

 University of Groningen

On how often code is cloned across repositories
Schwarz, Niko; Lungu, Mircea; Robbes, Romain

Published in:
Proceedings of the 2012 International Conference on Software Engineering

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Final author's version (accepted by publisher, after peer review)

Publication date:
2012

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Schwarz, N., Lungu, M., & Robbes, R. (2012). On how often code is cloned across repositories. In
Proceedings of the 2012 International Conference on Software Engineering (pp. 1289-1292). (ICSE 2012).
IEEE (The Institute of Electrical and Electronics Engineers).

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license.
More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-
amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 11-12-2022

https://research.rug.nl/en/publications/217f22ec-e191-4f64-9160-dcab5f4ad3f2

Incremental Dynamic Updates
with First-class Contexts

Erwann Wernli, Mircea Lungu, and Oscar Nierstrasz

Software Composition Group
University of Bern, Switzerland

http://scg.unibe.ch

Abstract. Highly available software systems occasionally need to be up-
dated while avoiding downtime. Dynamic software updates reduce down-
time, but still require the system to reach a quiescent state in which a
global update can be performed. This can be difficult for multi-threaded
systems. We present a novel approach to dynamic updates using first-
class contexts, called Theseus. First-class contexts make global updates
unnecessary: existing threads run to termination in an old context, while
new threads start in a new, updated context; consistency between con-
texts is ensured with the help of bidirectional transformations. We show
how first-class contexts offer a practical and flexible approach to incre-
mental dynamic updates, with acceptable overhead.

Keywords: dynamic language; dynamic software update; reflection

1 Introduction

Real software systems must be regularly updated to keep up with changing
requirements. Downtime may not be tolerable for highly available systems, which
must then be updated dynamically, e.g., web servers. The key challenge for
dynamically updating such systems is to ensure consistency and correctness while
maximizing availability.

The most popular scheme for dynamic updates is to interrupt the applica-
tion to perform a global update of both the code and the state of the program
[19,26,25]. Such updates are inherently unsafe if performed at an arbitrary point
in time: running threads might run both old and new code in an incoherent
manner while old methods on the stack might presume type signatures that are
no longer valid, possibly leading to run-time type errors. Quiescent global up-
date points must be selected to ensure safe updates, but such points may be
difficult to reach for multi-threaded systems [18,26]. More generally, a global
update might not be possible due to the nature of the change, for example it
would fail to update anonymous connections to an FTP server that mandates
authentication after the update: the missing information cannot be provided a
posteriori [19].

Instead of global updates, we propose incremental updates. During an incre-
mental update, clients might see different versions of the system until the update

http://scg.unibe.ch

2 E. Wernli, M. Lungu, O. Nierstrasz

eventually completes. Each version is represented by a first-class context, which
can be manipulated reflectively and enables the update scheme to be tailored
to the nature of the application. For instance, the update of a web application
can be rolled out on a per-thread, or per-session basis. In the latter case, vis-
itors always see a consistent version of the application. Such a scheme would
not be possible with a global update: one would need to wait until all existing
sessions have expired before starting new ones. The overall consistency of the
data is maintained by running bidirectional transformations to synchronize the
representations of objects shared across contexts. We show that the number of
such shared objects is significantly smaller than the number of objects local to
a context, and that this strategy fits well with the nature of the event-based
systems we are interested in.

We introduced first-class contexts in a previous workshop paper [27], but this
original proof-of-concept suffered from several practical limitations. In contrast
to our earlier work, we support now class versioning, garbage collection and lazy
transformations, and we rely on program transformations rather than changes to
the virtual machine. Bidirectional transformations have been used to cope with
version mismatches in other settings (namely C systems [4], databases [5], and
type theory [7]). However, neither of these approaches modeled context explicitly,
nor did they tackle object-oriented systems in their full complexity, taking into
consideration type safety, performance, concurrency and garbage collection. The
main contribution of this paper is to demonstrate that first-class contexts offer
a practical means to dynamically update software.

First, we present our Theseus approach informally with the help of a running
example in section 2. We present our model in detail in section 3 and our imple-
mentation in section 4. We validate our approach in section 5 and demonstrate
that it is practical. We put our approach into perspective in section 6 and we
compare it with related work in section 7 before we conclude in section 8.

2 Running example

To illustrate our approach let us consider the implementation of one of several
available Smalltalk web servers1. Its architecture is simple; a web server listens
to a port, and dispatches requests to so-called services that accept requests and
produce responses. For the sake of our running example, let us assume that
the server keeps count of the total number of requests that have been served.
Figure 1 illustrates the relevant classes.

2.1 The problem with updates

Let us consider the evolution of the Response API, which introduces chunked
data transfer2, also depicted in Figure 1. Assume that instead of sending “Hello

1 See http://www.squeaksource.com/WebClient.html (The name is misleading since
the project contains both an HTTP client and server)

2 See version 75 of the project.

http://www.squeaksource.com/WebClient.html

Incremental Dynamic Updates with First-class Contexts 3

handle(req:Request)
HelloWorldService

Response resp :=
req.getResponse();
resp.send(200, "HelloWorld");

send(code,html)
Response start(code)

sendChunk(html)
close()

Response
Response resp :=
req.getResponse();
resp.start(200);
resp.sendChunk("Hello ");
resp.sendChunk("World");
resp.close();

handle(req:Request)
HelloWorldService

start()
stop()

port
numRequests
services

WebServer

handle(req:Request)
server

AbstractService

version 1 version 2

Fig. 1: Design of the web server and a simple behavioral update

World” over the wire we need to produce a sensible answer that takes some
time. Installing such an update globally raises several challenges. First, both the
HelloWorldService and Response classes must be installed together: How can we
install multiple related classes atomically?

Second, the methods impacted by the update can be modified or added only
when no request is being served: When can we guarantee that the installation
will not interfere with the processing of ongoing requests?

Rather than performing a global update, it would be more appealing to do an
incremental update, where ongoing requests continue to be processed according
to the old code, and new requests are served using the new code. Note that the
granularity of the increment might differ depending on the update. We could
imagine that the modification of a check-out process spanning multiple pages
would imply that the increment be the web session rather than the web request.
Our solution to enable incremental updates is to reify the execution context into
a first-class entity.

Not only the behavior but also the structure of classes can also change. Fields
can be added or removed, and the type of a field can change. As a matter of
fact, in a subsequent version of the project3, the author added a field siteUrl

to the WebServer class. Unfortunately, the server is an object shared between
multiple requests, and each service holds a reference back to the server. If the
object structure is updated globally while different versions of the code run to
serve requests, old versions of methods might access fields at the wrong index.
While the problem for field addition can be solved easily by ensuring new fields
are added at the end, we need to consider type changes as well. For instance,
one could imagine that in the future newest versions will store the siteUrl as an
HttpUrl rather than a String. Therefore, the general problem remains: How can
we ensure consistent access to objects whose structure (position or type of fields)
has changed?

3 See version 82 of the project.

4 E. Wernli, M. Lungu, O. Nierstrasz

Our solution to ensure consistent access is to keep one representation of the
object per context and to synchronize the representations using bidirectional
transformations. Once there is no reference any longer to a context, it is garbage-
collected and the corresponding representations of objects as well.

2.2 Lifecycle of an incremental update

Let us consider the addition of the field siteUrl in the WebServer class in more
detail. The following steps describe how an incremental update can be installed
with Theseus4, the implementation of our approach, while avoiding the problems
presented above.

First, the application must be adapted so that we can “push” an update to
the system and activate it. Here is how one would typically adapt an event-based
server system, such as a web server.

0. Preparation. First, a global variable latestContext is added to track the
latest execution context to be used. Second, an administrative page is added
to the web server where an administrator can push updates to the system; the
uploaded code will be loaded dynamically. Third, the main loop that listens
to incoming requests is modified so that when a new thread is spawned to
handle the incoming request, the latest execution context is used. Fourth, the
thread that listens to incoming connections in a loop is modified so that it
is restarted periodically in the latest context. Note that the listening socket
can be passed to the new thread without ever being closed.

After these preliminary modifications the system can be started, and now it
supports dynamic updates. The life cycle of an update would be as follows:

1. Bootstrap. After the system bootstraps, the application runs in a default
context named the Root context. The global variable latestContext is ini-
tialized to refer to the Root context. At this stage only one context exists
and the system is similar to a non-contextual system.

2. Offline evolution. During development, the field siteUrl is added to WebServer

and other related changes are installed.
3. Update preparation. The developer creates a class called UpdatedContext,

which specifies the variations in the program to be rolled out dynamically.
This is done by implementing a bidirectional transformation that converts
the program state between the Root context and the Updated context. Ob-
jects will be transformed one at a time. By default, the identity transforma-
tion is assumed, and only a custom transformation for the WebServer class is
necessary in our case.

4. Update push. Using the administrative web interface, the developer uploads
the class UpdatedContext as well as the other classes that will be required by
the context. The application loads the code dynamically. It detects that one

4 In reference to Theseus’ paradox: if every part of a ship is replaced, is it still the
same ship?

Incremental Dynamic Updates with First-class Contexts 5

class is a context and instantiates it. Contexts are related to each other by
a ancestor-successor relationship. The ancestor of the newly created context
is the active context. The global variable latestContext is updated to refer
to the newly created instance of the Updated context.

5. Update activation. When a new incoming request is accepted, the application
spawns a new thread to serve the request in the latestContext (which is now
the Updated context) while existing threads terminate in the Root context.

6. Incremental update. When the web server is accessed in the Updated context
for the first time, the new version of the class is dynamically loaded, and the
instance is migrated. Migration is called when the object is accessed from a
different context for the first time. In our case, this results in the fields port

and services being copied, and the field siteUrl being initialized with a
default value. Fields can be accessed safely from either the Root or Updated
context, as each context has its own representation of the object. To ensure
that the count of requests processed so far, numRequests, remains consistent
in both contexts, bidirectional transformations between the representations
are used. They are executed lazily : writing a new value in a field in one
context only invalidates the representation of the object in the other context.
The representation in the other context will be synchronized only when it
is accessed again. Synchronization is called lazily when changes happen to
objects that have already been migrated.

7. Garbage collection. Eventually the listener thread is restarted, and all re-
quests in the old context terminate. A context only holds weakly onto its
ancestor so when no code runs in the old context any longer, the context is fi-
nalized. The finalization forces the migration of all objects in the old context
that have not been migrated yet. The old context and its object representa-
tions can then be garbage-collected. It must be noted that at the conceptual
level, all objects in memory are migrated. In practice, only objects that are
shared between contexts need to be migrated.

3 First-class context

Our approach relies on a simple, yet fundamental, language change: the state
of an object is contextual. We assume, without loss of generality, throughout
the rest of the paper that at most two contexts exist at a time, which we refer
to as the “old” and “new” contexts. Clearly, the model could be generalized to
support any number of co-existing contexts.

3.1 User-defined update strategy

Contexts are first-class entities in our system. Programmers have complete con-
trol over the dynamic update of objects and classes. Contexts are ordinary
instances of the class Context, shown in Figure 2. A context is responsible
for maintaining the consistency of the representations of the objects belong-
ing to it. A context must implement methods Context.migrate{To|From} and

6 E. Wernli, M. Lungu, O. Nierstrasz

Class resolve(String:className)
Object migrateTo(Object:newState)
Object migrateFrom(Object:oldState)
synchronizeTo(Object:oldState,Object:newState)
synchronizeFrom(Object:oldState,Object:newState)

ancestor
Context

Fig. 2: The Context class.

port
nbRequests
services

old
port
nbRequests
siteUrl
services

new

migrate From

port
nbRequests
services

old
port
nbRequests
siteUrl
services

new

migrate To

port
nbRequests
services

old
port
nbRequests
siteUrl
services

new

synchronize From

port
nbRequests
services

old
port
nbRequests
siteUrl
services

new

synchronize To

"localhost"

Fig. 3: The effects of the various methods that class Context mandates. Note that
the arrow means a field copy operation and the method always applies to the
new context.

Context.synchronize{To|From} to define the update strategy. We call “transfor-
mation” either the migration or the synchronization of the representations.

Each context has an ancestor. Since the contexts are loaded dynamically
in an unanticipated fashion the update strategy is encoded in the newest con-
text and expressed in terms of its ancestor, never in terms of its successor.
Methods Context.*From assume the old representation is up-to-date, and trans-
form the representation from the old context to the newest context; methods
Context.*To assume the new representation is up-to-date, and update the rep-
resentation from the new context to the old context. The Root context is the
only context that does not encode any transformation and has no ancestor. User-
defined contexts should default to the identity transformation for objects with
no structural changes.

Figure 3 exemplifies the differences between the four methods using the run-
ning example. Methods Context.migrate{To|From} are responsible for creating
the representation of an object upon the first access in the given context. In our
case, the migration of the web server from the old context to the new context
would copy the existing fields as is and initialize the new field siteUrl with a
predefined value. Note that in this case, the object existed before the update and
the migration from the new to the old context will never happen in practice5.
Methods Context.synchronize{To|From} are responsible for subsequent updates
of the state. In the case of our example, the field siteUrl must not be initialized
again.

5 This may not always be the case. It is possible for an object to be created in the
new context and become reachable for objects in the old context

Incremental Dynamic Updates with First-class Contexts 7

3.2 Reified state

From the application point of view, the state of an object will depend on the ac-
tive context, and objects will have several representations. The transformations
need to access both the old and new representations of an object. This requires
the old and new representations to be reified into distinct objects, before they
are passed to the transformations. Also, transformations are never called by the
application, but by the run-time itself when necessary upon state read or write.
Transformations run outside of any context.

Messages cannot be sent to contextual objects from within a transformation,
as the system would not be able to decide what the “contextual” class of the
object is in the absence of any context. This implies that certain objects must be
primitive: they have a unique state in the system and are not subject to contex-
tual variations. This is notably the case for the reified state, but also for contexts
themselves. Immutable objects (string, numbers, etc.) are also considered to be
primitive so that they can be used within transformations.

The reified state of an object can reference other contextual objects, however.
If one has to query the state of such a dependent object from within a transfor-
mation, one would need first to obtain the reification of its state in either the
old or new context.

Identity

State

a

a1 a2

Object

A1

A

A2 Class Object

Class

Instance of
(Color marks context)
Identity
(Color marks context)

Legend

Subclass of

Fig. 4: Conceptual view of contextual objects and classes. Object and Class are
primitive. Object a is contextual. Object A is a first-class class that is also con-
textual. The red path illustrates a reification: if the state of a is reified in the
first context, one obtains a1, which is an instance of A1.

3.3 First-class classes

Classes are first-class in our model. They are contextual objects as well and a
contextual class might have two versions, as depicted in Figure 4.

8 E. Wernli, M. Lungu, O. Nierstrasz

Conceptually, each contextual state is an instance of a contextual class, for
example, the contextual state a1 is an instance of the contextual class A. In prac-
tice, when the state is reified, the object that is obtained is not an instance of the
contextual class, but of the reification of the contextual class: if the contextual
state a1 is reified, one obtains a primitive object that is an instance of A1.

When an object is migrated, a specific version of its state is reified and passed
as a parameter to migrate{To|From}. The method must return the new version
of its reified state, e.g., migrate a1, which is an instance of A1, to a2, which is
an instance of A2. The class can change only during migration. Indeed, methods
synchronize{From|to} take as arguments the old reified state and the new reified
state, but are not able to change the class they correspond to.

Classes are migrated similarly to regular objects. A specific version of the
class is reified and passed as parameter to migrate{To|From}. The method must
return the new version of the class, e.g., migrate A1 which is an instance of Class
to A2 which is also an instance of Class. Note that Class is a primitive in the
system.

Classes are peculiar in that they can be resolved via a name, unlike “regular”
objects. Contexts are responsible for class name resolution and must implement
the method Context.resolveClass(String) which must return a specific version,
e.g., in Figure 4 “A” might resolve either to A1 or A2. The way classes are migrated
must correspond to the way classes are resolved for the system to be consistent.

3.4 Spawning thread

A thread can have one active context at a time. A predefined context exists,
called the Root, which is the default context after startup. The runtime must be
extended with a mechanism to query the active context, and also to specify a
new context when a new thread is spawned. If none is specified, the thread will
inherit the context of its parent thread.

4 Implementation

We report on the implementation of Theseus in Pharo Smalltalk. In contrast
to our earlier work, this implementation does not require changes to the virtual
machine. A unique aspect of our implementation is that it does not rely on
proxies or wrappers, which do not properly support self-reference, do not support
adding or changing public method signature, and break reflection [24,20].

During an incremental update, a contextual object corresponds concretely
to two objects in memory, one per context. Figure 5 depicts such a setting. To
maintain the illusion that the old and new representations of an object have
the same identity, we adapt the references when necessary: for instance, if b1 is
assigned to a field of a1 in the old context, this results in b2 being assigned to
the corresponding field of a2 in the newest context.

Objects are migrated lazily, and can be either flagged as “clean” or “dirty”.
Dirty objects are out-of-date, and need to be synchronized upon the next ac-
cess. Figure 5 shows the effect of an access to the dirty representation b2, which

Incremental Dynamic Updates with First-class Contexts 9

shared & clean

shared & dirtyb2

a2

b1

a1

new
old

new
old

localc1

b2

a2

b1

a1

new
old

new
old

c1 c2new
old

d1 d1

context 2
"new"

context 2
"new"

context 1
"old"

context 1
"old"

Object b is
accessed in the
new context.

b

a

c

d

conceptual graph

Fig. 5: The arrows between the four objects a,b,c,d represent references via a
field. The objects exist in two contexts. Shared objects have one representation
per context, which can be either “clean” or “dirty”. Objects are migrated lazily.
When object b is accessed in the new context for the first time, the representation
b2 is synchronized. Since b refers to c, this triggers the migration of c and the
representation c2 is created, originally considered “dirty”. An access to c in
the new context would create the representation d2, etc. Dashed lines represent
relationships visible only to the implementation, not the application.

triggers the migration of the representation c2 it references directly. After the
synchronization, the two representations b1 and b2 of object b are clean. Subse-
quent writes to either representation would however result in the other one to
be flagged as dirty. In the case of Figure 5, if b2 is modified, b1 would be marked
as dirty.

We use bytecode rewriting to alter accesses to state and the way classes are
resolved. Concretely, an extra check is added before each state read and state
write to determine whether the object is shared between contexts. If it is, and
the object is “dirty”, it is synchronized and then marked as “clean”. In case of
state writes, the other representation is also invalidated and flagged as “dirty”.

When the old context can be garbage-collected, we must ensure that all
objects reachable from the new context have been migrated and are up-to-date.
In the case of Figure 5, the system would force the migration of d1 before garbage
collection. If the graph of reachable objects is big, this operation can be relatively
long, but can be conducted in background with low priority.

Concurrency. We assume that the subject program already correctly synchro-
nizes concurrent reads and writes to thread-shared entities. Indeed, developers
should neither make assumptions about the atomicity of read and write opera-
tions, nor about the visibility of side-effects between threads. Reads and writes
are not atomic and concurrent accesses might trigger concurrent transformations.

Let us consider the web server of section 2. Field numRequests is synchronized
with a lock, but port is not, as the value never changes after object creation. It is
possible that numRequests is written and port is read concurrently. Two concur-
rent transformations might overlap and the new value of the field numRequests

10 E. Wernli, M. Lungu, O. Nierstrasz

might be overwritten with the previous one. To ensure that the behavior of the
original program is not altered, methods synchronize{To|From} take an addi-
tional parameter field in the full interface (not shown in subsection 3.1). This
way, transformations can update fields selectively. There is also a per-field dirty
flag.

When an object becomes shared, it is migrated. The migration migrate{To|-
From} must however apply to the object as a whole (i.e. all its fields), as we
cannot “partially” instantiate a representation. Also, a “forced” migration might
happen due to the garbage collection of an old context, and despite a properly
synchronized original program, concurrent migrations might occur. To resolve
this situation, the migration of an object must be exclusive. Before a migration
starts, it checks that the object was not migrated in the meantime. If this is
the case it either (i) falls back to a synchronize{To|From} (normal migration)
or (ii) is skipped (forced migration). If the object has already been migrated,
the system must ensure that the new representation is up-to-date and might
force synchronizations. Since these forced synchronizations might conflict with
writes from the application, writes to shared objects must be exclusive to prevent
lost writes. If the memory is not coherent (unlike with Pharo), reads to shared
objects must also be exclusive to prevent stale reads, and the flag that indicates
whether an object is shared must be defined so that it is not cached by the CPU
(e.g.,volatile declaration in Java).

State relocation. Transformations can be more complex than one-to-one map-
pings. For instance, instead of keeping track of the number of requests in num-

Requests using a primitive numeric type, the developer might introduce and use
a class Counter for better encapsulation6. During the transformation, the actual
count would be “relocated” from the web server object to the counter object that
is now used. However, in this case, when the counter is incremented, the old rep-
resentation of the web server with field numRequests needs to be invalidated.
So far we have assumed that a write would invalidate only the representation
of the object written to, which is not the case any longer. To support such
transformations, the full interface enables custom invalidation on a per-field ba-
sis with Context.invalidate{To|From}(Object oldState,Object newState,String

field).

Further Details. We used a custom compiler to rewrite the bytecode of con-
textual classes. Primitive classes (see subsection 3.2) do not require any bytecode
rewriting. In our scheme, contextual objects must have one representation per
context, even if they are structurally equivalent. This applies to classes as well
(see subsection 3.3). In Smalltalk, two instances of the same metaclass cannot
be created, so we need to clone the metaclass as well. Closures are first-class
in Smalltak. They encode offsets of bytecode in the CompiledMethod they ref-
erence. They are treated analogously to other objects. After migration, they

6 This would be the refactoring “Replace Data Value with Object”. See http://www.

refactoring.com/

http://www.refactoring.com/
http://www.refactoring.com/

Incremental Dynamic Updates with First-class Contexts 11

Request B(ms) T(ms)
Read # Write # Reachable

Migrated
Shared Local Shared Local Shared Local

1st request 30 60 - 128923 - 14674 - - -

2nd request 30 127 14535 130172 21 17901 1292 2781 585

3rd request 30 77 14547 120991 34 15539 1293 3311 588

Fig. 6: Time for three successive requests, one before the update, and two after
the update. T=Theseus, B=Baseline. Migrated=cumulative number of migrated
objects

reference the newest version of the corresponding CompiledMethod. The active
context is stored in a thread-local variable and we add a new method to fork a
closure in a specific context, e.g.,[...] forkWith: aContext. When a closure is
forked, it becomes a shared contextual object and is migrated. As the program
proceeds, objects referenced by the closure are migrated lazily when accessed.
Contexts hold only weak references to their ancestor and implement the method
Object>>#finalize, which forces the migration of all reachable objects before the
context becomes eligible for garbage collection. The class Semaphore is treated as
primitive so that objects can be synchronized correctly. The Object class cannot
be modified easily. To keep track of the necessary information we need about
objects, we maintain a dictionary that maps objects to their extra information.
Clearly, this level of indirection would need to be optimized in a full implemen-
tation.

5 Validation

Evolution. We conducted a first experiment whose goal was to assess whether
our model could support long-term evolution, that is, whether it could sustain
successive updates. We considered the small web server of section 2, which de-
spite its simplicity cannot be updated easily with global updates. We selected
the 4 last versions with effective changes: version 75 introduced chunked data
transfer, version 78 fixed a bug in the encoding of URL, version 82 introduced
siteUrl, and version 84 fixed a bug in MIME multipart support.

The listening thread that accepts incoming connections was modified to
restart itself periodically. Only one update required us to write a custom trans-
formation: the one that introduced the siteUrl field, which we initialized to a
default value. We ran the 4 successive dynamic updates, and verified that once
it was no longer used, the old context would be garbage-collected. In this way
we validated that our implementation was coherent.

Run-time characteristics. For the second experiment, we picked a typical
technology stack with well-known production projects: the Swazoo web server,
the Seaside web framework, the Magritte meta-description framework, and the
Pier CMS. This corresponds to several thousand classes. We were interested in
the run-time characteristics and to assess (1) whether our assumptions about

12 E. Wernli, M. Lungu, O. Nierstrasz

object sharing hold, and (2) what is the performance overhead. As a case study,
we considered the default web site of the Pier demo. During maintenance, only
few classes change. Most objects are migrated with the identity transformation,
and only certain objects require custom transformations. The exact nature of
the transformation is not significant. Therefore, for the sake of simplicity, we
artificially updated the system and used the identity transformation for all ob-
jects.

We were interested to assess the overhead of our implementation in three
different cases: (i) with only the old context when no object is shared, (ii) during
the incremental update when objects are shared and migrated lazily, and (iii)
after objects have been migrated but are still considered shared. To do so, we
measured the time for three successive requests: one before the update, for case
(i), and two after the update, for cases (ii) and (iii).

The results are presented in Figure 6. The overhead of our implementation
is in the best case of factor two. In the worst case when many objects must be
migrated, we have a degradation of factor four. We tracked the number of reads
and writes to objects shared between contexts, and to objects local to a context.
We clearly see that writes are one order of magnitude less frequent than reads.
About 500 objects needed to be migrated and only a minority of accesses concern
shared objects. The migrated objects and their direct references correspond to
about 1300 reachable objects. These 1300 objects reference further about 3000
objects indirectly. These 3000 objects could be reached indirectly from both
contexts, but are in practice local to a context. There are fewer than 50 writes
to shared objects and we deduce that the code of the extra logic to invalidate
representations is negligible (see section 4). In the first request, the system checks
if objects are shared, which is never the case. In the third request, the system
needs an additional check for dirtiness, which returns always false. This explains
the difference between times (i) and (iii).

Our experiment did not simulate the run-time characteristics of a production
system, however. We did not account for concurrent requests, which could cause
objects to be synchronized back and forth. Further empirical validation is wel-
come. Also, our implementation is still relatively naive (see section 4). However,
even with this implementation we achieve reasonable response time.

These results show that the approach can be made practical and fits well to
the characteristics of real-world software.

6 Discussion

Performance. A drawback of our implementation is that shared objects need
two representations, even if they are structurally identical and will use the iden-
tity transformation. Wrappers would make it possible to keep only one represen-
tation in such cases, but pose problems of self-reference, do not support adding
or changing method signatures, and break reflection [24,20,22]. The benefit of
our implementation is that object representations are really instances of their
respective classes and avoid such problems. We plan to improve performance

Incremental Dynamic Updates with First-class Contexts 13

by not synchronizing state on each access, and instead synchronize groups of
fields at precise locations, e.g., synchronize all fields a method uses at once at
the beginning and end of the method. Lock acquisitions/releases would force the
synchronization of pending changes, similarly to memory barriers [9]. It could,
at least, be done manually for heavily-used system classes. This would preserve
concurrent behavior but increase significantly the performance.

Applicability. The impact on development is small. Developers must figure out
the “increment” they wish, which results usually in a few well-located changes
after which development proceeds as usual. Compared to other dynamic update
mechanisms, there must exist a state mapping only for shared entities (not all
entities), but the mapping must be bidirectional (not unidirectional). We can
navigate the object graph during the transformation which seems to suffice for
most evolution in practice [26,17,2]. Daemon threads must be adapted to restart
periodically, but it is easy to do given their cyclic nature. Recent works showed
that most of the transformation code can be generated automatically [21] and
it would be interesting to assess whether we can generalize such results for bidi-
rectional transformations as well.

7 Related work

A common technique to achieve hot updates is to use redundant hardware [11],
possibly using “session affinity” to ensure that the traffic of a given client is
always routed to the same server. Our approach is more lightweight and enables
the migration of the state shared across contexts, notably persistent objects.
Also, an advantage of being reflective is that the software can “patch itself” as
soon as patches become available.

A large body of research has tackled the dynamic update of applications.
Systems supporting immediate and global dynamic updates have been devised
with various levels of safety and practicality. Dynamic languages other than
Smalltalk belong naturally to this category; they are very practical but not
safe. Dynamic AOP and meta-object protocols also fit into this category. Sys-
tems of this kind have been devised for Java [6,20,15,10,3,28,23], with various
levels of flexibility (a good comparison can be found in [10]). To be type-safe,
HotSwap [6] imposes restrictions and only method bodies can be updated. The
most recent approaches [28,23] are more flexible but can still lead to run-time er-
rors if changes impact active methods. Most of these approaches rely on bytecode
transformation [20,15,10,3,23] and do not address concurrency.

Several approaches have tackled the problem of safety by relying on temporal
update points when it is safe to globally update the application. Such systems
have been devised for C [11,19], and Java [26,17]. Update points might be hard
to reach, especially in multi-threaded applications [18,26], and this compromises
the timely installation of updates.

Some mechanisms diverge from a global update and enable different versions
of the code or entities to coexist. In the most simple scheme, old entities are

14 E. Wernli, M. Lungu, O. Nierstrasz

simply not migrated at all and only new entities use the updated type defini-
tion [13], or this burden might be left to the developer who must request the
migration explicitly [8]. The granularity of the update for such approaches is the
object; it is hard to guarantee version consistency and to ensure that mutually
compatible versions of objects will always be used. When leveraged, transac-
tions [2,22] provide version consistency but impede mutations of shared entities.
Contexts enable mutations of shared entities and can be long-lived, thanks to
the use of bidirectional transformations. With asynchronous communication be-
tween objects, the update of an object can wait until dependent objects have
been upgraded in order to remain type-safe [14].

To the best of our knowledge, only three approaches rely on bidirectional
transformations to ease dynamic updates. POLUS is a dynamic updating system
for C [4] which maintains coherence between versions by running synchroniza-
tions on writes. We synchronize lazily on read, operate at the level of objects,
and take garbage collection into account. Duggan [7] formalized a type system
that adapts objects back and forth: when the run-time version tag of an object
doesn’t match the version expected statically, the system converts the object
with an adapter. We do not rely on static typing but on dynamic scoping with
first-class contexts, we address garbage collection, concurrency, and provide a
working implementation. Oracle enables a table to have two versions that are
kept consistent thanks to bidirectional “cross-edition triggers” [5].

Schema evolution addresses the update of persistent object stores, which
closely relates to dynamic updates. To cope with the volume of data, migrations
should happen lazily. To be type-safe, objects should be migrated in a valid
order (e.g., points of a rectangle must be migrated before the rectangle itself)
[2,22]. Our approach migrates objects lazily, and avoids the problem of ordering
by keeping both versions as long as necessary.

Class loaders [16] allow classes to be loaded dynamically in Java. Types
seen within a class loader never change, which ensures type safety and version
consistency, similarly to our notion of context. Two versions of a class loaded
by two different class loaders are different types, which makes sharing objects
between class loaders complicated. This is unlike our approach which supports
the migration of classes and objects between contexts.

Context-oriented programming [12] enables fine-grained variations based on
dynamic attributes, e.g., dynamically activated “layers”. It focuses on behavioral
changes with multi-dimensional dispatch, and does not address changing the
structure and state of objects as is necessary for dynamic updates. There exist
many mechanisms to scope changes statically, e.g., Classboxes [1], but they are
not used to adapt software at run-time.

8 Conclusion

Existing approaches to dynamically update software systems entail trade-offs
in terms of safety, practicality, and timeliness. We propose a novel, incremental
approach to dynamic software updates. During an incremental update, clients

Incremental Dynamic Updates with First-class Contexts 15

might see different versions of the system, which avoids the need for the system
to reach a quiescent, global update point.

Each version of the system is reified into a first-class context. Existing ob-
jects are gradually migrated to the new context, and objects that are shared
between old and new contexts are kept consistent with the help of bidirectional
transformations. Our validation with real-world systems indicates that only a
fraction of accesses concern such objects.

In two experiments we have demonstrated that our current implementation
is practical and flexible, with reasonable overhead. This work opens up several
research directions: exploring different granularity of increments, providing de-
veloper tools to leverage contexts, and improving further the performance.

Acknowledgments We gratefully acknowledge the financial support of the Swiss
National Science Foundation for the project “Synchronizing Models and Code”
(SNF Project No. 200020-131827, Oct. 2010 - Sept. 2012).

References

1. Bergel, A.: Classboxes — Controlling Visibility of Class Extensions. Ph.D. thesis,
University of Bern (Nov 2005)

2. Boyapati, C., Liskov, B., Shrira, L., Moh, C.H., Richman, S.: Lazy modular up-
grades in persistent object stores. SIGPLAN Not. 38(11), 403–417 (2003)

3. Cech Previtali, S., Gross, T.R.: Aspect-based dynamic software updating: a model
and its empirical evaluation. In: Proceedings of the tenth international conference
on Aspect-oriented software development. pp. 105–116. AOSD ’11, ACM, New
York, NY, USA (2011)

4. Chen, H., Yu, J., Hang, C., Zang, B., Yew, P.C.: Dynamic software updating using
a relaxed consistency model. IEEE Trans. Software Eng. 37(5), 679–694 (2011)

5. Choi, A.: Online application upgrade using edition-based redefinition. In: Proceed-
ings of the 2nd International Workshop on Hot Topics in Software Upgrades. pp.
4:1–4:5. HotSWUp ’09, ACM, New York, NY, USA (2009)

6. Dmitriev, M.: Towards flexible and safe technology for runtime evolution of Java
language applications. In: Proceedings of the Workshop on Engineering Complex
Object-Oriented Systems for Evolution, in association with OOPSLA 2001 (Oct
2001)

7. Duggan, D.: Type-based hot swapping of running modules. In: Intl. Conf. on Func-
tional Programming. pp. 62–73 (2001)

8. Gemstone/s programming guide (2007)

9. Gharachorloo, K.: Memory consistency models for shared-memory multiprocessors.
Tech. rep., DEC (1995)

10. Gregersen, A.R., Jørgensen, B.N.: Dynamic update of Java applications — bal-
ancing change flexibility vs programming transparency. J. Softw. Maint. Evol. 21,
81–112 (mar 2009)

11. Hicks, M., Nettles, S.: Dynamic software updating. ACM Transactions on Pro-
gramming Languages and Systems 27(6), 1049–1096 (nov 2005)

12. Hirschfeld, R., Costanza, P., Nierstrasz, O.: Context-oriented programming. Jour-
nal of Object Technology 7(3) (Mar 2008)

16 E. Wernli, M. Lungu, O. Nierstrasz

13. Hjálmtýsson, G., Gray, R.: Dynamic C++ classes: a lightweight mechanism to
update code in a running program. In: Proceedings of the annual conference on
USENIX Annual Technical Conference. pp. 6–6. ATEC ’98, USENIX Association,
Berkeley, CA, USA (1998)

14. Johnsen, E.B., Kyas, M., Yu, I.C.: Dynamic classes: Modular asynchronous evolu-
tion of distributed concurrent objects. In: Proceedings of the 2nd World Congress
on Formal Methods. pp. 596–611. FM ’09, Springer-Verlag, Berlin, Heidelberg
(2009)

15. Kabanov, J.: Jrebel tool demo. Electron. Notes Theor. Comput. Sci. 264, 51–57
(feb 2011)

16. Liang, S., Bracha, G.: Dynamic class loading in the Java virtual machine. In:
Proceedings of OOPSLA ’98, ACM SIGPLAN Notices. pp. 36–44 (1998)

17. Malabarba, S., Pandey, R., Gragg, J., Barr, E., Barnes, J.F.: Runtime support for
type-safe dynamic Java classes. In: Proceedings of the 14th European Conference
on Object-Oriented Programming. pp. 337–361. Springer-Verlag (2000)

18. Neamtiu, I., Hicks, M.: Safe and timely updates to multi-threaded programs. In:
Proceedings of the 2009 ACM SIGPLAN conference on Programming language
design and implementation. pp. 13–24. PLDI ’09, ACM, New York, NY, USA
(2009)

19. Neamtiu, I., Hicks, M., Stoyle, G., Oriol, M.: Practical dynamic software updating
for C. In: Proceedings of the 2006 ACM SIGPLAN conference on Programming
language design and implementation. pp. 72–83. PLDI ’06, ACM, New York, NY,
USA (2006)

20. Orso, A., Rao, A., Harrold, M.J.: A Technique for Dynamic Updating of Java Soft-
ware. Software Maintenance, IEEE International Conference on 0, 0649+ (2002)

21. Piccioni, M., Oriol, M., Meyer, B., Schneider, T.: An ide-based, integrated solution
to schema evolution of object-oriented software. In: ASE. pp. 650–654 (2009)

22. Pina, L., Cachopo, J.: Dustm - dynamic software upgrades using software transac-
tional memory. Tech. rep., INESC-ID (2011)

23. Pukall, M., Kästner, C., Cazzola, W., Götz, S., Grebhahn, A., Schröter, R., Saake,
G.: Flexible dynamic software updates of java applications: Tool support and case
study. Tech. Rep. 04, School of Computer Science, University of Magdeburg (2011)

24. Pukall, M., Kästner, C., Saake, G.: Towards unanticipated runtime adaptation
of java applications. In: APSEC ’08: Proceedings of the 2008 15th Asia-Pacific
Software Engineering Conference. pp. 85–92. IEEE Computer Society, Washington,
DC, USA (2008)

25. Rivard, F.: Smalltalk: a reflective language. In: Proceedings of REFLECTION ’96.
pp. 21–38 (Apr 1996)

26. Subramanian, S., Hicks, M., McKinley, K.S.: Dynamic software updates: a VM-
centric approach. In: Proceedings of the 2009 ACM SIGPLAN conference on Pro-
gramming language design and implementation. pp. 1–12. PLDI ’09, ACM, New
York, NY, USA (2009)

27. Wernli, E., Gurtner, D., Nierstrasz, O.: Using first-class contexts to
realize dynamic software updates. In: Proceedings of International
Workshop on Smalltalk Technologies (IWST 2011). pp. 21–31 (2011),
http://esug.org/data/ESUG2011/IWST/Proceedings.pdf

28. Würthinger, T., Wimmer, C., Stadler, L.: Unrestricted and safe dynamic code
evolution for Java. Science of Computer Programming (Jul 2011)

	
	Introduction
	Running example
	The problem with updates
	Lifecycle of an incremental update

	First-class context
	User-defined update strategy
	Reified state
	First-class classes
	Spawning thread

	Implementation
	Concurrency.
	State relocation.
	Further Details.

	Validation
	Evolution.
	Run-time characteristics.

	Discussion
	Performance.
	Applicability.

	Related work
	Conclusion

