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Abstract

This paper studies a slow–fast system whose principal characteristic is that the slow manifold is given 
by the critical set of the cusp catastrophe. Our analysis consists of two main parts: first, we recall a formal 
normal form suitable for systems as the one studied here; afterwards, taking advantage of this normal form, 
we investigate the transition near the cusp singularity by means of the blow up technique. Our contribution 
relies heavily in the usage of normal form theory, allowing us to refine previous results.
© 2015 Elsevier Inc. All rights reserved.
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1. Introduction

A slow–fast system (SFS) is a singularly perturbed ordinary differential equation of the form

ẋ = f (x, z, ε)

εż = g(x, z, ε), (1)

where x ∈ R
m, z ∈ R

n are local coordinates and where ε > 0 is a small parameter. The over-dot 
denotes the derivative with respect to the time parameter t . Throughout this text, we assume 
that the functions f and g are of class C∞. In applications (e.g. [25]), z(t) represents states or 
measurable quantities of a process while x(t) stands for control parameters. The parameter ε
models the difference of the rates of change between the variables z and x. That is why systems 
like (1) are often used to model phenomena with two time scales. Observe that the smaller ε is, 
the faster z evolves with respect to x. Therefore we refer to x (resp. z) as the slow (resp. fast) 
variable. The time parameter t is known as the slow time. For ε �= 0, we can define a new time 
parameter τ by the relation t = ετ . With this time reparametrization (1) can be written as

x′ = εf (x, z, ε)

z′ = g(x, z, ε), (2)

where now the prime denotes the derivative with respect to the rescaled time parameter τ , which 
we call the fast time. Since we consider only autonomous systems, we often omit to indicate the 
time dependence of the variables. In the rest of this document, we prefer to work with slow–fast 
systems presented as (2).

Observe that as long as ε �= 0 and f is not identically zero, systems (1) and (2) are equivalent. 
A first approach to understand the qualitative behavior of slow–fast systems is to study the limit 
ε → 0. The slow equation (1) restricted to ε = 0 reads as
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Fig. 1. A schematic representation of the persistence of a NHIM under the perturbation of the corresponding vector field. 
S denotes the slow manifold. Left–above: S is a set of hyperbolic equilibrium points of the layer equation. Left–below: 
S is the phase space of the constrained equation. Right: since S is a NHIM, it persists as an invariant manifold Sε under 
small perturbations of the vector field.

ẋ = f (x, z,0)

0 = g(x, z,0). (3)

A system of the form (3) is called constrained differential equation (CDE) [11,24]. On the other 
hand, in the limit ε → 0, a system given by (2) becomes

x′ = 0

z′ = g(x, z,0), (4)

which is called the layer equation. Associated to both systems, (3) and (4), the slow manifold S
is defined by

S = {(x, z) ∈R
m ×R

n |g(x, z,0) = 0
}
, (5)

which serves as the phase space of the CDE (3) and as the set of equilibrium points of the 
layer equation (4). In the latter context, it is useful to recall the concept of Normally Hyperbolic 
Invariant Manifold (NHIM).

Definition 1.1 (Normally Hyperbolic Invariant Manifold). Consider a slow–fast system given by 
a vector field of the form

Xε = εf (x, z, ε)
∂

∂x
+ g(x, z, ε)

∂

∂z
. (6)

The associated slow (invariant) manifold S = {g(x, z,0) = 0} is said to be normally hyperbolic 
if each point of S is a hyperbolic equilibrium point of X0.

NHIMs are relevant in the context of the geometric study of slow–fast systems, see for exam-
ple [8]. It is known that compact NHIMs persist under C1 small perturbation of the vector field 
[13,14]. In the particular context presented above, a normally hyperbolic compact subset of the 
slow manifold S persists as an invariant manifold of the slow–fast system Xε. We show in Fig. 1
a schematic of the previous description.

After this introduction, we turn into the subject of this paper. Our goal is to understand the 
dynamics of a particular slow–fast system which has one fast and two slow variables given as

Xε = ε(1 + f1)
∂ + εf2

∂ −
(
z3 + x2z + x1 + εf3

) ∂
, (7)
∂x1 ∂x2 ∂z
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Fig. 2. The manifold S is two dimensional and can be defined as the critical set of the potential function V (x1, x2, z) =
1
4 z4 + 1

2 x2z2 + x1z. The curve � is defined by the set of degenerate critical points of V . Geometrically, � is the set of 
points of S where S is tangent to the fast direction, and C denotes the cusp point.

where the functions fi = fi(x1, x2, z, ε), for i = 1, 2, 3, are smooth and vanish at the origin. The 
corresponding slow manifold is defined by

S =
{
(x1, x2, z) ∈R

3 | z3 + x2z + x1 = 0
}

. (8)

Remark 1.1. The slow manifold S can be regarded as the critical set of the cusp (or A3) catas-
trophe, which is given as [1,5]

V (x1, x2, z) = 1

4
z4 + 1

2
x2z

2 + x1z. (9)

We denote by � the set of points in S at which S is tangent to the fast direction, that is

� =
{
(x2, z) ∈ S |3z2 + x2 = 0

}
. (10)

In other words, � is the set of degenerate critical points of (9). See Fig. 2 for a description of 
the slow manifold and the set �.

Our interest in studying (7) is due to the fact that the origin (x1, x2, z) = (0, 0, 0) is a non-
hyperbolic equilibrium point of X0. This implies that a compact subset, around the origin, of 
the slow manifold S is not a NHIM of X0, and therefore, the Geometric Singular Perturbation 
Theory [8,13,14] is not enough.

1.1. Motivation

There have been several studies, e.g. [16,17], dealing with a SFS of the form

Xε = ε(1 + f1)
∂

∂x1
−
(
z2 + x1 + εh

) ∂

∂z
, (11)

whose slow manifold is the critical set of the fold catastrophe. The next natural step is to consider 
the following case in the Thom list [22], i.e., a slow–fast system induced by the cusp catastrophe. 
That is

Xε = ε(1 + f1)
∂ + εf2

∂ −
(
z3 + x2z + x1 + εf3

) ∂
. (12)
∂x1 ∂x2 ∂z
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In [4], the system (12) is studied in a qualitative way. Here, however, we aim to refine the 
results by heavily using techniques from normal form theory. Moreover, we remark that the 
methods presented here are applicable to a larger class of slow–fast system given by

Xε = ε(1 + f1)
∂

∂x1
+

k−1∑
i=2

εfi

∂

∂xi

−
⎛
⎝zk +

k−1∑
j=1

xj z
j−1 − εfk

⎞
⎠ ∂

∂z
, (13)

which is called (regular) Ak-SFS, see [10].

1.2. Statement

We shall study the SFS

Xε = ε(1 + f1)
∂

∂x1
+ εf2

∂

∂x2
−
(
z3 + x2z + x1 + εf3

) ∂

∂z
, (14)

where the functions fi = fi(x1, x2, z, ε) are smooth. To avoid working with an ε-parameter fam-
ily of vector fields as (14), it is customary to extend (14) by adding the trivial equation ε′ = 0, 
and thus consider a smooth vector field in R4 which reads as

X = ε(1 + f1)
∂

∂x1
+ εf2

∂

∂x2
−
(
z3 + x2z + x1 + εf3

) ∂

∂z
+ 0

∂

∂ε
. (15)

We regard (15) as a perturbation of “the principal part” F which is given as

F = ε
∂

∂x1
+ 0

∂

∂x2
−
(
z3 + x2z + x1

) ∂

∂z
+ 0

∂

∂ε
. (16)

Note that in a qualitative sense, F contains the essential elements of X. To state our main 
result, we first define the sections

�− =
{
(x1, x2, z, ε) ∈R

4 |x1 = −xi
1

}
�+ =

{
(x1, x2, z, ε) ∈R

4 |x1 = x
f

1

}
, (17)

where xi
1 > 0 and xf

1 > 0 are arbitrarily large constants. For ε > 0 but sufficiently small, the 
sections �− and �+ are transversal to the flow of Xε. Next, let � : �− → �+ be the Poincaré 
map induced by the flow of Xε. We shall prove the following.

Transition along the cusp (See Theorem 3.1). Consider a slow–fast system given by (15). Let 
�−, �+ and � : �− → �+ be defined as above. Then, we can choose coordinates in �− and in 
�+ such that the map � reads as

�(X2,Z, ε) = (X̃2, Z̃, ε̃), (18)

where X̃2 = X2 + H(X2, ε) (with H flat at (X2, ε) = (0, 0)), ε̃ = ε and where
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Fig. 3. Description of our main result. We may choose appropriate coordinates at the sections �− and �+ under which 
the invariant manifold Sε is given by Z = 0. Moreover form (19) we have that all other trajectories starting at �− are 
exponentially attracted to the invariant manifold Sε . In this paper we provide quantitative information regarding this 
exponential contraction.

Z̃ = �(X2, ε) + Z exp

(
−1

ε
(A(X2, ε) + ε	(X2,Z, ε))

)
, (19)

where A(X2, 0) > 0. Details of the functions �, A, and 	 are given in Theorem 3.1. In an 
heuristic way, this result is described in Fig. 3.

1.3. Idea of the proof

Our proof consists of two main steps.

1. From [12], it is known that there exists a formal transformation bringing (15) into

F = ε
∂

∂x1
+ 0

∂

∂x2
−
(
z3 + x2z + x1

) ∂

∂z
+ 0

∂

∂ε
. (20)

Then, by Borel’s lemma [5], the vector field F can be realized as a smooth normal form 
XN = F + R of (15) and where R is flat at (x1, x2, z, ε) = (0, 0, 0, 0). See more details in 
Section 2.2.

Remark 1.2. Along this text, a function f (x) : Rn →R is flat at x = 0 means that it is infinitely 
flat at x = 0, i.e., j∞(f )(0) = 0.

2. Based the previous normalization, next we use the geometric desingularization or blow up 
method (as introduced in [7]) to study the flow of the normal form XN = F + R. This is 
detailed in Section 3.

Remark 1.3. With this document we aim at two goals:

1. To refine the results of [4]. This is, we do not only provide a qualitative description of the 
transition �, but details on the differentiability of such a map is also presented.



H. Jardón-Kojakhmetov et al. / J. Differential Equations 260 (2016) 3785–3843 3791
2. To prepare a framework for the geometric desingularization of Ak slow–fast systems. These 
are a generalization of (15) given as

X = ε(1 + f1)
∂

∂x1
+

k−1∑
i=1

εfi

∂

∂xi

−
⎛
⎝zk +

k−1∑
j=1

xj z
j−1 + εfk

⎞
⎠ ∂

∂z
+ 0

∂

∂ε
. (21)

The rest of this document is arranged as follows: in Section 2 we provide a brief recollection 
of preliminary results that will simplify our later studies. Next, in Section 3 we pose our result 
and prove it by means of the geometric desingularization method and the results of Section 2. 
For readability purposes, many technicalities have been put in the appendix.

2. Preliminaries of slow–fast systems

In this section, we provide a number preliminary results that will be used later in Section 3. 
First of all, we consider slow–fast systems along normally hyperbolic regions of the slow mani-
fold. Afterwards, we recall a result from [12] dealing with the normal form of (15). We remark 
that we only consider SFS with one fast variable. Let us be more precise with the type of SFS 
that we shall study first.

Definition 2.1. A slow–fast system is said to be (locally) regular around a point p0, if its corre-
sponding slow manifold is normally hyperbolic in some neighborhood of p0.

2.1. The slow vector field

Let us consider a slow–fast system given by

Xε =
m∑

i=1

εfi(x, z, ε)
∂

∂xi

+ H(x, z, ε)
∂

∂z
, (22)

where x ∈ R
m, z ∈ R, and as usual 0 < ε � 1. Furthermore, assume that f (0, 0, 0) �= 0, 

H(0, 0, 0) = 0 and ∂H
∂z

(0, 0, 0) < 0. Thus Xε is regular around 0 ∈ R
m+2. The slow manifold 

associated to (22) is defined by

S =
{
(x, z) ∈R

m+1 |H(x, z,0) = 0
}

. (23)

From the defining assumptions of (22), we have that S is a NHIM in a neighborhood of the 
origin. By looking at the Jacobian of Xε at 0, it follows that there exists an m + 1 dimensional 
a center manifold. Since Xε is smooth, we can choose a C
 center manifold WC

for any 
 < ∞. 
The manifold WC

is given as a graph z = φ(x, ε) where φ is a C
 function.

Remark 2.1. Along the rest of the document we frequently make use of a finite class of differ-
entiability. As it is customary in the present context, when we say that a manifold (or a map) is 
C
, we mean that such a manifold (or map) is 
-differentiable for 
 as large as necessary.
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The slow manifold S is naturally given by the restriction WC |ε=0 = S. Next, let us consider 
the vector field 1

ε
Xε(x, φ, ε). Since WC

is locally invariant, it follows that 1
ε
Xε is tangent to WC

. 
Therefore the vector field

Xslow = lim
ε→0

1

ε
Xε(x,φ, ε), (24)

is tangent to S at each point of S, and we call it the slow vector field. We remark that the slow 
vector field Xslow is only well defined whenever φ is invertible.

2.1.1. The slow divergence integral
Associated to a regular slow–fast system and the corresponding slow vector field, the slow 

divergence integral is defined here. For this, let �− and �+ be two sections which are transversal 
to the flow of Xε given by (22). For ε �= 0 but sufficiently small, these sections are also transversal 
to the slow manifold S. Let γε be a solution curve of Xε chosen along a center manifold WC

, 
thus γε is transversal to the sections �− and �+. In the limit ε = 0, the curve γ0 is a curve along 
the slow manifold S. The idea now is to borrow the well-known divergence theorem [21] to get 
some sense on how the trajectories of Xε are attracted to S (recall that we made the assumption 
∂H
∂z

< 0). The divergence of Xε (given by (22)) reads as

divXε = ∂H(x, z, ε)

∂z
+ O(ε). (25)

We can now take the integral of divXε along the orbit γε of Xε parametrized by the fast 
time τ , we have

∫
γε

divXε dτ =
∫
γε

(
∂H(x, z, ε)

∂z
+ O(ε)

)
dτ. (26)

The slow divergence integral is defined by

I (t) =
∫
γ0

divX0 dt, (27)

where t is the slow time defined by the slow vector field Xslow. Our goal then is to relate the 
divergence integral (26) with I .

Proposition 2.1. Under the assumptions made in this section, we have that

∫
γε

divXε dτ = 1

ε
(I (t) + o(1)) , (28)

where I (t) is the slow divergence integral.
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Proof. Recall that the slow vector field reads as Xslow = limε→0
1
ε
Xε(x, φ, ε), where φ =

φ(x, ε) is a C
 function. By our assumptions, the curve γε is transversal to the sections �−
and �+ for ε small enough. Without loss of generality we can assume that γε is parametrized 
by x1. Then let x−

1 and x+
1 be defined by γε(x

−
1 ) = γε ∩ �− and γε(x

+
1 ) = γε ∩ �+. Next, the 

integral of the divergence of Xε along γε from �− to �+ reads as

∫
γε

divXε dτ = 1

ε

x+
1∫

x−
1

(
∂H(x, z,0)

∂z
+ O(ε)

)
dx1

f1(x, z,0) + o(1)

= 1

ε

⎛
⎜⎜⎝

x+
1∫

x−
1

∂H(x, z,0)

∂z

dx1

f1(x, z,0)
+ o(1)

⎞
⎟⎟⎠

= 1

ε

⎛
⎝∫

γ0

divX0 dt + o(1)

⎞
⎠ , (29)

where t is the slow time induced by Xslow, which in coordinates means that dx1
dt

= f1. �
Observe that the slow divergence integral is a first order approximation of the divergence 

along orbits of Xε . This will be useful when presenting our main result in Section 3.

2.1.2. Normal form and transition of a regular slow–fast system
Now we consider the problem of finding a suitable normal form of a regular SFS. The follow-

ing is a well-known result but we recall it here for completeness.

Proposition 2.2. Consider a regular slow–fast system on Rm+3 given by

Xε = ε(1 + f1)
∂

∂u
+

m∑
j=1

εgj

∂

∂vj

+ H
∂

∂z
, (30)

where (u, v1, . . . , vm, z, ε) ∈ R
m+3; where the functions f1 = f1(u, v, z, ε) and gj = gj (u, v,

z, ε), for 2 ≥ j ≥ k − 1, are smooth and vanish at the origin (u, v, z, ε) = (0, 0, 0, 0). Further-
more, the function H = H(u, v, z, ε) is smooth with H(0, 0, 0, 0) = 0 and ∂H

∂z
(0, 0, 0, 0) < 0. 

Then, the vector field X is C
-equivalent to a normal form given by

XN
ε = ε

∂

∂U
+

m∑
j=1

0
∂

∂Vj

− Z
∂

∂Z
, (31)

where {Z = 0} corresponds to a choice of the center manifold WC
of Xε .

Proof. The first step is to divide the vector field X by 1 +f1. In a sufficiently small neighborhood 
of the origin this is a smooth equivalence relation. That is Y = 1 X reads as
1+f1
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Y = ε
∂

∂u
+

m∑
j=1

εg̃j

∂

∂vj

+ H̃
∂

∂z
, (32)

where g̃j , for 2 ≥ j ≥ k −1, and H̃ are smooth with H̃ (0) = 0 and ∂H̃
∂z

(0) < 0. Now we note that 
the origin of Rm+3 is a semihyperbolic equilibrium point with (u, v, ε) being center coordinates 
and z being the hyperbolic coordinate. We can now use Takens–Bonckaert results on normal 
forms of partially hyperbolic vector fields [2,3,23]. Thus, there exists a C
 change of coordinates 
(maybe respecting some constraints if required) under which Y is conjugated to

Ȳ = ε
∂

∂U
+

m∑
j=1

εḠj

∂

∂Vj

+ H̄Z
∂

∂Z
, (33)

where Ḡj = Ḡj (U, V, ε), for 2 ≥ j ≥ k − 1, and H̄ = H̄ (U, V, ε) are C
 functions, and where 
{Z = 0} corresponds to a choice center manifold which we denote by WC

. We remark that in the 
vector field Ȳ , the functions Ḡj and H̄ are independent of Z. Furthermore we have

H̄ (0,0,0) = ∂H̃

∂z
(0,0,0,0) < 0. (34)

This means that in a small neighborhood of the origin Ȳ can be divided by |H̄ |. In other words, 
Ȳ is C
-equivalent to

Y = εG ∂

∂U
+

m∑
j=1

εK̄j

∂

∂Vj

− Z
∂

∂Z
, (35)

where G(0, 0, 0) �= 0 and K̄j = K̄j (U, V, ε), for 2 ≥ j ≥ k − 1, are C
. Next, since WC =
{Z = 0} is invariant under the flow of Y , we can study the restriction Y|Z=0. This is

Y|Z=0 = εG ∂

∂U
+

m∑
j=1

εK̄j

∂

∂Vj

. (36)

For ε �= 0, the vector field Y|Z=0 is regular because G(0, 0, 0) �= 0. Thus, by the flow-box 
theorem, there exists a change of coordinates, depending in a C
 way on ε, under which Y|Z=0
can be written as

ε
∂

∂U
+

m∑
j=1

0
∂

∂Vj

. (37)

We must note that the flow-box change of coordinates is C
 in ε even when ε → 0. This is 
the case because Y is divisible by ε defining the slow vector field Yslow (compare with Sec-
tion 2.1) and Y slow is regular. This in turn means that the limit of the flow-box, when ε → 0, is a 
neighborhood tangent to the slow vector field.
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Now, it follows that Y is C
-equivalent to

XN
reg = ε

∂

∂U
+

m∑
j=1

0
∂

∂Vj

− Z
∂

∂Z
, (38)

as stated in the proposition. �
Motivated by Proposition 2.2 let us now discuss the dynamics of the vector field

XN
reg = ε

∂

∂U
+

m∑
j=1

0
∂

∂Vj

− Z
∂

∂Z
. (39)

The slow manifold S, corresponding to the normal form (39), is given by

S = {ε = 0, Z = 0} . (40)

Furthermore, we can parametrize the solution of (39) by U . Let us define the sections

�− = {(U,V,Z, ε) ∈ R×R
m ×R×R |U = U−}

�+ = {(U,V,Z, ε) ∈ R×R
m ×R×R |U = U+} , (41)

where U− < U+. The sections �− and �+ are transversal to the manifold S and therefore, 
for ε �= 0, are also transversal to the flow of (39). Associated to these sections, we define the 
transition

� : �− → �+

(V ,Z, ε) �→ (Ṽ , Z̃, ε̃). (42)

To compute the component Z̃ we only need to integrate dZ
dU

= − 1
ε
Z. Then it follows that 

Z̃ = Z(T ), where T is the time to go from �− to �+, which is T = Uf − Ui . Then it follows 
that

Ṽ = V

Z̃ = Z exp

(
−1

ε
(Uf − Ui)

)

ε̃ = ε. (43)

Observe the particular format of the transition �. The Z component is an exponential con-
traction towards the center manifold {Z = 0}. Maps with this characteristic appear frequently 
in our text and also in several other cases where slow–fast systems are studied. Therefore, in 
Appendix A we discuss in a rather general way, the properties of such maps.
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2.2. Formal normal form of Ak slow–fast systems

In this section we recall a normal form of the so-called Ak slow–fast systems. A proof can be 
found in [12]. This normalization is important since it eliminates many unwanted terms from the 
system being studied here.

Definition 2.2. Let k ∈N with k ≥ 2. An Ak slow–fast system (Ak-SFS) is an ODE of the form

x′
1 = ε(1 + f1)

x′
j = εfj

z′ = −
(

zk +
k−1∑
i=1

xiz
i−1

)
+ εfk

ε′ = 0, (44)

where j = 2, . . . , k − 1, and where the functions fi = fi(x1, . . . , xk−1, z, ε), for 1 ≤ i ≤ k, are 
smooth and vanish at (x1, . . . , xk−1, z, ε) = (0, . . . , 0, 0).

Remark 2.2.

• The system investigated in this work is an A3-SFS.
• The slow manifold associated to an Ak-SFS is defined by

S =
{

(x, z) ∈R
k | zk +

k−1∑
i=1

xiz
i−1 = 0

}
. (45)

The manifold S can equivalently be defined as the critical set of an Ak catastrophe [1]. Hence 
the name Ak-SFS.

Locally, we can regard (44) as X = F + P where F and P are smooth vector fields of the 
form

F = ε
∂

∂x1
+

k−1∑
j=2

0
∂

∂xj

+ g
∂

∂z
+ 0

∂

∂ε
(46)

and

P =
k−1∑
i=1

εfi

∂

∂xi

+ εfk

∂

∂z
+ 0

∂

∂ε
, (47)

respectively and where g = − 
(
zk +∑k−1

i=1 xiz
i−1
)

. We refer to F as the “principal part” and 
to P as the “perturbation”. Briefly speaking we want to eliminate, via a change of coordinates, 
the perturbation. The procedure of normalizing the vector field X is motivated by [18], where 
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normal forms of analytic perturbations of quasihomogeneous vector fields are investigated. The 
relevant result is the following

Theorem 2.1 (Formal normal form [12]). Let k ≥ 2 and let X = F + P be a smooth vector field 
where

F = ε
∂

∂x1
+

k−1∑
i=2

0
∂

∂xi

−
⎛
⎝zk +

k−1∑
j=1

xj z
j−1

⎞
⎠ ∂

∂z
+ 0

∂

∂ε
, (48)

and where

P =
k−1∑
i=1

Pi

∂

∂xi

+ Pk

∂

∂z
+ 0

∂

∂ε
, (49)

where each Pi = Pi(x1, . . . , xk−1, z, ε) is a smooth function. Assume that the following condi-
tions are satisfied

1. Pi(x1, . . . , xk−1, z, 0) = 0,
2. ρ(P̂i) ≥ 2k − i + 1,

where P̂i denotes the Taylor expansion of Pi and ρ(P̂i) is the quasihomogeneous order of the 
polynomial P̂i . Then, there exists a formal diffeomorphism �̂ such that �̂∗X̂ = F .

Remark 2.3. The condition ρ(P̂i) ≥ 2k− i +1 is not restrictive for Ak-SFSs. In other words, any 
perturbation Pi = εfi , where fi(0) = 0 (as in Definition 2.2) satisfies such condition. To see this 
note first that F is quasihomogeneous of degree k−1 and type (k, k−1, . . . , 1, 2k−1) [12]. Next, 
observe that min(ρ(P̂i)) = min(ρ(εf̂i)) = 2k − 1 + min(ρ(f̂i)), because the quasihomogeneous 
weight of ε is 2k − 1. From fi(0) = 0 it follows that min(ρ(f̂i)) = 1 and thus min(ρ(P̂i)) =
2k ≥ 2k − i + 1. Note however that if the perturbation is not of this form, the condition ρ(P̂i) ≥
2k − i + 1 does not necessarily hold.

In words, Theorem 2.1 shows that X̂ and F are conjugated via �̂. It follows that, by Borel’s 
lemma [5], the formal vector field X̂N = F can be realized as a smooth vector field XN =
F + P̃ where P̃ is flat at (x, z, ε) = (0, 0, 0). This has important consequences in the geometric 
desingularization of an A3-SFS, presented in the following section.

3. Geometric desingularization of a slow–fast system near a cusp singularity

In this section we study an A3 slow–fast system based on: a) the techniques introduced in 
Section 2 and in Appendix A, and b) the blow up method. To simplify the notation, let us now 
write the A3-SFS as

X = ε(1 + f1)
∂

∂a
+ εf2

∂

∂b
− (z3 + bz + a + εf3)

∂

∂z
+ 0

∂

∂ε
, (50)

where thanks to Theorem 2.1 (see also Remark 2.3), the smooth functions fi = fi(a, b, z, ε) are 
flat at the origin of R4. We investigate the transition associated to (50) between the sections
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Fig. 4. Qualitative representation of the investigation performed in this section. The sections �en and �ex are arbitrarily 
close to the cusp point. On the other hand the sections �− and �+ (not shown) are parallel to �en and �ex but far away 
from the cusp point. In a qualitative sense, we will construct an invariant manifold Mε and then extend it all the way up 
to the sections �− and �+ . Our analysis aims for simplicity and thus depends extensively on the usage of normal forms. 
This, of course, makes our results coordinate-dependant.

�− =
{
(a, b, z, ε) ∈R

4 |a = −a−, z > 0
}

�+ =
{
(a, b, z, ε) ∈R

4 |a = a+, z < 0
}

, (51)

where a− > 0 and a+ > 0 are arbitrarily large constants. However, since the trajectories of X
spend a long time along regular parts of S, it will be useful to define the “entry” and “exit” 
sections

�en =
{
(a, b, z, ε) ∈R

4 |a = −a0, z > 0
}

�ex =
{
(a, b, z, ε) ∈R

4 |a = a0, z < 0
}

, (52)

where a0 is a positive but sufficiently small constant, for reference see Fig. 4.
It will be clear from our analysis in the blow up space (3.2) that the section �− needs to be 

partitioned as follows.

Definition 3.1 (The inner layer and the lateral regions). Let 0 < L < M < ∞ be constants. The 
inner layer �inner ⊂ �− is defined as

�− ⊃ �inner =
{
(b, z, ε) ∈ �− | |b| < Mε2/5

}
. (53)

On the other hand, the lateral regions are defined as

�− ⊃ �+b =
{
(b, z, ε) ∈ �− |b > Lε2/5

}
�− ⊃ �−b =

{
(b, z, ε) ∈ �− | − b > Lε2/5

}
. (54)

Note that the set 
{
�inner,�+b,�−b

}
is an open cover of �−, see Fig. 5.
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Fig. 5. The section �− needs to be partitioned into three subsections: the inner layer �inner and the lateral regions �+b , 
�−b . From a qualitative point of view, these three layers correspond to three different types of trajectories: 1. Trajectories 
starting at �inner pass close to the cusp point. Observe that limε→0(�inner) = {b = 0} and then corresponds to a solution 
of the associated CDE passing exactly through the cusp point. 2. Trajectories starting at �+b pass sufficiently away from 
the cusp point along the regular side of the manifold S. 3. Trajectories starting at �−b pass sufficiently away from the 
cusp point along the folded side of the manifold S.

We are now in position to present our main result. In the following theorem, we characterize 
the transition � : �− → �+ under a suitable choice of coordinates at the section �− and �+. 
Furthermore, we give details on the differentiability of this map according to the cover of �−, 
see Definition 3.1.

Theorem 3.1 (Transition map of an A3-SFS). Let X be an A3 slow–fast system. This is, X is a 
vector field defined by

X = ε(1 + f1)
∂

∂a
+ εf2

∂

∂b
−
(
z3 + bz + a + εf3

) ∂

∂z
+ 0

∂

∂ε
, (55)

where each fi = fi(a, b, z, ε), i = 1, 2, 3, is smooth. Let the sections �−, �+ be defined 
as above. Then we can choose suitable C
-coordinates (B, Z, ε) in �− and C
-coordinates 
(B̃, Z̃, ̃ε) in �+ such that the transition � : (B, Z, ε) �→ (B̃, Z̃, ̃ε) is an exponential type map of 
the form

�(B,Z, ε) =
(

B + h, φ(B, ε) + Z exp

(
−A(B,ε) + 	(B,Z, ε)

ε

)
, ε

)
, (56)

where h is flat at the origin, A > 0 is C
, φ is C
-admissible with φ(B, 0) = 0, and 	 is 
C
-admissible with 	(B, Z, 0) = 0, see Appendix A for the definition of C
-admissible. More-
over, we have the following properties of the function A, φ and 	 .

1. −A(B, 0) = I (B) where I is the slow divergence integral associated to (55).
2. Restricted to (B, Z, ε) ∈ �inner, there are functions φ̃ and 	̃ such that

φ(B, ε) = φ̃
(
μ,ε1/5

)
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	(B,Z, ε) = 	̃
(
|B|1/2, ε1/5, ε ln ε,μ,Z

)
, (57)

where φ̃ and 	̃ are C
-admissible functions (see Definition A.1) with μ = Bε−2/5. Note that 
in this domain, μ is well defined in the sense that μ is bounded by a constant as ε → 0.

3. Restricted to (B, Z, ε) ∈ �+b , there is a function 	̃ such that

φ(B, ε) = 0

	(B,Z, ε) = 	̃
(
|B|1/2, ε1/5, ε ln(|B|), σ,Z

)
, (58)

where 	̃ is a C
-admissible function (see Definition A.1) with σ = ε|B|−5/2. Note that in 
this domain, σ is well defined since |B| > 0.

4. Restricted to (B, Z, ε) ∈ �−b , there are functions φ̃ and 	̃ such that

φ(B, ε) = φ̃
(
|B|1/2, σ

)
	(B,Z, ε) = 	̃

(
|B|1/2, ε1/5, ε ln(|B|), σ

)
, (59)

where φ̃ and 	̃ are C
-admissible functions (see Definition A.1) with σ = ε|B|−5/2. Note 
that in this domain, σ is well defined since |B| > 0.

Sketch of the proof. The first step is to recall Theorem 2.1, which shows that X is formally 
conjugate to

F = ε
∂

∂a
+ 0

∂

∂b
−
(
z3 + bz + a

) ∂

∂z
+ 0

∂

∂ε
. (60)

Next, by means of Borel’s lemma [5], the vector field F can be realized as a smooth vector field 
XN = F + εH where H is flat at (a, b, z, ε) = (0, 0, 0, 0). Thus, from now on, we only treat an 
A3-SFS given as

X = ε(1 + εf̃1)
∂

∂a
+ ε2f̃2

∂

∂b
−
(
z3 + bz + a + εf̃3

) ∂

∂z
+ 0

∂

∂ε
, (61)

where each f̃i = f̃i (a, b, z, ε) is flat at (a, b, z, ε) = (0, 0, 0, 0).
Another important ingredient of the proof is the blow up technique, which is described in 

Section 3.1. This method provides several local vector fields whose corresponding transitions 
are of exponential type, refer to Appendix A. Later all these local transitions are composed to 
produce an exponential type transition between the sections �− and �+. Along the analysis of 
the local vector fields (in the blow up space) we will take advantage of the flatness of the higher 
order terms of X. The complete proof follows Sections 3.1 to 3.5 and is given in Section 3.6.

Now, assuming that the transition � is of the form (56), we can show that A(B, 0) is given 
by the slow divergence integral of X. For this, let us recall the Poincaré–Leontovich–Sotomayor 
formula [19], which in general is given as follows.
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Proposition 3.1. Let X be a vector field on a manifold Mn with a volume form �. Let �− and 
�+ be two open sections of M and transverse to the flow of X. Let γε be an orbit of X along 
a center manifold WC

of X, starting at p = γε ∩ �− and reaching q = γε ∩ �+ in finite time. 
Let � : �− → �+ be the transition map defined in a neighborhood of p. If ψ− : U → �− and 
ψ+ : V → �+, with U ⊂ R

n−1 and V ⊂ R
n−1, are coordinates in �− and in �+ respectively, 

then

det
(
D
(
(ψ+)−1 ◦ � ◦ ψ−)) (s−) = 〈�(p),Dψ−(s−) × X(p)〉

〈�(q),Dψ+(s+) × X(p)〉 exp

⎛
⎝∫

γε

div� X dτ

⎞
⎠ , (62)

where s− = (ψ−)−1(p) and s+ = (ψ+)−1(q). The integral is taken along the orbit γε from p to 
q parametrized by the fast time τ .

So we have the following.

Proposition 3.2. Consider an A3-SFS and assume that the transition � : �− → �+ is given 
by (56). Then −A(B, 0) = I (B), where I (B) is the slow divergence integral associated to the 
A3-SFS.

Proof. The only relevant component is Z, so denote by �Z the Z-component of �. The factor 
multiplying the exponential in (62) can be taken as a constant C > 0. Then we have that (62), for 
the vector field of Theorem 3.1, reads as

∂�Z

∂Z
= C exp

⎛
⎝∫

γε

div� X dτ

⎞
⎠ . (63)

Here the volume form � can be taken as the standard one. In fact, the divergence div� X is 
independent of the chosen volume form [19,20]. Using the properties of the slow divergence 
integral described in (2.1.1), and since C > 0, we have

∂�Z

∂Z
= C exp

⎛
⎝∫

γε

div� X dτ

⎞
⎠

= exp

⎛
⎝1

ε

⎛
⎝∫

γ0

divX0 dt + ε lnC + o(1)

⎞
⎠
⎞
⎠

= exp

(
1

ε
(I + O(ε))

)
, (64)

where I is the slow divergence integral of X along a curve in the slow manifold S from �−
to �+. In principle, the limit ε → 0 of (64) is not well defined. However, according to our 
Theorem 3.1, we have by differentiating (56) w.r.t. Z
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∂�Z

∂Z
= exp

(
−A(B,ε) + ε	(B,Z, ε)

ε

)
. (65)

Identifying (64) with (65) and taking the limit ε → 0 we have indeed that

lim
ε→0

(I + O(ε)) = lim
ε→0

(−A(B,ε) + ε	(B,Z, ε)), (66)

which shows the claim. Note that the slow divergence integral in the coordinates (a, b, z) reads 
as

I (b) = Ĩ (b, ζ+) − Ĩ (b, ζ−), (67)

where straightforward computations show that

Ĩ (b, ζ ) = 9

5
ζ 5 + 2ζ 3b + b2ζ, (68)

and where ζ± is a constant defined by (a±, b, ζ±) ∈ �± ∩ S.
On the other hand, in normal coordinates and along regular parts of the slow manifold, the 

A3-SFS can be written as (see Section 2.1.2)

X(A,B,Z, ε) = ε
∂

∂A
+ 0

∂

∂B
− Z

∂

∂Z
+ 0

∂

∂ε
. (69)

In these coordinates the slow divergence integral reads as

I = A+ − A−, (70)

where A+ and A− are the corresponding parameterizations of �+ and �− (respectively) in the 
coordinates (A, B, Z, ε). �
3.1. Blow-up and charts

Let us briefly recall the blow up technique, for more details see e.g. [6,7,15]. The vector field 
X (50) is quasihomogeneous [1,12]. Therefore, it is convenient to use the quasihomogeneous 
blow up. This technique consists on performing a coordinate transformation defined by

a = r3ā, b = r2b̄, z = rz̄, ε = r5ε̄, (71)

which is called the blow up map, and where ā2 + b̄2 + z̄2 + ε̄2 = 1 and r ∈ [0, +∞). That is 
(ā, b̄, ̄z, ̄ε, r) ∈ S3 ×R

+. Since ε ≥ 0, we can restrict the coordinates to ε̄ ≥ 0. Note that S3 ×{0}
is mapped, via the blow up map (71), to the origin of R4. The powers or weights of the blow up 
map (71) are obtained from the type of quasihomogeneity of X.

Let us denote by �(ā, b̄, ̄z, ̄ε) the blow up map (71). This map induces a smooth vector field 
X̃ on S3 ×R

+ defined by �∗X̃ = X. It is often the case in which the vector field X̃ is degenerate 
along S3 × {0}. Then one defines another vector field X̄ by X̄ = 1

rm X̃ for a well chosen positive 
integer m so that X̄ is non-degenerate along S3 ×{0}. Since r ∈ R

+, the phase portraits of X̃ and 



H. Jardón-Kojakhmetov et al. / J. Differential Equations 260 (2016) 3785–3843 3803
Fig. 6. The blow up space and the charts. Each chart K
 parametrizes a region of the ball S3 × [0, r0). A local analysis 
in the charts provides a full picture of the dynamics of the vector field X̄.

X̄ are equivalent outside S3 ×{0}, and therefore it is equally useful to study X̄ instead of X̃. One 
obtains a complete description of the local flow of X near the cusp point by studying the flow of 
X̄ for (ā, b̄, ̄z, ̄ε, r) ∈ S3 × [0, r0) with r0 > 0 sufficiently small.

For problems of dimension greater than 2, performing computations in spherical coordinates 
becomes tedious. Therefore, it is more convenient to consider charts which parametrize hemi-
spheres of the ball S3 × [0, r0). In the present context, the useful charts are

Ken = {ā = −1} , Kex = {ā = 1} , Kε̄ = {ε̄ = 1} , K± = {b̄ = ±1
}

(72)

and we always keep r ∈ [0, r0). The previous setting is also known as directional blow up. A qual-
itative picture of the charts is given in Fig. 6.

Briefly speaking, our analysis goes as follows: first, we perform a local analysis on each chart 
given in (72). Next, we compose (“glue”) the local results to provide a full description of the 
flow of X (50) in a small neighborhood of the cusp point. In this way, we construct an invariant 
manifold from �en to �ex. Later we “push away” this invariant manifold all the way up to the 
sections �− and �+ along regular parts of the slow manifold S.

To avoid confusion of the coordinates we adopt the following notation. Any object O defined 
in the chart Ken is denoted by O1. Similarly any object defined in the chart Kex is denoted by O3. 
Finally, an object O defined in either of the charts Kε̄ or K± is denoted by O2.

3.2. Analysis in the chart Ken

Taking into account our notation convention, the blow up map in this chart is given by

a = −r3
1 , b = r2

1 b1, z = r3
1 z1, ε = r5

1ε1. (73)

The corresponding vector field in this chart (after multiplication by 3) has the form
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Xen :

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

r ′
1 = −ε1r1

(
1 + f̃1

)
b′

1 = 2ε1b1

(
1 + f̃1

)
+ r6

1ε2
1f̃2

z′
1 = −3

(
z3

1 + b1z1 − 1 − 1
3ε1z1

)
+ r2

1 ε1f̃3

ε′
1 = 5ε2

1

(
1 + f̃1

)
(74)

where the functions f̃i = f̃i (r1, b1, z1, ε1) are flat along r1 = 0, recall that S3 ×{r = 0} �→ 0 ∈R
4

via the blow up map. We study a transition �1 : �en
1 → �ex

1 where

�en
1 =

{
(r1, b1, z1, ε1) ∈R

4 | r1 = r0, ε1 < δ, z1 > 0
}

�ex
1 =

{
(r1, b1, z1, ε1) ∈R

4 | ε1 = δ, r1 < r0

}
, (75)

where r0 and δ are sufficiently small positive constants.

Remark 3.1. The section �en
1 corresponds to �en in the blow up space, that is �en = �(�en

1 ), 
where � is the blow up map (73). This implies that trajectories of X crossing �en correspond to 
trajectories of Xen crossing �en

1 .

Before going any further, let us provide a qualitative description of Xen as in [4]. This process 
can be repeated, following similar arguments, in all the local charts; however, for brevity we only 
detail it for the current one.

Qualitative description of the flow of Xen. The subspaces {r1 = 0}, {ε1 = 0} and {r1 = 0} ∩
{ε1 = 0} are invariant. Therefore, it is useful to study the flow of Xen restricted to the afore-
mentioned subspaces.

Restriction to {r1 = 0} ∩ {ε1 = 0}. In this space Xen is reduced to

b′
1 = 0

z′
1 = −3

(
z3

1 + b1z1 − 1
)

.

(76)

The set

γ1 =
{
(b1, z1) | z3

1 + b1z1 − 1 = 0
}

(77)

is a curve of equilibrium points. The phase portrait of (76) is shown in Fig. 7.

Remark 3.2. All the trajectories of (76) restricted to an initial condition z0 > 0 are attracted to the 
curve γ1|z1>0. Furthermore, due to our definition of �en

1 , we are interested only in trajectories 
satisfying this initial condition. Thus, from now on, we restrict our analysis to the subspace 
{z1 > 0}.



H. Jardón-Kojakhmetov et al. / J. Differential Equations 260 (2016) 3785–3843 3805
Fig. 7. The phase portrait of Xen restricted to the invariant space {r1 = 0} ∩ {ε1 = 0}. The shown curve is γ1 and it 
comprises a set of equilibrium points. Note that locally, all trajectories with initial condition z1(0) > 0 are attracted to 
γ1|{z1>0

} .

Restriction to {ε1 = 0}. In this space Xen is reduced to

r ′
1 = 0

b′
1 = 0

z′
1 = −3

(
z3

1 + b1z1 − 1
)

.

(78)

The set �1 = {
(r1, b1, z1) | z3

1 + b1z1 − 1 = 0
}

is a surface of equilibrium points given by �1 =
(r1, γ1). Since r ′

1 = 0, the phase space of (78) is foliated by two dimensional leaves in which the 
flow looks like Fig. 7.

Restriction to {r1 = 0}. In this space Xen is reduced to

b′
1 = 2ε1b1

z′
1 = −3

(
z3

1 + b1z1 − 1 − 1

3
ε1z1

)

ε′
1 = 5ε2

1. (79)

Once again, the set γ1 = {
(b1, z1, ε1) | ε1 = 0, z > 0, z3

1 + b1z1 − 1 = 0
}

is a curve of equilib-
rium points. The Jacobian of (79) evaluated along γ1 shows that, for small enough ε1, there 
exists an invariant center manifold that passes through γ1. Furthermore, the non-zero eigenvalue 
corresponding to the z-direction is negative along γ1. The phase portrait of (79) is shown in 
Fig. 8.

Observe that the b1 and the ε1 directions are expanding. It is important to know the relation 
between such two expanding variables. We have

db1

dε1
= 2

5

b1

ε1
, (80)

which has the solution
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Fig. 8. Phase portrait of (79) restricted to z1 > 0. The shown surface is an invariant center manifold, which is attracting 
in the z1-direction.

b1 = b∗
1

(
ε1

ε∗
1

)2/5

, (81)

where b∗
1 ≤ b1 and ε∗

1 ≤ ε1 are the initial conditions, that is (b∗
1, ε

∗
1) = (b1, ε1)|�en

1
. It is important 

to look at the ratio of initial conditions 
b∗

1(
ε∗

1

)2/5 . This ratio tells us that b1 is bounded as ε1 → 0

(and therefore as ε∗
1 → 0) if and only if b∗

1 ∈ O
((

ε∗
1

)2/5
)

. In other words, if the initial condition 

b∗
1 is not of order O((ε∗

1)2/5) then the value of b1 at �ex
1 blows up as ε∗

1 → 0. This leads us to 
partition the section �en

1 into three open regions as follows.

�
en,inner
1 = �en

1 ||b1|<Mε
2/5
1

�
en,b1
1 = �en

1 |
b1>Kε

2/5
1

�
en,−b1
1 = �en

1 |−b1>Kε
2/5
1

, (82)

where 0 < K < M < ∞. Observe that the open sets �en,inner
1 , �en,b1

1 and �en,−b1
1 form an open 

cover of �en
1 . Accordingly, these sets induce an open cover of the entry section �en via the blow 

up map (73). See Fig. 9 for a representation of the aforementioned partition.
Based on the partition of the entry section �en

1 , we define three transitions as follows

�inner
1 : �en,inner

1 → �ex
1

�
+b1
1 : �en,+b1

1 → �
ex,+b1
1

�
−b1
1 : �en,−b1

1 → �
ex,−b1
1 , (83)

where

�ex
1 =

{
(r1, b1, z1, ε1) ∈R

4 | ε1 = δ, r1 < r0

}
,

�
ex,±b1 =

{
(r1, b1, z1, ε1) ∈R

4 |b1 = ±η, r1 < r0

}
. (84)
1
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Fig. 9. Partition of �en
1 . Trajectories crossing through �en,ε1

1 corresponding to the inner wedge area, have a continuation 
on the chart Kε̄ . On the other hand, outside �en,ε1

1 we must consider the lateral regions �en,b1
1 and �en,−b1

1 .

Fig. 10. Phase portrait of the trajectories of Xen depending on their initial condition. If the trajectories satisfy the estimate 
y ∈ O(ε2/5), then they arrive to �ex,ε1

1 in finite time. If the estimate y ∈ O(ε2/5) is not satisfied, then we must choose 
one of the outgoing sections �ex,±b

1 in order to have a well defined transition map.

To finish with the qualitative description, note that there exists a (non-unique) 3-dimensional 
center manifold WC

1 , which is shown to exist by evaluating the Jacobian of Xen all along the 
surface

�1 =
{
(r1, b1, z1, ε1) | ε1 = 0, z1 > 0 z3

1 + b1z1 − 1 = 0
}

. (85)

Moreover, by the analysis provided above, the center manifold WC

1 |z1>0 is attracting for ε1 small 
enough. Note that

WC

1 |ε1=0 = �1.

This means that WC

1 can be interpreted as a perturbation of the slow manifold S, written in the 
coordinates of the current chart. See Fig. 10 for a representation of the previous exposition.
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Let us recall that the vector field Xen is of the form

Xen :

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

r ′
1 = −ε1r1

(
1 + f̃1

)
b′

1 = 2ε1b1

(
1 + f̃1

)
+ r6

1ε2
1f̃2

z′
1 = −3

(
z3

1 + b1z1 − 1 − 1
3ε1z1

)
+ r2

1 ε1f̃3

ε′
1 = 5ε2

1

(
1 + f̃1

)
(86)

We now proceed to describe the transitions �1 given by (83). For this, first we write (86) in a 
suitable normal form. Next, based on this normal form, we compute the corresponding transition.

First of all, let us move the origin to the point (r1, b, z1, ε1) = (0, 0, 1, 0). This is done by 
defining a new variable ζ1 by ζ1 = z1 − 1. With this variable we have a new local vector field Yen
which is defined by

Yen :

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

r ′
1 = −ε1r1

(
1 + f̃1

)
b′

1 = 2ε1b1

(
1 + f̃1

)
+ r6

1ε2
1f̃2

ε′
1 = 5ε2

1

(
1 + f̃1

)
ζ ′

1 = −3G(b1, ε1, ζ1) + ε1h̃,

(87)

where G(0, 0, 0) = 0 and ∂G
∂ζ1

(0, 0, 0) = 3. Now, we want to write Yen in a suitable normal form. 

From Proposition C.1, we know that Yen is C
 equivalent to

XN
en :

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

r ′
1 = −ε1r1

B ′
1 = 2ε1B1

ε′
1 = 5ε2

1

Z′
1 = −9(1 + H1(r1,B1, ε1))Z1,

(88)

where H1 is a C
-function vanishing at the origin. This normal form XN
en is convenient since 

the chosen center manifold WC

1 is now simply given by WC

1 = {Z1 = 0}. Furthermore, from the 
format of XN

en, it is evident the “hyperbolic nature” of the flow restricted to the center manifold: 
the restriction of XN

en to the center manifold WC

1 has a simple structure, namely

XN
en|WC

1
:

⎧⎪⎨
⎪⎩

r ′
1 = −ε1r1

B ′
1 = 2ε1B1

ε′
1 = 5ε2

1.

(89)

Note that for ε1 �= 0, the vector field 1
ε1

XN
en|WC

1
is hyperbolic.

The vector field XN
en is of the form studied in Proposition C.4, therefore we have that the 

transition

�inner : (B1, ε1, z1) �→ (r̃1, B̃1, Z̃1) (90)
1
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is of the form

r̃1 = r0

(ε1

δ

)1/5

B̃1 = B1

(
δ

ε1

)2/5

Z̃1 = Z1 exp

(
− 9

5ε1
(1 + α1ε1 ln ε1 + ε1G1)

)
, (91)

where α1 = α1(r0|B1|1/2, r0ε
1/5
1 ) and G1 = G1(r0|B1|1/2, r0ε

1/5
1 , μ) where μ = B1ε

−2/5
1 . Recall 

that for this transition we have the condition B1 ∈ O(ε
2/5
1 ) so μ is well defined.

On the other hand, the transition

�
±B1
1 : (B1, ε1,Z1) �→ (r̃1, ε̃1, Z̃1) (92)

is (see Proposition C.4) of the form

r̃1 = r0

(
B1

η

)1/2

ε̃1 = ε1

(
η

B1

)5/2

Z̃1 = Z1 exp

(
− 9

5ε1
(1 + β1ε1 ln(|B1|) + ε1H1)

)
, (93)

where β1 = β1(r0|B1|1/2, r0ε
1/5
1 ) and H1 = H1(r0|B1|1/2, r0ε

1/5
1 , σ), where σ = ε1|B1|−5/2. 

Note that since B1 /∈ O(ε
2/5
1 ), σ is well defined. We observe that the transitions �ε1

1 and �±B1
1

are exponential type maps.

3.3. Analysis in the chart Kε̄

Taking into account our notation convention, the blow up map in this chart is given by

a = r3
2 a2, b = r2

2 b2, z = r3
2z2, ε = r5

2 . (94)

Then, the blown up vector field reads as

Xε̄ :

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

r ′
2 = 0

a′
2 = 1 + g̃1

b′
2 = r6g̃2

z′
2 = − (z3

2 + b2z2 + a2
)+ g̃3,

(95)

where the function g̃i = g̃i (r2, a2, b2, z2) are flat along r2 = 0. Note that in this chart r2 acts as a 
parameter and that the flow is regular. Furthermore, note that Xε̄ is not a slow–fast system, but a 
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regular vector field. From the equation a′
2 = 1 + g̃1, we define the following “entry” and “exit” 

sections.

�
en,ε̄
2 = {(r2, a2, b2, z2) |a2 = −A0, z2 ≥ 0} ,

�
ex,ε̄
2 = {(r2, a2, b2, z2) |a2 = A0, z2 ≤ 0} . (96)

Therefore, we define a transition �ε̄
2 as

�ε̄
2 : �en,ε̄

2 → �
en,ε̄
2

(r2, b2, z2) �→ (r̃2, b̃2, z̃2). (97)

Since (95) is regular, by the flow-box theorem all trajectories starting at �en,ε̄
2 arrive at �ex,ε̄

2
in finite time. Moreover, the transition �ε̄

2 is a diffeomorphism and then, from (95) we have that 
�ε̄

2 reads as

�2ε̄(r2, b2, z2) = (r̃2, b̃2, z̃2)

= (r2, b2 + hb2 , φ1(r2, b2) + φ2(r2, b2)(1 + φ3(r2, b2, z2))z2), (98)

where the φi ’s are smooth functions. Observe that in this chart, the transition is not an exponential 
type map.

3.4. Analysis in the chart Kex

Taking into account our notation convention, the blow up map in this chart is given by

a = r3
3 , b = r2

3b3, z = r3
3z3, ε = r5

3 ε3. (99)

Then, the blown up vector field reads as

Xex :

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

r ′
3 = ε3r3

(
1 + f̃1

)
b′

3 = −2ε3b3

(
1 + f̃1

)
+ r6

3 ε2
3f̃2

z′
3 = −3

(
z3

3 + b3z3 + 1 + 1
3ε3z3

)
+ r2

3ε3f̃3

ε′
3 = −5ε2

3

(
1 + f̃1

)
(100)

where the function f̃i = f̃i (r3, b3, ε3, z3) are flat along r3 = 0. Observe that the vector field Xex
resembles the vector field Xen. Therefore, we have a similar behavior of the trajectories, the 
main difference is that in the case of Xex, there is one expanding (r3) and three contracting (b3, 
ε3 and z3) directions. The flow of Xex is obtained following similar arguments as for the flow 
of Xen.

From the fact that Xex has three contracting and one expanding direction, we define the entry 
sections
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�
en,ε̄
3 = {(r3, b3, ε3, z3) : ε3 = δ, z3 < 0, r3 < r0}

�
en,+b3
3 = {(r3, b3, ε3, z3) : b3 = η, z3 < 0, r3 < r0}

�
en,−b3
3 = {(r3, b3, ε3, z3) : b3 = −η, z3 < 0, r3 < r0} , (101)

where all the constants are positive and sufficiently small, and the exit section

�ex
3 = {(r3, b3, ε3, z3) : r3 = r0, z3 < 0, ε3 < δ, |b3| < η} . (102)

Then, accordingly, we define three transition maps as follows

�
ε3
3 : �en,ε̄

3 → �ex
3

: (r3, b3, z3) �→ (b̃3, ε̃3, z̃3)

�
+b3
3 : �en,+b3

3 → �ex
3

: (r3, ε3, z3) �→ (b̃3, ε̃3, z̃3)

�
−b3
3 : �en,−b3

3 → �ex
3

: (r3, ε3, z3) �→ (b̃3, ε̃3, z̃3). (103)

Now we proceed to write Xex in a normal form just as we did with Xen in (3.2). Following 
Proposition C.1 we have that Xex is C
 equivalent to

XN
ex :

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

r ′
3 = ε3r3

B ′
3 = −2ε3B3

ε′
3 = −5ε2

3

Z′
3 = −9(1 + H3)Z3,

(104)

where H3 = H3(r3, B3, ε3) is a C
 function vanishing at the origin. Just as in the chart Ken, there 
exists a three dimensional center manifold WC

3 associated to XN
ex and which has been chosen 

such that WC

3 = {Z3 = 0}. Since r3 is the only expanding direction, we take as transition time 

T3 = ln
(

r0
r3

)
. This transition time is computed from the dynamics restricted to WC

3 , that is, from 

the equation r ′
3 = r3. In contrast to what happened in the chart Ken, the time T3 is well defined 

for all the three transitions �ε3
3 , �+B3

3 and �−B3
3 . Following Proposition C.4 we have

B̃3 = B3

(
r3

r0

)2

ε̃3 = ε3

(
r3

r0

)5

Z̃3 = Z3 exp

(
− 9

5ε3

((
r0

r3

)5

− 1 + α3ε3 ln r3 + ε3H3

))
, (105)
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where α3 = α3(r3|B3|1/2, r3ε
1/5
3 ) and H3 = H3(r3|B3|1/2, r3ε

1/5
3 , r3). Therefore, by taking the 

definitions of the entry sections we have

�
ε3
3 (r3,B3,Z3)

=
(

B3

(
r3

r0

)2

, δ

(
r3

r0

)5

, Z3 exp

(
− 9

5δ

((
r0

r3

)5

− 1 + α3δ ln r3 + δH3

)))

�
±b3
3 (r3, ε3,Z3)

=
(

±η

(
r3

r0

)2

, ε3

(
r3

r0

)5

, Z3 exp

(
− 9

5ε3

((
r0

r3

)5

− 1 + α3ε3 ln r3 + ε3H3

)))
.

(106)

Observe that these transitions are of exponential type.

3.5. Analysis in the charts K±b̄

In this section we study the local flow at the charts K+b̄ and K−b̄ . In a qualitative sense, 
these charts come into play when the initial condition b0 = b|�en does not satisfy the estimate 
b0 ∈ O(ε2/5). This implies that the corresponding trajectory passes away from the cusp point. 
The chart K+b̄ “sees” trajectories with initial condition b|�en > 0 while K−b̄ “sees” trajectories 
with initial condition b|�en < 0.

Analysis in the chart K+b̄

In this chart the blow up maps reads

a = r3
2 a2, b = r2

2 , z = r2z2, ε = r5
2 ε2. (107)

Then we have that the blow up vector field is given by

X+b̄ :

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

r ′
2 = ε2f̄r

a′
2 = ε2(1 + f̄a2) + ε2ḡa2

ε′
2 = −ε2f̄ε2

z′
2 = −(z3

2 + z2 + a2) + ε2f̄z2

(108)

where all the functions f̄
 are flat along {r2 = 0}. Observe that the set

�2 =
{
(r2, a2, ε2, z2) | ε2 = 0, z3

2 + z2 + a2 = 0
}

(109)

is a NHIM of X+b̄. However, X+b̄ is not exactly a slow–fast system since ε′
2 �= 0, but the restric-

tion of X+b̄ to {r2 = 0} is indeed a slow–fast system. This restriction reads as

X+b̄|{r2=0} :

⎧⎪⎨
⎪⎩

a′
2 = ε2

ε′
2 = 0

z′
2 = −(z3

2 + z2 + a2).

(110)
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Fig. 11. Left: phase portrait of the corresponding layer equation of X+b̄|{r2=0
} . Center: phase portrait of the correspond-

ing CDE of X+b̄|{r2=0
}. Right: Since the slow manifold is regular, by Fenichel theory we know that the manifold �2 is 

perturbed to an invariant manifold �2,ε2 which is at distance of order O(ε2) from �2.

Remark 3.3. The subspace {r2 = 0} is invariant. Moreover, since X+b̄ is a flat perturbation of 
X+b̄|{r2=0}, it is equally useful to study the restriction X+b̄|{r2=0}. After all, by regular perturba-
tion theory, their flows are equivalent.

The slow manifold of X+b̄|{r2=0} is defined by �2|r2=0 and is normally hyperbolic. Let us 
define the sections

�
en,+b2
2 =

{
(r2, a2, ε2, z2) ∈R

4 |a2 = −A0

}
�

ex,+b2
2 =

{
(r2, a2, ε2, z2) ∈R

4 |a2 = A0

}
. (111)

Accordingly, we study the transition

�
+b2
2 : �en,+b2

2 → �
ex,+b2
2

(r2, ε2, z2) �→ (r̃2, ε̃2, z̃2). (112)

For a qualitative description of X+b̄|{r2=0} and the objects defined above see Fig. 11.
We know from Section 2.1.2 that for sufficiently small ε2, there exists a C
 change of coordi-

nates that transforms X+b̄|{r2=0} into the vector field

YN :
⎧⎨
⎩

a′
2 = ε2

ε′
2 = 0

Z′
2 = −Z2,

(113)

From the definition of the entry and exit sections (111), the time of integration is T = 2A0. To 
obtain the component Z2 of the transition �+b2

2 |{r2=0} we need to integrate

Z′
2 = − 1

ε2
Z2, (114)

and then Z̃2 = Z2(T ). Therefore we have that after choosing a center manifold WC

2 , the transition 
�

+b2 reads as
2
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�
+b2
2 (0, ε2,Z2) =

(
0, ε2,Z2 exp

(
−2A0

ε2

))
. (115)

Note that �+b2
2 is an exponential type map.

Analysis in the chart K−b̄

In this chart the blow up maps reads

a = r3
2a2, b = −r2

2 , z = r2z2, ε = r5ε2. (116)

Then we have that the blow up vector field is given by

X−b̄ :

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

r ′
2 = −ε2f̄r

a′
2 = ε2(1 + f̄a2) + ε2ḡa2

ε′
2 = ε2f̄ε2

z′
2 = −(z3

2 − z2 + a2) + ε2f̄z2

(117)

where all the functions f̄
 and ḡa2 are flat along {r2 = 0}. Observe that, as in the previous section, 
the subspace {r2 = 0} is invariant. The restriction of X−b̄ to this subspace reads as

X−b̄|{r2=0} :

⎧⎪⎨
⎪⎩

a′
2 = ε2

ε′
2 = 0

z′
2 = −(z3

2 − z2 + a2).

(118)

The flow of X−b̄ is a flat perturbation of the flow of X−b̄|{r2=0}. Therefore, let us continue our 
analysis restricted to the invariant space {r2 = 0}.

The manifold �2, which is defined by

�2 =
{
(r2, a2, ε2, z2) | r2 = 0, ε2 = 0, z3

2 − z2 + a2 = 0
}

(119)

is normally hyperbolic except at the two points p± = ± 
(

2
3
√

3
, 1√

3

)
. Let us define the sections

�
en,−b2
2 =

{
(r2, a2, ε2, z2) ∈R

4 |a2 = −A0

}
�

ex,−b2
2 =

{
(r2, a2, ε2, z2) ∈R

4 |a2 = A0

}
, (120)

where A0 > 0 is a sufficiently large constant. We are interested in the transition

�
−b2
2 : �en,−b2

2 → �
ex,−b2
2

(r2, ε2, z2) �→ (r̃2, ε̃2, z̃2). (121)

For a qualitative description of X−b̄|{r2=0} and the objects defined above see Fig. 12.
Away from the fold points p±, the manifold �2 is regular and thus, Fenichel’s theory applies. 

However, we need to take care of the transition near the fold point p+. The local transition of a 
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Fig. 12. Left: phase portrait of the corresponding layer equation of X−b̄|{r2=0
} . Center: phase portrait of the correspond-

ing CDE of X−b̄|{r2=0
} . Right: The expected perturbed invariant manifold obtained from the flow of the corresponding 

CDE and layer equation.

Fig. 13. The three different transitions in which �−b2
2 is decomposed. The central transitions is locally an A2 problem. 

The other two transitions at the sides are regular.

slow–fast system near a fold point is investigated in e.g. [16]. However, in our current problem 
this transition is not essential. By this we mean that the passage through the fold point is seen 
as a flat perturbation of the trajectory along the stable branch of �2. In a qualitative sense, this 
is due to the fact that the transition �−b2

2 goes along a large NHIM, which fails to be normally 
hyperbolic only at one point.

Proposition 3.3. We can choose appropriate coordinates (Z2, ε2) in �en,−b2
2 such that the tran-

sition �−b2
2 : �en,−b2

2 → �
ex,−b2
2 , restricted to r2 = 0, is an exponential type map of the form

�
−b2
2 (0, ε2,Z2) =

(
0, ε2, φ2(ε2) + Z2 exp

(
− 1

ε2
(A0 + ε2ψ2(Z2, ε2))

))
, (122)

where φ2 are flat at ε2 = 0, ψ2 is C
-admissible, and where A0 is given by the slow divergence 
integral of X−b̄|{r2=0}.

Proof. To prove that A0 is given by the slow divergence integral we proceed along the same rea-
soning as in Proposition 3.2, so we do not repeat it here. In Fig. 13 we show the three transitions 
that must considered.
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The three transitions are defined as

�
reg1
2 : �en,−b2

2 → �en

�
fold
2 : �en → �ex

�
reg2
2 : �ex → �

ex,−b2
2 , (123)

where we define �en and �en as

�en =
{
(a2, ε2,Z2) ∈ R

3 |a2 = −a2,en

}
�ex =

{
(a2, ε2,Z2) ∈ R

3 |Z2 = −Z2,ex

}
, (124)

where a2,en and Z2,ex are sufficiently small positive constants. The total transition �+b2
2 is given 

by �b2
2 = �

reg2
2 ◦ �

fold
2 ◦ �

reg1
2 . Recall from Appendix A that if we want to write the transition 

�
+b2
2 as an exponential type map, we require that �reg1

2 is expressed as an exponential type map 

with no shift. The transition �fold
2 is studied in e.g. [10,16]. In [10] is proved that there are local 

coordinates (Z̄2, ε) in �en, and (ã2, ̃ε) in �ex, such that the transition �fold
2 is given by

�
fold
2 (Z̄2, ε2) = (ã2, ε̃2)

=
(
ε

2/3
2 + O(ε2), ε2

)
. (125)

Assume now that we have characterized an invariant manifold Mfold
ε2 from �en to �ex via the 

map �fold
2 . Now we want to “extend” Mfold

ε2 all the way up to the sections �en,−b2
2 and �ex,−b2

2
via transitions along normally hyperbolic regions of �2. For this, it is more convenient to regard 
Mfold

ε2 as a graph ζ2 = φε2(A2) where (ζ2, A2) are local coordinates around the fold point p+
and where φε2 is a diffeomorphism for ε2 > 0. In this way we can equivalently express the map 
�

fold
2 as

�
fold
2 (ζ, ε2) = (ζ̃2, ε̃2)

= (ψε2(ζ ), ε2) (126)

where ψε2 is a diffeomorphism for ε2 > 0 and only a homeomorphism for ε2 = 0. Next, following 
Section 2.1.2 we can find coordinates (Z2, ε2) in �en,−b2

2 , and coordinates (Z̃2, ε2) in �ex,−b2
2 in 

such a way that the transitions �reg1
2 and �reg2

2 are given as

�
reg1
2 (Z2, ε2) =

(
Z2 exp

(
− 1

ε2
(A0 − a2,en)

))
= (Z̄2, ε2)

�
reg2
2 (−Z2,ex, ε2) =

(
−Z2,ex exp

(
− 1

ε2
(A0 − ã2)

))
= (Z̃2, ε2). (127)
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Remark 3.4. Recall that along normally hyperbolic slow manifolds, it is possible to make a 
normal form transformation in such a way that this transformation respects certain constraint or 
structure of the vector field, [2,3]. In this particular case, we respect the choice of the invariant 
manifold Mfold

ε2 .

Next, we can compute the composition �−b2
2 = �

reg2
2 ◦�

fold
2 ◦�

reg1
2 by following Appendix A

and it thus follows that

�
−b2
2 (0,Z2, ε2) =

(
0, ψ̄ε2 + Z2 exp

(
− 1

ε2
(A1 + A3 + ε2ψ2)

)
, ε2

)
, (128)

where ψ̄ε2 = ψε2(0) exp
(
−A3

ε2

)
and where ψ2 = ψ2(Z, ε2) is a C
-admissible function. Note 

that ψ̄ε2 is flat at ε2 = 0. �
3.6. Proof of Theorem 3.1

Let us first recall that, within the blow up space, we have three types of transitions according 
to the initial condition b1|�en

1
, namely

• If b1|�en
1

∈ O(ε
2/5
1 ) then we construct a transition passing through the charts Ken → Kε̄ →

Kex.
• If b1|�en

1
/∈ O(ε

2/5
1 ) and b1|�en

1
> 0 then we construct a transition passing through the charts 

Ken → K+b̄ → Kex.

• If b1|�en
1

/∈ O(ε
2/5
1 ) and b1|�en

1
< 0 then we construct a transition passing through the charts 

Ken → K−b̄ → Kex.

In Fig. 14 we give a qualitative diagram of the local transitions obtained and their relationship.
Let us only detail the transition through the inner layer �inner corresponding to b1|�en

1
∈

O(ε
2/5
1 ), the other cases follow the same lines.

The transition �inner : �inner
1 → �ex

2 is given as

�inner = �
ε3
3 ◦ Mex

ε̄ ◦ �
ε2
2 ◦ Mε̄

en ◦ �inner
1 (129)

where the matching maps are obtained from the blow up map. For example, to obtain the match-
ing map from the chart Ken to the chart Kε̄ we relate the two directional blow up maps

a = −r3
1 , b = r2

1b1, z = r1z1, ε = r5
1ε1 (130)

and

a = r3
2 a2, b = r2

2 b2, z = r2z2, ε = r5
2 . (131)

Let us work out only with the z-component of the transitions as it is the only relevant one. 
Recall from Section 3.2 that �inner

1 is an exponential type map with no shift. Next, the compo-
sition �central = Mex ◦ �

ε2 ◦ Mε̄
en yields a diffeomorphism as �ε2 is a diffeomorphism, and the 
ε̄ 2 2
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Fig. 14. All the transitions obtained in the charts. We have to compose all such transitions through the matching maps 
M

j
i

. A matching map Mj
i

relates the coordinates between the charts Ki and Kj .

matching maps are also diffeomorphisms on their domain of definition. Next, the last transition 
�

ε3
3 is an exponential type map with no shift, see Section 3.4. Therefore, following Appendix A

we have that �ε3
3 ◦ �central ◦ �inner

1 is an exponential type map of the form

�inner
Z1

= φ̄(B1, ε1) + Z1 exp

(
− 1

ε1

(
Ā(B1, ε1) + ε1	̄(B1, ε1,Z1)

))
, (132)

where Ā > 0 and φ and 	 are C
-admissible functions. The differentiability of φ and 	 with 
respect to monomials is evident from the results of Section 3.2. By blowing down we obtain that 
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the transition �inner : �en → �ex (in a small neighborhood of the cusp point and within the inner 
layer as domain) reads as

�inner
Z = φ(B, ε) + Z exp

(
−1

ε

(
A(B, ε) + ε	̄(B, ε,Z)

))
. (133)

To obtain the transition � : �− → �+ we now need to compose �inner
Z with exponential type 

maps on the left and on the right corresponding to

�− : �− → �en

�+ : �ex → �+. (134)

However, we must proceed with care. In order to express the transition � as an exponential 
type map, we need to choose appropriate coordinates on �− and on �+ that respect the al-
ready chosen coordinates in �en and in �ex. Fortunately, this is possible with the extensions of 
Bonckaert [2,3] to the normalization results of Takens [23].

For sake of clarity, let (Ben, Zen) be coordinates in �en and (Bex, Zex) be coordinates in �ex. 
We have shown that these coordinates can be chosen in such a way that the “vertical” component 
of the transition map �inner : �en → �ex reads as

�Zen(Ben,Zen, ε) = Zex

= φ(Ben, ε) + Zen exp

(
−1

ε

(
A(Ben, ε) + ε	̄(Ben, ε,Zen)

))
. (135)

In this case the invariant manifold, say Mε, is given by Zen = 0. Using [2,3] we can find 
suitable coordinates (B−, Z−) in �− in such a way that

�−
Z−(B−,Z−, ε) = Z− exp

(
−1

ε
(A0)

)
= Zen. (136)

In other words, there is a change of coordinates respecting the invariant manifold Mε under 
which the transition �− is an exponential type map with no shift and linear. Similar arguments 
hold for the choice of coordinates in �+. Finally, following Appendix A, the composition �+

Z+ ◦
�Zen ◦ �−

Z− leads to the result.
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Appendix A. Exponential type functions

In this section, we discuss a particular type of function which will be found and used fre-
quently throughout the main text. First, however, let us give a preliminary but useful definition. 
For this we need to extend the common concept of monomial. In our context, a monomial, e.g. 
in two variables, ω(u, v) is any expression of the form uαvβ or of the form uα(lnv)β , with 
α, β ∈ R. In general, if we let u ∈ R

m and v ∈ R
n, we allow a monomial ω to be any expression 

of the type up(lnv)q , where up = u
p1
1 · · ·upm

m and (lnv)q = (lnv1)
q1 · · · (lnvn)

qn .

Definition A.1 (C
-admissible function). Let (U, V ) ∈ R
m ×R

n. We say that a function f (U, V )

is C
-admissible (with respect to a monomial ω), if f is C
 w.r.t. V in a neighborhood of 0 ∈R
n, 

and if there is a quadrant U = [0, u1) × · · ·× [0, un) ⊂ R
m where the monomial ω is defined and 

such that the function f̃ (ω, U, V ) = f (U, V ) is C
 with respect to ω in U . Similarly, the function 
f is said to be C
-admissible (with respect to the monomials ω1, . . . , ωs ) if there is a quadrant U
where the monomials are defined and such that the function f̃ (ω1, . . . , ωs, U, V ) = f (U, V ) is 
C
 with respect to ω1, . . . , ωs in U .

As an example of a C
-admissible function, consider f (U) = U1 lnU1φ(U) where φ(U) is 
smooth. This function is smooth away from U = 0 and C0 at the origin. However, it is not 
differentiable w.r.t. U1 at U1 = 0 but it is differentiable with respect to ω = U1 lnU1 at ω = 0.

Let V ∈ R
m, Z ∈ R, and as usual ε denotes a small parameter.

Definition A.2 (Exponential type function). A function D(V, Z, ε) is called of exponential type 
if it has the following form

D(V,Z, ε) = B(V , ε) + Z exp

(
−A(V , ε) + �(V, ε,Z)

ε

)
, (A.1)

where A and B, are C
-admissible functions with A > 0, and B(V , 0) = 0; and where � is 
C
-admissible with �(V, 0, Z) = 0. We distinguish two particular cases

1. The exponential type function D is without shift if B ≡ 0.
2. The exponential type function D is linear if �(V, Z, ε) ≡ �(V, ε).

Remark A.1. Assume D is a given exponential type function, then the representation of D is 
unique in the sense that all the functions in r.h.s. of (A.1) are computable from D. In fact

B = D(V,0, ε)

A= lim
Z→0

(
−ε ln

(
D(V,Z, ε) − D(V,0, ε)

Z

))

� = −ε ln

(
D(V,Z, ε) − D(V,0, ε)

Z

)
−A. (A.2)

We want to study the scenario where we have to compose D with some other functions 
and want to keep the exponential type structure. To be more precise, we consider D as a
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(V , ε)-parameter family of functions (in Z) and compose it with a (V , ε)-parameter family of 
diffeomorphisms 	(V,ε) on R.

Proposition A.1 (Composition on the left). Let 	(V,ε) : R → R be a family of diffeomorphisms, 
and let D be an exponential type function. Then, the composition 	(V,ε)◦D is also of exponential 
function of the form

D̃ = B̃(V , ε) + Z exp

(
−A(V , ε) + �̃(V ,Z, ε)

ε

)
, (A.3)

where B̃ and �̃ are admissible functions.

Proof. Let us simplify the notation by writing 	 = 	(V,ε). Since 	 is a diffeomorphism we 
can write 	(a + b) = 	(a) + C(1 + ψ(a, b))b, near b = 0, with ψ a C
 function such that 
ψ(a, 0) = 0 and with C > 0. Then we have

	 ◦ D(z) = 	

(
B + Z exp

(
−A+ �

ε

))

= 	(B) + C(1 + ψ(V,Z, ε))Z exp

(
−A+ �

ε

)
. (A.4)

Since C > 0 we can take the logarithm of C(1 + ψ(V, Z, ε)) and then we have

	 ◦ D(z) = 	(B) + exp(ln(C(1 + ψ))Z exp

(
−A+ �

ε

)

= 	(B) + Z exp

(
−A+ � + ε ln(C(1 + ψ)

ε

)
. (A.5)

The result is obtained by setting B̃ = 	(B) and �̃ = � + ε ln(C(1 + ψ). �
Proposition A.2 (Composition on the right). Let 	(V,ε) : R → R be a family of diffeomorphisms 
with no shift, that is 	(V,ε)(0) = 0 for all (V , ε), and let D be an exponential type function. Then, 
the composition D ◦ 	(V,ε) is also of exponential function of the form

D̃ = B̃(V , ε) + Z exp

(
−A(V , ε) + �̃(V ,Z, ε)

ε

)
, (A.6)

where B̃ and �̃ are admissible functions.

Proof. Let us simplify the notation by writing 	 = 	(V,ε). Since 	(0) = 0 we can write 	(z) =
C(1 + O(z))z with C > 0. Then we have
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D ◦ 	(z) = D(C(1 + O(z))z) = B(V , ε) + C(1 + O(z))z exp

(
−A(V , ε) + �(V, ε,	)

ε

)

= B(V , ε) + z exp

(
−A(V , ε) + �(V, ε,	) + ε ln(C(1 + O(z)))

ε

)
. (A.7)

The result then is obtained by setting �̃ = �(V, ε, 	) + ε ln(C(1 + O(z))). �
Remark A.2. If we want the composition � ◦	(V,ε) to be of exponential type, the family 	(V,ε)

cannot be arbitrary. In order to preserve the “exponential structure”, 	(V,ε) should satisfy the 
hypothesis of Proposition A.2. In Corollary A.2 we show a particular case in which the diffeo-
morphism 	 can have a shift and yet preserve the structure of the exponential type function.

Let us proceed by presenting a couple of useful corollaries.

Corollary A.1. Let D1 and D2 be two exponential type functions of the form

D1(V ,Z, ε) = Z exp

(
−A1(V , ε) + �1(V ,Z, ε)

ε

)

D2(V ,Z, ε) = B2(V , ε) + Z exp

(
−A2(V , ε) + �2(V ,Z, ε)

ε

)
, (A.8)

that is, D1 is an exponential type function with no shift. Then D2 ◦ D1 is an exponential type 
function.

Corollary A.2. Let D1 and D2 be two exponential type functions with D2 linear, this is

D1(V ,Z, ε) = B1(V , ε) + Z exp

(
−A1(V , ε) + �1(V ,Z, ε)

ε

)

D2(V ,Z, ε) = B2(V , ε) + Z exp

(
−A2(V , ε)

ε

)
. (A.9)

Then the composition D2 ◦ D1 is of exponential type.

It is useful to consider the following: let X(V, Z, ε) be a given vector field on Rm+2, and let 
�0 and �1 be codimension 1 subsets of Rm+2 which are transversal to the flow of X. For the 
moment it is sufficient to think of a section �i given by 

{
Vj = v0

}
or by {ε = ε0} with v0 and ε0

fixed constants. Induced from Definition A.2 we then have the following.

Definition A.3 (Exponential type transition). A transition � : �0 → �1 is called of exponential 
type if and only if its Z-component is an exponential type function. This is, an exponential type 
transition is of the form

�(V,Z, ε) = (G,D,H)

=
(

G(V, ε), B(V , ε) + Z exp

(
−A(V , ε) + �(V,Z, ε)

ε

)
, H(V, ε)

)
,

(A.10)
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where G : Rm+1 → R
m and H : Rm+1 → R are C
 with G(V, 0) = V and H(V, 0) = 0; where 

A, B and � are C
-admissible functions. The names exponential type transition with no shift and 
linear are inherited as well from the type of D.

Suppose now that X is a given vector field on Rm+2, as above, and let �i with i =
0, 1, 2, 3, 4, 5, be disjoint sections which are all transversal to the flow of X. Assume that X
induces exponential type transitions �i : �i−1 → �i with i = 1, 2, 3, 4, 5 of the following form

1. �1 is with no shift and linear
2. �2 is with no shift
3. �3 is a general diffeomorphism
4. �4 is with no shift
5. �5 is with no shift and linear.

We need to show that the composition of all these five maps is an exponential type transition.

Proposition A.3. Let �i : �i−1 → �i as described above. Then the composition � = �5 ◦ �4 ◦
�3 ◦ �2 ◦ �1 is an exponential type map of the form

� =
(

G̃(V, ε), B̃(V , ε) + Z exp

(
− Ã(V , ε) + �̃(V ,Z, ε)

ε

)
, H̃ (V , ε)

)
, (A.11)

where Ã= A1 +A2 +A4 +A5.

Proof. Let us write each of the transitions as follows.

1. �1(V , Z, ε) = (G1,D1,H1) =
(
G1,Z exp

(
−A1(V ,ε)

ε

)
,H1

)
2. �2(V , Z, ε) = (G2,D2,H2) =

(
G2,Z exp

(
−A2(V ,ε)+�2(V ,Z,ε)

ε

)
,H2

)
3. �3(V , Z, ε) = (G3,D3,H3)

4. �4(V , Z, ε) = (G4,D4,H4) =
(
G4,Z exp

(
−A4(V ,ε)+�4(V ,Z,ε)

ε

)
,H4

)
5. �5(V , Z, ε) = (G5,D5,H5) =

(
G5,Z exp

(
−A5(V ,ε)

ε

)
,H5

)

For brevity let �2 ◦ �1 = (G̃2, D̃2, H̃2). Then we have

(G̃2, D̃2, H̃2) =(
G2(G1,H1),D1 exp

(
−A2(G1,H1) + �2(G1,D1,H1)

H1

)
,H2(G1,H1)

)
. (A.12)

Now, we take care only of the Z-component of the composition �2 ◦ �1. From the hypothesis 
on G1 and H1 we can write G1 = V + O(ε) and H1 = αε(1 + O(ε)) with α > 0, then

D̃2 = Z exp

(
−A1(V , ε) +A2(V , ε) + �̄2(V ,Z, ε)

)
, (A.13)
ε
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where we have gathered in �̄2 the function �1 and the terms resulting from taking G1 = V +
O(ε) and H1 = αε(1 + O(ε)). In a similar way, letting �5 ◦ �4 = (G̃5, D̃5, H̃5) we get

D̃5 = Z exp

(
−A4(ε) +A5(ε) + �̄5(V ,Z, ε)

ε

)
(A.14)

Next, and following similar arguments as above, we know from Proposition A.1 that the com-
position �321 = �3 ◦ �2 ◦ �1 is of exponential type with shift. Finally since the transition 
�54 = �5 ◦ �4 is of exponential type with no shift, and using Proposition A.1, we have that 
�54 ◦ �321 is an exponential type transition as claimed in the proposition.

Remark A.3. In the case where �3 is an exponential type map, we get a similar result with 
Ã =A1 +A2 +A3 +A4 +A5. �
Appendix B. First order differential equations (by R. Roussarie)

The contents of this section shall appear in greater detail in [20]. We reproduce some results 
here for completeness purposes and to use them in Appendix C.1.

Let X(x) be a smooth vector field defined on W ⊂ R
n, for arbitrary n ∈ N (here we include 

the possible parameters). Let G(x, y) : W × R → R be a smooth function. We shall study the 
solutions of the first order differential equation

X · K(x) = G(x,K(x)), (B.1)

where K(x) is the unknown function. We assume the following

1. There exists an open section � ⊂ W which is transverse to X.
2. Let φ(t, x) denote the flow of X. We can choose an open domain W� with the property 

that for any x ∈ W� , there exists a unique smooth time t (x) (possibly unbounded) such that 
φ(t (x), x) ∈ �.

3. The vector field Z(x, y) = X(x) + G(x, y)∂y has a complete flow.

The flow of Z takes the form (φ(t, x), ψ(t, x, y)), where φ is the flow of X. It follows that 
K(x) is a solution of (B.1) if and only if the graph {y = K(x)} is a surface tangent to the vector 
field Z. Then we have the implicit formula

ψ(t (x), x,K(x)) = 0. (B.2)

In our applications, the function G is affine in y, that is G(x, y) = L(x)y + �(x) where L
and � are smooth. If we write L̄(t, x) = L(φ(t, x)) and �̄(t, x) = �(φ(t, x)) (where φ is the 
flow of X), we have for ψ the following linear differential equation

dψ

dt
(t, x, y) = L̄(t, x)ψ(t, x, y) + �̄(t, x). (B.3)
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Then we can integrate (B.3) with the initial condition ψ(0, x, y) = y to obtain

ψ(t, x, y) = exp

⎛
⎝ t∫

0

L̄(τ, x)dτ

⎞
⎠
⎧⎨
⎩y +

t∫
0

�̄(τ, x)

⎡
⎣exp

⎛
⎝−

τ∫
0

L̄(σ, x)dσ

⎞
⎠
⎤
⎦dτ

⎫⎬
⎭ . (B.4)

Since exp
(∫ t

0 L̄(τ, x)dτ
)

> 0 we can solve the implicit equation (B.2) obtaining

K(x) = −
t (x)∫
0

�(φ(τ, x))

⎡
⎣exp

⎛
⎝−

τ∫
0

L(φ(σ, x))dσ

⎞
⎠
⎤
⎦dτ, (B.5)

where we recall that φ is the flow of X and t (x) is the time to go from x to the section � along 
this flow.

Let us now assume that the vector field X is partially hyperbolically attracting in the following 
sense: we assume coordinates x = (a, b) ∈ R

p × R
q and that the vector field X has a decom-

position X(x) = U(x) + V (x) where U is the component along Rp and V is the component 
along Rq . Moreover, we assume that V = 0 on Rp × {0} (that is X is tangent to Rp × {0}). We 
also assume that at each point x = (a, b) it is satisfied that DbV (a, 0) has all its eigenvalues 
with strictly negative real part. We further suppose that X is given on W = D × � where D is 
a domain diffeomorphic to a ball in Rp and � is a ball in Rq . We choose � = �ρ0 for some 
ρ0 > 0 where �ρ = {b ∈R

q | ||b|| < ρ}. It then follows that under a linear change of coordinates 
(a, b) �→ (a, A(a)b), the vector field X enters along D × ∂�ρ for 0 < ρ ≤ ρ0 if we choose ρ0
small enough. We now have the following

Proposition B.1. Assume that DbV (a, 0) has all its eigenvalues with a strictly negative real part 
and that ρ0 is small enough as explained above. Let B be any domain diffeomorphic to a closed 
ball inside the interior of D and assume that the function �(x) is flat along D × {0}. Then the 
equation

X · K(x) = L(x)K(x) + �(x) (B.6)

has a smooth solution K(x) in B × � which is flat along B × {0}.

Proof. Let f (a) : Rp → [0, 1] be a smooth function which is equal to 1 on B and equal to 0 on 
a neighborhood of ∂D. Define the vector field

T = V + f U. (B.7)

This vector field T coincides with X on B ×�. Moreover, T is tangent along ∂D ×� and enters 
the domain D × � along D × ∂�. Let φ(t, x) = (φa(t, x), φb(t, x)) ∈ R

p ×R
q denote the flow 

of T . It follows that φ(t, x) ∈ D × � for all x ∈ D × � and all t ≥ 0. From the assumption on V
we have that there exists a positive constant E > 0 such that

||φb(t, x)|| ≤ ||b|| exp(−Et), (B.8)
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for any x = (a, b) ∈ D × � and t ∈ [0, +∞). We now want to use this flow φ in (B.5) noting 
that if the integral converges, then K(x) is a solution to the equation T ·K = LK +� on D ×�

and then to the equation X · K = Lk + � on B × �. In this setting (B.5) is written as

K(x) = −
∞∫

0

�(φ(τ, x))

⎡
⎣exp

⎛
⎝−

τ∫
0

L(φ(σ, x))dσ

⎞
⎠
⎤
⎦dτ. (B.9)

Now, we need to prove that (B.9) defines a smooth function on D × � which is flat along 
D × {0}. In other words, we shall prove that K and all its partial derivatives are equal to 0 on 
D × {0}. As L is bounded, there exists a constant M0 > 0 such that

exp

⎛
⎝−

τ∫
0

L(φ(σ, x))dσ

⎞
⎠≤ exp(M0τ). (B.10)

Next, let N ∈ N. Since � is flat in v, there exists a constant PN > 0 such that

|�(a,b)| ≤ PN ||b||N, (B.11)

and then from (B.8) it follows that

|�(φ(τ, x))| ≤ PN ||b||N exp(−NEτ). (B.12)

Using these estimates we have that

|K(x)| ≤ PN ||b||N
+∞∫
0

exp((M0 − NE)τ)dτ. (B.13)

The integral in (B.13) converges if N is large enough, strictly speaking if N >
M0
E

. This proves 
that by choosing N sufficiently large, the right hand side of (B.9) defines a function which is 
continuous and equal to 0 on D × {0}.

Let us now consider any partial derivation ∂αK of K . Let us write

H(τ, x) = �(φ(τ, x)) exp

⎡
⎣−

τ∫
0

L(φ(σ, x))dσ

⎤
⎦ , (B.14)

the integrand in (B.9). Using chain rule on the derivative of (B.9), we have to prove that the 
integral

+∞∫
∂αH(τ, x)dτ (B.15)
0
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is convergent and that there is an estimate similar to (B.13) for N large enough. We do not want 
to give all the details here and refer the reader to [20]. The idea is that ∂αH(τ, x) is a finite sum 
of terms such that each of these terms is a product of factors which are partial derivatives in x
and are of one of the following forms

1. ∂α1(φ(τ, x)). Since � is smooth and flat along D ×{0}, this is also the case for ∂α1(φ(τ, x)). 
Therefore, for N sufficiently large, we can write an estimate of the form

|∂α1(φ(τ, x))| ≤ PNα1
||b||N exp(−NEτ), (B.16)

for constants PNα1
> 0.

2. ∂α2φ(τ, x) (resp. ∂α2φ(σ, x), note that 0 ≤ σ ≤ τ ). By the usual variational method along 
trajectories, there exists constants Eα2 > 0 such that |∂α2φ(τ, x)| ≤ exp(Eα2τ) (resp. 
|∂α2φ(σ, x)| ≤ exp(Eα2σ)).

3. ∂α3L(φ(τ, x)). As L is smooth in D × �, all these factors are bounded by a constant Mα3 .
4. exp

(− ∫ τ

0 L(φ(σ, x))dσ
)
. This factor is bounded by exp(M0τ).

Next, by remarking that a factor of the first type appears in each term of the expansion of 
∂αH , and taking N large enough, it is possible to conclude that the integral (B.15) converges an 
is equal to 0 for x ∈ D × {0}. Therefore, the partial derivative ∂αK(x) exists, is continuous and 
is equal to 0 on D × {0}. �
Appendix C. Normal form and transition of a semi-hyperbolic vector field

In this section, we present a rather general framework for the computation of a C
 normal 
form and the corresponding transition of a vector fields with a semi-hyperbolic singularity. The 
contents of this section are not only relevant for the object studied in this document, but for more 
general systems as well, cf. [10]. To make our computations simpler, we prove a lemma that 
allows us to “partition” a smooth function. As a simple example of this partition, let f (u, v) be 
a smooth function on R2. We show that f can be written as f (u, v) = f1(uv, u) + f2(uv, v), 
where f1 and f2 are smooth. This type of result becomes useful when computing the transition 
map that we present in Appendix C.3.

C.1. Normal form

Here we provide a C
 normal form of a semi-hyperbolic vector field which frequently ap-
pears in the analysis of slow–fast systems. The goal of obtaining such a normal form is that the 
computation of the corresponding transition becomes simpler.

Proposition C.1. Let α, β = (β1, . . . , βm) and γ be non-zero constants, and consider the vector 
field X given by

X :

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

u′ = αwu(1 + f ) + wg

v′
j = βjwvj (1 + f )

w′ = γw2(1 + f )
′

(C.1)
z = −� + h,
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where j = 1, 2, . . . , m; where the functions f = f (u, v, w, z), g = g(u, v, w, z) and h =
h(u, v, w, z) are smooth functions which are flat at the origin of Rm+3, and where � =
�(u, v, w, z) is a smooth function such that �(0) = 0 and ∂�

∂z
(0) > 0. Then there exist a C


coordinates (U, V1, . . . , Vm, W, Z) for which X is C
-equivalent to a normal form given by

XN
sh :

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

U ′ = αWU

V ′
j = βjWVj

W ′ = γW 2

Z′ = −GZ,

(C.2)

where G = G(U, V, W) is a C
 function such that G(0) > 0.

Proof of Proposition C.1. From the definition of the vector field X we note that the origin is 
a semi-hyperbolic singular point. The hyperbolic eigenspace is 1-dimensional while the center 
eigenspace is (m + 2)-dimensional. We now proceed in 4 steps as follows.

1. Define a new vector field Y by Y = 1
1+f

X, which reads as

Y :

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

u′ = αwu + wḡ

v′
j = βjwvj

w′ = γw2,

z′ = −� + h̄,

(C.3)

where the functions ḡ and h̄ are flat at the origin of Rm+3. Note that in a small neighborhood 
of (u, v, w, z) = (0, 0, 0, 0) the vector fields X and Y are smoothly equivalent.

2. By looking at DY(0), there exists an (m + 2)-dimensional center manifold WC

2 [9]. Let M0
be the set of critical points of Y , that is

M0 = {(u, v,w, z) |�(u,v,0, z) = 0} . (C.4)

By definition, the manifold M0 is invariant and normally hyperbolic. Now, assume |w| � 1. 
This condition appears naturally in our applications. By Fenichel’s theory [8] the manifold 
M0 persists as an invariant normally hyperbolic manifold Mw, for sufficiently small w �= 0. 
We identify Mw with WC

2 . In other words, there exists a C
 function m = m(u, v, w) such 

that the center manifold WC

2 is given as a graph

WC

2 = Graph(u, v,w,m). (C.5)

Define ζ = z − m, then ζ ′ = z′ − m′. But we know, due to invariance of WC

2 under the 
flow of Y , that ζ ′|ζ=0 = 0. This is, there exists a C
 function H = H(u, v, w, ζ ) such that 

ζ ′ = −Hζ . With H(0) = 0 and 
∂H

∂ζ
(0) > 0.

In conclusion of this step, there exists a C
 transformation ψ : (u, v, w, z) �→ (u, v, w, ζ )

that transforms the vector field Y into
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Ỹ :

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

u′ = αwu + wḡ

v′
j = βjwvj

w′ = γw2,

ζ ′ = −Hζ,

(C.6)

where H = H(u, v, w, ζ ) is a C
 function such that H(0) = 0 and where 
∂H

∂z
(0) =

∂�

∂z
(0) > 0.

3. Observe that thanks to the previous step, the center manifold WC

2 has the simple expres-

sion WC

2 = {ζ = 0}. We now want to separate the variables on the center manifold (these 
are (u, v, w)) from those on the hyperbolic subspace (z). Additionally, we want to keep the 
simple format that Ỹ has in the center direction. This amounts to find a change of coordi-
nates along ζ only. For this we use an extension of Takens’s theorem on semi-hyperbolic 
vector fields [23] due to Bonckaert [2,3]. With this, it is possible to show there exists a C


transformation, fixing the center coordinates, that conjugates Ỹ to the vector field

Ȳ :

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

u′ = αwu + wg̃

v′
j = βjwvj

w′ = γw2,

Z′ = −H̄Z,

(C.7)

where now the flat perturbation g̃ is independent of Z and H̄ = H̄ (u, v, w) is a C
 function 
with H̄ (0, 0, 0) > 0.

4. In this last step we eliminate the flat perturbation from Ȳ , which appears only along u. Due to 
the previous step, the dynamics on the center manifold are independent of Z. The restriction 
of Ȳ to WC

2 reads as

Ȳ |WC

2
:

⎧⎪⎨
⎪⎩

u′ = αwu + wg̃

v′
j = βjwvj

w′ = γw2.

(C.8)

Note that for w �= 0, the vector field 1
w

Ȳ |WC

2
is hyperbolic. Let Y = 1

w
Ȳ |WC

2
, that is

Y :
⎧⎨
⎩

u′ = αu + g̃

v′
j = βjvj

w′ = γw.

(C.9)

Now we have a result that shows that there exists a change of coordinates, respecting the 
variables (v, w) that kills the term g̃. Keeping the coordinate w fixed is important because 
we want to prove an equivalence relation with wY and not with Y . The following proposition 
shall appear in a general context in [20].

Proposition C.2. (See [20].) There exists a diffeomorphism (u, v, w) �→ (u + H(u, v, w), v, w)

with H flat at (u, v, w) = 0 which brings Y to
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Ȳ :
⎧⎨
⎩

u′ = αu

v′
j = βjvj

w′ = γw.

(C.10)

Proof. We shall use the path method to show that Ȳ is conjugate to Y . Let s be a parameter and 
let us define the s-parameter family of vector fields

Ys = Y + sg̃
∂

∂u
. (C.11)

We call Ys the path between Y and Y + g̃ ∂
∂u

. We now look for an s-parameter family of diffeo-
morphisms Hs with H0 = Id such that for each s we have the conjugacy

Hs∗Y = Ys . (C.12)

In such a case, the vector fields Y and Y+ g̃ ∂
∂u

are conjugated by H1. By derivation of the family 
Hs along s, we obtain an s-parameter family of vector field ζ s satisfying

ζ s(Hs) = ∂Hs

∂s
. (C.13)

This implies that by derivation of (C.11) with respect to s we obtain

[Ys , ζ s] = ∂Ys

∂s
= g̃

∂

∂u
. (C.14)

Therefore, if are able to find a solution ζ s of (C.14), the conjugacy Hs is obtained by integra-
tion of (C.13). In our particular case, we are looking for a solution along the u-direction, that is 

of the form ζ s = Ps

∂

∂u
. It follows that

[Ys , ζ s] =
[
(αu + sg̃) + βv

∂

∂v
+ γw

∂

∂w
,Ps

∂

∂u

]

=
(
Ys(Ps) −

(
α + s

∂g̃

∂u

)
Ps

)
∂

∂u
. (C.15)

Therefore we have reduced our conjugacy problem to solving the differential equation

Ys(Ps) −
(

α + s
∂g̃

∂u

)
Ps = g̃, (C.16)

where we recall that g̃ = g̃(u, v, w) is flat at (u, v, w) = (0, 0, 0). We now want to use Proposi-
tion B.1 to show that (C.16) has a solution Ps = Ps(u, v, w) which is flat at (u, v, w) = (0, 0, 0). 
For this, let Gs = α + s

∂g̃
∂u

. Now, we only need a small adaptation: in the setting and notation of 
Proposition B.1 we may assume (under the suitable arrangement of coordinates) that Ys (or X
in Proposition B.1) is tangent to Rd × {0} and {0} ×R

n−d . Let M∞
s (a) and M∞

s (b) denote the 
space of germs of s-families of smooth functions that are flat at {a = 0} and at {b = 0} respec-
tively. Using a blowing-up at 0 ∈R

n it can be shown that M∞
s (a, b) = M∞

s (a) +M∞
s (b) (see 
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the arguments in Lemma C.1). From this formula, it follows that it is sufficient to solve (C.16) in 
the spaces M∞

s (a) and M∞
s (b) respectively. Naturally, these two cases are equivalent up to the 

change of Ys by −Ys and Gs by −Gs in (B.6). In either case, the vector field Ys (or −Ys ) of 
(C.16) satisfies the hypothesis of Proposition B.1. Then for g̃ in M∞

s (a) (resp. in M∞
s (b)) and 

applying Proposition B.1, we can solve (C.16) with Ps in M∞
s (a) (resp. in M∞

s (b)). �
Thus, from Proposition C.2, we have that Y ∼ Ȳ respecting w, which implies wY ∼ wȲ . 

Therefore, we conclude that (C.7) can be written as stated in the proposition. �
C.2. Partition of a smooth function

In this section we investigate the problem of partitioning a smooth function. The result pre-
sented below is important since it is used to simplify the computation of transition maps. To be 
more specific, let us give a brief example. Consider the three dimensional differential equation

x′ = x

y′ = −y

z′ = g(x, y)z, (C.17)

where g is a smooth function. We want to take advantage from the fact that xy is a first integral. 
We show below that the function g can be partitioned as g(x, y) = g1(xy, x) + g2(xy, y). This 
makes the integration of z′ simpler.

Lemma C.1. Let u ∈R and v ∈ R
m. Let f = f (u, v) be a smooth function such that f (0, 0) = 0. 

Then there exist smooth functions f0 = f0(uv, u) and f1(uv, v) such that the function f can be 
written as

f = f0 + f1, (C.18)

where f0(0, 0) = 0 and f1(0, 0) = 0.

Proof of Lemma C.1. We proceed in two steps. The first consists in proving the formal version 
of the statement. The second step is to extend the formal result to the smooth case.

Formal step
Let f̂ denote the formal expansion of the smooth function f . Let p ∈ N and q ∈ N

m. We use 
the following notation:

• By q ≥ 0 we mean qi ≥ 0 for all i ∈ [1, m].
• For a vector v ∈R

m we write vq = v
q1
1 · · ·vqm

m .
• The L1 norm of q is denote by |q|, and thus for q > 0 we have |q| =∑m

j=1 qj .
• We denote by q̃i the vector

q̃i = (q1, . . . , qi−1, qi+1, . . . , qm) (C.19)

and therefore we have that vq̃i reads as
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vq̃i = vq

v
qi

i

= v
q1
1 · · ·vqi−1

i−1 v
qi+1
qi+1 · · ·vqm

m . (C.20)

Besides, we have that the L1 norm of q̃i is given by |q̃i | = |q| − qi =∑m
j=1,j �=i qj .

The formal series expansion of f reads as

f̂ =
∑

p≥0,q≥0

apqupvq, (C.21)

where a00 = 0. With the notation introduced above, we can partition f̂ as follows

f̂ =
∑

p≥|q|
a′
pq(uv)qup−|q| +

m∑
i=1

∑
qi≥p+|q̃i |

a′
pq(uvi)

p(viv)q̃i v
qi−p−|q̃i |
i , (C.22)

where

(uv)q = (uv1)
q1 · · · (uvm)qm

(viv)q̃i = (viv)q

v
2qi

i

, (C.23)

and where a′
pq ∈ R are suitable chosen coefficients. Let r ∈ N

m, s ∈ N. Define the following 
formal polynomials

ĥ(uv,u) =
∑
r,s≥0

αrs(uv)rus =
∑

p≥|q|
a′
pq(uv)qup−|q|, (C.24)

where αrs ∈R, and

ĝi (uvi, v) =
∑

r,s,t≥0

βirs(uvi)
svr

=
∑

qi≥p+|q̃i |
a′
pq(viv)q̃i (uvi)

pv
qi−p−|q̃i |
i , (C.25)

where βirs ∈ R. The coefficients αrs and βirs are conveniently chosen to make the definitions 
hold. Let uv = (uv1, . . . , uvm). Define ĝ = ĝ(uv, v) by ĝ(uv, v) =∑m

i=1 ĝi (uvi, v), then we can 
write f̂ as

f̂ (u, v) = ĥ(uv,u) + ĝ(uv, v). (C.26)

This shows that the proposition holds for formal series.
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Smooth step
By Borel’s lemma [5], there exist smooth functions h = h(uv, u) and g = g(uv, v) (whose 

formal series expansions are ĥ and ĝ respectively) such that

f = h + g + R, (C.27)

where R (reminder) is a flat function. We now show the following.

Proposition C.3. Let u ∈ R, v ∈ R
m, and R(u, v) be a smooth flat function at (0, 0) ∈ R ×R

m. 
There exist flat functions r0 = r0(uv, u) and r1 = r1(uv, v) such that

R = r0 + r1. (C.28)

Remark C.1. Proposition C.3 together with the formal step f̂ = ĥ + ĝ imply our result.

Proof of Proposition C.3. For this proof we shall use the blow up technique. Let � : Sm ×
R

+ → R
m+1 be a blow up map. The map � maps Sm × {0} to the origin in Rm+1. Let R̃ be 

a function defined by R̃ = R ◦ �. Since R is flat at the origin, the function R̃ is flat along the 
sphere Sm. We assume that the function R = R(u, v) is defined on a small neighborhood R of 
the origin in R ×R

m; this neighborhood is defined as

R = {|u| ≤ A, |vi | ≤ Bi} , (C.29)

for some A, Bi positive scalars. Let 0 < δ < 1. The sphere Sm can be partitioned into m + 1
regions as follows:

U = Sm\ {|ū| ≤ δ}
Vi = Sm\ {|v̄i | ≤ δ} , (C.30)

where (ū, v̄) = (ū, v̄1, . . . , v̄m) ∈ Sm. We can then take a partition of unity to split R̃ as

R̃(ū, v̄) = R̃0(ū, v̄) +
m∑

i=1

R̃i(ū, v̄), (C.31)

where Supp(R̃0) ⊂ U and Supp(R̃i) ⊂ Vi for i ∈ [1, m]. We define as R0 and Ri the correspond-
ing functions on Rm+1 flat at the origin given by the blow up map �, that is R̃j = Rj ◦ �, 
for j = 0, 1, . . . , m. Note that R → R̃ is an isomorphism between the space of functions on 
(u, v) ∈ R

m+1 flat at the origin, and the space of functions on ((ū, v̄), ρ) ∈ Sm × R
+ flat at 

Sm × {0}. Therefore, the splitting (C.31) induces the splitting

R(u, v) = R0(u, v) +
m∑

i=1

Ri(u, v) (C.32)

of functions on Rm+1. We will now prove that there exist flat functions r0 and ri such that
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R0(u, v) = r0(uv,u)

Ri(u, v) = ri(uvi, v). (C.33)

Let us detail only the case of R0. The other functions are obtained in a similar way.
The function R̃0 has support in U . We can parametrize U by the directional blow up map �u

which reads as

(ū, v̄1, . . . , v̄m) �→ (ū, uv̄1, . . . , uv̄m) = (u, v1, . . . , vm). (C.34)

Now, suppose that there exists a flat function P̃0 defined by

R̃0(u, v̄) = P̃0(u,u2v̄). (C.35)

This implies that there is a function r̃0 = P̃0 ◦ �−1
u such that

R0(u, v) = r̃0(u,uv), (C.36)

which is precisely what we want to prove. So, now we only need to show that indeed a function 
P̃0 as above exists. For this let us define coordinates (U, V1, . . . , Vm) given by

U = u, V1 = u2v̄1, . . . , Vm = u2v̄m, (C.37)

and let P̃0(u, V ) be a function defined as

P̃0(u,V ) = R̃0

(
V

u2
, u

)
. (C.38)

Note that P̃0 is flat at (u, V ) = 0. This is seen as follows. Since R̃0 is flat along {u = 0}, it 
follows that P̃0(0, 0) = R̃0|u=0 = 0 and

∂P̃0

∂u
(0) = ∂R̃0

∂u
|u=0 = 0

∂P̃0

∂Vi

(0) = 1

u2

∂R̃0

∂v̄i

|u=0 = 0, (C.39)

and so on for the higher order derivatives.
Finally, for convenience of notation we define r0(uv, u) = r̃0(u, uv), thus we can write 

R0(u, v) = r0(uv, u) Following similar arguments as above we find the functions ri = ri(uvi, v)

such that Ri(u, v) = ri(uvi, v) for i ∈ [1, m]. Then we define r1(uv, v) = ∑m
i=1 ri(uvi, v). It 

follows that

R(u, v) = r0(uv,u) + r1(uv, v). � (C.40)
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With this last proposition we can now write the function f as

f = h(uv,u) + g(uv, v) + R(u, v)

= h(uv,u) + g(uv, v) + r0(uv,u) + r1(uv, v). (C.41)

Finally, to show the lemma we define the smooth functions f1, f2 of the statement by

f1 = h + r0

f2 = g + r1. � (C.42)

C.3. Transition

In this section we investigate the transitions for the vector field XN
sh computed in Ap-

pendix C.1. Relabeling the coordinates we recall that XN
sh reads as

XN
sh :

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

u′ = αwu

v′
j = βjwvj

w′ = γw2

Z′ = −gZ,

(C.43)

where j = 1, 2, . . . , m, and where g = g(u, v, w) is a C
 function such that g(0) = � > 0. We 
assume that w ∈R

+. For our applications, we are interested in only two particular situations.

1. The saddle 1 case where α = −1, βj > 0 for all j ∈ [1, m], and γ > 0.
2. The saddle 2 case where α = 1, βj < 0 for all j ∈ [1, m], and γ < 0.

Saddle 1
In this case we investigate the transitions of a vector field of the form

Y :

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

u′ = −wu

v′
j = βjwvj

w′ = γw2

Z′ = −gZ,

(C.44)

where the coefficients βj , γ are positive. Observe that the flow in the direction of u and Z is 
a contraction while it expands in all the other directions. Roughly speaking, this implies that a 
transition can go out at any expanding direction vj of w.

We investigate two types of transitions that are used in our applications. For this, let us define 
the following sections

�en = {(u, v,w,Z) |u = ui}
�w

ex = {(u, v,w,Z) |w = wout}
�

±vj
ex = {(u, v,w,Z) |vj = vj,out

}
. (C.45)



3836 H. Jardón-Kojakhmetov et al. / J. Differential Equations 260 (2016) 3785–3843
In this section we compute the transitions

�w : �en → �w
ex

(v,w,Z) �→ (ũ, ṽi , Z̃), (C.46)

for all i ∈ [i, m], and

�±vj : �i → �
±vj
ex

(v,w,Z) �→ (ũ, ṽi , w̃, Z̃), (C.47)

for all i ∈ [1, m] with i �= j .

Proposition C.4. Consider the vector field Y given by (C.44) and let �en, �w
ex, �

±vj
ex and �w , 

�±vj be as above. Then

• The transition �w is given by

ũ = u

(
w

wout

)1/γ

, ṽi = vi

(wout

w

)βi/γ

Z̃ = Z exp

[
− �

γw

(
1 + α̃w ln(w) + wG̃

)]
(C.48)

where α̃ = α̃(uv
1/βi

i , uw1/γ ) and G̃ = G̃(uv
1/βi

i , uw1/γ , μi) are C
 functions with μi =
v

1/βi

i w−1/γ .
• The transition �±vj is given by

ũ =
(

vj

ηj

)1/β

, ṽi = vi

(
ηj

vj

)βi/βj

, w̃ = w

(
ηj

vj

)γ /βj

Z̃ = Z exp

[
− �

γw

(
1 + α̃′w ln(vj ) + wG̃′)] , (C.49)

with i �= j and where

α̃′ = α̃′(uv
1/βi

i , uw1/γ )

G̃′ = G̃′(uv
1/βi

i , uw1/γ ,μw,μi) (C.50)

are C
 functions with μw = w1/γ v
1/βj

j and μi = v
1/βi

i v
1/βj

j .

Proof of Proposition C.4. We detail first the computations for the transition �w. The transition 
�±vj is computed in a similar way so we only highlight the key parts of the computation.

The transition �w

In this case, the time of integration is T = ln
(

wout
w

)1/γ , where wout = w(t)|�w
ex

and w =
w(t)|�en . This time of integration is obtained form the equation w′ = γw. We also make the 
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assumption that vi ∈ O(wβi/γ ). This assumption appears our applications, but roughly speaking 
it ensures that ṽi is well defined when w → 0. From the form of Y we evidently have

u(T ) = ũ = u

(
w

wout

)1/γ

vi(T ) = ṽi = vi

(wout

w

)βi/γ

. (C.51)

It only remains to compute the transition for the Z coordinate. Let us rewrite Y as follows

u′ = −u

vi = βivi

w = γw

Z′ = −� + G(u,v,w)

w
Z, (C.52)

where G is a C
 function vanishing at the origin. Observe that we have the first integrals ubivi

and uγ w. We shall take advantage of such a fact. We define new coordinates (U, V, W) given by

U = u, V
βi

i = vi, Wγ = w. (C.53)

In these new coordinates we have the system

U ′ = −U

V ′
i = Vi

W ′ = W

Z′ = −� + G(U,V βi ,Wγ )

Wγ
Z. (C.54)

In the new coordinates, the time of integration is given as T = ln
(

Wo

W

)
. To have an idea of the 

expression of Z̃, let us first study a simplified scenario.

The case G = 0
Let us suppose G = 0. Therefore we have Z′ = − �

Wγ Z, which has the solution

Z(t) = Z(0) exp

⎛
⎝−�

t∫
0

W(s)−γ ds

⎞
⎠ , (C.55)

where W(s) = W(0) exp(s). Substituting the time of integration T we have
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Z(T ) = Z̃ = Z exp

⎛
⎜⎜⎜⎝− �

Wγ

ln
(

Wo
W

)∫
0

e−γ sds

⎞
⎟⎟⎟⎠

= Z exp

(
− �

γWγ

(
1 −

(
W

Wo

)γ))
. (C.56)

Observe that Z̃ → 0 as W → 0. Let us now study the general case. We expect that the general 
case G �= 0 is a perturbation of (C.56).

The case G �= 0
We now consider that G �= 0, we have

Z(T ) = Z̃ = Z exp (I0 + I1) , (C.57)

where

I0 = −�

T∫
0

1

W(s)
ds

I1 =
T∫

0

G(U(s),V (s)βi ,W(s)γ )

W(s)γ
ds. (C.58)

The integral I0 has already been computed above. Let us write F(U, V, W) = G(U(s),V (s)βi ,W(s)γ )
W(s)γ

. 

We can do this because G(U, 0, 0) = 0 and V βi ∈ O(Wγ ). Now we estimate the integral I1. Us-
ing Lemma C.1, we can write

I1 =
T∫

0

[F1(s) + F2(s)]ds, (C.59)

where

F1 = F1(UV1, . . . , UVm, UW, U)

F2 = F2(UV1, . . . , UVm, UW, V1, . . . , Vm, W). (C.60)

Observe that UW and all the UVj ’s’ are first integrals. Let J1 = ∫
F1 and J2 = ∫

F2. Then we 
have

J1 =
T∫

F1(UV,UW,U(s))ds
0
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=
ln
(

Wo
W

)∫
0

F1(UV,UW,Ue−s)ds. (C.61)

Let us make the change of variables y = e−s , we obtain

J1 = −
W
Wo∫

1

F1(UV,UW,Uy)
dy

y
. (C.62)

We expand the function F1 in power of y that is

F1(UV,UW,Uy) = F1(UV,UW,0) + O(y). (C.63)

Then we have

J1 = −
W
Wo∫

1

α1
dy

y
+ F̃1, (C.64)

where α1 = α1(UV, UW) and F̃1 = F̃1(UV, UW, Uy(T )) is some (unknown) C
 function. Fi-
nally we get

J1 = α1 ln

(
W0

W

)
+ F̃1

(
UV,UW,U

W

W0

)
. (C.65)

The function F̃1 is C
 but unknown, and W0 is a fixed positive constant, then we can simplify 
the notation of F̃1 as F̃1 = F̃1(UV, UW).

Next we have

J2 =
T∫

0

F2(UV,UW,V (s),W(s))ds

=
ln
(

Wo
W

)∫
0

F2(UV,UW,V1e
β1s , . . . , Vmeβms,Weγ s)ds. (C.66)

Let us make the change of variables y = es . Then we obtain

J2 =
Wo
W∫

1

F2(UV,UW,V1y
β1 , . . . , Vmyβm,Wyγ )

dy

y
. (C.67)

As above, we expand in powers of y, that is
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F2 = α2 + O(y), (C.68)

and then we have

J2 = α2 ln

(
W0

W

)
+ F̃2, (C.69)

where α2 = α2(UV, UW), F2 = F2(UV, UW, μi) is a C
 function with μi = ViW
−1 for all 

i ∈ [1, m]. Recall that since vi ∈ O(wβi/γ ) we also have that V ∈ O(W), that is μi is well 
defined.

Now we can write the integral I1 as

I1 = J1 + J2

= α1 ln

(
W0

W

)
+ F̃1 + α2 ln

(
W0

W

)
+ F̃2

= α ln

(
W0

W

)
+ F̃ , (C.70)

where α = α(UV, UW) and F̃ = F̃ (UV, UW, μi) are C
 functions. Finally we write Z̃ in the 
original coordinates as follows

Z̃ = Z exp(I0 + I1)

= Z exp

[
− �

γw

(
1 − w

wout

)
+ 1

γ
α ln

(wout

w

)
+ F̃

]

= Z exp

[
− �

γw

(
1 + α̃w ln(w) + wG̃

)]
, (C.71)

where α̃ = α̃(uv
1/βi

i , uw1/γ ) and G̃ = G̃(uv
1/βi

i , uw1/γ , μi) are C
 functions with μi =
viw

−βi/γ .

The transition �±vj

In this case the time of integration is given by T = ln
(

ηj

vj

)1/βj

. Such a time of integration is 

obtained from the equation v′
j = βjvj . The we have

ũ = u

(
vj

ηj

)1/β

ṽi = vi

(
ηj

vj

)βi/βj

w̃ = w

(
ηj

vj

)γ /βj

. (C.72)

It then only rests to compute Z̃. Following similar arguments as for the transition �w we get in 
this case
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Z̃ = Z exp

[
− �

γw

(
1 + α̃′w ln(vj ) + wG̃′)] , (C.73)

where now

α̃′ = α̃′(uv
1/βi

i , uw1/γ )

G̃′ = G̃′(uv
1/βi

i , uw1/γ ,μw,μi) (C.74)

are C
 functions with μw = wv
−γ /βj

j and μi = viv
−βi/βj

j . �

Saddle 2
In this case we investigate the transitions of a vector field of the form

Y :

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

u′ = wu

v′
j = −βjwvj

w′ = −γw2

Z′ = −gZ,

(C.75)

where the coefficients βj , γ are positive. We assume that u ∈ R
+. Observe that now, in contrast 

with case 1, we only have one expanding direction, which is u. This makes the study of the 
transition easier. Due to the same reason, it is more convenient to study a transition

�u : �en → �ex, (C.76)

where to be general, we let �en be any codimension 1 subset of Rm+3 obtained by setting one of 
the coordinates (v, w) to a constant and with u < uout; and where

�ex =
{
( u, ṽ, w̃, Z̃) | ũ = uout

}
. (C.77)

Proposition C.5. Consider the vector field Y given by (C.75) and let �en, �ex and �u be as 
above. Then

ṽi = vi

(
u

uout

)βi

w̃ = w

(
u

uout

)γ

Z̃ = Z exp

[
− �

γw

((uout

u

)γ − 1 + αw ln(u) + wF̃
)]

(C.78)

where α = α(uβi vi, uγ w) and F̃ = F̃ (uβi vi, uγ w, u) are C
 functions.
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Proof of Proposition C.5. We have that the time of integration is T = ln
(

uout
u

)
. It follows that

ṽi = vi

(
u

uout

)βi

w̃ = w

(
u

uout

)γ

. (C.79)

It only remains to compute Z̃. Following similar arguments as in case 1 we have

Z̃ = Z exp

[
− �

γw

((uout

u

)γ − 1 + αw ln(u) + wF̃
)]

, (C.80)

where α = α(uβi vi, uγ w) and F̃ = F̃ (uβi vi, uγ w, u) are C
 functions. �
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