) ,  

(3)   𝛽0~𝑁(𝑏0, 𝑄0).   

Equation (1) is the observation equation, which relates the churn probability πit for  

customer i in calendar period t to a vector of observed explanatory variables Xit. The observed 

variable yit is a binary variable, which equals 1 if customer i churned in period t and 0 otherwise. 

Here, i = 1, …, n, and t = 1, …, T. We relate yit and Xit through a logistic transformation denoted 

by Λ(·), which results in a logistic regression model with time-varying parameter vector βt. We 

specify the transition equation (Equation (2)) of the state-space model as a random walk, which 

provides a parsimonious yet flexible way to accommodate various dynamic patterns in parameter 

evolution. We specify the error term ζt of the transition equation as a white-noise process with 

diagonal covariance matrix Qt  = Q. Equation (2) provides an aggregate measure of the dynamics 

that underlie the data generating process. As such, it is not required to observe individual 
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changes over time, but these changes are captured at this more aggregate level to achieve data 

anonymity. Individual deviations thereof are captured through Xit in Equation (1) (e.g. Lu 2002, 

Yan et al. 2001). Finally, Equation (3) specifies the hyperparameters required to initialize the 

Kalman filter that we will use to estimate this two-equation model. 

The model is also recursive. In each time period, the model is fed with the most recent 

cross-sectional information on yit and Xit, after which Equation (2) is updated. All that is required 

for the next period is new information pertaining to yit and Xit for that period, as all the 

information from the past is transferred through the parameter evolution in Equation (2). In this 

manner, it is not necessary to store customer data from the past, but it is sufficient to store the 

model parameters and update them when new information becomes available. Hence, data 

minimization is achieved. Next, we discuss how to update the model in each period. 

3.2 Kalman Filter Estimation 

In general, state-space models can be estimated by the Kalman filter (Durbin and 

Koopman 2012). This recursive algorithm updates the model when new information becomes 

available. The standard linear Kalman filter assumes that the time series observations in Equation 

(1) are normally distributed, which is not the case here given the binary nature of yit. Fahrmeir 

and Tutz (1994) relax the normality assumption and present Kalman filter recursions for the case 

in which the observation equation model is based on nonnormal time series, which includes our 

model specification (we provide the relevant recursions in Web Appendix A). Their approach 

applies to both univariate and—as is the case here—multivariate dependent variables. In the 

multivariate case we consider here, this algorithm updates the model over all n customers present 

at time t. This feature allows the algorithm to aggregate all the individual-level information on 

the dynamic process to update the model independent of information from the past of those same 
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customers. Thereby, it does not require individual-level information on those same customers 

anymore after inclusion in the model as in models based on panel data. 

The estimation of the model proceeds in two steps: First, we determine the values of b0, 

Q0, and Q using numeric maximum likelihood estimation in the first period, given some initial 

values for 𝛽1
∗ = (𝛽0, 𝛽1). The relevant log-likelihood to maximize is  

(4) ℓ(𝛽1
∗) = ∑ 𝑙𝑖1(𝛽1|𝑦𝑖1, 𝑋𝑖1)

𝑛

𝑖=1

−
1

2
(𝛽0 − 𝑏0)′𝑄0

−1(𝛽0 − 𝑏0) −
1

2
(𝛽1 − 𝛽0)′𝑄−1(𝛽1 − 𝛽0), 

where 𝑙𝑖1 is the logistic log-likehood contribution of customer i based on the data available in 

period 1. This is the likelihood derived in Equation B.7 of Web Appendix B, adapted for the first 

period. Second, given these initial values, we estimate the state parameter vector 𝛽𝑡
∗ using the 

Kalman filter recursions of Fahrmeir and Tutz (1994). In line with Fahrmeir and Wagenpfeil 

(1995), we iterate these two steps until the likelihood has converged. For subsequent periods, the 

likelihood in this case becomes   

(5) ℓ(𝛽𝑡
∗) = ∑ ∑ 𝑙𝑖𝑘(𝛽𝑘

∗|𝑦𝑖𝑘
∗ , 𝑋𝑖𝑘

∗ ) −
1

2

𝑛

𝑖=1

𝑡−1

𝑘=1

(𝛽0 − 𝑏0)′𝑄0
−1(𝛽0 − 𝑏0)

−
1

2
∑(𝛽𝑘 − 𝛽𝑘−1)′(𝑄𝑘)−1

𝑡−1

𝑘=1

(𝛽𝑘 − 𝛽𝑘−1) + 𝑙𝑖𝑘(𝛽𝑘|𝑦𝑖𝑘, 𝑋𝑖𝑘)

−
1

2
(𝛽𝑡 − 𝛽𝑡−1)′𝑄𝑡

−1(𝛽𝑡 − 𝛽𝑡−1),  

where 𝑙𝑖𝑡 is the logistic log-likehood contribution of customer i, 𝛽𝑡
∗ =  (𝛽0, … , 𝛽𝑡), and b0, Q0, 

and Q are not updated anymore.
3
 We smooth the parameter vector 𝛽𝑡

∗ using the linear Kalman 

                                                           
3
 Note that this procedure does require knowledge of the likelihood value 𝑙𝑖𝑡

∗  of previous periods if 1 < T ≤ t-1 . 
However, this value is known when the state for period t has been determined. Equation (5) shows that the 
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smoother described by Fahrmeir and Tutz (1994), which facilitates the interpretation of the 

outcomes. 

3.3 Adding Unobserved Heterogeneity 

Next, we extend our prior model specification to allow for the other model trait identified 

to be important: unobserved customer heterogeneity. Following the literature on finite mixture 

models (e.g., Wedel and Kamakura, 1998), we assume two or more unknown groups exist in the 

data and allow the model parameters to differ among groups. This feature, in combination with 

the dynamic logistic regression model, allows parameters to vary simultaneously over time and 

over groups. Assume latent segments j = 1, …, J exist in the data, where J is fixed over time and 

set the first time the model is estimated. Returning to Equations (1)–(3), we now assume the data 

to be generated by a mixture state-space model and estimate a mixture of dynamic logistic 

regression models given by 

(6)  𝜋𝑖𝑡 = 𝑃(𝑦𝑖𝑡 = 1) = ∑  𝜆𝑡
𝑗
Λ(𝑋𝑖𝑡𝛽𝑡

𝑗
)

𝐽

𝑗=1

, 

(7)   𝛽𝑡
𝑗

= 𝛽𝑡−1
𝑗

+ 𝜁𝑡
𝑗
,  𝜁𝑡

𝑗
 ~ 𝑁(0, 𝑄𝑡

𝑗
),  

(8)   𝛽0
𝑗
~𝑁(𝑏0

𝑗
, 𝑄0

𝑗
), 

where 𝜆𝑡
𝑗
 represent the proportions that give the mixture weight for each cluster. The 𝜆𝑡

𝑗
 have the 

following constraints: Σj 𝜆𝑡
𝑗
= 1 for each time period and 𝜆𝑡

𝑗
 ≥  0. Furthermore, we set 𝑄𝑡

𝑗
= 𝑄𝑗  

and diagonal as before. To estimate this model, we build on the maximum likelihood approach 

outlined in the previous section. For applications in which the time series observations in 

                                                                                                                                                                                           
original data are no longer required after period t, only the likelihood values 𝑙𝑖𝑡

∗  summed over all customers and 

the corresponding parameters 𝛽𝑡
∗. Therefore, it is sufficient to retain these values and the parameters.  
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Equation (6) are normally distributed, Calabrese and Paninski (2011) derive an EM algorithm to 

estimate a mixture of Kalman filters model. Combining this algorithm with the modified Kalman 

filter recursions of Fahrmeir and Tutz (1994), we arrive at a generalized mixture of Kalman 

filters (GMOK) model that allows the dynamic logistic regression model to be estimated for two 

or more groups. The model can be estimated using maximum likelihood estimation by 

considering cluster membership as missing data and applying the EM algorithm (Dempster, 

Laird, and Rubin 1977). We outline the approach here; for a full derivation of the EM algorithm 

for this case, see Web Appendix B. 

 We obtain the likelihood of the GMOK model by appending the likelihood from the 

model specified by Equations (1)-(3) with an unobserved cluster membership indicator variable 

that is treated as missing data in the EM algorithm and is replaced by its expected values. We 

show in Web Appendix B that this yields the expected log-likelihood function 

𝐸[ℓ(𝛽𝑡
𝑗∗

)] = ∑ ∑ (𝑝
𝑘

𝑗∗
[log(𝜆𝑘

𝑗
 ) − ∑ 𝑙𝑖𝑘(𝛽

𝑘
𝑗∗|𝑦

𝑖𝑘
∗ , 𝑋𝑖𝑘

∗ )

𝑛

𝑖=1

])

𝑡−1

𝑘=1

𝐽

𝑗=1

−
1

2
∑ [(𝛽

0
𝑗 − 𝑏0

𝑗
)′(𝑄

0

𝑗
)

−1
(𝛽

0
𝑗 − 𝑏0

𝑗
) ]

𝐽

𝑗=1

−
1

2
∑ ∑ [(𝛽

𝑘
𝑗 − 𝛽

𝑘−1
𝑗 )

′
(𝑄

𝑘

𝑗
)

−1
(𝛽

𝑘
𝑗 − 𝛽

𝑘−1
𝑗 )]

𝑡−1

𝑘=1

𝐽

𝑗=1

+ ∑ 𝑝
𝑡
𝑗

𝐽

𝑗=1

[log(𝜆𝑡
𝑗
) − ∑ 𝑙𝑖𝑡(𝛽

𝑡
𝑗|𝑦

𝑖𝑡
, 𝑋𝑖𝑡)

𝑛

𝑖=1

] −
1

2
∑ [(𝛽

𝑡
𝑗 − 𝛽

𝑡−1
𝑗 )

′
(𝑄𝑡

𝑗)
−1

(𝛽
𝑡
𝑗 − 𝛽

𝑡−1
𝑗 )]

𝐽

𝑗=1

 

where 𝛽𝑡
𝑗∗

=  (𝛽0
𝑗
, … , 𝛽𝑡

𝑗
)  for j = 1, …, J. We subsequently maximize this likelihood. The 

maximization of this likelihood is similar to the mixture model case (Wedel and Kamakura, 

1998) and consists of two separate parts. In the first part, we obtain the mixture weights 𝜆𝑡
𝑗
 which 

represent the relative weight of each mixture component. The second and remaining part of the 

likelihood is similar to the likelihood of the model given in Equations (1)–(3) and thus can be 

maximized by the procedure outlined in the previous section, provided we make a small 
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correction to the Kalman filter (for details, see Web Appendix B). The expectation and 

maximization steps are iterated until the likelihood value has converged. 

The preceding procedure yields estimates 𝛽𝑡
𝑗∗

 for each of the j clusters, which are 

smoothed using the linear Kalman smoother described by Fahrmeir and Tutz (1994). These 

values capture the cluster-specific evolution of the regression parameters. Using the parameters 

thus obtained, we generate predicted churn probabilities for each customer in future periods by 

assigning them to the segment with the highest posterior likelihood for that period (e.g. Reimer, 

Rutz and Pauwels 2014; Vermunt and Magidson 2013). That is, we compute 𝑋𝑖𝑡𝛽𝑡
𝑗∗

 for customer 

i in segment j at time t, and assign customers to the segment with the highest posterior 

probability 𝑃(𝑖, 𝑗) =
 𝜆𝑡

𝑗
exp(ℓ(𝛽𝑡

𝑗∗
))

∑  𝜆𝑡
𝑘

exp(ℓ(𝛽𝑡
𝑘∗

))
𝐽
𝑘=1

  for that period, where ℓ is the likelihood given in Equation 

(B.10) in Web Appendix B. 

4. DATA DESCRIPTION 

Our focal data set comes from a large Dutch health care insurer with yearly data on 

customer churn for 2004–2012. Yearly data are appropriate in this case because the industry’s 

contractual setting limits consumers’ opportunity to churn to at most once a year (Dijksterhuis 

and Velders 2009). A customer churns if he or she is with the insurer at the start of the year but is 

no longer at the end of the year. During the observation period, the Dutch health care system was 

completely restructured. One of the goals of the change was to encourage customers to switch 

insurers (see Douven, Mot, and Pomp 2007). Whereas the churn rates for 2004 and 2005 were 

8.8% and 7.4%, respectively, the policy change sharply increased the churn rate to 34.3% for 

2006 in this data set. After this increase, the churn rate dropped to 3.7% in 2007 and then 
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steadily increased to 4.3% in 2012. The temporarily increased churn rate provides an opportunity 

to test our model specification in the face of changing market situations and to study how model 

predictions might be affected by such a change.  

For our study we create two types of data sets from this data: a panel data set, and a 

cross-sectional data set. As noted in Section 1, while we can estimate cross-sectional models on 

panel data by considering each panel wave as a separate cross-section, the reverse does not hold. 

To allow for a fair comparison between models, we thus consider these two ‘worlds’ separately. 

In Table 2 we provide an overview of the sample sizes and churn percentages for each of these 

datasets. The next section provides further detail on data set construction. 

 

Period Panel 

Sample 

Size 

Panel 

Churn 

Percentage 

Cross-

Sectional 

Sample 

Size 

Cross-

Sectional 

Churn 

Percentage 

Cross-

Sectional 

Training 

Sample Size 

Cross-Sectional 

Validation 

Sample Size 

2004 5,000 8.5 1,034,427 8.8 5,000 11,167 

2005 4,573 19.1 859,063 7.4 5,000 13,583 

2006 3,699 35.2 795,519 34.3 5,000 2,898 

2007 2,397 4.0 606,861 3.7 5,000 27,231 

2008 2,301 1.7 527,104 2.1 5,000 47,023 

2009 2,261 2.1 741,059 2.1 5,000 47,641 

2010 2,214 2.4 578,108 2.3 5,000 48,022 

2011 2,160 2.4 812,203 3.7 5,000 27,110 

2012 2,109 2.9 1,109,094 4.3 5,000 23,329 

Table 2: Descriptive Information for the Panel Data and Insurance Data Sets 

Both data sets contain variables that can be divided in several groups, such as 

sociodemographic (e.g., age, family status) or socioeconomic (e.g., income, social status) 

variables and information about relationship characteristics (e.g., length). All these variables are 

recorded for all the time periods we considered. Table 3 provides a more detailed overview of 

the variables in the data set. 
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Variables Insurance Data 

Sociodemographic Age, Distance Insurance Shop, Family without Kids 

  

Socioeconomic BSR Grouping*, Education Level, Income, Social Class, 

Prosperity Level 

  

Relationship characteristics Relationship Age, # Insurance Shop Visits 
*BSR Grouping is a third-party segmentation scheme used by the insurer to segment its customer base 

Table 3: Available Variables for the Insurance Data 

 

5. MODEL COMPARISON APPROACH 

We compare our models within two ‘worlds’: a panel data world and a cross-sectional 

data world, to allow for a fair comparison of models. In the panel data world, we estimate the 

GMOK model and a selection of benchmark models either by considering each panel wave as a 

cross-section, or by including all data up to the period of estimation, depending on the model 

type. We optimize model fit for each model specifically. This procedure implies that the 

variables included in each model can differ from period to period, and from model to model (see 

Section 6.2 for more details). Subsequently, we generate churn predictions for the same customer 

in future periods. We compare the predicted churn probability to the observed churn behavior 

using top decile lift and Gini coefficient as measures of model performance (see Section 5.4). 

 In the cross-sectional world, we follow prior studies (e.g. Neslin et al. 2006), and 

estimate the GMOK model and a selection of benchmark models on a training sample. All the 

models are estimated according to specific criteria so that model fit is optimized within the 

training sample. Next, we generate churn predictions using a holdout sample, and compare the 

predicted churn probabilities to the observed churn in the holdout data using the same 

performance measures as in the panel data world. 
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5.1 Creating the panel data world 

The difference between the cross-sectional world and the panel data world is that in the 

panel data world we observe the same customer in each period until the customer churns, while 

in the cross-sectional world the same customer need not be included in a cross-section even 

though it might still be an active customer. This implies that the cross-sectional world places less 

restrictions on the data required, as it does not require data from previous periods on the same 

customer. Instead, only a sample of customers pertaining to the period of model estimation is 

needed. Hence, in the cross-sectional world we can compare model performance when data from 

the past is unavailable, while the panel data world provides us with a situation of full past data 

availability.  

 To construct the panel data world, we selected 5000 customers that were active in 2004, 

and tracked their behavior until 2012. While this number might seem low compared to the 

sample sizes of the cross-sectional world (see Table 2), the HMM benchmark model of Ascarza 

and Hardie (2013) requires the computationally intensive estimation of individual-level 

heterogeneity. We therefore limit the amount of customers included to maintain computational 

feasibility. In Table 2 we provide the number of active customers and churn rate in each year. 

Another difference between the cross-sectional world and the panel data world is that we do not 

split the data in training and holdout samples (see Section 5.2). Instead, we estimate the model 

using data relevant to the period of estimation, and generate our churn predictions for the same 

customer in the years after the period of model estimation  

5.2 Creating the cross-sectional data world 

  Given the size of the full database model estimation using maximum likelihood 

becomes infeasible when using all observations (e.g. Reimer, Rutz and Pauwels 2014). We 
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therefore adopt a subsample approach (Musalem, Bradlow and Raju 2009), where we estimate 

the models on a subsample of the data. First, we create balanced training samples (50% churners, 

50% nonchurners) by randomly sampling 5,000 observations from the period of model 

estimation from our data. This implies that the same customer need not appear in multiple 

samples, even though the customer might still be active. We use balanced training samples 

because prior research shows that models calibrated on such samples perform more reliably than 

those calibrated on proportional samples without loss of efficiency (Donkers, Franses, and 

Verhoef 2003; Lemmens and Croux 2006). We use an equal number of observations per period 

to avoid between-period biases due to sample size variation, which might influence model 

reliability. An additional constraint in determining the number of observations to use is the 

limited total number of churners available in each period due to generally low churn rates. 

Second, we use the remaining observations to generate holdout samples with a churn rate equal 

to the full database for model validation. We use non-balanced holdout samples to simulate the 

firm practice of using churn models to obtain churn propensities for the entire customer database 

(i.e. where the churn rate is equal to that of the full data). As we already used part of the churner 

and non-churner observations to create training samples, we use the remaining churner 

observations complemented by a random sample of the remaining non-churners to create a 

holdout sample with a churn rate equal to that of the full data. This way, we avoid biases due to 

using the same observations in both the training and holdout sample. As shown in Table 2, this 

leads to varying holdout sample sizes due to the varying number of churners available after 

training sample construction combined with a churn rate that varies from year to year. 
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5.3 Benchmark Models 

In Table 1 we provide an overview of all the models included in this study, and the 

characteristics of each model included. A few things are of note. First, the HMM is the only 

model native to the panel data world. The other models emanate from the cross-sectional world. 

To estimate the cross-sectional models in the panel data world, we treat each panel wave as a 

seperate cross-section. Hence, these models, including the GMOK model, do not account for the 

specific structure of the panel data world, while the HMM does. Conversely, due to the lack of a 

panel structure the HMM model is not included in the cross-sectional world.  Second, only three 

models use in some way data from prior periods: the GMOK model, the dynamics only model (a 

restricted GMOK model, see below), and the HMM. Third, customer heterogeneity is only 

accounted for in three models: the GMOK model, the heterogeneity only model (a restricted 

GMOK model, see below), and the HMM. Finally, the feature of data aggregation, that achieves 

data anonymization and data minization, is a feature  that only the GMOK and dynamics only 

model have. In the remainder we provide more  information on each model, and the reason for its 

inclusion. 

Given its importance as a model with similar model traits, but without the characteristics 

of data minimization and data anonymization due to the required panel structure, we first 

benchmark against a version of the HMM developed by Ascarza and Hardie (2013). Because we 

need to observe several periods prior to the period of estimation to model transitions between 

states, we estimate this model only three times using data until 2009, 2010, and 2011 instead of 

generating predictions over the full data period as is done for the other models. Consequently, we 

only have churn predictions for up to three periods ahead for this model
4
. We compare these 

                                                           
4
 In our results section, we compare the HMM predictions to the other models where the predictions for the other 

models include all (hence, more) time periods for completeness and comparability to those of the cross-sectional 
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predictions with the observed churn behavior of these customers in later periods. The model 

itself is a modification of the binominal model discussed in the Web Appendix of Ascarza and 

Hardie (2013). We adapt this model to fit our application, as we do not have access to usage data 

as in the latter study (for details, see Web Appendix C). To determine the number of segments to 

select for this model, we use the log marginal density and deviance information criterion to select 

the best fitting model from models with two to four segments.  

As a second benchmark, we use two models that are known to provide good predictions 

of customer churn: logistic regression and classification trees with a bagging procedure
5
 

(Lemmens and Croux 2006; Neslin et al. 2006; Risselada, Verhoef, and Bijmolt 2010). As can be 

seen from Table 1, these cross-sectional models neither account for dynamics nor for 

heterogeneity. Due to their popularity and proven effectiveness we include them as simple 

benchmark models in both the cross-sectional world and the panel data world. For the logistic 

regression model, in the panel data world we treat each year as a cross-section, while in the 

cross-sectional world we estimate the model separately on each training sample. In both cases, 

we estimate various versions of the model where we consider all possible combinations of 

explanatory variables, and select the best fitting model in each year according to the Bayesian 

information criterion (BIC; Schwarz 1978). Similarly, for the classification tree in the panel data 

world we consider each year as a separate cross-section, while in the cross-sectional world we 

                                                                                                                                                                                           
world. In a separate analysis (reported in Web Appendix D) we also compare the HMM predictions to the other 
models, where the other models were estimated on the same data period (i.e. 2010-2012). The results are similar 
in terms of ordering of the models, but show fewer significant differences between models. See also footnotes 7 
and 8. 
5
 For these prior studies, the authors also considered classification trees without a bagging procedure. Their 

findings suggest that classification trees with a bagging algorithm provide superior predictive performance 
compared to those without a bagging procedure. We confirmed these findings using our dataset, but do not report 
them to keep the exposition clear by only reporting a limited number of benchmark models. Therefore, hereinafter 
“classification trees” refer to the case in which a bagging algorithm is applied to these classification trees. For 
logistic regression, bagging algorithms did not improve predictions (as was also found in these prior studies); thus, 
we only consider normal logistic regression here. 
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estimate the model separately on each training sample. In both cases we estimate models with a 

variety of explanatory variables, and use a splitting rule based on the Gini index of diversity. 

After that we select the model with the best fit  using cost-complexity pruning to avoid 

overfitting (Breiman et al. 1984). For the bagging procedure, we estimate the model on B 

bootstrap samples and average the predictions of these B models to obtain the final model 

prediction for that period.  To determine B, we follow previous work (Lemmens and Croux 

2006; Risselada, Verhoef, and Bijmolt 2010) and estimate our model for B = 50, B = 100 and B = 

150 to determine the value for which the holdout sample top-decile lift does not change. We find 

that in both worlds a large improvement occurs when moving from B = 50 to B = 100, but that no 

improvement occurs when moving from B = 100 to B = 150. Hence, we set B = 100, which is the 

same value as reported in previous studies. In addition, when generating predictions for the 

cross-sectional world we apply the correction of Lemmens and Croux (2006) to correct for the 

balanced training samples. 

In addition to these well-known models, we estimate two other benchmark models 

representing restricted versions of our proposed GMOK model: a model that only accounts for 

dynamics and one that only accounts for customer heterogeneity. By doing so, we can analyze 

the extent to which the introduction of dynamics or unobserved heterogeneity induces predictive 

performance improvements and determine whether accounting for one or the other would be 

sufficient. The model only accounting for dynamics is a one-segment version of the GMOK 

model, in which all the observations are pooled and no segments are assumed (i.e., the model 

described by Equations (1)–(3)). In both the panel data and cross-sectional world this model is 

estimated using data up to and including the year of model estimation, where for the panel data 

world we treat each year as a separate cross-section. By varying the number of variables included 
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in the model specification, and comparing these models using BIC, we select the model with the 

best fit. The model that only accounted for customer heterogeneity is a mixture model, estimated 

using the GLIMMIX algorithm (Wedel and Kamakura 1998). Similar to the logit and 

classification tree models, in the panel data world we treat each year as a separate cross-section, 

while this model is estimated separately for each cross-section in the cross-sectional world. 

When estimating this model, we varied the number of segments between two and six, and the 

variables included in the model. Based on BIC we select the model whose combination of 

variables and segments showed the best fit. Estimation of the GMOK model combines the above 

approaches: For both the panel data and cross-sectional worlds we estimate the models up to and 

including the data for the year of model estimation, where in the panel world each year is treated 

as a separate cross-section. Subsequently, we estimate the model for each time period using two 

to six segments per period and select the model for which the combination of variables and 

number of groups has the lowest BIC value.  

 

5.4 Model Performance Measures 

We use two common measures to assess model performance: top decile lift and Gini 

coefficient (e.g. Lemmens and Croux 2006; Neslin et al. 2006). The top decile lift is defined as 

the fraction of churners in the top decile divided by the fraction of churners in the whole set 

(Blattberg, Kim, and Neslin 2008, p. 318). We compute the Gini coefficient by dividing the area 

between the cumulative lift curve and the 45-degree line by the total area under the 45-degree 

line (Blattberg, Kim, and Neslin 2008, p. 319). We apply a bootstrap approach and estimate the 

model for each period on 50 bootstrap samples and then compute the top decile lift and Gini 

coefficient for each bootstrap sample. In so doing, we construct pointwise 95% bootstrap 
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confidence intervals for the top decile lift and Gini coefficient, which we use to test for 

significant differences among models. 

6. RESULTS  

6.1 Estimation Results of the GMOK Model 

Given our interest in the performance of the GMOK model compared with existing methods, we 

provide some additional background on the estimation results obtained from this model. 

According to BIC, a two-segment model was preferred to other models. Both segments contain 

churning customers as indicated by post-estimation comparison of segments. Thus, the results do 

not show a degenerate cluster solution but rather display two segments that show differences in 

churn behavior, as reflected through their estimated parameters, and the evolution thereof over 

time. To illustrate, Figure 2 presents the evolution of the (significant) parameters of two 

variables over time. For distance to insurance shop, the importance decreases steadily over time 

for segment 1 while remaining stable for segment 2. For segment 1, the variable age becomes a 

strong determinant of churn following the policy change in 2006, whereas this variable remains 

stable and unimportant for segment 2. In combination, these illustrations confirm the extent to 

which the GMOK model can account for differences over time and among segments. 
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Figure 2: Evolution of (Significant) Parameters over Time 

 

6.2 Variable inclusion across models 

Before providing the results on the performance measures, we first give some insight in the 

structure of the various models included. The model estimation procedures outlined in Section 

5.3 in combination with the bootstrap procedure outlined in Section 5.4 have as a consequence 

that while all variables serve as input to all models at each point in time, different variables are 

included in each model depending on the model type and the data sample used. To get some 

insight in the importance of each variable across models, we provide an overview of which 

variables are included in each model in Table 4. We provide these in relative terms, as the HMM 

model is less frequently estimated than the other models. We find that across models, the 

classification tree and dynamics only model include the most variables; the heterogeneity only 

model includes the least. The GMOK model and HMM model include mostly similar variables, 
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although the HMM excludes some variables more frequently than the GMOK model. Across 

models, variables related to relationship characteristics (relationship age, number of insurance 

shop visits) seem to be the most important variables influencing churn. 

Variable GMOK 

(%) 

HMM 

(%) 

Logistic 

Regression (%) 

Classification 

Tree (%) 

Dynamics 

Only (%) 

Heterogeneity 

Only (%) 

Age 36 100 69 91 71 0 

BSR Grouping 37 44 13 95 66 1 

Distance 

Insurance Shop 

36 92 12 100 58 0 

Education Level 35 52 14 86 64 0 

Family Without 

Kids 

36 12 34 71 62 0 

Income 36 48 100 79 64 0 

# Insurance Shop 

Visits 

36 72 23 98 60 88 

Prosperity Level 36 36 79 99 60 0 

Relationship Age 36 0 22 100 64 4 

Social Class 38 8 31 89 63 0 

Total # Models 450 200 450 450 450 450 

Table 4 Percentage of Models that Includes Variable 

 

6.3 Comparison of Model Predictions: Panel Data World 

We provide plots illustrating the performance of the GMOK model compared to the benchmark 

models in the panel data world. Our findings for the top decile lift can be found in Figure 3, the 

findings for the Gini coefficient are given in Figure 4. For ease of interpretation, we provide 

graphs showing the top decile lift and Gini coefficient averaged over period of prediction. In 

these graphs, the time period t denotes the period of model estimation (i.e the same observations 

that are used for model estimation are used to generate this prediction), and t + 1, t + 2, and so on 

refer to predictions using a model with parameters estimated at time t (i.e. they use the 

observations of the same customers in future periods, provided they have not churned before). 
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This way, we can compare all models on usage for churn forecasts both within period of model 

estimation (t) as well as in future periods (t + 1 and onwards). Hereby we represent the typical 

usage occasions of these models in practice. The error bars in these graphs indicate 95% 

bootstrap confidence intervals for the top  decile lift and Gini coefficient respectively. 

 In terms of top decile lift, we find that there is no significant difference between the 

GMOK model and the HMM save for period t + 3. Furthermore, both models show a better 

performance than the remaining benchmark models, which ranked by decreasing performance 

are the classification tree
6
, the logit model, the model with only dynamics and the model with 

only heterogeneity. For the Gini coefficient, we find that the model with only heterogeneity 

performs best. This model is followed by the GMOK model and the HMM model, which show 

small significant differences in performance.
7
 These models are then followed by the 

classification tree, logit model and the model with only dynamics  

At first glance, our results show a mixed performance of models across metrics. We find 

that the GMOK model performs best in terms of top decile lift, but that it is second to the 

heterogeneity only model in terms of Gini coefficient. However, this latter finding is degenerate 

as the heterogeneity only model does not succeed in separating churners from non-churners, but 

instead assumes everyone does not churn. While this leads to good performance in terms of Gini 

coefficient, performance in terms of top decile lift suffers, as illustrated by Figure 3. Compared 

to the heterogeneity only model, the GMOK model is able to accurately distinguish churners 

from non-churners due to the addition of dynamics to the model, as evidenced by the good 

performance on both top decile lift and Gini coefficient. Hence, we conclude that on both metrics 

                                                           
6
 Note that the classification tree shows a good performance in period t, which in this case is the in-sample (same 

obsevervations used for estimation and prediction) performance of the model. However, the predictive capabilities 
(period t +1 and onwards) of this model are worse than those of the GMOK model and the HMM. 
7
 The analysis in Web Appendix D shows that when compared over the same time period, the GMOK model, HMM 

and heterogeneity only model show non-significant performance differences.   
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the GMOK model is the best performing model compared to the heterogeneity only model. The 

average improvement with respect to the best performing benchmark exceeds 9% in terms of the 

top decile lift, and 10% in terms of Gini coefficient.  

 

Figure 3: Average Top Decile Lifts for Panel Data Models Estimated at Time t (95% 

Bootstrap Confidence Intervals, Insurance Data) 

 

We find that there is no significant difference in performance between the GMOK model 

and the HMM up to period t + 2
8
. Hence, the GMOK model is able to achieve similar 

performance compared to the HMM. This implies that in the situation where a full set of past 

data is available, the performance of our approach equals that of the HMM. The similarities in 

                                                           
8
 The significant difference  for period t + 3 is due to the single forecast we have for the HMM in this period, 

whereas we have multiple for the GMOK model. The analysis presented in Web Appendix D shows that when 
compared over the same time period, this difference becomes insignificant as well. In absolute sense, the HMM 
performs slightly better even. Additionally, there is no significance difference between GMOK/HMM and logistic 
regression in period t + 1. 
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performance can be attributed to the fact that the GMOK model captures the same underlying 

traits of the data generating process as the HMM model, albeit in a different fashion. 

Additionally, both the GMOK model and HMM outperform the simpler logit model and 

classification tree, illustrating the performance improvements that can be achieved by using these 

models over more traditional models. Given the absence of usage data for the HMM, we can 

interpret this result as a lower bound on its performance. The availability of such information 

could further improve HMM performance. However, given our interest in the case where past 

data is unavailable and the HMM cannot be estimated (i.e. the cross-sectional world), our interest 

does not lie in the question which of these two models performs best in absolute terms.   

Finally, we note that to identify churners, a model should account for both dynamics and 

heterogeneity, as reflected in the significantly higher top decile lifts of the GMOK model and 

HMM compared to models that account for part or neither of these traits. Accounting for either 

dynamics or heterogeneity alone is not sufficient and even leads to poorer predictions than those 

generated by the logit model and the classification tree. In terms of overall classification, as 

measured by the Gini coefficient, the GMOK model is significantly more effective than all 

benchmark models in most periods. Thus, accounting for dynamics and unobserved 

heterogeneity not only significantly increases a model’s capability to identify churners but also 

helps identify nonchurners, thereby increasing the overall model performance. 
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Figure 4: Average Gini Coefficients for Panel Data Models Estimated at Time t (95% 

Bootstrap Confidence Intervals, Insurance Data) 

 

6.4 Comparison of Model Predictions: Cross-Sectional World  

While the panel data world presents a scenario where full data from the past is available, the 

cross-sectional world presents the more interesting scenario where no past data is available. As 

such, the HMM model cannot be estimated, and we will compare the GMOK model to the 

remaining benchmarks to ascertain its performance. 

To compare the performance of GMOK model with the benchmark models in the cross-

sectional world, we provide plots of the out-of-sample metrics assessing predictive performance 

for all possible time periods. The results for the top decile lift are in Figure 5 and those for the 

Gini coefficient are in Figure 6. Note that in these graphs, the prediction at time t now constitutes 
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an out-of-sample fit as opposed to the panel data world, where this prediction is an in-sample fit. 

This emerges from the fact that in the cross-sectional world we use a separate holdout sample to 

generate predictions. In the panel data world, the same customers that were used for model 

estimation are used to generate the prediction at time t. For the other time periods in these 

graphs, interpretation remains the same as before. 

 In terms of top decile lift, the GMOK model performs significantly better than all other 

models, followed in order by the logit model, the classification tree, the model with only 

heterogeneity, and the model with only dynamics. In terms of the Gini coefficient, a significant 

difference between GMOK and the model with only heterogeneity exists until predictions for 

seven periods ahead, and both these models performed significantly better than the logit model, 

the classification tree, and the model with dynamics, in order. With respect to the best-

performing benchmark model, the average improvement exceeds 11% for the top decile lift, and 

the relative average improvement for the Gini coefficient exceeds 36%. Hence, we find that the 

GMOK model continues to outperform the logit model and classification tree, in a setting where 

these models have been traditionally developed and applied (e.g. Neslin et al. 2006; Lemmens 

and Croux 2006; Risselada, Verhoef and Bijmolt 2010). This further corroborates our findings of 

the panel data world, illustrating the performance improvements of the GMOK model over 

simpler benchmarks. 

We also note that the predictive performance as measured by both metrics decreases after 

t + 1 for most models, because predictions further in the future suffer from a greater amount of 

noise. In addition to aiming to predict further ahead, in this data set, we were also confronted 

with the policy change in 2006, which led to additional noise in long-term predictions. However, 

for the GMOK model, this decrease in predictive performance is much smaller, yielding more 
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stable predictions over time for both metrics. Thus, in the cross-sectional world we find evidence 

of the good staying of the GMOK model. In contrast, in the panel data world, we find that model 

staying power is lower (for top decile lift) or seems absent (for Gini coefficient). In addition, the 

size of top decile lift and Gini coefficient is also lower in the panel data world than in the cross-

sectional world we consider here. The reduced performance and staying power in the panel data 

world can both be attributed to the loss of information over time as more and more customers 

churn, leaving only older and more loyal customers in the panel. This reduces the heterogeneity 

in the sample, limiting the ability of the GMOK model to adapt to the data. In the cross-sectional 

world this limitation does not occur, as new customers can continuously be part of the estimation 

sample, increasing the heterogeneity in the data. Hence, using cross-sectional data for model 

estimation has advantages above and beyond those related to privacy, as performance of the 

GMOK model is increased compared to benchmarks 

 

Figure 5: Average Holdout Top Decile Lifts for Cross-Sectional Models Estimated at Time 

t (95% Bootstrap Confidence Intervals, Insurance Data) 
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Figure 6: Average Holdout Gini Coefficients for Cross-Sectional Models Estimated at Time 

t (95% Bootstrap Confidence Intervals, Insurance Data).  

 

To replicate our findings of the cross-sectional world in a different setting, we repeat our 

analysis on a second data set provided by a large European Internet service provider (ISP). These 

data cover three quarters from January–September 2006 and pertain to a specific Internet service. 

In this setting, a customer churns if he or she had a subscription to the Internet service at the 

beginning of the quarter but not at the end of the quarter. We use this second data set to validate 

our findings along two dimensions: time scale (quarterly vs. yearly) and industry (Internet vs. 

insurance). Our purpose is to provide more generalizable results about our model performance. 

 The churn rates in this data set are relatively stable over time: 1.8% for the first quarter, 

and 1.3%  for the second and third quarters (see Table 5). Table 6 provides more details on the 

variables in this data set. Note that due to a lack of an individual customer identifier, we are not 

able to estimate the HMM for this data set as we cannot create the required panel data set. We 
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can estimate our GMOK model however, as this model only requires repeated cross-sectional 

data without the need for the same customer to be present in multiple cross-sections.  

 

Period Sample 

Size 

Churn Percentage Training Sample Size Validation Sample Size 

Q1-2006 233,780 1.8 5,000 5,501 

Q2-2006 243,199 1.3 5,000 7,562 

Q3-2006 246,335 1.3 5,000 7,447 

Table 5: Total Sample Size, Churn Percentage, Training Sample Size and Validation 

Sample Size per Quarter for the ISP Data 

 

Variables ISP Data 

Sociodemographic Age, Household size, Moved house 

  

Socioeconomic # Cars, Education level, Income, Employment status 

  

Relationship 

characteristics 

Relation ship age firm, Relationship age ISP, Revenue fixed line 

 

 

Product details Carrier preselect, Connection speed, Fixed line subscription type, value 

added services 

  

Table 6: Available Variables for the ISP Data 

For this data set, the results for the top decile lift are in Figure 7 and those for the Gini 

coefficient are in Figure 8. We confirm our main finding that the GMOK model significantly 

outperforms the other models in terms of both top decile lift and Gini coefficient in the cross-

sectional world. The differences between the benchmark models are mostly small or 

insignificant. Compared with the best performing benchmark model for each metric, the 

improvements of the GMOK model exceed 20% for the top decile lift and 21% for the Gini 

coefficient. 
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 As in the case of the insurance data set, the predictive performance for periods after t + 1 

is much lower. However, the GMOK model appears less affected by increased noise than the 

benchmark models: we find that the GMOK model has a greater staying power than the 

benchmark models, similar to our finding in the insurance data set. If we compare the results of 

the insurance data set with those from the ISP data set, we conclude that the GMOK model 

performed better in both industry settings. In addition, our findings are invariant to time scale, as 

we found no difference between the quarterly level ISP data and yearly level insurance data. 

Finally, they are independent of the patterns of churn rates. 

 

Figure 7: Average Holdout Top Decile Lifts for Models Estimated at Time t (95% 

Bootstrap Confidence Intervals, ISP Data) 

 

Concluding, we find that in the panel data world where full past data is available the 

GMOK model performs equally well compared to the HMM, and both outperform the simpler 

benchmark models (notably the logistic regression and classification tree). This is achieved even 
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though the GMOK model was not specifically developed with panel data in mind and does not 

rely on storage of data from prior periods as the HMM does. When we consider the results of the 

cross-sectional world where data from the past is unavailable, we confirm the increased 

performance of the GMOK model compared to the simpler models in both the insurance industry 

and Internet service provider industry. In addition, when estimated on cross-sectional data, the 

GMOK model shows increased performance in top decile lift and Gini coefficient compared to 

the panel data world, and benefits from increased staying power. The latter finding implies that 

model performance deteriorates less quickly when the model is used for prolonged periods of 

time. 

 

Figure 8: Average Holdout Gini Coefficients for Models Estimated at Time t (95% 

Bootstrap Confidence Intervals, ISP data) 
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7. DISCUSSION 

Effective churn management plays an essential role in customer-centric firms. At the heart of 

many churn management programs lies the identification of customers with a high churn risk. 

Methods that use a probabilistic approach to identify such customers are widely used in practice, 

and their sophistication has increased significantly over the years. Most recently, Ascarza and 

Hardie (2013) show that using customer panel data to model the dynamic evolution of a 

customer base can greatly benefit churn predictions. However, in the face of legislative 

restrictions and public pressure to limit the storage of large amounts of customer data, firms 

actively limit the data they store, hampering their ability to perform advanced inference (e.g. 

Blatterg, Kim and Neslin 2008 p. 78; Wedel and Kannan 2016; Verhoef, Kooge and Walk 2016). 

In this article, we show that despite such data storage restrictions, churn prediction with the same 

accuracy as that of recently developed methods is still possible. In particular, we show that by 

applying a new method that captures the dynamics and unobserved customer heterogeneity of the 

underlying data generating process, improvements in churn predictions in excess of 9% are 

possible in comparison with existing methods (i.e. logistic regression and classification trees). 

This performance is similar to that of the HMM as proposed by Ascarza and Hardie (2013). Our 

GMOK model extends the logistic regression model with time-varying parameters to account for 

variation in model response parameters, and applies a mixture model approach to allow for 

different segments that show a different dynamic evolution of their response parameters. 

The GMOK model estimated on cross-sectional data (when past data is unavailable) also 

has the benefit of longer staying power. Whereas commonly used methods exhibit 20% average 

drops in predictive performance after being in use for two periods (Risselada, Verhoef, and 

Bijmolt 2010), this average decline is only 1-3% for the GMOK model. Thus, the same model 
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can be used for a longer period of time without reestimation, resulting in costs savings in terms 

of data preparation and model estimation. However, if the GMOK model is estimated using 

panel data (i.e. when past data is available) the benefits of additional staying power are absent, 

and churn predictions further into the future become less accurate. In contrast, the HMM seems 

to be very stable in the panel data world, indicating a potential improved staying power of this 

model. Such an improvement could arise from the explicit incorporation of the panel structure of 

the data this model has. However, due to the limited amount of periods available for this model, 

we cannot investigate the long-term staying power of this model. 

Additionally, we empirically establish that a model that  accounts for either dynamics or 

unobserved heterogeneity, but not both (i.e. the restricted GMOK models in this study), does not 

perform better than the benchmark models. Hence, it is important that both effects be considered 

simultaneously for churn predictions to improve. This finding holds for models estimated on 

panel data as well as models estimated on cross-sectional data. Prior work in a different setting 

has empirically established similar results (e.g., Zhao, Zhao, and Song 2009). We attribute these 

findings to the following: As we have observed, accounting for dynamics only is not sufficient; 

heterogeneity is present in the data, according to a comparison of the parameter estimates of the 

GMOK model for different segments. These estimates differ in both size and sign for many 

variables (see also Figure 2). Accounting for heterogeneity only is also insufficient; prior 

research has shown that parameter estimates are not stable over time and that accounting for 

dynamics is necessary (Risselada, Verhoef, and Bijmolt 2010), as we confirm here. Combined, 

these results seem to confirm prior findings that accounting for both dynamics and unobserved 

heterogeneity is a necessary requirement for models to deliver improved performance.  
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Our results also show that the GMOK model provides equal predictive performance to 

Ascarza and Hardie’s (2013) approach. We attribute these findings to the combination of 

dynamics and unobserved heterogeneity both models have in common. Indeed, HMMs as 

applied by Ascarza and Hardie (2013) are a special case of the general state-space model on 

which our method is based. The difference between our model and HMMs is that HMMs have a 

discretized rather than continuous state space (Roweis and Ghahramani, 1999). Both models 

show better performance than commonly used logit and classification tree models, illustrating 

the value of models that account for multiple sources of dynamics and heterogeneity. 

Concluding, we find that privacy conservation does not need to come at the cost of analytical 

capabilities, as indicated by the equal performance of the GMOK model and the HMM when 

applied under the same circumstances (i.e. the panel data world), and the improved performance 

of the GMOK model when past data is unavailable (i.e. the cross-sectional world). 

 

8. LIMITATIONS AND FURTHER RESEARCH 

 Our research has some limitations that could not be addressed within the scope of this 

study. First, although we used data from two different industries in which customer churn is a 

common phenomenon, extensions to other industries would be helpful to confirm and generalize 

our findings. In addition, our second data set from the telecommunications industry did not 

contain as many time periods as the insurance data set. Although we established the superior 

performance of our approach to simpler models even with this limitation, a data set with a longer 

time horizon could further strengthen this evidence. 
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 Second, careful consideration of variables to include in a model is always important, 

especially so for our proposed approach. In our applications, we had a full set of relevant 

variables for each period, but in practice, missing data and the consideration of new variables for 

inclusion are common. Missing data for included variables can be addressed easily in the state-

space setting of our approach by not performing the correction step in the Kalman filter (see Web 

Appendix A) for customers with missing data. However, adding new variables would require 

model reestimation rather than model updating. As our model requires a consistent model 

structure over the periods the model is used, adding new variables would necessitate model 

redevelopment. This scenario places more pressure on variable selection processes, to ensure the 

model offers the best long-term performance. Therefore, we consider this determination a 

promising topic for further research. 

Whenever marketing responses are modeled without knowledge of the exact firm 

decision process regarding marketing actions, this lack of information can lead to endogeneity 

issues if marketing variables are included in the model (Rossi, 2014). This type of endogeneity 

should not be of concern here as we use non-marketing variables as explanatory variables in our 

models. However, there is the notion that depending on the explanatory variables used to 

generate churn propensities, the importance of these variables changes for subsequent model 

applications due to their usage in directing retention efforts (Boulding et al. 2005; Verhoef, 

Kooge and Walk 2016 p. 189). In particular, a variable could become more important over time 

as the firm uses this variable to target customers with higher churn propensities, or be of reduced 

importance if the firm is succesfull in lowering the churn propensity of customers that fullfil the 

variable criterion. To investigate whether this is the case, we analyzed the variables included in 

the logistic regression model from the panel data world. In Table 7 we present the number of 
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models (out of 50 bootstrap iterations) in which a certain variable was included. We use the 

logistic regression results, because this is the model used by the insurance firm to compute churn 

propensities. While we do find some changing variable importance across time, as indicated by a 

variables` inclusion in a model, this changing importance seems to be centered around 2006, the 

year of the health care policy change. Hence, there seems to be no evidence of endogeneity due 

to firm actions, but there is evidence of an exogeneous shock that drives variable importance. As 

Figure 2 illustrates, the GMOK model can deal with this shock quite effectively due to the 

inclusion of time-varying parameters. Other cross-sectional models (i.e. logistic regression, 

classification tree) are also robust to this shock if re-estimated. As 2006 is included in every 

HMM model estimated, this model also should be robust to the shock as the information is 

included in the model. Hence, there appears to be no evidence of strong endogeneity issues in 

relation to all considered models, and our considered models appear to be robust to the 

exogeneous shock in 2006 as well. Even if unaccounted for endogeneity remains, given the 

similar (regression-based) structure of our models, it should affect all our models in a similar 

fashion, and our results remain valid as we compare models in relative sense. Moreover, given 

the predictive focus of our methods, accounting for endogeneity could negatively affect model 

performance on the predictive metrics we use (Ebbes, Papies and Van Heerde 2011). 

Concluding, while we find no strong indications of endogeneity, even in the case of unaccounted 

for endogeneity our results remain valid. 

 Finally, when developing the model it also important to correctly determine the model 

structure in addition to selecting the right variables. For example, the number of segments is 

fixed over time in our approach, making the determination of this number an important decision. 

This selection can easily be done by estimating the model for multiple segments, and selecting 
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the model with lowest BIC. When data from prior periods is available (for example because they 

have not been discarded yet), this information can be incorporated as well to improve model fit, 

provided this in line with government legislation and firm policy. As an extension of our 

approach, further research could investigate how to dynamically adapt the number of segments, 

for example by applying the the fully Bayesian reversible jump Markov chain Monte Carlo 

approach of Bruce, Peters and Naik (2012).  

 

Variable 2004 2005 2006 2007 2008 2009 2010 2011 2012 

Age 32 15 0 46 23 50 50 50 42 

BSR Grouping 12 0 10 0 1 14 1 19 3 

Distance Insurance Shop 0 2 0 13 5 6 18 5 4 

Education Level 16 0 11 0 0 2 0 3 0 

Family Without Kids 0 0 50 0 1 1 0 50 50 

Income 0 0 1 0 0 0 0 0 0 

# Insurance Shop Visits 3 0 45 0 0 32 24 1 0 

Prosperity Level 0 0 47 0 0 0 0 0 0 

Relationship Age 31 32 13 4 1 13 0 0 3 

Social Class 3 0 40 0 0 0 0 0 0 

Total # Models 50 50 50 50 50 50 50 50 50 

Table 7: Number of Logistic Regression Models that Include Variable (Per Year) 
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Appendix A: Recursions for the Modified Kalman filter 

We provide the Kalman filter recursions we used to estimate the state-space model here. Recall 

that the state equation for individual i is 𝜋𝑖𝑡 = 𝑃(𝑦𝑖𝑡 = 1) = exp(𝑋𝑖𝑡𝛽𝑡) /(1 + exp (𝑋𝑖𝑡𝛽𝑡)) , and 

the transition equation 𝛽𝑡 = 𝐹𝑡𝛽𝑡−1 + 𝜁𝑡, where 𝜁𝑡~𝑁(0, 𝑄𝑡). We implicitly assumed that 𝐹𝑡 = 𝐼𝑡 

previously, but we generalize this assumption here. Furthermore, we assume in general that 

𝐸(𝑌𝑖𝑡|𝛽𝑡) = 𝜇𝑖𝑡 = 𝑔(𝜂𝑖𝑡), where 𝜂𝑖𝑡 = 𝑋𝑖𝑡𝛽𝑡 and 𝑔(∙) is a known link function. This function is 

the logistic function in the case we consider in the article. The two relaxations serve to give a 

general overview of the recursions. We aim to obtain estimates for 𝛽𝑡 for t = 1, …, T, given 

values for 𝑄𝑡  for t = 1,…, T, 𝛽0 and 𝑄0. To obtain these estimates, Fahrmeir and Tutz (1994) 

suggest the following set of recursions: 

Initialization:    𝛽0|0 = 𝛽0, 𝑉0|0 = 𝑄0 

Prediction step : For t = 1,…,T: 𝛽𝑡|𝑡−1 = 𝐹𝑡𝛽𝑡−1|𝑡−1;  𝑉𝑡|𝑡−1 = 𝐹𝑡𝑉𝑡−1𝐹𝑡
′ + 𝑄𝑡 

Correction step:    𝛽0,𝑡 = 𝛽𝑡|𝑡−1; 𝑉0,𝑡 = 𝑉𝑡|𝑡−1 

For i = 1, …, n:   𝛽𝑖,𝑡 = 𝛽𝑖−1,𝑡 + 𝐾𝑖𝑡(𝑌𝑖𝑡 − 𝜇𝑖𝑡) 

     𝑉𝑖𝑡 = (𝐼 − 𝐾𝑖𝑡𝐷𝑖𝑡
′ 𝑋𝑖𝑡)𝑉𝑖−1,𝑡 

Kalman gain:               𝐾𝑖𝑡 = 𝑉𝑖−1,𝑡𝑋𝑖𝑡
′ 𝐷𝑖𝑡[𝐷𝑖𝑡

′ 𝑋𝑖𝑡𝑉𝑖−1,𝑡𝑋𝑖𝑡
′ 𝐷𝑖𝑡 + Σ𝑖𝑡]

−1
 

Here, 𝐷𝑖𝑡 = 𝛿𝑔/𝛿𝜂𝑖𝑡, and 𝜇𝑖𝑡, Σ𝑖𝑡, and 𝐷𝑖𝑡 are evaluated at 𝛽𝑖−1,𝑡. The final estimates are the 

parameter vector 𝛽𝑡|𝑡  and its corresponding covariance matrix 𝑉𝑡|𝑡. For the case of logistic 

regression, these quantities read as follows: 𝜇𝑖𝑡 = 𝑔(𝜂𝑖𝑡) = exp(𝜂𝑖𝑡) /(1 + exp (𝜂𝑖𝑡)), 𝐷𝑖𝑡 =

exp(𝜂𝑖𝑡) /(1 + exp(𝜂𝑖𝑡))2 and Σ𝑖𝑡 = 𝜇𝑖𝑡(1 − 𝜇𝑖𝑡). To obtain the initial values required (𝑏𝑜, 𝑄𝑜, 

and 𝑄𝑡), we used maximum likelihood estimation in an iterative algorithm, inspired by Fahrmeir 

and Wagenpfeil (1995) to obtain the values given the data. 
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Appendix B: Derivation of Likelihoods for the Regular State Space and GMOK 

Models 

For the model without unobserved heterogeneity, we derive the full posterior log-likelihood that 

the Kalman filter is aimed to maximize. Next, we adapt this likelihood further when we add 

unobserved heterogeneity to the model through a mixture model approach (Wedel and 

Kamakura, 1998). 

The following derivation is adapted from Fahrmeir and Tutz (1994): For customer i, let 

𝑦𝑡 = (𝑦1𝑡, … , 𝑦𝑛𝑡) and 𝑋𝑡 = (𝑋1𝑡, … , 𝑋𝑛𝑡) represent all individual observations for period t = 1, 

…, T, and then let 𝑦𝑡
∗ = (𝑦1, … , 𝑦𝑡) and 𝑋𝑡

∗ = (𝑋1, … , 𝑋𝑡) denote the observations until time t.
9
 

Consider the estimation of 𝛽𝑇
∗ = (𝛽0, … , 𝛽𝑇), where we assume the hyperparameters 𝑏0 and 𝑄0, 

and the covariance matrices 𝑄𝑡 to be given. Repeated application of Bayes’s theorem yields the 

following expression for the posterior distribution of the state vector (Fahrmeir and Tutz 1994): 

(𝐵. 1)  𝑝(𝛽𝑇
∗ |𝑦𝑇

∗ , 𝑋𝑇
∗ ) ∝

∏ 𝑝(𝑦𝑡|𝛽𝑡
∗, 𝑦𝑡−1

∗ , 𝑋𝑡
∗) ∏ 𝑝(𝛽𝑡|𝛽𝑡−1

∗ , 𝑦𝑡−1
∗ , 𝑋𝑡

∗)𝑇
𝑡=1 ∏ 𝑝(𝑋𝑡|𝛽𝑡−1

∗ , 𝑦𝑡−1
∗ , 𝑋𝑡−1

∗ )𝑇
𝑡=1

𝑇
𝑡=1 , 

where 𝑝(∙) denotes a (conditional) density function. Next, we make the following (weak) 

conditional independence assumptions: 

1. Conditional on 𝛽𝑡, 𝑦𝑡−1
∗  and 𝑋𝑡

∗, current observations yt are independent of 𝛽𝑡
∗; that is, 

(𝐵. 2) 𝑝(𝑦𝑡|𝛽𝑡
∗, 𝑦𝑡−1

∗ , 𝑋𝑡
∗) = 𝑝(𝑦𝑡|𝛽𝑡, 𝑦𝑡−1

∗ , 𝑋𝑡
∗). 

2. Conditional on 𝑦𝑡−1
∗  and 𝑋𝑡−1

∗ , 𝑋𝑡 is independent of 𝛽𝑡−1
∗ ; that is, 

(𝐵. 3) 𝑝(𝑋𝑡|𝛽𝑡−1
∗ , 𝑦𝑡−1

∗ , 𝑋𝑡−1
∗ ) = 𝑝(𝑋𝑡|𝑦𝑡−1

∗ , 𝑋𝑡−1
∗ ). 

                                                           
9
 We suppress i in this first part for notational convenience 
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3. Conditional on 𝛽𝑡 and 𝑦𝑡−1
∗ ,with 𝑋𝑡

∗, the individual observation 𝑦𝑖𝑡 within 𝑦𝑡 are 

conditionally independent; that is, 

(𝐵. 4) 𝑝(𝑦𝑡|𝛽𝑡, 𝑦𝑡−1
∗ , 𝑋𝑡

∗) =  ∏ 𝑝(𝑦𝑖𝑡|𝛽𝑡, 𝑦𝑡−1
∗ , 𝑋𝑡

∗ )𝑛
𝑖=1 . 

4. The parameter process is Markovian; that is, 

(𝐵. 5) 𝑝(𝛽𝑡|𝛽𝑡−1
∗ , 𝑦𝑡−1

∗ , 𝑋𝑡
∗) = 𝑝(𝛽𝑡|𝛽𝑡−1). 

With these assumptions, we can write Equation (B.1) as  

(𝐵. 6)  𝑝(𝛽𝑇
∗ |𝑦𝑇

∗ , 𝑋𝑇
∗ )  ∝ ∏ ∏ 𝑝(𝑦𝑖𝑡|𝛽𝑡, 𝑦𝑡−1

∗ , 𝑋𝑡
∗ ) ∏ 𝑝(𝛽𝑡|𝛽𝑡−1)𝑝(𝛽0)𝑇

𝑡=1
𝑛
𝑖=1

𝑇
𝑡=1 . 

When we take the logarithms and write out the conditional distributions, the maximization of this 

conditional density is equal to maximizing the (penalized) log-likelihood: 

(𝐵. 7) ℓ(𝛽𝑇) = ∑ ∑ 𝑙𝑖𝑘(𝛽𝑘|𝑦𝑖𝑘, 𝑋𝑖𝑡) −
1

2

𝑛

𝑖=1

𝑇

𝑘=1

(𝛽0 − 𝑏0)′𝑄0
−1(𝛽0 − 𝑏0)

−
1

2
∑(𝛽𝑘 − 𝛽𝑘−1)′𝑄𝑘

−1

𝑇

𝑘=1

(𝛽𝑘 − 𝛽𝑘−1) , 

where lik is the logistic log-likelihood contribution of individual i, and b0 and Q0 are the initial 

values for the Kalman filter. When we estimate the model at a time t, given information known 

up until that point, we evaluate the log-likelihood 

(𝐵. 8) ℓ(𝛽𝑡
∗) = ∑ ∑ 𝑙𝑖𝑘(𝛽𝑘

∗|𝑦𝑖𝑘
∗ , 𝑋𝑖𝑘

∗ ) −
1

2

𝑛

𝑖=1

𝑡−1

𝑘=1

(𝛽0 − 𝑏0)′𝑄0
−1(𝛽0 − 𝑏0)

−
1

2
∑(𝛽𝑘 − 𝛽𝑘−1)′(𝑄𝑘)−1

𝑡−1

𝑘=1

(𝛽𝑘 − 𝛽𝑘−1) + 𝑙𝑖𝑘(𝛽𝑘|𝑦𝑖𝑘, 𝑋𝑖𝑘)

−
1

2
(𝛽𝑡 − 𝛽𝑡−1)′𝑄𝑡

−1(𝛽𝑡 − 𝛽𝑡−1), 
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Likelihood for the GMOK model 

To formulate the likelihood for the GMOK model, we introduce the latent, unobserved indicator 

variable
 𝑧𝑖𝑡

𝑗
, which indicates the membership of customer i to cluster j at time t. Calabrese and 

Paninski (2011) derive an EM algorithm to estimate a mixture of Kalman filters model with 𝑧𝑖𝑡
𝑗

 

as missing data for the case in which the 𝑦𝑖𝑡 are generated by a normal distribution. To arrive at 

the likelihood for the GMOK model, we take the likelihood derived by Calabrese and Paninski 

(2011) and combine it with the likelihood from Equation (B.6). To maximize this likelihood we 

then derive an EM algorithm following the work of these authors. The modified likelihood of 

Equation (B.6) is given as
10

 : 

(𝐵. 9) 𝑝(𝛽𝑇
∗|𝑦𝑇

∗ , 𝑋𝑇
∗ , 𝑧𝑖𝑡

𝑗
) ∝ ∏ ∏ 𝑝(𝑦𝑖𝑘, 𝑧𝑖𝑘

𝑗
|𝛽𝑘, 𝑦𝑘−1

∗ , 𝑋𝑘
∗ ) ∏ 𝑝(𝛽𝑘|𝛽𝑘−1)𝑝(𝛽0)

𝑇

𝑘=1

𝑛

𝑖=1

𝑇

𝑘=1

 

   ∝ ∏ 𝑝(𝑧𝑖𝑘
𝑗

|𝑘) ∏ ∏ 𝑝(𝑦𝑖𝑘|𝛽𝑘, 𝑦𝑘−1
∗ , 𝑋𝑘

∗  ) ∏ 𝑝(𝛽𝑘|𝛽𝑘−1)𝑝(𝛽0)

𝑇

𝑘=1

𝑛

𝑖=1

𝑇

𝑘=1

𝑇

𝑘=1

 

If we assume that 𝑝(𝑧𝑖𝑡
𝑗

|𝛽𝑡) = 𝜆𝑡
𝑗
, where 𝜆𝑡

𝑗
 represents a mixture weight, such that ∑  𝜆𝑡

𝑗
=  1𝑗  for 

each time period and each
 𝜆𝑡

𝑗
 ≥  0, after taking logarithms and expectations we arrive at 

(𝐵. 10) 𝐸[𝑙(𝛽𝑡
𝑗∗

)]

= ∑ ∑ (𝑝𝑘
𝑗∗

[log(𝜆𝑘
𝑗

 ) − ∑ 𝑙𝑖𝑘(𝛽𝑘
𝑗∗

|𝑦𝑖𝑘
∗ , 𝑋𝑖𝑘

∗ )

𝑛

𝑖=1

])

𝑡−1

𝑘=1

𝐽

𝑗=1

−
1

2
∑ [(𝛽0

𝑗
− 𝑏0

𝑗
)′(𝑄0

𝑗
)

−1
(𝛽0

𝑗
− 𝑏0

𝑗
) ]

𝐽

𝑗=1

−
1

2
∑ ∑ [(𝛽𝑘

𝑗
− 𝛽𝑘−1

𝑗
)

′
(𝑄𝑘

𝑗
)

−1
(𝛽𝑘

𝑗
− 𝛽𝑘−1

𝑗
)]

𝑡−1

𝑘=1

𝐽

𝑗=1

+ ∑ 𝑝𝑡
𝑗

𝐽

𝑗=1

[log(𝜆𝑡
𝑗
) − ∑ 𝑙𝑖𝑡(𝛽𝑡

𝑗
|𝑦𝑖𝑡 , 𝑋𝑖𝑡)

𝑛

𝑖=1

] −
1

2
∑ [(𝛽𝑡

𝑗
− 𝛽𝑡−1

𝑗
)

′
(𝑄𝑡

𝑗
)

−1
(𝛽𝑡

𝑗
− 𝛽𝑡−1

𝑗
)]

𝐽

𝑗=1

 

                                                           
10

 Calabrese and Paninski (2011), and the references therein, offer a full derivation of this log-likelihood. 
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where 

(𝐵. 11)   𝑝𝑡
𝑗

=
exp[log(𝜆𝑡

𝑗
) + ∑ 𝑙𝑖𝑡(𝛽𝑡

𝑗
)𝑛

𝑖=1 ] 

∑ exp [log(𝜆𝑡
𝑗
) + ∑ 𝑙𝑖𝑡(𝛽𝑡

𝑗
)𝑛

𝑖=1 ]𝐽
𝑗=1

 , 

𝛽𝑡
𝑗∗

=  (𝛽0
𝑗
, … , 𝛽𝑡

𝑗
)  for j = 1, …, J and Equation (B.11) is evaluated using current values of the 

parameters. The M-step of the algorithm requires the maximization of Equation (B.10), which is 

simplified because the cross-derivatives are zero, so we can maximize the two parts of Equation 

B.10 separately. Maximizing the first part of the likelihood requires maximizing  

(𝐵. 12)    ∑ ∑  𝑝𝑘
𝑗

𝑇

𝑘=1

log( 𝜆𝑘
𝑗

) ,

𝐽

𝑗=1

 

subject to the constraints on 𝜆𝑡
𝑗
. This yields 

(𝐵. 13)     𝜆𝑡
𝑗
 ̂ =  

∑ 𝑝𝑘
𝑗𝑇

𝑘=1

𝑇
 , 

which is similar to the mixture model case (Wedel and Kamakura 1998). The remainder of this 

likelihood is similar to Equation (B.7), multiplied by 𝑝𝑘
𝑗
. Thus, we can apply the Kalman filter of 

Fahrmeir and Tutz (1994) to maximize this likelihood, provided we include 𝑝𝑘
𝑗
as additional 

weight in the Kalman gain part of the filter. The Kalman gain, as given in Web Appendix A, in 

that case reads  

(𝐵. 14)  𝐾𝑖𝑡 = 𝑉𝑖−1,𝑡𝑋𝑖𝑡
′ 𝐷𝑖𝑡[𝐷𝑖𝑡

′ 𝑋𝑖𝑡𝑉𝑖−1,𝑡𝑋′
𝑖𝑡𝐷𝑖𝑡 + 𝑝𝑡

𝑗
Σ𝑖𝑡]

−1
  

for the filter applied to a given segment j. By iterating over these E- and M-steps, we obtain the 

final estimates of all parameters for all groups and use these estimates for our predictions.  
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Appendix C: Modification of the HMM of Ascarza and Hardie (2013) 

In part D of their Web Appendix, Ascarza and Hardie (2013) derive a variant of their hidden 

Markov model for usage and churn in which usage is modeled using a binominal model instead 

of a Poisson model. Inspired by this change of state-dependent usage process, we modified the 

model using a Bernoulli state-dependent equation to model churn. Because we do not observe 

usage, we can only model churn given membership of a certain segment on the basis of the 

binary decision of each customer that we observe each year. Thus, we chose to model the 

individual-specific churn probability 𝑝𝑖𝑡 at time t  using a Bernoulli model, given the same 

unobserved commitment process outlined in Ascarza and Hardie (2013). We therefore only 

outline the changes we made with respect to their model, following the notation used in their 

article. For more background information, we refer to their article. 

 In the HMM, observed behavior is modeled conditional on a latent, unobserved state, 

which is time varying. Let 𝑆𝑖𝑡 denote this state process. Given a certain state k, a customer i has a 

probability to churn 𝑝𝑖𝑡. We let this churn probability depend on segment specific and an 

individual specific component. Specifically, we assume that 

𝑝𝑖𝑡|[𝑆𝑖𝑡 = 𝑘] = 𝜃𝑘
Λ−1(𝛽0𝑖)

 . 

This churn probability consists of two parts: a segment-specific part, indexed by k, and an 

individual-specific part, indexed by i. We let 𝜃𝑘denote the segment-specific commitment level, 

with the restriction that 0 < 𝜃𝑘 < 1for all k and that 0 < 𝜃1 <  𝜃2 < ⋯ < 𝜃𝐾 < 1 ; that is, 𝜃𝑘is 

increasing with the commitment level. This specification is similar to that of Ascarza and Hardie 

(2013), with the exception that we do not assume an  individual-specific movement process 

through these states. Instead, we assume  the same transition matrix across customers, which is 
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identified through the variation in churn propensity across all customers (e.g. Zucchini and 

MacDonald 2009). We exponentiate this commitment level with an individual-specific parameter 

𝛽0𝑖 following a lognormal distribution with mean 𝛽𝑋𝑖 and standard deviation 𝜎𝑏0to allow for 

individual specific effects. The variables 𝑋𝑖 represent the characteristics of customer i a the time 

of model estimation
11

, and help with the identification of the individual specific effect (see also 

Datta, Foubert and Van Heerde 2015). By including this term as an exponent and by applying an 

inverse logistic transformation Λ−1, we ensure that 𝑝𝑖𝑡 remains interpretable as a probability. The 

likelihood for the model then becomes, in the notation of Ascarza and Hardie (2013), 

𝐿𝑖(𝜃, 𝛽0𝑖, 𝛽𝑘|𝑆𝑖 = 𝑘, 𝑑𝑎𝑡𝑎) = ∏ (𝜃𝑘
Λ−1 (𝛽0𝑖)𝑦𝑖𝑡 

𝑇𝑖
𝑡=𝑖 (1 − 𝜃𝑘

Λ−1 (𝛽0𝑖)1−𝑦𝑖𝑡, 

where 𝑦𝑖𝑡 is the binary indicator indicated previously.  

 

 

 

 

 

 

 

 

                                                           
11

 As the variables are varying over time, we use the observations at the time of model estimation to fix them at a 
customer-specific value. Alternatively, the mean or mode across all time periods could be used. 
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Appendix D: Panel World Models for the Period 2010-2012 

To compare the models on similar samples, we also present the results for all models estimated 

using data from 2010-2012 only. Figure D.1 and D.2 show that in terms of top decile lift, there is 

no significant difference between the GMOK model and the HMM in all periods but period t, 

whereas the main results show no significant differences until after period t + 2. This implies that 

the HMM has similar predictive power compared to the GMOK model.  Second, the logistic 

regression model does not perform significantly worse in period t +1 as shown in the main 

results, but does so only after this period. Figure D.3 shows that in terms of Gini coefficient, the 

GMOK model, HMM and heterogeneity only model do not differ significantly in any period, 

indicating a worse performance of the heterogeneity only model compared to the main results. 

Figure D.1: Average Top Decile Lifts for Panel Data Models Estimated at Time t (95% 

Bootstrap Confidence Intervals, Insurance Data) 
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Figure D.2: Blowout of Figure D.1. for Top Decile Lifts Between 0 and 5 

 

Figure D.3: Average Gini Coefficients for Panel Data Models Estimated at Time t (95% 

Bootstrap Confidence Intervals, Insurance Data) 
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