
 

 

 University of Groningen

Enhancing genetic discoveries with population-specific reference panels
Sanna, Serena

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2016

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Sanna, S. (2016). Enhancing genetic discoveries with population-specific reference panels. University of
Groningen.

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license.
More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-
amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 04-06-2022

https://research.rug.nl/en/publications/72006787-29ab-4666-b69b-a61fb1afd3c7


 
 

 
 
 
 

Enhancing genetic discoveries with 
population-specific reference panels 

 
 
 
 
 
 
 

PhD thesis  
 
 
 

to obtain the degree of PhD at the 
University of Groningen 
on the authority of the 

Rector Magnificus Prof. E. Sterken 
and in accordance with 

the decision by the College of Deans. 
 

This thesis will be defended in public on  
 

Monday 9 May 2016 at 16.15 hours 
 
 
 
 

by  
 
 
 

Serena Sanna  

born on 15 November 1980 
in San Gavino Monreale, Italië 



 
 

Supervisors 

Prof. C. Wijmenga  

Prof. L.H. Franke  

 

 

 
 

 

 

Assessment Committee 

Prof. C.M. van Duijn  

Prof. P. van der Harst  

Prof. H. Snieder 

  





 
 

  



5 
 

 
Contents 

Chapter 1: General Introduction ................................................................................................................... 7 

Part I: Exploring the advantages in isolates of genotyping-combined-with-sequencing imputation 

approaches. ..................................................................................................................................................... 21 

Chapter 2: Fine mapping of five loci associated with low-density lipoprotein cholesterol detects variants 

that double the explained heritability. ........................................................................................................ 23 

Chapter 3: Rare variant genotype imputation with thousands of study-specific whole-genome sequences: 

implications for cost-effective study designs .............................................................................................. 43 

Part II: Sequencing-based GWAS in the isolated Sardinian population .......................................................... 67 

Chapter 4: Genetic variants regulating immune cell levels in health and disease. ..................................... 69 

Chapter 5: Genome sequencing elucidates Sardinian genetic architecture and augments GWAS findings: 

the examples of lipids and blood inflammatory markers............................................................................ 95 

Chapter 6: Genome-wide association analyses based on whole-genome sequencing in Sardinia provide 

insights into regulation of hemoglobin levels ........................................................................................... 123 

Chapter 7: Major height reducing variants and selection for short stature on the island of Sardinia ..... 147 

Part III: Improving GWAS studies with population-specific reference panels .............................................. 163 

Chapter 8: Population specific imputation panels as a general tool to enhance genetic discoveries ...... 165 

Chapter 9: Conclusions and future prospects ........................................................................................... 175 

Appendix ........................................................................................................................................................ 179 

Summary ........................................................................................................................................................ 181 

Samenvatting ................................................................................................................................................. 185 

Acknowledgements ....................................................................................................................................... 189 

Short Biography ............................................................................................................................................. 191 

Full List of Publications .................................................................................................................................. 193 

 

 

ISBN printed version - 978-90-367-8822-9 

ISBN online version - 978-90-367-8821-2 

 

  



6 
 

  



7 
 

Chapter 1: General Introduction 

 

 

1.1 Genetic dissection of complex traits and diseases 

Complex or multifactorial traits and diseases are, by definition, the result of a combination of multiple 

genetic and environmental factors (such as lifestyle choices or risk factors exposure). The genetic 

components were mostly unknown for the majority of the complex diseases before the completion of the 

International HapMap Project in 2003 [The International HapMap Consortium, Nature 2003]. Technological 

advances benefiting from this large collaborative biological project allowed genetic studies in hundreds to 

thousands of individuals and assessment of 100,000–1,000,000 single nucleotide change variants (SNVs) in 

each of the individuals being studied, with an approach known as genome-wide association study (GWAS). 

The number of assessed variants was very large compared to previous approaches, such as linkage 

mapping, which typically used <10,000 variants to survey the entire human genome by identifying stretches 

of chromosome inherited from a common ancestor. In GWAS, geneticists look at one single variant at a 

time and evaluate whether there is any statistical correlation with the number of changed nucleotides 

(alleles) carried by each individual and their respective phenotypes. The power to find an association 

strictly depends on three factors: i) whether one tests the true causal variant or a variant in linkage 

disequilibrium (LD) with it, ii) the number of samples studied and iii) the impact of the true causal variant 

on the phenotype. The third factor is obviously unknown a priori and it’s fixed by the underlying polygenic 

model of the disease. One trait can be modulated by a few highly impacting variants, or by many small 

impacting variants or a combination of both. After the first successful GWAS carried out using the available 

resources [Klein et al, Science 2005; Menzel et al, Nat Genet 2007; Scuteri et al, Plos Gen 2007; Scott et al, 

Science 2007], it became clear that most of the traits are modulated by a large number of variants with 

small to moderate effects, and more individuals and more variants were needed to achieve sufficient 

power for discovery. In this context, statistical geneticists have developed a new approach called genotype 

imputation to estimate with great precision the effects of many variants that are not directly genotyped 

with a specific genotyping array technology. This approach allowed researchers to increase both the 

number of variants and the number of individuals tested in a GWAS. In fact, genotype imputation permits 

to statistically infer and assess all 2 million variants catalogued in the International HapMap Project that 

were not directly genotyped. As all GWAS studies could therefore be aligned to a common reference set of 

SNVs, they could be compared and jointly analyzed in meta-analyses to virtually assess hundreds of 

thousands of samples across the world at no additional cost. 

1.2. The genotype imputation method 

The term genotype imputation indicates the process of predicting (or imputing) genotypes that are not 

directly assayed in a sample of individuals. Genotype imputation most often refers to the situation in which 

a reference panel of haplotypes characterized at a dense set of SNPs is used to impute into a study sample 

of individuals that have been genotyped at a sparse, subset of the SNPs. The fundamental idea is that short 

stretches of haplotypes can be shared even between unrelated individuals from distant common ancestors. 

Common stretches between the study samples and the reference samples can be identified using 

genotypes for a given set of shared SNPs, and alleles for SNPs that are measured only in the reference 

panel can be imputed. In a typical scenario, the study sample is genotyped with a commercial genotyping 

platform for hundreds of thousands to millions of SNPs located across the entire genome while the 
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reference panel contains haplotypes characterized for several millions of SNPs. An overview of this process 

is given in Figure 1. More than a few different statistical descriptions of genotype imputation procedures 

have now been published and implemented in a number of software packages, for example:  

MACH/minimac: http://genome.sph.umich.edu/wiki/Minimac 

Beagle: https://faculty.washington.edu/browning/beagle/b3.html  

IMPUTE/IMPUTE2: https://mathgen.stats.ox.ac.uk/impute/impute_v2.html 

These tools typically provide convenient summaries of the uncertainty surrounding each genotype 

estimate. The imputation quality is commonly measured with a parameter called Rsq (also indicated with r2 

or RSQR), i.e., the estimate of the squared correlation between imputed and true genotypes or, in other 

words, the ratio of the variances of imputed and true allele counts. In this context, it should be noted that 

the accuracy of predicted Rsq values is, in general, high for common variants, but rapid performance 

degradation is seen for lower minor allele frequencies, thereby limiting the applicability of such methods, 

especially for rare variants. The performance depends on multiple factors, including: choice of baseline 

array, quality of input genotypes/haplotypes and limited representation of reference haplotypes carrying 

rare alleles. Also and very importantly, differences in LD patterns and allele frequency spectrum 

significantly decrease the quality of imputation overall [Li et al, Annu Rev Genomics Hum Genet 2009; Pistis 

et al, Eur J Hum Genet 2014;  Porcu et al, Curr Protoc Hum Genet 2013] .    

 

 

Figure 1. Schematic representation of the genotype imputation method. 

Panel A illustrates the genotypes at a restricted number of genetic markers in a sample being studied and at 

a larger number of markers in a reference panel of haplotypes. Panel B illustrates the process of identifying 

regions of a chromosome shared between a study sample and individuals in the reference panel. For 

chromosome 1 of the study sample, nucleotide configuration perfectly matches one reference haplotype 

(yellow), whereas for chromosome 2 there is not a perfect match. The chromosome could be reconstructed 

as a mosaic of short pieces which have recombined at a certain position. Multiple pieces and recombination 

points could be identified in the reference haplotypes set to reconstruct chromosome 2; the most likely 

arrangement (green and yellow) is selected based on several parameters including haplotype’s frequency 

and the recombination rate map. In Panel C, observed genotypes and haplotype sharing information have 

been combined to fill in unobserved genotypes in the study sample for the most likely configuration. Figure 

adapted from Li et al, Annu Rev Genomics Hum Genet. 2009. 
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1.3 Insights from first-era GWAS studies and current strategies.  

From 2005 to December 2013, 1,096 GWAS studies were carried out for several types of complex traits and 

diseases (according to GWAS catalog, www.genome.gov/gwastudies). Those studies revealed that, with 

only few exceptions, the genetic component of complex traits and diseases is fractioned into multiple 

variations of moderate or small impact (effect size) rather than a few with large effect size. The number of 

DNA variants contributing to the polygenic liability of a disease or trait’s variation can be extremely large 

even for highly heritably traits. For example, in the past decade GWAS studies have identified up to 697 

independent SNVs that influence human height, but their global contribution explains only 20% of the 

estimated heritability [Wood et al, Nature Genetics 2014]. Therefore many more associated variants have 

yet to be found for human height. The scenario is similar for other complex traits: despite the many SNVs 

identified, a substantial fraction of the heritability remains unexplained [Manolio et al, Nature 2009]. What 

is the cause of this “missing heritability”? Previous genome-wide association studies have assessed 

hundreds of thousands of individuals, but they analyzed 3 million of SNPs - only a small fraction of all 

possible variations present in the population. By using the HapMap project data scaffold, they focused 

mostly on common SNPs (frequency in the population >5%) catalogued within the Project, and low 

frequent (<5%) and rare variations (<1%) have therefore been largely unexplored (Figure 2). They also 

completely ignored any other type of genetic variation that is not a single nucleotide change, as for 

example insertions, deletions, copy number variations or de-novo mutations. 

Figure 2. Genetic variants linked to diseases by allele frequency and effect size 

The figures shows that GWAS and linkage approaches have mostly identified variants at the two extremes 

of frequency and effect size distributions. Sequencing based genetic studies are needed to target low-

frequency and rare variation with moderate/high effect size. By contrast, very rare variants with small effect 

sizes are unlikely to be found even with current genetic approaches. Figure adapted from Manolio et al, 

Nature 2009.  

 

Much more complete extraction of genetic variation is now accessible using next-generation sequencing 

(NGS) technologies. Still, efficient detection and analysis of rare and low frequency variants requires 



11 
 

sequencing hundreds to thousands of individuals and could be very expensive and so unfeasible for the 

majority of the research groups. There are however special designs which provide ideal settings to study 

variants in this frequency range and in a cost-effective manner. The simplest approach is to carry out a 

second step of genotype imputation replacing the HapMap Project with more complete, publicly available, 

imputation panels, as the 1000 Genomes Project [1000 Genomes Project Consortium, Nature 2010; 1000 

Genomes Project Consortium, Nature 2015], an international project that provided a global reference for 

human genetic variation by sequencing the whole-genome of 2,504 individuals from four continents 

(America, Europe, Asia, Africa). The completion of the project, announced in September 2015, yielded the 

identification of a broad spectrum of genetic variation, in total over 88 million variants (84.7 million single 

nucleotide polymorphisms, 3.6 million short insertions/deletions (indels), and 60,000 structural variants 

(SVs)), all phased onto high-quality haplotypes that can be used for imputation [1000 Genomes Project 

Consortium, Nature 2015]. It therefore represents the most complete catalogue of genetic variation 

present to date. In particular, imputation with the complete version of 1000 Genomes haplotypes (phase 3) 

in existing GWAS studies will allow to assess both SNPs and structural variants, the latter category being 

largely ignored previously. The Structural Variants Analysis group catalogued the number of SVs in strong 

LD with known GWAS hits and found that GWAS haplotypes are enriched up to threefold for common SVs, 

which emphasizes the relevance of ascertaining SVs in disease studies.  

A more complex approach is to sequence a subset of individuals from the population under study to build a 

population-specific panel for imputation. The study design including coverage, number and selection of 

samples, and the population being studied, have to be carefully evaluated to assure a balanced cost-benefit 

ratio. For rare and low frequency variants, genetically homogeneous populations represent an ideal 

scenario as rare and less frequent alleles may have raised in frequency due to genetic drift or selection.  

 

1.4 Ideal settings for low frequency and rare variants mapping 

Rare (MAF 0.5-1%) and low frequency variants (MAF 1-5%) require several thousands of individuals to be 

properly analyzed. In fact, many chromosomes have to be sequenced to detect a sufficient number of allele 

copies.  Homogeneous populations, and especially isolates, represent a natural setting to overcome those 

limitations. In fact, some of the variants rare in the general population may have drifted to higher 

frequency, and some may even exist only in one isolate. Although associations with population-specific 

variants may initially appear useless to other populations, they can be useful to explain part of the missing 

heritability of complex traits, and moreover, to better understand the biological mechanisms underlying a 

complex trait variation or the etiology of a disease, and consequently suggest novel potential drug targets. 

In addition, extended and well ascertained pedigrees are generally available in studies on isolates which are 

particularly informative even for variants that are rare in the isolate itself. In fact, there is an increased 

chance to observe the same rare variant in more chromosomes segregating through families than in a study 

on unrelated individuals or small families, typical of outbred cohorts. Likewise, family-based designs can 

better control both genetic and environmental background and are robust to heterogeneity and population 

stratification. In fact, the geographically delimited area which population isolates usually live in assures 

restricted variability due to sharing lifestyle, sanitary conditions and exposure to pathogens, and the within-

families transmissions minimize bias from population structure.  

Finally, homogeneity of the population can improve genotype imputation accuracy when using a 

population-specific panel. The inference method in fact relies on shared stretches of chromosomes 
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between the study samples and a reference set of haplotypes. Shared stretches of haplotypes are expected 

to be longer in isolates than in open populations due to recombination within a restricted pool of variation 

[Zavattari et al, Human Molecular Genetics 2000]; therefore complexity in haplotype reconstruction is 

reduced.  

1.5 Population isolates in genetic studies. 

Population isolates are not all equal, and their different characteristics can influence the outcome of 

genetic studies. Population isolates vary in terms of size, time since foundation and demographic history. 

For example, Sardinians and Finnish are macro-isolates, counting 1.6 and 6 million inhabitants, respectively, 

and they contrast micro-isolates like the Amish community (~250,000 individuals) and Icelanders (~320,000 

individuals)[Zeggini, Springer 2015]. Sardinians are also a very old isolate population (estimates of first 

settlement are ~10,000 years ago [Sondaar et al, Comp Rend Acad Sci Paris 2015; Tykot et al, 1994] 

compared to Finnish (~2,000 year ago)[Kittles et al, Am J Hum Gen 1998] and Icelanders (~1,000 years 

ago)[Helgason et al, Am J Hum Gen 2000]. Also the number of initial founders, the population growth rate 

and the variation of this rate over time are important to determine the amount of variability present at the 

settlement and the role of evolutionary mechanisms in modifying it. In fact, isolates originated by a main 

founder event show a substantially homogeneous genetic background with a highly reduced pool of 

variation, and isolates that experienced different waves of internal migrations with multiple bottlenecks 

and multiple founder events can reveal significant fine-scale substructure that needs to be accounted for in 

genetic studies.  

A large pre-Neolithic settlement has been suggested in Sardinia. The island was inhabited by ~300,000 

individuals during the Bronze Age and the population size did not significantly increase until around 300 

years ago, experiencing very low immigration rates [Francalacci et al, Science 2013; Sidore et al, Nature 

Genetics 2015]. Consequently, the Sardinian population preserved a higher inter individual variability while 

maintaining a substantial genetic homogeneity. Being a macro-isolate, it offers the possibility to easily 

collect large cohorts characterized by a significant inter individual variability, while maintaining a reduced 

genetic substructure and it therefore provides an ideal setting to study rare and low frequency variation.  

The SardiNIA study is the largest population study existing in Sardinia. The project started in 2001 and 

recruited 6,921 Sardinians (age 14-102 older), from a cluster of four towns in the Lanusei Valley of the 

Ogliastra region: Arzana, Elini, Ilbono and Lanusei, corresponding to approximately 62% of the population 

eligible in the area for recruitment [Pilia et al, Plos Genetics 2006]. The samples can be grouped in >1000 

families, up to 5 generations deep; the largest family has more than 625 genotyped individuals.  All 

volunteers have been characterized for more than 800 quantitative traits, including anthropomorphic 

measures, plasma and serum markers (such as cholesterol and other biomarkers for cardiovascular 

disease), personality traits (using the five-factor model), as well as deep characterization of the immune 

system through assessment of different cell types by means of fluorescence-activated cell sorting 

(FACS)[Naitza et al, Plos Genetics 2012; Orrù et al, Cell 2013]. My thesis reports successful studies carried 

out in this cohort.  

 

1.6 Large-scale genetic studies in open populations 

Isolated populations offer an intrinsic gain in power to test association at variants that have risen in 

frequency due to founder effects, drift and selective forces. For the same reasons, however, all those 
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variants that were not present in the initial pool of haplotypes existing at the time of the settlement or that 

were initially too rare and have been lost over generation, are absent in the present-day people. Therefore, 

isolated populations are limited in the number of variants assessable for association. From this perspective, 

large-scale studies of several thousands of individuals in open populations are necessary to study the full 

spectrum of rare variation. Very large sample sizes can be reached with collaborative efforts among 

different centers and the potential applications of the data can be maximized by the creation of biobanks. 

Furthermore, as the rare variants have, on average, relatively recent origin, they are more prone to fine-

scale structure than common variants, showing higher frequency in specific geographical areas. For this 

category of variants, it is possible to observe different genotype patterns than that observed in the wider 

continental pool, and population-specific reference sets thus remain valuable for better quality imputation. 

Therefore large-scale studies in open populations will still benefit from population-specific imputation 

panels. Small scale studies instead will lack statistical power to assess rare variants even if directly 

genotyped. There are two clear examples of successful efforts that combined large biobanks with ad-hoc 

reference panels. In the Netherlands, the BBMRI-NL biobank (Biobanking BioMolecular Resources and 

Research Infrastructure of the Netherlands), within the European initiative BBMRI-ERC, provides a 

systematic database of collections of biomaterial and associated data from about 200 major clinical and 

population cohorts like LifeLines, Netherlands Twin Registry, Leiden Longevity, and the Rotterdam Study. To 

enhance the value of the BBMRI-NL, the GoNL (Genome of the Netherlands Project) has sequenced the 

whole-genome of 250 Dutch parent-offspring families and set up a population-specific reference panel for 

imputing samples from the Dutch Biobanks [Boomsma DI, et al Eur J Hum Gen 2014; Genome of the 

Netherlands Consortium, Nat Genet 2014]. The combination of these big resources has been successful in 

identifying rare variants associated to variation in lipid levels [van Leeuwen et al, Nature Comm 2015]. 

Similar efforts are ongoing in the UK with the UK BioBank and UK10K Consortium. The UK Biobank is a very 

large and detailed prospective study with over 500,000 participants aged 40–69 years when recruited in 

2006–2010. The study has collected and continues to collect extensive phenotypic and genotypic detail 

about its participants, including data from questionnaires, physical measures, sample assays, genome-wide 

genotyping and longitudinal follow-up for a wide range of health-related outcomes [Sudlow C et al, Plos 

Med 2015]. The UK10K Consortium has set up a reference panel, that can be used for imputing the 

UKBiobank, by sequencing the whole-genome of ~4,000 British volunteers [UK10K Consortium, Nature 

2015]. The first scientific reports of the combined resources have highlighted novel rare and low frequent 

variants associated to variation in several quantitative traits [UK10K Consortium, Nature 2015]. 

1.7 Limitations of the genotype-imputation approach 

The genotype imputation approach is an extraordinary cost-effective strategy, especially in the era of 

whole-genome sequencing. By increasing the haplotypes in the reference set and using a set of 

chromosomes that perfectly matches LD patterns of the population being studied, genotypes can be 

accurately inferred for the majority of low-frequency and rare variants. However, there are still many 

variants in this category that, despite being detected in the sequenced individuals, are poorly imputed in 

the genotyped samples and some have to be discarded for analyses. Therefore, the power to detect a 

variant – that strictly depends on the available sample size in GWAS for a fixed effect size - has to be further 

scaled for imputation quality. Moreover, imputation approaches were designed for non-overlapping, bi-

allelic changes and the same algorithm has been used to impute structural variants or multi-allelic sites, by 

pretending that they are in different positions, when other overlapping sites exist, or pretending that each 

alternative allele is a different mutation when more than one alternative allele exists. While the algorithm 

can be modified to improve imputation accuracy at rare sites and structural variations, there is another 
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category of genetic modifications that is completely ignored by the approach: de novo mutations. A de novo 

mutation is an alteration in the genome that is present for the first time in one family member as a result of 

a mutation in a germ cell (egg or sperm) of one of the parents or in the fertilized egg itself. Such alterations 

can be identified in sequencing efforts that involve trios and have sufficient coverage. To date, only the 

Genome of the Netherlands Consortium was able to catalogue de novo events at a population scale, taking 

advantage of their family-based design for sequencing and of the medium coverage (~10x on average)[ 

Genome of the Netherlands Consortium, Nat Genet 2014]. The role of de novo events in common complex 

traits and disease is largely unexplored; each mutation is likely to contribute only slightly to the overall 

heritability of a trait, but we cannot exclude that recurrent mutations in the same gene or cluster of genes 

may play important roles and further explain part of the missing heritability for certain complex traits and 

diseases.  

1.8 Outline of thesis 

This thesis consists of three parts. In the first part (Chapter 2 and 3), we showed the advantages of 

combining sequencing and genotype imputation in the isolate of Sardinia. We firstly investigated benefits in 

detecting traits-associated rare and low frequent variants in the worst case scenario: sequencing a reduced 

number of individuals and focusing on exons of already established loci. We selected 256 Sardinian 

individuals with extreme low-density lipoprotein cholesterol (LDL-C) levels – who were expected to be 

enriched for LDL-C associated genetic variants – and sequenced the exons of seven well known genes with 

the standard Sanger method. Discovered variants were either genotyped or imputed in a large sample of 

5,524 Sardinians (from the SardiNIA study). The study revealed that at such loci better lead variants and/or 

additional independent variants exist, and accounting for their contribution to phenotypic variation doubles 

the estimates of the heritability explained at these loci compared to variants previously detected by 

HapMap-based GWAS. Our results also include a Sardinian specific rare variant associated with LDL-C, 

highlighting the benefit of sequencing in this and other isolated populations. Overall, this study provided 

insights about what extensive whole-genome sequencing efforts were likely to reveal for the understanding 

of the genetic architecture of complex traits and encouraged us to carry out future steps.  

We undertook large scale whole-genome sequencing with the aim to set up a reference panel for 

imputation that would maximize genetic information. Considering the wide diversity of phenotypes 

measured in the SardiNIA cohort, we did not select individuals based on their phenotype but rather on their 

estimated genome sharing with other genotyped members in the family 

(http://genome.sph.umich.edu/wiki/ExomePicks) We sequenced up to 2,120 Sardinians using a low-

coverage approach (4.16x on average) and genotyped the whole SardiNIA cohort with both genome-wide 

and custom arrays. Similar efforts are carried out in other populations including general Europeans, but we 

showed that the gain in accuracy was remarkably higher in Sardinians, especially at low frequency and rare 

variants (Chapter 3). We also demonstrated that the extended homogeneity of the population allows 

precise estimates of genotypes even when using arrays with a reduced genomic content, as for example 

MetaboChip or Affymetrix HumanCore.   

In the second part of the thesis we took advantage of the whole-genome sequences reference panel to 

carry out GWAS analyses for several traits using sequencing based imputed genotypes (Chapter 4-7), 

including one GWAS that was carried out using only ImmunoChip and MetaboChip as genotype scaffold 

(Chapter 4).  
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In the first of the papers from this collection, the phenotypes represented an extra layer of novelty. It was 

in fact the first time that the immune system was so well characterized in a large cohort of healthy 

individuals. Taking advantage of large pedigrees, we were able to estimate the heritability of variation in 

hundreds of immune cell populations, showing that for some of them the inherited variability can be as 

high as height. In a genome-wide scan that assessed >8 million markers (genotyped with ImmunoChip and 

MetaboChip or imputed based on ~1000 Sardinian whole-genomes), we identified 23 independent variants 

that are responsible for at least 2% of the phenotypic variation of the associated immune traits (which was 

consistent with the estimated lowest detectable effect size based on statistical power calculations).  

Up to this date, we sequenced and analyzed about 2000 Sardinian whole-genomes, data that allowed us to 

deeply inference the demographic history of Sardinia, and to quantify its isolation comparing it with other 

European populations (Chapter 5). This large amount of sequenced genomes was extremely useful for 

genotype imputation of the full SardiNIA cohort, which was intensively characterized with genome-wide 

arrays. We evaluated the power of this genotype- combined-with-sequencing and inference design, by 

performing genome-wide association scans in two worst case scenario: lipid levels, which were previously 

analyzed in very large samples (>188,000 individuals)[Willer et al, Nature Genetics 2013; Teslovich et al, 

Nature Genetics 2010], and blood inflammatory markers, which were analyzed in the same cohort using 

custom arrays to target low-frequency and rare variants at some specific loci. We identified fourteen 

signals, including two major new loci, for lipid levels, and nineteen, including two novel loci, for 

inflammatory markers. Of note, novel signals would have not being identified without the Sardinian 

sequencing panel. In fact, when repeating the analyses using 1000 Genomes for imputation, such signals 

were either below genome-wide significance or where not imputed because too rare or absent in the 1000 

Genomes sequenced populations.  

Using this highly informative map, we also carried out whole-genome association analysis for three 

different hemoglobin levels (Chapter 6). Those parameters are rarely measured in healthy cohorts, and 

there are no available studies today that have measured them in the same individuals. The Sardinians 

represent an ideal population to study hemoglobin variations. In fact malaria, which is one of the strongest 

selective pressures that have shaped the genetics of red blood cells indices, and, consequently hemoglobin 

levels, was endemic on the Island until a few decades ago. In the genome-wide scan we identified 5 novel 

signals, including 3 that are highly differentiated in frequency among other Europeans (frequencies 1%,10% 

and 0.7% in Sardinians versus 0%, 1% and 0.4%, respectively, in other Europeans)  and one that is currently 

Sardinian specific.  

Finally, we analyzed another well studied trait: height (Chapter 7). Recent meta-analyses have investigated 

up to 3 million relatively common polymorphisms in a very large number of samples: 253,288 individuals 

[Wood et al, Nature Genetics 2014]. However, this gigantic effort ignored low frequent and rare variants. In 

our GWAS we analyzed 6,307 Sardinian individuals but included all variants detected with sequencing; we 

were able to detect a novel signal pointing at a rare variant that is barely present outside Sardinia. Our 

GWAS also revealed other potentialities of complex traits mapping in isolates. Taking advantage of the 

families, we searched for parent-of-origin effects of variants in a previously known height-associated locus 

located in an imprinted region. This analysis, coupled with replication in other Sardinian and European 

cohorts, allowed us to identify the most likely candidate variant of the locus and to refine the mechanism of 

action.  

We therefore demonstrated several advantages of population-specific reference panels in isolated 

populations, using Sardinians as example. We showed that such populations offer the possibility for cost-
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effective designs to enhance accuracy in genotype imputation of rare variants, that their particular 

demographic history have shifted to high frequency rare variants with likely  functional impact, that large 

pedigrees easy collectable allow the assessment of deviation from the classical additive model of 

inheritance.   

In the last section (Chapter 8) we discuss other ongoing whole-genome sequencing efforts projected to 

build population-specific imputation panels in other isolates but also in more open populations. We review 

the benefits in terms of overall accuracy of estimated genotypes and present key examples of novel genetic 

discoveries yielded.  
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Chapter 2: Fine mapping of five loci associated with low-density lipoprotein cholesterol 

detects variants that double the explained heritability. 
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ABSTRACT  

Complex trait genome-wide association studies (GWAS) provide an efficient strategy for evaluating large 

numbers of common variants in large numbers of individuals and identifying trait associated variants. 

Nevertheless, GWAS often leave much of the trait heritability unexplained. We hypothesized that some of 

this unexplained heritability might be due to common and rare variants that reside in GWAS identified loci 

but lack appropriate proxies in modern genotyping arrays. To assess this hypothesis, we re-examined 7 

genes (APOE, APOC1, APOC2, SORT1, LDLR, APOB and PCSK9) in 5 loci associated with low-density 

lipoprotein cholesterol (LDL-C) in multiple GWAS. For each gene, we first catalogued genetic variation by re-

sequencing 256 Sardinian individuals with extreme LDL-C values. Next, we genotyped variants identified by 

us and by the 1000 Genomes Project (totaling 3,277 SNPs) in 5,524 volunteers. We found that in one locus 

(PCSK9), the GWAS signal could be explained by a previously described low frequency variant, and that in 

three loci (PCSK9, APOE, and LDLR) there were additional variants independently associated with LDL-C, 

including a novel and rare LDLR variant that seems specific to Sardinians. Overall, this more detailed 

assessment of SNP variation in these loci increased estimates of the heritability of LDL-C accounted for by 

these genes from 3.1% to 6.5%. All association signals and the heritability estimates were successfully 

confirmed in a sample of ~10,000 Finnish and Norwegian individuals. Our results thus suggest that focusing 

on variants accessible via GWAS can lead to clear underestimates of the trait heritability explained by a set 

of loci. Further, our results suggest that, as prelude to large-scale sequencing efforts, targeted re-

sequencing efforts paired with large scale genotyping will increase estimates of complex trait heritability 

explained by known loci. 

INTRODUCTION  

In the past few years, Genome-Wide Association Studies (GWAS) have identified hundreds of 

genetic variants associated with quantitative traits and diseases, providing valuable information about their 

underlying mechanisms (for a recent example, see [1]). More than 2,000 common variants appear 

associated with over 200 conditions (as reported by the NHGRI GWA catalog on 12/2010) and for a few, like 

age-related macular degeneration [2] and type 1 diabetes [3], these common variants already account for a 

large fraction of trait heritability. In contrast, for most complex traits and diseases, common variants 

identified by GWAS confer relatively small increments in risk and explain only a small proportion of trait 

heritability [4]. For example, for low-density lipoprotein cholesterol (LDL-C), GWAS based on up to 

~100,000 individuals examined at ~2.5 million common variants [1,5,6], have identified 35 loci associated 

with trait variation, with some also involved in modulating the risk of cardiovascular diseases. Common 

variants at these loci are estimated to account for 12.2% of the variability in LDL-C levels, about one-fourth 

of its genetic variance [1]. Several hypotheses have been formulated about the nature of the remaining 

heritability of lipid levels and other complex traits [4,7], ranging from the potential role of copy number 

variation to contributions from a large number of common variants each with very small effects. In our 

view, common and rare variants that are poorly represented in common genotyping arrays might account 

for an important fraction of trait heritability. Ignoring these variants might not only preclude identification 

of important trait associated loci but also compromise estimates of heritability. Thus, fine mapping appears 

the logical next step after GWAS. Here, we have focused on seven genes located in 5 of the loci associated 

with LDL-C in our original GWAS for blood lipid levels (APOE, APOC1, APOC2, SORT1, LDLR, APOB and 

PCSK9) [5]. A sixth locus (corresponding to SNP rs16996148) that included a large number of genes and no 

obvious functional candidates was not further examined here. Together, the 5 SNPs identified in the 

original GWAS analyses of these 5 loci in >8,000 individuals (with follow-up genotyping of >10,000 

individuals) explained only 3.1% of LDL-C variability. We set out to re-assess the contribution of these loci 
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to trait heritability by evaluating a broader spectrum of variants. To catalog genetic variation in these 

regions, we first sequenced the exons and flanking regions of the seven genes in 256 unrelated Sardinians 

[8], each with extremely low or high LDL-C, and in an additional 120 HapMap samples (parents from the 30 

CEU and 30 YRI trios). To assess the effect of identified polymorphisms, we genotyped detected variants 

and additional variants selected based on an early release of the 1000 Genomes Project in a cohort of 5,524 

volunteers from the SardiNIA project [8]. Our results show that at these five loci, a combination of rare and 

common variants, some novel and some previously identified, are associated with LDL-C, and that, taken 

together they double the variance explained by the common variants detected in GWAS. 

RESULTS 

To refine the contribution of five loci implicated by GWAS in the variability of LDL-C, we sequenced 

the exons and flanking regions of seven genes in 256 unrelated Sardinians [8] with LDL-C levels that were 

either extremely low (116 individuals, mean LDL-C=70.4±16.0 mg/dl) or high (140 individuals, mean LDL-

C=205.9±19.6 mg/dl) (Materials and Methods), as well as an additional 120 HapMap samples (parents from 

the 30 CEU and 30 YRI trios). Observed heterozygosity per base pair per individual was 1.28 x 10-3 in the 

selected Sardinian individuals, 1.31 x 10-3 in the CEU and 1.99 x 10-3 in the YRI.  

Sequencing identified 782 variants, all submitted to dbSNP and now included in dbSNP releases 130 

and later (for a complete list see Supplementary Table 1). As expected, more variants were found in the 

HapMap YRI samples than in the HapMap CEU or in Sardinian individuals with extreme lipid levels 

(Supplementary Table 2). Overall, we observed a 2:1 trend for enrichment of rare variants (MAF <1%) in 

the high LDL-C group compared to the low LDL group, similar to the observation by Johansen and 

colleagues [9] (Supplementary Table 3), but this enrichment was only statistically significant for APOB (P = 

0.03 using an exact test). To test for LDL-C association, we used logistic regression to compare individuals in 

the two categories, yielding 10 variants (in APOE, APOC1, SORT1, APOB, and PCKS9) with P <0.1 

(Supplementary Table 4). Because of the modest number of sequenced individuals and because no signal 

reached significance after Bonferroni adjustment, we judged these initial association analyses – which 

focused only on sequenced samples and only at coding regions – inconclusive. 

In addition to the loci discussed so far, our re-sequencing and genotyping effort also included 

B3GALT4 and B4GALT4, two loci that approached genome-wide significance in our initial GWAS analysis 

(each with 5x10-8 < p < 5x10-6) [5]. SNPs in these loci did not reach genome-wide significance in two 

subsequent meta-analyses [1,6] and were not significantly associated with LDL-C in the data generated here 

(Table 1, Supplementary Figure 1). Because we have no evidence that these two genes are associated with 

LDL-C, they are not discussed further. Variants identified in the two genes have been also deposited in 

dbSNP. 

To increase the power to detect association, we genotyped 5,524 individuals in the SardiNIA cohort 

[8] using the Metabochip (see Materials and Methods). The chip included 285 variants newly discovered by 

sequencing, together with an additional 2,992 derived from an early analysis of 1000 Genome Project Pilot 

haplotypes (considering variants ± 250Kb from each gene). To further supplement the number of variants 

at each locus, we carried out two rounds of genotype imputation. First, we used haplotypes for 256 

sequenced SardiNIA samples to impute genotypes for 554 SNPs that failed assay design or genotyping on 

the Metabochip. Second, using the haplotypes of 60 CEU samples from the 1000 Genomes Pilot, we 

successfully imputed an additional 5,066 variants [10] (Materials and Methods and Supplementary Table 
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5). After imputation, 8,897 SNPs were available for analysis, with an average minor allele frequency of 18% 

and an average imputation r2 of 0.84 for 5,620 imputed SNPs (Supplementary Table 5).  

At three loci, SORT1, APOB and LDLR, GWAS-identified variants were very strong proxies for the 

best available association signal, with similar allele frequencies and r2>0.88 (Table 1, Figure 1A and 

Supplementary Figure 2). In those three genes, the variant showing strongest association was non-coding 

and not in strong linkage disequilibrium (r2 > 0.4) with any tested coding variant. The most strongly 

associated marker at the SORT1 locus, rs583104 (p-value=1.2x10-9) was in high LD (r2 =0.77) with 

rs12740374 (p-value=2.2x10-8), an intronic SNP in the CELSR2 gene that alters the hepatic expression of the 

SORT1 gene by creating a C/EBP (CCAAT/enhancer binding protein) transcription factor binding site [11]. 

Both markers were genotyped, so that under the hypothesis that rs12740374 is the causal variant 

underlying this association signal, the modest difference in p-values may be attributable to statistical 

fluctuation. 

At the remaining two loci, APOE and PCSK9, evidence for association peaked at low frequency (1-

5%) variants not in strong linkage disequilibrium with the original GWAS signals. In both cases our analyses 

pointed to variants that were well studied in other contexts, but which are not included in typical GWAS 

panels or in the HapMap panel of European haplotypes commonly used to impute missing genotypes. Thus 

these variants were missed in previous GWAS analyses. In PCSK9, variant rs11591147, which leads to a non-

synonymous R46L change in exon 1, was more strongly associated (P=2.9x10-15, frequency (T)=0.037, 

effect=-12.9 mg/dl; Table 1) than GWAS variant rs11206510, a SNP ~10Kb upstream of the transcription 

start site of the gene (P =5.7x10-7, frequency (C)=0.24, effect=-3.7 mg/dl) (Figure 1C). Furthermore, 

rs11591147 totally explained the GWAS association signal (association at GWAS variant rs11206510 

became non-significant (p=0.999) when non-synonymous variant R46L / rs11591147 was included as a 

covariate, Figure 1D). This coding variant has previously been implicated in the regulation of blood lipid 

levels, including LDL-C, and in the susceptibility to coronary and ischemic heart disease [12,13]. At the APOE 

gene cluster, the strongest evidence of association was observed at the missense variant (R176C, also 

known as R158C [14]) rs7412 (P =1.8x10-31, frequency (T)=0.037, effect=-18.8 mg/dl) (Figure 1E). This 

variant did not account for the previously reported GWAS signal; marker rs4420638 indeed remained 

significantly associated (P =6.4x10-10) after adjusting for rs7412. The missense variants at APOE and PCSK9 

were not typed in the HapMap II data set, and were only recently added to genotyping arrays (Illumina 

1MDuo). Thus they have not been assessed by any GWAS reported to date.  

We next conditioned on the top association signal at each of the 5 loci and sought to identify 

additional independently associated variants. To declare statistical significance at secondary signals, we 

used a p-value threshold of 1x10-4; corresponding to an adjustment for 500 independent tests across the 

five regions examined. At LDLR, we found an independently associated rare missense variant (rs72658864 / 

V578A, P=2.5x10-6 in the basic model, P=3.9x10-6 in the conditional model, frequency (C)=0.005; effect=23.7 

mg/dl) (Table 1 and Figure 1B). This variant appears to be specific to Sardinia (where we identified it in our 

SardiNIA cohort [8] by Sanger sequencing in 3/256 individuals with extreme LDL-C; by Illumina genotyping 

in 51/5,800 randomly ascertained individuals; and by Solexa sequencing of 505 individuals, unpublished 

data). It is absent in the HapMap data set, not detected in 280 Northern European individuals sequenced 

within the 1000 Genomes Project, and monomorphic in >10,000 Finnish [15,16] and Norwegian [17,18,19] 

individuals genotyped with the MetaboChip (Materials and Methods, Supplementary Table 6 and 

Supplementary Table 7). Reassuringly, the variant was also observed, albeit with a lower frequency 

(0.00035), in TaqMan genotyping an independent sample of 5,661 Sardinians from different villages in 

Sardinia [20] (Materials and Methods). The change in lipid levels associated with this rare variant (23.7 
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mg/dl) is 4 times greater than that observed for the strongest associated common variant at the locus (5.7 

mg/dl for rs73015013). At the APOE locus, we found a strong independent signal at non-synonymous 

variant rs429358 (C130R, also known as C112R [14]) (Table 1 and Figure 1F)(P=1.2 x10-12 in the basic model, 

P=5.8 x10-11 in the conditional analysis, frequency (C) = 0.071, effect=9.3 mg/dl), which, together with 

rs7412, defines the three major isoforms of APOE (ε2, ε3 and ε4) [14,21]. This variant strongly correlates 

(r2=0.96) with the originally reported GWAS signal, rs4420638 (P=4.6x10-12, frequency (G)=0.097, effect=7.8 

mg/dl). So, at this locus, the initial GWAS analysis picked up one independent signal (a proxy of 

rs429358/C130R) but missed the strongest associated variant in the region (rs7412/R176C). There was no 

clear evidence for residual association after accounting for the two missense variants (Supplementary 

Figure 3). Interestingly, the frequency of the derived allele C at rs429358 was remarkably lower in Sardinia 

(freq=7%, see Table 1) than that observed in the Finnish and Norwegian individuals (see Supplementary 

Table 7) and several other European ancestry samples (freq ~20%)[22,23,24], resulting in a strikingly lower 

frequency of the ε4 haplotype (2.5% vs. 15%)[22]. Finally, at PCSK9, we observed a possible independent 

association at SNP rs2479415, in the non-coding region flanking the transcript (P=1.1x10-7 in the basic 

model, P=8x10-5 in the conditional model, frequency (T)=0.59, effect = -3.6 mg/dl) (Table 1 and Figure 1D). 

This variant showed an independent trend also in ~10,000 Finnish and Norwegian individuals (one-sided 

P=0.055 after conditioning for rs11591147). 

 When the 5 GWAS SNPs were replaced by the 8 variants described here (1 each for SORT1 and 

APOB, 2 for APOE, PCSK9 and LDLR) the variance accounted for by those loci increased from 3.1% to 6.5%. 

Similar estimates were also obtained with ~10,000 Finnish and Norwegian individuals, where, on average, 

analysis of these 8 variants increased variance explained from 3.5% to 7.1% (Table 2 and Material and 

Methods).  

DISCUSSION 

We conducted fine mapping of five loci associated with LDL-C at an unprecedented level of 

resolution. In particular, we sequenced individuals with extreme phenotype levels, and subsequently 

genotyped variants identified by us and by the 1000 Genomes Project in a larger sample.  In a final step we 

also imputed additional variants in the region to account for limitations of genotyping assay design. At all 

but one of the loci, APOB, the most strongly associated variant was directly genotyped or sequenced, 

suggesting that our initial selection included the crucial variants. In three loci, we found strongly associated 

rare or low frequency variants – which (except for a variant in LDLR, which appears to be specific to 

Sardinia) had been extensively characterized in previous non-GWAS studies. In these cases, although the 

associated variants had been previously described, they had not been thoroughly examined in together 

with GWAS associated variants at the same loci – so that the relative contributions of GWAS identified SNPs 

and previously described variants remained unclear. 

In summary, we observed that: 

(a) At ,SORT1 and APOB loci, association peaked at variants with similar effect size and frequency 

to the variants identified in GWAS;  

(b) At the LDLR locus, in addition to confirming the GWAS signal, a rare variant with a large effect 

was found. This variant is currently unique to the island of Sardinia; 

(c) At the APOE locus, an independently associated low frequency variant was identified. The 

signal was previously missed in GWAS because the variant was not included in the available 
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genotyping chips or in the HapMap reference panels. An independently associated common 

variant similar in frequency and effect size to the original GWAS signal was also identified. 

(d) At the last locus, PCSK9, the GWAS signal could be explained by a low frequency coding variant 

not included in the available GWAS genotyping chips or in the HapMap reference panels. 

Furthermore, there was evidence for one other independently associated variant. 

 

The strongest signals identified at APOE (both variants) and PCSK9 (the top hit) are likely to be the causal 

variants underlying the association signals. For SORT1, the variant exhibiting strongest association appears 

to be in strong linkage disequilibrium with a recently proposed functional polymorphism. In contrast, 

biological interpretation for other associated variants remains unclear for the other identified 

polymorphisms and requires further studies.Our results lead to several important major conclusions. First, 

it is striking that prior LDL-C GWAS have often missed signals due to low frequency variants (in two of the 

loci examined here, we identified strongly associated variants with frequency 1-5% that were missed in the 

original GWAS, because they were untyped or missing on imputation panels and poorly tagged by nearby 

SNPs). Sequencing in individuals with extreme trait values, along with large-scale imputation and 

genotyping, provided a better evaluation of the contribution of these loci to variation in LDL-C levels. A 

similar design was recently used to fine-map loci associated with fetal hemoglobin levels, a trait for which 

three loci can now account for about half of total variance [25]. 

 Second, we show that in one of the five loci we fine-mapped, a previously missed low frequency variant 

can account for the GWAS signal – consistent with the hypothesis that at least some GWAS signals will be 

due to disequilibrium with nearby low frequency or rare variants [26]. There is considerable debate on how 

frequently this scenario will occur [27]. Our observations are compatible with some of the arguments made 

on both sides of this debate [26, 27]. For example, in the case of PCSK9, a single low frequency variant 

explains the observed common variant association signal but did not appear to reduce the ability of the 

genome-wide association study to localize the functional element of interest. Furthermore, the effect of 

this variant was too small to be detectable in most linkage studies (including our own linkage analysis of 

>35,000 relative pairs in Sardinia). Further, a single low frequency variant (and not a cluster of variants) was 

sufficient to explain this association signal. 

 Finally, our results show that if estimates are based only on the common variation assessed through 

GWAS, heritability at identified loci is likely to be underestimated. A more complete dissection, including 

common, low frequency and rare variants (some of which will be population specific), dramatically 

increased the proportion of heritability associated with the 5 loci examined here, from 3.1% to 6.5%. 

Notably, the variance explained by each locus increased when a rare variant was found as a primary or 

secondary hit (LDLR, APOE and PCSK9), even when the top GWAS SNP highly correlates with the strongest 

observed signal (LDLR and APOE). By contrast, only slight improvements were observed at loci where the 

most associated marker highly correlates with the GWAS SNPs and there was no evidence for additional 

independent signals, even when the GWAS variant is unlikely to be functional (SORT1 and APOB). 

Genome-wide association studies have proven to be an extremely productive strategy for identifying 

regions of the genome associated with complex traits, often leading to unexpected insights into complex 

trait biology. A major efficiency of these studies is that, by focusing on a subset of variants that can be 

genotyped using array based platforms, they can conveniently and economically survey many common 

variants in large numbers of individuals. Our results emphasize the utility of these genome-wide studies in 

identifying trait association regions, but also emphasize that caution is needed when genome-wide study 



30 
 

results are used to quantify the overall contribution of a locus to trait heritability. In our opinion, and 

consistent with our results, accurate estimates of heritability will require more extensive examination of 

each identified locus. 

 Broadly, this observation is consistent with recent simulation studies [28] which explore, in the context 

of a dichotomous trait, the relationship between effect sizes observed at GWAS SNPs and at true causal 

variants for the same locus. These simulation studies suggest that, most of the time, effect sizes estimated 

from GWAS would be similar to true effect sizes but that, some of the time, effect sizes estimated from 

GWAS might substantially underestimate the true effect size – especially in a scenario where rare variants 

are more likely to be causal. In cases where the effect size was underestimated by GWAS variants, a 

noticeable increase in heritability ensues.  

 It is also interesting to note that the effect sizes estimated here for rare and low frequency variants (all 

>10mg/dl) are larger than the effect sizes of any of the common variants identified in GWAS studies. Effect 

sizes of even rarer alleles associated with familial hypercholesterolemia are even larger (see [29] for 

examples of PCSK9 variants with effects >100mg/dl). This is consistent with the intuition that alleles with a 

large impact on LDL-cholesterol levels will be under strong natural selection and will, thus, be prevented 

from reaching high frequency in the population. Although rare and low frequency alleles with more modest 

impacts on LDL-cholesterol values are also likely to exist, we cannot detect them using available sample 

sizes and their detection must await studies of much larger sample sizes. 

 In conclusion, these results underline that the subsequent sequencing of the coding regions around 

GWAS associations in individuals with extreme values followed by large scale imputation and genotyping is 

an  important step in assessing the contribution of associated genomic regions to trait heritability. If similar 

trends to those described here are observed at the remaining LDL-C associated loci, extending our 

approach described to all known LDL-C susceptibility loci could lead to an increase in the proportion of 

variance they explain from ~12% to ~24%, exceeding half of the genetic variance for this trait. Due to 

economic considerations, our sequencing efforts focused on the coding regions of each gene and only on 

genes that appeared very likely to be involved in lipid metabolism. In each locus, we augmented the set of 

discovered variants with variants discovered by the 1000 Genomes Project, but that will likely miss very 

rare as well as population specific variants. We expect that more extensive fine-mapping efforts that more 

comprehensively examine non-coding regions could identify additional trait associated variants. Ultimately, 

unbiased whole genome sequencing based association analyses might be required to fully explain the 

heritability of a trait like LDL-C, facilitating the comprehensive assessment of  rare, population specific, and 

non-SNP variation. In the meantime, directed sequencing and large scale genotyping appears to be a 

promising approach. 
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MATERIALS AND METHODS 

Ethics statement 

All individuals studied and all analyses on their samples were done according to the Declaration of Helsinki 

and were approved by the local medical ethics and institutional review committees. 

Samples description 

The SardiNIA project is a population based study of aging-related traits that includes 6,148 related 

individuals from the Ogliastra region of Sardinia, Italy [8,30 ]. During physical examination, a blood sample 

was collected from each individual and divided into two aliquots, one for DNA extraction and the other to 

characterize several blood phenotypes, including lipids levels. Specifically, LDL-C values were derived using 

the Friedwald formula that combines HDL and total cholesterol levels. The Finnish and Norwegian 

individuals are Type 2 Diabetes patients and unaffected individuals collected from several studies. 

Specifically, Finnish studies are: Dehko 2D 2007 (D2D 2007), Dose Responses to Exercise Training 

(DrsEXTRA), Diabetes Prevention Study (DPS), FUSION stage 2 [15] samples (from ACTION LADA, D2D 2004, 

FINRISK 1987, FINRISK 2002, Health 2000, Savitaipale) and Metabolic Syndrome in Men (METSIM)[16]; 

Norwegian studies are: The Nord- Trøndelag Health Study (HUNT 2)[17,18] and The Tromsø Study 

(TROMSØ)[19]. Baseline clinic characteristics of the SardiNIA, Finnish and Norwegian studies are reported in 

Supplementary Table 7. 

The independent Sardinian sample used for assessing the frequency of the rare variant at LDLR consists of 

5,661 individuals belonging to 884 families enrolled in the SharDNA study [20], which recruited volunteers 

from a cluster of villages located in the Ogliastra region: Talana, Urzulei, Baunei,Triei, Seui, Seulo, Ussassai, 

Perdasdefogu, Escalaplano and Loceri. Observed heterozygotes were unrelated to those observed in the 

SardiNIA study by using demographic records to track origin of individuals up to 10 generations. 

Sequencing 

Sequencing of the 256 Sardinians and the 120 HapMap samples (parents from the 30 CEU and 30 

YRI trios) was carried out at the University of Washington Genome Sequencing Center through the NHLBI 

Resequencing & Genotyping Service (Debbie Nickerson, PI). To select the 256 individuals to be sequenced, 

we adjusted LDL levels by age and sex and then identified individuals in the top and bottom 5% of the 

distribution (individuals under lipid-lowering therapy were not considered). Among those, we selected all 

unrelated individuals who had at least one sibling in the study and were genotyped with 500K or 10K arrays 

[28], to facilitate downstream follow-up and imputation analyses. 

Among the 782 variants detected by sequencing, two loss-of-function variants were observed. 

However, these were identified only on HapMap samples (see Supplementary Table 8). A common in-

frame insertion in APOB was observed in Sardinia and in HapMap CEU samples but was not associated with 

LDL-C after multiple testing adjustment (rs17240441, P =3.0x10-4; see Supplementary Figure 1C and 1D, 

Supplementary Table 8). The observed heterozygosity per bp/per individual was 0.00128, 0.00131 and 

0.00199 in Sardinia, CEU and YRI samples, respectively. Concordance rate of HapMap II and III phases 

genotypes with those obtained from Sanger sequencing was 99.63%, while a lower rate (98.1%) was 

observed with genotypes obtained from the low-pass sequencing 1000 Genomes Project (43 CEU and 42 

YRI samples were common between the two datasets), indicating the slightly lower accuracy of next-

generation sequencing technologies and in particular of low-pass sequencing approaches [31]. 
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Genotyping 

Genotyping was carried out with Metabochip arrays (Illumina), which were designed in 

collaboration with several international consortia [5,32,33] with the aim to fine map association loci 

detected through GWAS for a variety of traits. Part of the design included a set of wild-card SNPs chosen by 

individual research groups, and the SardiNIA study promoted the inclusion of all variants detected by 

sequencing individuals with extreme LDL-C values. In particular, assays were successfully designed for 285 

of the 782 variants discovered by sequencing and 178 passed quality controls filters (some of those were 

polymorphic only in HapMap individuals, but we included all detected variant on the chip to assess 

heterozygosity on a large sample). Briefly, 3,277 variants were included on MetaboChip, and 1,868 passed 

quality checks. For a detailed description of markers discarded by each filter see Supplementary Table 9. 

Concordance rate of Sanger and Metabochip genotypes was 99.47% at QCed markers, evaluated comparing 

genotypes of the 256 sequenced samples. 

Metabochip genotyping was performed using Illumina Infinium HD Assay protocol with 

Multisample Beadchip format, and GenomeStudio was used for genotype calling. All samples had a call rate 

>98%, and there was no evidence for mis-specified family relationships (evaluated using Relpair software 

[34]). We discarded markers if any of the following was true: a) call rate <95%, b) MAF=0, c) Hardy-

Weinberg Equilibrium P<10-6 or d) excess of Mendelian Errors (Supplementary Table 9). 

A total of 5,524 Sardinian individuals were genotyped, of which 5,382 had lipid measurements 

available and were not under lipid lowering therapy. In the Finnish and Norwegian studies, a total of 10,823 

samples were genotyped, of which 10,027 had LDL-c measurement available and were not under lipid 

lowering therapy. 

Genotyping of the rare LDLR variant rs72658864 on the SharDNA samples was carried out using TaqMan 

single SNP genotyping assays (Applied Biosystems). Given the rarity of the variant, DNA of a known 

heterozygote from the SardiNIA project was included in each well plate to allow detection of intensities of 

both alleles. The genotype of this sample was called as heterozygote in all plates. 

Imputation and Statistical Analysis  

To better represent genomic variation, we merged genotypes from the 256 sequenced Sardinian 

samples with genotypes available from Affymetrix 500K [30] and/or Metabochip for all variants +/-2Mb 

spanning the gene’s transcript. We then phased the haplotypes using MACH [10] and used this reference 

set of haplotypes to impute sequence variants in the rest of the cohort [35]. We then focused on variants 

within +/250Kb of the gene transcript. To further fine map the region, we used 120 haplotypes from the 60 

CEU samples sequenced within the 1000 Genomes Project (June 2010 release of haplotypes based on 

March 2010 genotypes release) to impute variants outside the coding regions and flanking sequences 

targeted in our sequencing study. MACH software was used for imputation, with the same sized window 

used for the Sardinian-based imputation (+/-2Mb). The results obtained with these two rounds of 

imputation are identified in the text, as well in table and figure legends, as “Affy+Sanger” and “1000G”, 

respectively. 

For association, LDL levels were adjusted for age, age squared and sex, and the distribution of 

residuals was normalized using a quantile transformation. The association test was performed using Merlin 

(--fastassoc option), which uses a variance component framework to account for genetic correlation across 

family members [35,36]. 
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Comparison of imputed genotypes with experimental genotypes, carried out on a set of 1,097 

individuals that were genotyped with the 6.0 Affymetrix Arrays (unpublished data), showed that the 

average per genotype error rate between imputed and experimental genotypes was 3.7% and 4.1% for 

imputations based on 1000 Genomes and Sanger haplotypes, respectively. 

In the Finnish and Norwegian studies we applied a similar strategy to analyze variants (rs547235 

and rs562338 on APOB, rs2479415 on PCSK9 and rs429358 on APOE) that were not included on 

Metabochip. We defined a set of reference haplotypes of the 60 HapMap CEU founders by merging 

genotypes from the 1000 Genomes project and those from our Sanger sequencing, using SNPs located +/-

2Mb of APOB, PCSK9 and APOE. We then used this reference panel to carry out imputation and successively 

used imputed dosages for testing association with LDL-C. Association analysis was performed using the 

same trait transformation and covariates as in the SardiNIA study. Imputation and association tests were 

performed separately for Finnish diabetics (N=1,742), Finnish non-diabetics (N=5,678), Norwegian diabetics 

(N=1,171) and Norwegian non-diabetics (N=1,436). Results were then meta-analyzed using an inverse-

variance method, which combines p-values from each study using weights proportional to the variance of 

the beta coefficient (effect) (Supplementary Table 7). A combined estimate of allele frequencies was 

obtained using the same weights.  

Variance explained 

We evaluated the variance explained by a set of markers by including all of them into the linear 

model in addition to the clinical covariates (age, age squared, gender), and by subtracting the variance 

explained by this model versus the basic model (only clinical covariates). Analyses were performed using 

the lmekin function in R kinship package which uses a variance component framework to account for 

genetic correlation across family members. Notably, variance is not purely additive across loci, thus 

heritability in Table 2 has been calculated using all 8 SNPs (or 5 SNPs) in the model rather than adding 

values observed at specific loci (Table 1). For the Finnish and Norwegian samples, the LDL-C variance 

explained was calculated in each study group separately, and a combined estimate was calculated by 

weighting each study according to its sample size (Table 2). 

Conditional analyses 

We conducted conditional analyses to test for residual associations after accounting for a key SNP. 

The procedure consists of adding a SNP into the regression model as covariate and testing the effect of 

another SNP. Specifically, we performed this analysis by adding the strongest associated variant (key SNP) 

as covariate in order to test 1) whether that variant could explain the GWA association signal; and 2) if 

additional independent signals were present. For the latter analysis, a threshold of P < 1x10-4 was used to 

declare significance, corresponding to a Bonferroni threshold for 500 independent tests. A graphical 

representation of association results from the conditional analysis is shown in Figure 1B, 1D, 1F and in 

Supplementary Figure 2B, 2D. 

 

URLs: 

MACH software: http://www.sph.umich.edu/csg/abecasis/mach/; 

HapMap project: http://www.hapmap.org/; 
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1000 Genomes Project: http://www.1000genomes.org/; 

1000 Genomes Haplotypes for imputation: 

http://www.sph.umich.edu/csg/abecasis/MACH/download/1000G-2010-06.html; 

Locus Zoom: http://csg.sph.umich.edu/locuszoom/ 

R kinship package http://cran.r-project.org/web/packages/kinship/index.html 

 

REFERENCES 

1. Teslovich TM, Musunuru K, Smith AV, Edmondson AC, Stylianou IM, et al. (2010) Biological, clinical 

and population relevance of 95 loci for blood lipids. Nature 466,707-713  

2. Chen W, Stambolian D, Edwards AO, Branham KE, Othman M, et al (2010). Genetic variants 

near TIMP3 and high-density lipoprotein-associated loci influence susceptibility to age-

related macular degeneration. Proc Natl Acad Sci U S A 07(16):7401-6. 

3. Barrett JC, Clayton DG, Concannon P, Akolkar B, Cooper JD, et al (2009). Genome-wide 

association study and meta-analysis find that over 40 loci affect risk of type 1 diabetes. Nat 

Genet 41(6):703-7 

4. Manolio TA, Collins FS, Cox NJ, Goldstein DB, Hindorff LA, et al. (2009) Finding the missing 

heritability of complex diseases. Nature 461, 747-53. 

5. Willer CJ, Sanna S, Jackson AU, Scuteri A, Bonnycastle LL, et al. (2008) Newly identified loci 

that influence lipid concentrations and risk of coronary artery disease. Nat Genet 40, 161-

169.  

6. Kathiresan S, Willer CJ, Peloso GM, Demissie S, Musunuru K, et al. (2009) Common variants at 30 

loci contribute to polygenic dyslipidemia. Nat Genet 41(1):56-65. 

7. Cirulli, E.T. & Goldstein, D.B. (2010) Uncovering the roles of rare variants in common disease 

through whole-genome sequencing. Nat Rev Genet 11(6), 415-25. 

8. Pilia G, Chen WM, Scuteri A, Orrú M, Albai G, et al. (2006) Heritability of cardiovascular and 

personality traits in 6,148 Sardinians. Plos Genet 2, e132. 

9. Johansen CT, Wang J, Lanktree MB, Cao H, McIntyre AD, et al. (2010) Excess of rare variants in 

genes identified by genome-wide association study of hypertriglyceridemia. Nat Genet 42(8), 684-7  

10. Li, Y., Willer, C., Sanna, S. & Abecasis, G.R. (2009) Genotype Imputation. Annu Rev Genomics Hum 

Genet 10, 387-406. 

11. Musunuru K, Strong A, Frank-Kamenetsky M, Lee NE, Ahfeldt T, et al. (2010) From noncoding 

variant to phenotype via SORT1 at the 1p13 cholesterol locus. Nature 5;466(7307):714-9. 

12. Cohen, J.C., Boerwinkle, E, Mosley T.H. Jr & Hobbs HH. (2006) Sequence variations in PCSK9, low 

LDL, and protection against coronary heart disease. N Engl J Med. 354(12), 1264-72 . 

13. Benn, M.J., Nordestgaard, B.G., Grande, P., Schnohr, P. and Tybjaerg-Hansen A. (2010) PCSK9 R46L, 

low-density lipoprotein cholesterol levels, and risk of ischemic heart disease: 3 independent studies 

and meta-analyses. J Am Coll Cardiol 55(25), 2833-42 



35 
 

14. Hansena, P.S., Gerdesa, L.U., Klausena, I.C., Gregersenb, N. & Faergeman, O. (1994) Genotyping 

compared with protein phenotyping of the common apolipoprotein E polymorphism. Clin Chim 

Acta. 31, 224(2):131-7. 

15. Scott LJ, Mohlke KL, Bonnycastle LL, Willer CJ, Li Y, Duren WL et al. (2007). A genome-wide 

association study of type 2 diabetes in Finns detects multiple susceptibility variants. Science 

316,1341-5. 

16. Stancáková A, Kuulasmaa T, Paananen J, Jackson AU, Bonnycastle LL et al. (2009) Association of 18 

confirmed susceptibility loci for type 2 diabetes with indices of insulin release, proinsulin 

conversion, and insulin sensitivity in 5,327 nondiabetic Finnish men. Diabetes 58, 1212-21 

17. Midthjell K, Krüger O, Holmen J, Tverdal A, Claudi T, et al. (1999) Rapid changes in the prevalence of 

obesity and known diabetes in an adult Norwegian population. The Nord-Trøndelag Health Surveys: 

1984-1986 and 1995-1997. Diabetes Care 22, 1813-20.  

18. Holmen J, Midthjell K, Kruger O, Langhammer A, Lingaas Holmen T, et al (2003) The Nord-Trondelag 

Health Study 1995–97 (HUNT 2): Objectives, contents, methods and participation. Norsk Epidemiol 

13, 19-32 . 

19. Joseph J, Svartberg J, Njolstad I, Schirmer H. (2010) Incidence of and risk factors for type-2 diabetes 

in a general population. Scand j Public Health 38:768-75.  

20. Biino G, Balduini C L, Casula L, Cavallo P, et al. (2011). Analysis of 12,517 inhabitants of a 

Sardinian geographic isolate reveals that predispositions to thrombocytopenia and 

thrombocytosis are inherited traits. Haematologica 96(1), 96-101 

21. Weisgraber KH, Rall SC Jr, Mahley RW. (1981) Human E apoprotein heterogeneity. 

Cysteine-arginine interchanges in the amino acid sequence of the apo-E isoforms. J Biol 

Chem. 256(17):9077-83.  

22. Sing CF, Davignon (1985) J. Role of the apolipoprotein E polymorphism in determining normal 

plasma lipid and lipoprotein variation. Am J Hum Genet 37, 268-85. 

23. Nickerson DA, Taylor SL, Fullerton SM, Weiss KM, Clark AG, et al (2000). Sequence diversity and 

large-scale typing of SNPs in the human apolipoprotein E gene. Genome Res  10(10), 1532-45 

24. Stengård JH,  Clark AG, Weiss KM, Kardia S, Nickerson DA, et al (2002). Contributions of 18 

additional DNA sequence variations in the gene encoding apolipoprotein E to explaining variation in 

quantitative measures of lipid metabolism. Am J Hum Genet 71 (3), 501-517 

25. Galarneau G, Palmer CD, Sankaran VG, Orkin SH, Hirschhorn JN, et al. (2011) Fine-mapping at three 

loci known to affect fetal hemoglobin levels explains additional genetic variation. Nat Genet 42, 

1049-51  

26. Dickson SP, Wang K, Krantz I, Hakonarson H, Goldstein DB. (2010) Rare variants create 

synthetic genome-wide associations. PLoS Biol. 8(1):e1000294. 

27. Anderson CA, Soranzo N, Zeggini E, Barrett JC. (2011) Synthetic associations are unlikely to 

account for many common disease genome-wide association signals. PLoS Biol. 

9(1):e1000580. 

28. Spencer C, Hechter E, Vukcevic D, Donnelly P. (2011) Quantifying the underestimation of relative 

risks from genome-wide association studies PLoS Genet. Mar;7(3):e1001337. 

29. Abifadel M, Varret M, Rabès JP, Allard D, Ouguerram K, et al.(2003) Mutations in PCSK9 cause 

autosomal dominant hypercholesterolemia Nat Genet. 34(2):154-6 

30. Scuteri A, Sanna S, Chen WM, Uda M, Albai G. et al. (2007)  Genome-wide association scan shows 

genetic variants in the FTO gene are associated with obesity-related traits. Plos Genet 3(7), e115. 



36 
 

31. Li Y, Sidore C, Kang HM, Boehnke M, Abecasis GR. (2011) Low-coverage sequencing: Implications 

for design of complex trait association studies. Genome Res. May 4 [Epub ahead of print].  

32. Prokopenko I, Langenberg C, Florez JC, Saxena R, Soranzo N. et al (2009). Variants in MTNR1B 

influence fasting glucose levels. Nat Genet 41(1), 77-81 

33. Preuss M, König IR, Thompson JR, Erdmann J, Absher D et al. (2010). Design of the Coronary ARtery 

DIsease Genome-Wide Replication And Meta-Analysis (CARDIoGRAM) Study: A Genome-wide 

association meta-analysis involving more than 22 000 cases and 60 000 controls. Circ Cardiovasc 

Genet 3(5), 475-83.  

34. Epstein MP, Duren WL and Boehnke M. (2000) Improved inference of relationship for pairs of 

individuals. Am J Hum Genet 67, 1219-1231. 

35. Chen W. and Abecasis GR (2007) Family-based association tests for genome-wide association scans. 

Am J Hum Genet 81, 913-926 

36. Abecasis, G.R, Cherny, S. S., Cookson, W.O. & Cardon, L.R. (2002). Merlin--rapid analysis of dense 

genetic maps using sparse gene flow trees. Nat Genet 30, 97 - 101  

37. Pruim RJ, Welch RP, Sanna S, Teslovich TM et al. (2010) LocusZoom: regional visualization of 

genome-wide association scan results. Bioinformatics. 26(18):2336-7 



37 
 

Figure 1. Regional Association plots  

 Association results around LDLR, PCSK9 cluster and APOE. In each panel, the box at left (A, C and E) shows 

the association results in the main analysis; and at right (B, D and F) the results after conditioning for the 

strongest associated variant, highlighted with a purple dot in both plots, and its name written at the top. 

Arrows highlight independent signals and the most associated SNP detected in the previous GWAS [5]. Each 

SNP is also colored according to its LD (r2) in Sardinians with the top variant, with symbols that reflect 

genomic annotation as indicated in the legend. The rugs above indicate the position of the SNPs that were 

analyzed by direct typing (MetaboChip), or imputed by using haplotypes from sequenced samples 

(Affy+Sanger) or 1000 Genomes haplotypes (1000G). Plots were drawn using the LocusZoom standalone 

version [37].Genomic coordinates are given according to build 36 (hg18). 

 

 



38 
 

 



 

Table 1. Association Analysis results  

The left panel shows the association results at 7 loci. For each gene, the strongest variant is listed first, and any second detected independent signal is listed with 

results from the conditional analysis (Materials and Methods). The column Type indicates whether the SNP was directly genotyped (Metabochip) or imputed using 

1000G reference haplotype (1000G) or the Sardinian reference panel (Affy+Sanger). The right panel shows the association results for the GWAS SNPs previously 

described[5], the correlation with the top SNP listed in the left panel, and its p-value in the conditional analysis (Adjusted P-value).  

Locus SNPname Type 

Effect 

Allele

/ 

Other 

Freq 

Effect 

Allele 

Effect (SE)
a
 P-value Genomic Annotation 

Variance 

explained 

by the locus 

Top GWAS 

SNP 

Effect 

Allele

/ 

Other 

Freq 

Effect 

Allele 

Effect (SE)
a
 P-value r2 

Adjusted 

P-value 

Variance 

explained 

by the 

locus 

                 

PCSK9 rs11591147  Metabochip T/G 0.037 -0.380 (0.048) 2.90x10
-15

 missense (R46L)  1.19 % rs11206510 C/T 0.243 -0.106 (0.023) 5.71x10
-07

 0.101 0.013 0.23% 

 rs2479415  1000G  C/T 0.413 0.076 (0.019) 7.50x10
-05

 8Kb from PCSK9          

SORT1 rs583104 Metabochip T/ G 0.177 0.149 (0.024) 1.28x10
-09

 31Kb from SORT1
b
 0.63% rs599839 G/A 0.276 -0.148 (0.025) 1.43x10

-09
 0.991 0.90 0.61% 

B3GALT4 rs28361085 1000G C/T 0.073  0.114 (0.036) 0.00169 146Kb from B3GALT3  0.22% rs2254287 G/C 0.492 0.005 (0.018) 0.771 0.413 0.84 0.02% 

B4GALT4 rs34507110 1000G G/A 0.154 0.122 (0.030) 4.99x10
-05

 83Kb from B4GALT4  0.48% rs12695382 A/G 0.075 -0.074 (0.035) 0.035 0.795 0.48 0.03% 

APOB rs547235 1000G A/G 0.187 -0.144 (0.024) 1.69x10
-09

 140Kb from APOB 0.51% rs562338 A/G 0.173 -0.139 (0.025) 1.43x10
-8

 0. 878 0.98 0.43% 

LDLR rs73015013 Metabochip T/C 0.138 -0.155 (0.027) 1.12x10
-08

 9kb from LDLR  1.17% rs6511720 T/G 0.132 -0.160 (0.027) 1.71x10
-08

 0.934 0.97 0.59% 

 rs72658864 Metabochip C/T 0.005  0.626 (0.136) 3.90x10
-06

 missense (V578A)          

APOC1/C2/E rs7412 Metabochip T/C 0.037 -0.563 (0.048) 1.80x10
-31

 missense (R176C) APOE 3.33% rs4420638
c
 G/A 0.097 0.218 (0.031) 4.67x10

-12
 0.0003 6.41x10

-10
  1.07% 

 rs429358 Affy+Sanger C /T 0.071  0.260 (0.036) 5.82x10
-11

 missense (C130R) APOE          

a. Effect sizes are standardized (see Materials and Methods), and represent the change in trait LDL-C values associated with each copy of the reference allele, 

measured in standard deviation units. 

b. SNP rs583104 is also 1Kb from PSRC1 transcript 

c. r2=0.967 with Metabochip second-independent SNP, rs429358. After adjusting for the two independent SNPs, rs7412 and rs429358, the p-value for 

rs4420638 was 0.5  
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Table 2. Heritability estimates in all study samples 

The table shows the LDL-C variance accounted for by the 5 GWAS SNPs and the 8 SNPs 

here described in all studies.  A sample size weighted average estimate is given for the 

Finnish and Norwegian samples. 

 

Study N samples 

Variance explained 

by 5 GWAS SNPs 

Variance explained 

by 8 SNPs 

SardiNIA 5,382 3.1% 6.5% 

    

Norwegian T2D 1,171 5.8% 9.3% 

Norwegian controls 1,436 3.1% 8.5% 

Finnish T2D 1,742 2.1% 5.0% 

Finnish controls 5,678 3.4% 7.0% 

    

Average Finnish and Norwegian 10,027 3.5% 7.1% 
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Chapter 3: Rare variant genotype imputation with thousands of study-specific 

whole-genome sequences: implications for cost-effective study designs 

 

Based on: 

Pistis G*, Porcu E*, Vrieze SI, Sidore C, Steri M, Danjou F, Busonero F, Mulas A, Zoledziewska M, 

Maschio A, Brennan, C, Lai S, Miller MB, Marcelli M, Urru MF, Pitzalis M, Lyons RH, Kang HM, Jones 

CM, Angius A, Iacono WG, Schlessinger D, McGue M, Cucca F
#
, Abecasis GR

#
, Sanna S

#
.  

Eur J Hum Genet. 2014 Oct 8. doi: 10.1038/ejhg.2014.216 

*,#
 indicate equal contributions 
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ABSTRACT  

The utility of genotype imputation in genome-wide association studies is increasing as progressively 

larger reference panels are improved and expanded through whole-genome sequencing. Developing 

general guidelines for optimally cost-effective imputation, however, requires evaluation of 

performance issues that include the relative utility of study-specific compared with 

general/multipopulation reference panels; genotyping with various array scaffolds; effects of 

different ethnic backgrounds; and assessment of ranges of allele frequencies. Here we compared the 

effectiveness of study-specific reference panels to the commonly used 1000 Genomes Project 

(1000G) reference panels in the isolated Sardinian population and in cohorts of European ancestry 

including samples from Minnesota (USA). We also examined different combinations of genome-wide 

and custom arrays for baseline genotypes. In Sardinians, the study-specific reference panel provided 

better coverage and genotype imputation accuracy than the 1000G panels and other large European 

panels. In fact, even gene-centered custom arrays (interrogating ~ 200 000 variants) provided highly 

informative content across the entire genome. Gain in accuracy was also observed for Minnesotans 

using the study-specific reference panel, although the increase was smaller than in Sardinians, 

especially for rare variants. Notably, a combined panel including both study-specific and 1000G 

reference panels improved imputation accuracy only in the Minnesota sample, and only at rare sites. 

Finally, we found that when imputation is performed with a study-specific reference panel, cutoffs 

different from the standard thresholds of MACH-Rsq and IMPUTE-INFO metrics  should be used to 

efficiently filter badly imputed rare variants. This study thus provides general guidelines for 

researchers planning large-scale genetic studies. 

 

INTRODUCTION 

Genome-wide association studies (GWAS) have successfully identified thousands of common, single 

nucleotide polymorphisms (SNPs) associated with complex traits. However, existing genotyping 

arrays used in GWAS survey only a limited repertoire of sequence variation, and under-represent 

rare and population-specific variants. Much more complete extraction of genetic variation is now 

accessible using next generation sequencing (NGS) technologies, but efficient detection of rare and 

low frequency variants requires sequencing hundreds to thousands of individuals1.  

An alternative cost-effective approach to enlarge the frequency spectrum of variants assessed in 

GWAS capitalizes on publicly available sequencing reference panels, especially the 1000 Genomes 

Project (1000G) reference panels. Indeed, “probabilistic” sequenced genomes can be reconstructed 

by means of imputation methods, inferring untyped variants by combining partial haplotypes found 

in a study sample with the full haplotypes available in a more densely characterized reference set. It 

has, however, been unclear how well general reference panels represent variation in populations 

that were poorly or not at all represented in projects like 1000 Genomes. Furthermore, even for well 

represented populations, a complete evaluation is needed to assess the benefits of sequencing more 

study samples for successfully impute rare or low frequency variants. 
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How can imputation be further improved? Imputation works very well for common variants, but 

rapid performance degradation is seen for lower minor allele frequencies. The performance depends 

on multiple factors, including: choice of baseline array, quality of input genotypes/haplotypes, and 

limited representation of reference haplotypes carrying rare alleles. Also and very importantly, 

differences in linkage disequilibrium (LD) patterns and allele frequency spectrum significantly 

decrease the quality of imputation overall, especially when using public reference panels for 

ancestral or geographically isolated populations2,3. 

To investigate these factors, we compared imputation quality using three complementary sets of 

reference panels: 1,488 Sardinians from Sardinia, Italy; 1,325 individuals of Northern European 

ancestry from Minnesota, USA; and 1,092 individuals from the 1000 Genomes project. These 

reference panels permit comparison of the relative efficiency of study-specific imputation in founder 

(i.e., Sardinia) and continental (i.e., Northern European) populations that have also been genotyped, 

and contrast those results with the current standard approach (i.e., 1000 Genomes).  Finally, we 

evaluated the efficiency of the conventional quality thresholds to discard poorly imputed rare and 

low frequency variants, focusing on metrics defined by the two most commonly used imputation 

software, MACH4 and IMPUTE5. Figure 1 shows a schematic representation of the study. 

 

MATERIALS AND METHODS 

Sample description and genotyping 

The study sample consists of the SardiNIA and the MCTFR cohorts. Both studies were approved by 

the corresponding institutional review boards and a signed informed consent was obtained from 

every volunteer. The SardiNIA cohort comprises 6,921 individuals, representing >60% of the adult 

population of four villages in the Lanusei Valley in Sardinia. Details on the study have been 

previously described6
. The Minnesota Center for Twin and Family Research (MCTFR

7,8
) at the 

University of Minnesota specializes in the use of genetically informative family cohorts to investigate 

etiology of behavioral and psychiatric phenotypes. The MCTFR consists of two complementary 

cohorts. One is a population-based cohort of twins and their parents, the other is a family adoption 

study. 

The entire SardiNIA cohort was genotyped using the HumanOmniExpress GWAS array, containing 

~750K markers, and three different Illumina custom arrays: the Cardio-MetaboChip, the 

ImmunoChip and the HumanExome, each containing about 200,000 markers9,10. Genotype calling 

was performed using the Illumina GenCall algorithm, and an additional 2,968 rare variants were 

called for HumanExome using Zcall11. A subset of 1,072 samples was also previously genotyped with 

Affymetrix 6.012.  

After performing quality control checks (see Supplementary Information and Table S1 for details), 

we used the quality checked (QCed) autosomal markers from the HumanOmniExpress, ImmunoChip 

and Cardio-MetaboChip arrays as baseline genotypes to impute variants detected through 

sequencing, as described below. In order to have fully comparable data sets for all analyses 

described here, we considered only the 6,602 samples for which all four Illumina arrays were 
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successfully genotyped. Data from the Affymetrix 6.0 array was instead not combined with the 

Illumina arrays, given the smaller number of samples available (1,072 vs 6,602); for this set quality 

control filters have been already described13. 

From the QCed set of markers we extracted a subset of 227,745 SNPs representing most of the 

content of the Illumina HumanCore array (78.9% prior QC), a low density genome-wide array. Given 

the extensive overlap, and considering that after quality control filtering the effective content of an 

array is always reduced, we treated this subset of markers as an approximation of the genomic 

content accessible with the HumanCore array, which we refer to here as “pseudo-HumanCore”. 

Genotyping protocols and quality control for the MCTFR study have been described previously8,14. In 

short, the full MCTFR study sample was genotyped with the Illumina 660W-quad array, with 7,278 

(97.8%) samples and 527,829 (94.3%) markers passing quality control filters. The full sample was 

also genotyped with the Illumina HumanExome array, with 7,244 (97.4%) samples and 144,075 

(58.1%) markers passing quality control filters. We initially used 6,610 individuals of European 

ancestry, and noticed that the inclusion of the 1,181 individuals who were also in the reference 

panel biased accuracy estimates at rare variants, due to perfect match of haplotypes (Table S2). We 

therefore restricted the analyses to the 5,429 samples not overlapping with the reference panel.  

 

Sequencing and variant calling 

Samples to be sequenced were selected in trios, taking advantage of their highly informative content 

for haplotypes reconstruction. Trios (or parent-offspring pairs for incomplete trios) were selected 

starting from the founders of all available families to assure the representation of all haplotypes that 

have been propagated within families (using ExomePicks, see URLs). For the Sardinians, 2,120 

samples from 695 nuclear families were sequenced to an average coverage of 4.16-fold. Of those, 

1,122 samples were part of the SardiNIA project6, whereas the other 998 were individuals enrolled in 

case-control studies of Multiple Sclerosis and Type 1 Diabetes15,16. The sequencing effort has been 

described in part previously17, and updated details are provided in Supplementary Information.   

In the MCTFR study, 1,328 individuals from 602 families were sequenced to an average coverage of 

10.4-fold. Three samples gave unacceptable sequence quality, leaving 1,325 total sequenced 

samples for analysis. 

Variant calling was performed in both studies using GotCloud18. Sequencing yielded 17.6 and 27.1 

million autosomal bi-allelic SNPs in Sardinians and Minnesota samples, respectively, of which 30.6% 

and 48.4% were not described in dbSNP135. 

 

Genotype imputation 

Genotype imputation for all scenario were performed on haploid data using Minimac (see URLs), a 

modified version of the MACH4 software. For SardiNIA, phased haplotypes were generated using 

MACH (--phase option) with 400 states and 30 rounds by subdividing the variants in 344 groups of 
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2,500 with an overlap of 500, and imputation was subsequently performed independently on each 

phased chunk (for a description of the code, see the "1000G imputation cookbook" URL). Imputation 

performance was evaluated on seven different input genotype datasets: i) HumanOmniExpress 

(OmExp), ii) Cardio-MetaboChip (Metab), iii) ImmunoChip (Imm), iv) Cardio-MetaboChip and 

ImmunoChip (MetabImm), v) HumanOmniExpress, Cardio-MetaboChip and ImmunoChip (OMI), vi) 

pseudo-HumanCore (pHumCore), and vii) Affymetrix 6.0 (Affy 6.0).  

For simplicity, we phased the Cardio-MetaboChip, ImmunoChip and HumanOmniExpress arrays 

jointly, and then extracted haplotypes at relevant SNPs to perform imputation for each particular 

genotyping set. In actual practice, Cardio-MetaboChip and ImmunoChip will be phased without the 

additional support of a genome-wide array, so we assessed the impact of our procedure by phasing 

separately each SNP set, for chromosome 20. We noticed that only imputations performed with the 

SardSeq panel or its combination with 1000G were slightly overestimated (see Supplementary 

Information and Table S3). 

In the MCTFR study, haplotypes were phased using SHAPEIT219 (v2.644) with the following model 

options: --thread 8 --burn 10 --prune 8 --main 20 --states 200. Imputation was performed using 

Minimac and the Illumina 660W-quad array as baseline genotypes. 

We used as reference panels the 1000G-ALL (1,092 samples) and 1000G-EUR (379 samples) data sets 

from the 1000 Genomes March 2012 release; the full MCTFR sequencing data (1,325 samples, 

named MinnSeq in the text); a subset of the Sardinian sequencing data (1,488 samples, named 

SardSeq in the text); and combinations of those (see “Combination of reference panels” below). 

Considering the overall high inbreeding in Sardinia, the SardSeq reference panel was created by 

selecting only haplotypes of parents at each sequenced trios to avoid over-representation of rare 

variants.  

We also performed imputation with IMPUTE2 (newest release of IMPUTE), to test a different 

approach for reference panels combination (see “Combination of reference panels” paragraph) and 

to assess the efficiency of its imputation accuracy metric INFO (see “Evaluation of imputation 

accuracy” paragraph). 

  

Simulation of European haplotypes 

Because the Minnesota samples were genotyped with different arrays from those used for 

Sardinians, they could not be used to assess relative efficiency of arrays in genotype imputation. We 

therefore generated, by simulation with the HAPGEN20 software and 1000G-EUR as reference, 6,602 

unrelated individuals of European ancestry for SNPs present in each different genotyping array 

considered in the SardiNIA study. For simplicity, we focused only on chromosome 20. Haplotypes 

were phased using MACH (--phase option) with 400 states and 30 rounds, and imputation performed 

using Minimac, as in the SardiNIA and MCTFR data sets. This simulated data set was only used for 

assessing the efficiency of different genotyping arrays and reference panels in genotype imputation.  
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Combination of reference panels 

We used VCFtools21 to combine the SardSeq and the MinnSeq panels with 1000G-EUR and1000G-

ALL reference panels for chromosome 20. The variants in each set were 331,799, 602,317, 851,702 

and 377,494 for SardSeq, MinnSeq, 1000G-ALL and 1000G-EUR, respectively. During the merging 

procedure, we removed the variants present only in one panel, leading to SardSeq + 1000G-ALL, 

SardSeq + 1000G-EUR, MinnSeq + 1000G-ALL and MinnSeq + 1000G-EUR reference panels 

containing 249,624; 227,405; 304,899; and 267,550 variants, respectively. Imputation was then 

performed using Minimac, as for single reference panels. For combinations with 1000G and SardSeq 

panels, we also performed imputation with IMPUTE2 using the --merge_ref_panels option, which 

imputes variants unique to one panel into the other, prior imputation. We observed no difference in 

imputation accuracy at all frequency ranges when using this approach, which should be preferable 

for research studies, allowing imputation of all available variants, including those that are study-

specific, in the same run (Table S4).  

In addition, to assess the impact of adding a smaller number of population-specific haplotypes, we 

created two additional reference panels using 500 and 1000 randomly chosen samples from the 

SardSeq reference panel and merging them with 1000G reference panels (500SardSeq + 1000G and 

1000SardSeq + 1000G, respectively). This analysis was restricted to the SardSeq panel and the 

SardiNIA cohort, because the advantage in accuracy was substantial for this population.  

 

Evaluation of imputation accuracy 

Imputation accuracy was assessed using both the MACH Rsq metric and the squared Pearson 

correlation (R2)4 between dosages and the real genotypes (considered as allele count) available for 

the same individuals, extracted from the HumanExome array. The Rsq metric is also known as 

variance ratio, being calculated as the proportion of the empirically observed variance (based on the 

imputation) to the expected binomial variance p(1-p), where p is the minor allele frequency. In 

SardiNIA we tested 21,398 SNPs across autosomes for genome-wide evaluation of imputation 

accuracy and tested a subset of 558 SNPs for comparisons restricted to chromosome 20. For the 

MCTFR study, as the baseline array was different, we used a subset of 541 SNPs. The number of 

SNPs tested for comparing imputation with SardSeq versus 500SardSeq + 1000G and 1000SardSeq + 

1000G was reduced to 517 because 41 SNPs (MAF range 0.0008% - 0.0072%) were not detected in 

the selected subset of sequenced samples.  

We also assessed efficiency in discriminating between well and poorly imputed markers of the 

imputation accuracy metrics estimated by MACH (Rsq) and IMPUTE (INFO)4. The INFO metric, also 

known as imputed information score (INFO), is a measure of the relative statistical information 

about the SNP allele frequency from the imputed data. We defined good and bad quality imputed 

SNPs as in the original MACH paper, i.e. those with R2 > 0.5 and with R2 < 0.2, respectively, and 

stratified imputed SNPs based on their Rsq and INFO scores. This analysis was restricted to 

chromosome 20, and performed using as baseline genotypes the OmExp for the SardiNIA study and 

the Illumina 660W-quad for the MCTFR cohort.   
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RESULTS 

Effect of baseline genotyping array  

This subsection is restricted to the SardiNIA study and the simulated European haplotypes, because 

the MCTFR study used only one array. We found clear differences in imputation performance 

depending on the baseline genotyping set. Comparable differences were seen when assessments 

were done with either the Rsq metric - the imputation quality metric from MACH4 - or the R2 metric, 

the squared Pearson correlation, between dosages and real genotypes4 (Table 1).  

When using the 1000G reference panels for Sardinians, the two custom arrays (Cardio-

MetaboChip and ImmunoChip) provided very limited information for imputation and far less 

accuracy than the genome-wide arrays, reflecting their low marker density.  However, the Cardio-

MetaboChip array performed very well when imputing with the SardSeq panel, allowing accurate 

inference of the rest of the genome (mean Rsq = 0.62, and mean R2 = 0.70 at HumanExome SNPs). 

The relative efficiency was similar when considering all autosomes (Table 1 and Table S5) or focusing 

only on chromosome 20  (Figure2 and Table S6). The extended LD in the population and the 

increased genetic similarity of the reference panel aid in haplotype reconstruction when using a 

relatively small set of markers.  

The addition of the two custom arrays to the OmExp genome-wide array 

(OmExp+Metab+Imm, called OMI here) did not improve quality for common or low frequency 

variants compared to that reached using OmExp alone. Thus, such arrays provide direct genotyping 

of low frequency and rare variants in genes of interest but do not contribute to an overall 

improvement in imputation accuracy. We also observed negligible differences in imputation 

accuracy between the two tested Illumina genome-wide arrays, OmExp and pHumCore (Table1, 

Table S5 and Table S6), when imputing the SardSeq panel. In particular, we noticed that the low 

density genome-wide array pHumCore provided only slightly less accuracy than the denser OmExp 

array when the SardSeq sequencing panel was used for imputation (mean R2 = 0.85 and 0.87, for 

pHumCore and OmExp, respectively, at HumanExome SNPs, Table S5) and a very similar genomic 

coverage (92.6% and 91.8% of markers imputed with Rsq > 0.3, Table 1). Of note, performance was 

patently lower for both arrays and more significantly for pHumCore when imputation was 

performed with the 1000G panels (mean R2 = 0.54 and 0.64, for pHumCore and OmExp, respectively, 

imputing with the 1000G-ALL) (Table 1, Table S5, Table S6 and Figure 2). By contrast, in the 

simulated European data, the Cardio-MetaboChip performed poorly, with insufficient genomic 

coverage. Contrarily to previous observations22, the pHumCore was fairly comparable in efficiency to 

the OmExp array (Figure 3, Table S7), but we expect performance to be overestimated (because the 

genotypes were simulated based on 1000Genomes). In fact, when we extracted subset of SNPs that 

are present in HumanOmniExpress and HumanCore from the MCTFR genotypes, the difference 

between the two arrays was clearly evident (Table S8). This difference has also been observed for 

another European population23.  

Thus, in founder populations it appears that highly accurate imputation can be achieved 

with cost-effective sparse genotyping arrays when a population-specific reference panel is available. 
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Effect of study-specific reference panels 

Study-specific reference panels increased the accuracy and completeness of coverage in both 

Sardinian and Minnesota samples, but the gain in accuracy was greater for the Sardinia founder 

population.  

In Sardinians, the 1000G-ALL reference panel provided the highest number of imputed variants - ~37 

million including both indels and SNPs vs ~15 million SNPs for the SardSeq panel - but the majority 

were of poor quality and were subsequently discarded. For example, for the Metab/SardSeq 

combination 11.5 million imputed SNPs passed the standard Rsq > 0.3 filter, but only 2.7 million and 

3.0 million reached that threshold for Metab/1000G-ALL and Metab/1000G-EUR, respectively. The 

gap was less striking but still marked when denser genotype datasets were considered, and was still 

noticeable even considering only SNPs present in all reference panels [which are enriched for high 

frequency variants (Table 1)]. Consistent results were seen for the OmExp, OMI, pHumCore and 

Affy6.0 datasets, with accuracy consistently better when using SardSeq (Figure 2).  

The benefit in overall accuracy was clear at all frequency ranges and even greater for low 

frequency and rare variants. For example, using the OMI dataset, the average R2 for SNPs with MAF 

ranging from 0.5% to 1% is 0.91, 0.57 and 0.52 when using SardSeq, 1000G-ALL and 1000G-EUR 

reference panels, respectively (Table S5). This reinforces the finding that on average, low frequency 

variants are hard to impute in founder populations when using external reference panels, because 

those variants appear in fewer haplotypes2. Of note, the results remained the same after removing 

646 Sardinian samples that appear in both the genotyping set and the SardSeq reference panel 

(Table S2).  

To assess whether the advantage with the SardSeq panel was attributable to the lower number of 

European haplotypes present in the 1000Genomes reference, we performed imputation using the 

MinnSeq panel. There was no appreciable gain in accuracy within Sardinians compared to 1000G-

based imputations (Figure 4A, Table S9A and Table S10). 

Similar to results with Sardinians, the MinnSeq panel outperformed the 1000G panels in the MCTFR 

study, at all frequency ranges (Figure 4B and Table S9B). However, the gain in accuracy was far less 

than that observed in Sardinians with the SardSeq panels. For example, for variants with MAF 

ranging from 1% to 5%, we observed 11% and 42% additional gain in mean R2 for Minnesota and 

Sardinians, respectively. Of note, in both cohorts the study-specific panel also yielded a higher 

number of SNPs useful for analyses (considering an Rsq > 0.3) even when the other reference sets 

contain more SNPs (Table S10). 

  

Effect of combined reference panels 

We also evaluated the impact on imputation accuracy of extended panels created by combining the 

two study-specific panels and 1000G haplotypes.  
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The combined SardSeq + 1000G panels provided only marginally higher accuracy at rarer shared 

SNPs in Sardinians (Figure 2, Table S5 and Table S6). Slight increase in accuracy was also observable 

for more frequent variants [except for the two custom arrays (Metab and Imm), for which the 

improvement was substantial across all frequency ranges (Figure 2, Table S5 and Table S6)]. Thus for 

Sardinians, the inclusion of 1000G haplotypes would only be beneficial for very rare variants if a 

genome-wide array were used for baseline imputation. 

In the simulated European set, the addition of SardSeq haplotypes to the 1000G panels remarkably 

increased imputation accuracy for custom genotyping arrays (Metab and Imm) for both common 

and rare variants (Figure 3 and Table S7). For example, for variants with MAF > 40% and MAF ≤ 50 % 

the mean R2 is 0.57 and 0.98, when imputing with 1000G-ALL and SardSeq + 1000G-ALL and using 

the Metab dataset (Figure 3 and Table S7). The impact of a combined panel was instead negligible 

for the more comprehensive genotype data (OmExp, OMI, pHumCore and Affy6.0). However, 

imputation on simulated data could give slight overestimations, and this could mask the advantage 

of adding SardSeq to 1000G panels. Indeed, when considering the MCTFR study, the combined 

SardSeq + 1000G-ALL panel provided benefit at all frequency ranges compared with 1000G-ALL 

imputation, and for MAF ≤ 0.5% variants accuracy becomes fairly similar to that observed when 

using the MCTFR specific panel (Figure 4 and Table S9). Thus the Sardinian panel could be generally 

useful to increase the overall accuracy in population cohorts other than Sardinians, especially where 

only custom array genotyping is available or when a study-specific reference is not available. 

Compared to imputation with MinnSeq alone, the addition of the 1000G haplotypes to the MinnSeq 

reference panel was useful only for rare variants in Minnesotans. The difference in accuracy was >4 

fold higher that what seen in Sardinians comparing imputations with SardSeq and SardSeq + 1000G 

panels. Thus for Europeans, the inclusion of 1000G haplotypes in a study-specific panel is sensitively 

beneficial for very rare variants. Of note, for the Minnesotans, genotype imputation at the full 

spectrum of frequency ranges never reaches the same accuracy as in SardiNIA with the SardSeq 

panel, even when using the combined MinnSeq + 1000G with almost twice as many individuals as 

there are in the SardSeq panel.  

Given the great utility of the Sardinian haplotypes, we further examined whether the advantage 

achieved by imputing with the SardSeq panel could have been reached sequencing a smaller number 

of samples and merging their haplotypes with the 1000G panels. For simplicity, we again focused on 

chromosome 20 and the OmExp array. Only for variants with MAF > 5% does adding 500 Sardinian 

samples to the 1000G panels provide the same accuracy as the SardSeq panel alone. Instead, adding 

1000 Sardinians to the 1000G panels provides the same accuracy given by the SardSeq panel for all 

frequency bins, with only a modest difference in accuracy for the very rare variants (MAF < 0.5%) 

(Figure S1 and Table S11).  

Thus, sequencing a smaller number of individuals and combining their haplotypes with the 1000G 

panels could give imputation accuracy that is highly comparable to a panel comprising a large 

number of samples. However, the caveat remains that the genotype accuracy and variant discovery 

in low-pass sequencing is highly dependent on the number of sequenced samples. Consequently, 

sequencing only 500 samples would not provide genotypes as precise as those obtained by randomly 
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selecting 500 samples from a set of 2,000 sequenced genomes.  For example, when we performed 

variant calling on a subset of 508 samples, the heterozygous error rate increased from 2.6% to 11.3% 

at rare sites (Table S12). 

 

Performance of imputation quality metrics 

To determine whether the commonly used MACH-Rsq threshold > 0.3 and IMPUTE-INFO > 0.4 can be 

applied to all frequency ranges (and if not, to infer appropriate cutoffs), we investigated how well 

imputation quality metrics can predict true imputation accuracy, especially for rare and less 

common variants. We found that for MAF ≥ 1% imputation accuracy and therefore concordance 

between real genotypes and dosages using study-specific panels was almost perfect in both 

Sardinians and Minnesotans (Table 2, Table 3 and Figure S2). At these frequency ranges, high but 

clearly less concordance was also seen when imputing with the 1000G panels. Whatever the 

reference panel used and the population under study, the standard Rsq cutoff of > 0.3 efficiently 

discarded most badly imputed markers while keeping most of those imputed well (see Materials and 

Methods). In particular, imputation was so accurate overall that even an Rsq cutoff of > 0 would 

leave no badly imputed markers on chromosome 20 (Table 2A, Table 3A) (and only 8 over the entire 

genome in Sardinians, Table S13). Similarly for the INFO metrics, the standard > 0.4 threshold was 

efficient to discriminate between well and poorly inferred genotypes at this range of frequency 

(Table 2B and Table 3B). 

By contrast, for MAF < 1%, we noticed that both metrics were slightly overestimated when using the 

study-specific panels, possibly because of the inclusion of relatives with similar haplotypes in the 

target dataset; but overall concordance was better than 1000G imputation for this range of 

frequency as well. Specifically, in this range and when imputation was performed with the 1000G 

panels, the threshold of Rsq > 0.3 was less efficient, aggressively discarding some well imputed 

variants (eliminating 7-18% and 7-25% of the well imputed markers for ALL and EUR panels) and 

retaining an excess of the badly imputed ones (Table 2A, Table 3A, Table S14 and Table S15). The 

INFO > 0.4 threshold instead worked efficiently on selecting well imputed variants, but was too 

lenient on discarding those of poor quality (Table 2B and Table 3B, Table S14 and Table S15). 

Nevertheless, Rsq  > 0.3 and INFO > 0.4 still remain the optimal thresholds. 

When imputation was performed with the study-specific panels, both the Rsq and INFO thresholds 

were more efficient in capturing all well imputed markers, but less efficient in discarding the poorly 

imputed.  

In such cases, e.g., for MAF < 1% and when imputation is performed with a reference panel that is 

genetically close to the study population, an Rsq threshold of > 0.6 and INFO > 0.7 should be 

preferred in lieu of the standard thresholds of 0.3 and 0.4, respectively.  

 

DISCUSSION 
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We used different reference panels and genotype input sets to investigate effects on imputation, in 

founder and non-founder populations of European ancestry. We found that a study-specific 

reference panel considerably improved imputation accuracy and genomic coverage compared to 

external equally large reference panels, regardless of the genotype array, especially for rare variants. 

However, the benefit was strikingly higher in the founder population of Sardinians, with a precision 

that was not obtainable in Europeans even with a reference panel twice the size. In fact, in such 

homogenous populations each sequenced genome provides information that can be extended to 

distant relatives as well, whereas in continental Europeans, haplotypes carrying rare variants can 

only inform closely related samples. 

We also observed that in Sardinians a study-specific panel boosts imputation even for low coverage 

genotyping array(s), like the Cardio-MetaboChip, which are barely informative when imputing with 

the 1000G panels alone, or for the HumanCore, which becomes highly comparable for all frequency 

ranges to the wider HumanOmniExpress. Given the low cost of the sparser arrays, accurate 

population-scale imputation is more feasible in the Sardinian founder population than in non-

founder populations when combined with large-scale sequencing. For example, at current cost 

schedules, with an investment of 500,000 dollars one could genotype ~8,300 Sardinian samples with 

the HumanCore array instead of ~4,500 with the HumanOmniExpress. The power to detect 

association for variants accounting for 0.5% of the trait variance thereby rises from 24% to 84%.  

Finally, we observed that standard thresholds on metrics for evaluating accuracy, estimated by two 

commonly used imputation software, are somewhat imprecise for rare variants. We propose that all 

cohorts using study-specific reference panels for imputation consider adopting different thresholds 

for common and rare variants to filter inaccurate genotypes.  

Taken together, these imputation-based analyses can guide genetic studies, and complement recent 

reports 22,24 with several novel aspects that can improve performance: 

• They exploit imputation accuracy with the two larger study-specific reference panels so far publi

shed, including one that is population-specific. 

• They also provide the first evaluation of imputation performance of the 1000 Genomes Project h

aplotypes in an isolated population. 

• They include analyses of large cohorts coupled with the use of HumanExome array, allowing app

ropriate assessment of results for less frequent and rare variants.  

• Using real data sets, they based analyses on a subset of quality controlled SNPs instead of the ful

l list of markers present on an array (excluding many that are likely to be imperfectly genotyped i

n a case study).  

• They evaluate two widely used custom genotyping arrays, Cardio-MetaboChip and ImmunoChip, 

providing information for cohorts that are limited to that source of  genotypes.  

• They also evaluate for rare variants the efficiency of accuracy metric thresholds that were previo

usly suggested for common variants. 

Ultimately, full genome sequencing could make imputation methods superfluous, but the time scale 

remains indeterminate. It should be considered that increasing sample size can augment genome-

wide power to assess rare variants more than increasing array density -- even up to full genotyping 
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of the complete 1000 Genomes Project variant set22,24. Thus aids to imputation are increasingly 

valuable, because most studies are likely to be collecting increasing numbers of samples and using 

this inferential process rather than sequencing full genomes.  

Overall, population specific panels might have been thought to be “private”, with potential 

discoveries limited to that population. Instead, the effectiveness of population-specific reference 

panels can be appreciable for other populations, but will vary depending on the size of the panels 

and the demographic history of the isolate. Intuitively in Europe, their value may be greater for 

populations like Basques and Greeks, who are relatively genetically distant from the European 

samples selected for the 1000 Genomes Project. Here, we show that sequencing efforts from the 

Sardinian founder population can, when coupled with available panels, improve rare variants 

imputation accuracy in other population backgrounds as well. This reinforces the value of isolated 

populations for discovery of variants that are locally enriched but rarer and thus harder to detect in 

international surveys25.  
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Table 1. Basic imputation statistics on the SardiNIA samples, for different panels/genotyping 

arrays. 

The table shows, for each genotyping array/reference panel combination, the number of imputed 

SNPs and the corresponding mean Rsq and standard deviation, the percentage of SNPs with Rsq > 

0.3, with the corresponding mean Rsq and standard deviation, mean Rsq and standard deviation 

evaluated for 8,842,944 SNPs that were imputed in all genotyping array/reference panel 

combination (called “Shared imputed SNPs”). 

  Whole imputed SNPs set  Rsq > 0.3  
Shared 

imputed SNPs 
 

Array Reference Panel N SNPs Mean(SD) Rsq   % SNPs Mean (SD) Rsq   Mean (SD) Rsq  

Imm 

SardSeq 15,071,719 0.258 (0.312)  33.33 0.652 (0.213)  0.299 (0.321)  

1000G-ALL 37,798,002 0.037 (0.134)  3.90 0.638 (0.232)  0.099 (0.213)  

1000G-EUR 16,873,087 0.085 (0.203)  9.68 0.647 (0.231)  0.115 (0.232)  

Metab 

SardSeq 15,069,660 0.617 (0.335)  76.91 0.777 (0.181)  0.685 (0.301)  

1000G-ALL 37,782,741 0.064 (0.170)  7.20 0.614 (0.217)  0.175 (0.260)  

1000G-EUR 16,878,099 0.149 (0.253)  18.05 0.634 (0.219)  0.201 (0.282)  

MetabImm 

SardSeq 14,977,409 0.734 (0.300)  86.51 0.835 (0.163)  0.808 (0.239)  

1000G-ALL 37,721,853 0.100 (0.218)  11.71 0.644 (0.221)  0.272 (0.311)  

1000G-EUR 16,781,983 0.219 (0.303)  27.12 0.667 (0.222)  0.297 (0.328)  

OmExp 

SardSeq 14,580,754 0.861 (0.256)  92.61 0.924 (0.131)  0.935 (0.161)  

1000G-ALL 37,424,729 0.297 (0.382)  33.61 0.796 (0.224)  0.742 (0.322)  

1000G-EUR 16,453,325 0.543 (0.406)  60.89 0.84 (0.206)  0.729 (0.341)  

OMI 

SardSeq 14,319,695 0.862 (0.256)  92.57 0.925 (0.131)  0.937 (0.159)  

1000G-ALL 37,211,511 0.300 (0.385)  34.00 0.799 (0.131)  0.753 (0.318)  

1000G-EUR 16,255,689 0.549 (0.406)   61.50 0.842 (0.206)  0.739 (0.337)  

pHumCore 

SardSeq 15,020,615 0.840 (0.264)  91.81 0.908 (0.139)  0.913 (0.179)  

1000G-ALL 37,793,052 0.234 (0.341)  26.66 0.759 (0.221)  0.614 (0.354)  

1000G-EUR 16,825,817 0.455 (0.398)   52.64 0.802 (0.207)  0.615 (0.367)  
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Affy6.0 

SardSeq 14,550,658 0.798 (0.342)  84.51 0.937 (0.116)  0.905 (0.232)  

1000G-ALL 37,328,716 0.263 (0.379)  29.55 0.814 (0.217)  0.721 (0.341)  

1000G-EUR 16,350,040 0.515 (0.416)   57.63 0.843 (0.205)   0.708 (0.357)  
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Table 2. Efficiency of imputation quality metrics in the SardiNIA cohort 

The table shows the number and the percentage of poorly and well imputed SNPs (see Materials 

and Methods) that are captured for each Rsq (Panel A) and INFO (Panel B) threshold. Imputation 

was performed on chromosome 20 HuamnOmniExpress SNPs, using the SardSeq and 1000G-ALL 

panels. Statistics are reported separately for common and rare variants.  

 

A MAF < 1% MAF ≥ 1% 

SardSeq 1000G-ALL SardSeq 
 

1000G-ALL 

Rsq 

 
% bad (n) % good (n) 

 
% bad (n) % good (n) % bad (n) % good (n) 

 
% bad (n) % good (n) 

     
> 0 

 
100 (14) 100 (222) 100 (98) 100 (124) 0 (0) 100 (301) 

 
100 (20) 100 (255) 

> 0.1 
 

92.86 (13) 100 (222) 44.9 (44) 92.74 (115) 0 (0) 100 (301) 
 

90 (18) 99.61 (254) 

> 0.2 
 

85.71 (12) 100 (222) 19.39 (19) 86.29 (107) 0 (0) 100 (301) 
 

75 (15) 99.61 (254) 

> 0.3 
 

78.57 (11) 100 (222) 11.22 (11) 81.45 (101) 0 (0) 100 (301) 
 

65 (13) 98.43 (251) 

> 0.4 
 

71.43 (10) 100 (222) 5.1 (5) 70.16 (87) 0 (0) 100 (301) 
 

45 (9) 97.25 (248) 

> 0.5 
 

64.29 (9) 99.55 (221) 3.06 (3) 62.9 (78) 0 (0) 100 (301) 
 

30 (6) 94.9 (242) 

> 0.6 
 

42.86 (6) 95.95 (213) 2.04 (2) 50.81 (63) 0 (0) 100 (301) 
 

20 (4) 89.41 (228) 

> 0.7 
 

28.57 (4) 91.89 (204) 0 (0) 43.55 (54) 0 (0) 100 (301) 
 

15 (3) 82.35 (210) 

> 0.8 
 

14.29 (2) 83.78 (186) 0 (0) 33.87 (42) 0 (0) 100 (301) 
 

0 (0) 72.16 (184) 

> 0.9 
 

7.14 (1) 58.11 (129) 0 (0) 23.39 (29) 0 (0) 98.01 (295) 
 

0 (0) 59.22 (151) 

> 1 
 

0 (0) 0.9 (2) 0 (0) 0 (0) 0 (0) 3.65 (11) 
 

0 (0) 2.75 (7) 

  
B 

 
MAF < 1% MAF ≥ 1% 

SardSeq 1000G-ALL SardSeq 
 

1000G-ALL 

INFO % bad (n) % good (n) 
 

% bad (n) % good (n) % bad (n) % good (n) 
 

% bad (n) % good (n) 

          
> 0 100 (7) 100 (189) 100 (81) 100 (83) 0 (0) 100 (307) 100 (32) 100 (251) 

> 0.1 100 (7) 100 (189) 100 (81) 98.8 (82) 0 (0) 100 (307) 100 (32) 100 (251) 

> 0.2 100 (7) 99.47 (188) 90.12 (73) 97.59 (81) 0 (0) 100 (307) 100 (32) 100 (251) 
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> 0.3 100 (7) 99.47 (188) 62.96 (51) 96.39 (80) 0 (0) 100 (307) 96.88 (31) 100 (251) 

> 0.4 100 (7) 99.47 (188) 48.15 (39) 93.98 (78) 0 (0) 100 (307) 96.88 (31) 100 (251) 

> 0.5 100 (7) 99.47 (188) 27.16 (22) 89.16 (74) 0 (0) 100 (307) 84.38 (27) 99.2 (249) 

> 0.6 100 (7) 98.94 (187) 17.28 (14) 85.54 (71) 0 (0) 100 (307) 59.38 (19) 98.01 (246) 

> 0.7 71.43 (5) 97.35 (184) 11.11 (9) 73.49 (61) 0 (0) 100 (307) 37.5 (12) 95.62 (240) 

> 0.8 42.86 (3) 92.59 (175) 3.7 (3) 60.24 (50) 0 (0) 100 (307) 15.62 (5) 88.84 (223) 

> 0.9 14.29 (1) 76.19 (144) 0 (0) 44.58 (37) 0 (0) 99.35 (305) 6.25 (2) 72.91 (183) 

> 1 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 

 



61 
 

Table 3. Efficiency of imputation quality metrics in the MCTFR cohort. 

The table shows the number and the percentage of poorly and well imputed SNPs (see Materials 

and Methods) that are captured for each Rsq (Panel A) and INFO (Panel B) threshold. Imputation 

was performed on chromosome 20 Illumina 660W-quad array SNPs, using MinnSeq and 1000G-ALL 

as reference panels. Statistics are reported separately for common and rare variants.   

 

A 

MAF < 1% 
 

MAF ≥ 1% 

MinnSeq 1000G-ALL MinnSeq 
 

1000G-ALL 

Rsq 

 
% bad (n) % good (n) 

 
% bad (n) % good (n) 

 
% bad (n) % good (n) 

 
% bad (n) % good (n) 

     
> 0 

 
100 (38) 100 (129) 100 (80) 100 (92) 0 (0) 100 (284) 100 (4) 100 (258) 

> 0.1 
 

81.58 (31) 100 (129) 72.5 (58) 96.74 (89) 0 (0) 100 (284) 100 (4) 100 (258) 

> 0.2 
 

73.68 (28) 100 (129) 41.25 (33) 95.65 (88) 0 (0) 100 (284) 25 (1) 100 (258) 

> 0.3 
 

57.89 (22) 100 (129) 26.25 (21) 92.39 (85) 0 (0) 100 (284) 25 (1) 99.61 (257) 

> 0.4 
 

47.37 (18) 100 (129) 17.5 (14) 83.7 (77) 0 (0) 100 (284) 25 (1) 98.84 (255) 

> 0.5 
 

28.95 (11) 96.9 (125) 10 (8) 72.83 (67) 0 (0) 100 (284) 0 (0) 96.12 (248) 

> 0.6 
 

21.05 (8) 92.25 (119) 3.75 (3) 59.78 (55) 0 (0) 95.07 (270) 0 (0) 87.21 (225) 

> 0.7 
 

2.63 (1) 72.09 (93) 1.25 (1) 48.91 (45) 0 (0) 89.79 (255) 0 (0) 77.13 (199) 

> 0.8 
 

0 (0) 51.94 (67) 0 (0) 31.52 (29) 0 (0) 79.58 (226) 0 (0) 62.02 (160) 

> 0.9 
 

0 (0) 28.68 (37) 0 (0) 17.39 (16) 0 (0) 59.51 (169) 0 (0) 48.45 (125) 

> 1 
 

0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 

  
B 

 
MAF < 1% 

 
MAF ≥ 1% 

MinnSeq 1000G-ALL MinnSeq 
 

1000G-ALL 

INFO % bad (n) % good (n) 
 

% bad (n) % good (n) 
 

% bad (n) % good (n) 
 

% bad (n) % good (n) 

           
> 0 100 (38) 100 (96) 100 (82) 100 (67) 

 
100 (1) 100 (277) 100 (9) 100 (241) 

> 0.1 100 (38) 100 (96) 100 (82) 100 (67) 
 

100 (1) 100 (277) 100 (9) 100 (241) 

> 0.2 100 (38) 100 (96) 97.56 (80) 100 (67) 
 

100 (1) 100 (277) 100 (9) 100 (241) 
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> 0.3 97.37 (37) 100 (96) 95.12 (78) 100 (67) 
 

100 (1) 100 (277) 100 (9) 100 (241) 

> 0.4 94.74 (36) 100 (96) 69.51 (57) 100 (67) 
 

100 (1) 100 (277) 100 (9) 100 (241) 

> 0.5 73.68 (28) 100 (96) 41.46 (34) 100 (67) 
 

100 (1) 100 (277) 100 (9) 100 (241) 

> 0.6 50 (19) 98.96 (95) 14.63 (12) 100 (67) 
 

0 (0) 100 (277) 44.44 (4) 100 (241) 

> 0.7 23.68 (9) 95.83 (92) 7.32 (6) 92.54 (62) 
 

0 (0) 99.28 (275) 0 (0) 99.59 (240) 

> 0.8 5.26 (2) 77.08 (74) 0 (0) 71.64 (48) 
 

0 (0) 91.7 (254) 0 (0) 87.97 (212) 

> 0.9 2.63 (1) 40.62 (39) 0 (0) 46.27 (31) 
 

0 (0) 72.2 (200) 0 (0) 63.49 (153) 

> 1 0 (0) 0 (0) 0 (0) 0 (0) 
 

0 (0) 0 (0) 0 (0) 0 (0) 
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Figure 1. Graphical representation of analyses and study aims 

The figure shows a scheme of analyses carried out. For each genotype input set we carried out 

several imputation runs (genome-wide for SardiNIA, and on chromosome 20 for other European 

populations) with different reference panels. We assessed imputation quality of each genotype 

array/reference panel combination by looking at the mean imputation quality (MACH-Rsq) and by 

comparing imputed markers with those directly typed with the HumanExome array (R2). Finally, we 

assessed the efficiency of standard thresholds at the commonly used accuracy metrics (MACH-

Rsq/IMPUTE-INFO) in filtering bad imputed markers. 
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Figure 2. Mean R
2
 for each particular genotype array/reference panel in the SardiNIA cohort 

The figure shows the mean R2 at different allele frequencies ranges, for each particular genotyping 

array/reference panel combination including the combination of SardSeq and 1000G panels. Results 

are restricted to chromosome 20. 
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Figure 3. Mean R
2
 for each combination of genotype array/reference panel in the European 

simulated data set 

The figure shows the mean R2 at different allele frequencies ranges, for each particular genotyping 

array/reference panel, including the combination of SardSeq and 1000G panels. Results are 

restricted to chromosome 20. 
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Figure 4. Impact of cross-studies reference panels  

The figure shows the mean R2 at different allele frequencies ranges for the chromosome 20 of 

OmExp genotyping array for SardiNIA (panel A) and the Illumina 660W-quad array for the MCTFR 

(panel B) study, when using different reference panels, including combination of SardSeq/MinnSeq 

and 1000G panels and cross-studies references. 
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Part II: Sequencing-based GWAS in the isolated Sardinian population  
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Chapter 4: Genetic variants regulating immune cell levels in health and disease. 
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ABSTRACT  

The complex network of specialized cells and molecules in the immune system has evolved to 

defend against pathogens, but inadvertent immune system attacks on “self” result in autoimmune 

disease. Both genetic regulation of immune cell levels and their relationships with autoimmunity are 

largely undetermined. Here we report genetic contributions to quantitative levels of 95 cell types 

encompassing 272 immune traits, in a cohort of 1,629 individuals from four clustered Sardinian 

villages. We first estimated trait heritability, showing that it can be substantial, accounting for up to 

87% of the variance (mean 41%). Next, by assessing ~8.2 million variants we identified, and 

confirmed in an extended set of 2,870 individuals, 23 independent variants at 13 loci associated with 

at least one trait. Notably, variants at 3 loci (HLA, IL2RA, SH2B3/ATXN2) overlap with known 

autoimmune disease associations. These results connect specific cellular phenotypes to specific 

genetic variants, helping to explicate their involvement in disease. 

 

INTRODUCTION 

 

The immune system must defend against a huge variety of microbes and remember them. To 

accomplish this and kill cancer transformed and virus infected cells, while recognizing and tolerating 

our own untransformed components, requires the formation and regulation of a wide range of both 

generalist and specialist white cell (leukocyte) types. Fluorescence activated cell sorting (FACS) 

approach has facilitated highly sensitive, simultaneous analysis of levels of these leukocyte 

subpopulations and is being used by the Human Immunology Project to characterize the 

immunological profile of healthy and sick individuals (Davis, 2008; Maecker et al., 2012). 

Despite methodological advances, searches for connections between genetic variants and 

cellular immune phenotypes have typically proceeded by examining broad classes of immune cells 

(Ferreira et al., 2010; Nalls et al., 2011; Okada et al., 2011), and even the extent to which variation in 

immune cell subtypes is heritable is still unknown. 

Here we use FACS to profile extensively the human immune cell repertoire for a large 

population sample. Applying state-of-the-art genotyping and sequencing technologies to the same 

individuals, we proceed to dissect the inherited phenotypic structure of the human immune cell 

repertoire. Importantly, our results demonstrate connections between known immune-related 

disease risk alleles and levels of particular immune cell types, thus representing an important 

extension of previous autoimmune disease GWAS. Our hypothesis-generating approach, using 

individuals from a general population, is also distinct from hypothesis-driven comparisons of 

immune cell types between cases and controls, which can be hampered by limited a priori 

knowledge and affected by second order effects due to the disease process or its therapy. 

 

 

 

RESULTS AND DISCUSSION 
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Profiling the human immune cell repertoire 

By FACS analyses, we characterized a wide range of circulating cell subtypes in an initial sample of 

1,629 individuals enrolled in the SardiNIA study population cohort. The cells comprise the major 

leukocyte populations in peripheral blood (Figure 1), including monocytes, granulocytes, circulating 

dendritic cells (cDCs), natural killer (NK), B and T cells with a more detailed characterization of T cell 

subsets. More specifically, because of their functional relevance and potential involvement in many 

autoimmune and inflammatory diseases, we focused on T cells subdivided according to their 

maturation and activation status, including subsets of regulatory T cells (Tregs) (Shevach, 2000; Wing 

and Sakaguchi, 2010). Overall, we defined a total of 95 cell types that were further assessed with 

respect to their parental and grandparental cell lineages, resulting in 272 evaluated 

immunophenotypic traits (Experimental Procedures; Figures 1 and S1; Table S1A,B,C). 

 

Heritability and correlations between traits 

We estimated heritability of circulating immune cell counts in the first 1,629 phenotyped individuals 

(Experimental Procedures), observing values from 3% to 87% (mean 41%). The most heritable traits 

corresponded to Tregs and their subsets (mean 55%) (Figure S2; with Table S2A giving descriptive 

statistics and impact of age and gender covariates). Remarkably, most cell populations with very high 

heritability (>60%) were positive for the CD39 marker (see below). Gender typically had negligible 

effects on phenotypic variation; age was important for a subset of cellular phenotypes, especially the 

previously characterized reduction in naive CD8 T cells that might explain reduced vaccination 

success in the elderly (Buchholz et al., 2011; Sansoni et al., 2008). 

By their nature, many traits are hierarchically and functionally correlated, as the different 

immune cell types originate from a limited number of common progenitors and interact 

continuously. To examine these relationships, we performed a bivariate analysis to estimate 

phenotypic and genetic correlation coefficients, i.e. the proportion of variance between each pair of 

traits due to the combined contribution of genetic and environmental factors and the variance 

attributable to genetic causes only, respectively (Extended Experimental Procedures). A depiction of 

the genetic and phenotypic correlations between cell counts and CD4:CD8 and T:B cell ratios is 

presented in the heat map (Figure 2). Similarities but also important differences in the patterns of 

genetic and phenotype correlation coefficients --reported in the upper and lower triangles of the 

figure delimited by the central diagonal-- are immediately apparent. On the one hand, two large 

squares in the upper part of the diagonal are indicative of conjoint genetic and phenotypic 

correlations, and tend to involve cells with markers, such as CD39 and CD45RA, whose expression is 

under strong genetic control (see next section) suggesting that the extent of similarity between traits 

reflects intrinsic relations dictated mainly by ontogenesis and coordinated evolution of traits --and 

hence shared antigen expression. On the other hand, the overall phenotypic correlations tend to be 

stronger than genetic correlations, consistent with additional effects of non-genetic factors on cell 

levels. An example of strong positive phenotypic but not corresponding strong genetic correlation is 

observed between some DC and Treg subsets (corresponding to the lower-right red cluster), in line 

with a mechanism by which an increase of DCs is controlled by an increase of Tregs (Wing and 

Sakaguchi, 2010). 
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Genetic changes affecting immune cell traits 

To identify the genetic variation accounting for the inherited component of the 272 

immunophenotypic traits, we next performed a sequencing-based GWAS, assessing ~8.2 million 

variants in the 1,629 phenotyped individuals (Experimental Procedures). At the significance 

threshold of p<5.26x10-10, we identified 21 signals at 11 loci linking genetic variation to multiple 

cellular immunophenotypes and resulting in a total of 180 SNP-trait associations. We also replicated 

(p<5x10-8) two previously suggested associations (Ferreira et al., 2010) resulting in a total of 23 

association signals at 13 loci which were then assessed and unequivocally confirmed in the extended 

sample set of 2,870 individuals including 1,241 additional volunteers (Figures 3, 4 and S3; Tables 1, 

S4A,B and S5A). 

The amount of phenotypic variation explained was always >2%, consistent with the expected 

statistical power of our sample, with nine variants explaining >5% and three variants >15% (Table 1). 

Considering the 132 traits for which we observed at least one genome-wide significant signal, the 

heritability explained ranged from 3.7 to 90.3%, and the proportion of explained heritability was 

>50% for 35 traits and >80% for four traits (Figure 5; Table S2A), showing relatively large effects for 

human quantitative traits (Teslovich et al., 2010; Lango Allen et al., 2010). 

Among the largest genetic effects detected, a single intronic variant of ENTPD1, coding for 

CD39, accounted for 60.8% of phenotypic variation (and 72% of the heritability) of the levels of 

CD39+ activated CD4+ Tregs (Table 1; Figure 4). Thus, this association has an obvious candidate 

mechanism in which cis-acting variation regulates the expression of a key marker in individual cells 

and therefore determines the number of cells expressing this molecule. CD39 is an ectoenzyme, 

expressed on monocytes, neutrophils, B, T and NK cells (Pulte et al., 2007), which hydrolyzes 

extracellular ATP and ADP to AMP. Notably, among T cells, CD39 is mainly expressed by activated 

CD4+ Tregs, where it has an anti-inflammatory function by reducing extracellular pro-inflammatory 

ATP (Borsellino et al., 2007).  

Other clear biological candidates among our lead associations included a variant near IL2RA, 

a gene encoding the transmembrane protein CD25, associated with variation of T cells expressing 

high CD25 levels (CD45RA- CD25hi CD4+ not Treg cells); a variant near the CD8A and CD8B genes, 

encoding the cell surface glycoprotein CD8, associated with variation in the level of T cells expressing 

CD8 (CD4+ CD8dim); a variant near the HLA class II transactivator (CIITA) gene, associated with the 

levels of activated T cells (i.e., HLA DR+ T lymphocytes); and a variant in the TNFSF13B gene, 

associated with the levels of B cells. Notably, CIITA encodes a transcription factor influencing HLA 

class II expression, whereas TNFSF13B encodes the B cell Activating Factor of the TNF Family (BAFF), 

inactivation of which is specifically associated with loss of mature circulating B cells (Table 1) 

(Mackay et al., 2009). 

Overall, 19 of the 23 variants reported here were associated with multiple traits often with 

divergent effects on different traits (Tables S4A and S5A). A further layer of complexity was added by 

instances of multiple independent associations with the same traits within a single associated region. 

For example, independent variants within a region encompassing the GALM and HNRPLL genes 

(Table 1) increased the percentage of naive and terminally differentiated T cell subpopulations (those 

that are CD45RA positive), with corresponding decreases in the percentage of the memory T cell 
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subsets (which are CD45RA negative). Association with HNRPLL is fully concordant with its role as the 

master regulator of CD45 splicing, a hallmark of T cell maturation (Wu et al., 2010). By contrast, the 

biology underlying the associations with GALM is less clear, though variants in GALM may act in long 

distance regulation of HNRPLL, because they fall in DNA regions known to interact with its promoter 

(Table S6A) (Li et al., 2012). 

Other examples of multiple independent signals clustered in the same gene regions and 

associated with several traits were found near ENTPD1 and in the HLA region (Table 1), where 

multilocus and multiallelic associations with complex diseases have been extensively documented 

(Marrosu et al., 2001). These results illustrate a new role for HLA variants, modulating immune 

system function by affecting the level of specific immune cell types. Of note, several variants in HLA 

class I alleles were associated with variation in the levels of numerous distinct CD8+ T cell subtypes, 

consistent with the notion that self-class I MHC molecules support CD8+ T cell survival (Takada and 

Jameson, 2009). 

In general, most of the associations reported in this work are new, though some are 

consistent with previously detected signals. Specifically, we confirmed the putative associations 

between NK cell levels and variants near the Schlafen gene cluster, and the association of CD4+ T 

cells with variation in the SH2B3/ATXN2 gene region (Ferreira et al., 2010).  

In addition to associations with p<5.26x10-10, we observed several additional signals at 

p<5x10-8 (Table S5B) that require confirmation by further analyses. Most of them are likely to be 

genuine --for example, the association of a common non-synonymous variant (N1639S) in the lactase 

gene (LCT) with pDCs. It is striking that the association of two independent missense variants at this 

locus with leukocyte count in African Americans was recently reported (Auer et al., 2012), further 

supporting an unanticipated role of coding variation within this locus in the regulation of immune 

cell levels.  

Our results also highlight the benefit of imputation and sequencing-based GWAS, both in 

detection of association signals and in the identification of the causal genes and variants (so-called 

‘fine mapping’), which is relevant for downstream functional studies. In fact, three of the 13 detected 

loci (NCAM, CD4 and HLA-E) reached significance only after imputation. Across all loci, 20 lead 

variants were imputed, and two of them were not present even in the HapMap data set or in the 

most recent 1000 Genomes release, and thus were not directly accessible by imputation from 

external resources. One, rs58055840, has proxies in the 1000 Genomes panel, but the other, 

chr10:98088623, is not strongly correlated with other known markers. Further investigation is 

required to determine whether these variants are specific to Sardinians. 

 

Functional clues from the associated variants 

The 23 lead variants are located in non-coding regions, although two of them are in strong linkage 

disequilibrium (LD) (r2>0.8) with non-synonymous coding variants (with features of variants detailed 

in Table S4C). Furthermore, seven variants fall within known elements with regulatory capacity, 

including repressors, enhancers and promoter elements or transcription factor binding sites (Table 

S6A). To assess functional processes and pathways through which the variants exert their effects, we 

selected a set of candidate genes based on physical position and biological features, and surveyed 

Gene Ontology (GO) terms and pathway enrichment (Experimental Procedures; Table 1). As 

expected, even when genes located in the HLA region were excluded, the overrepresented pathways 
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and GO categories were predominantly related to immune function (e.g., immune response, 

immune system process, primary immunodeficiency, hematopoietic cell lineage, antigen processing 

and presentation, T cell receptor complex, IgG binding, MHC protein binding and IL12-mediated 

signaling events) (Table S6B). 

 

Overlapping associations between immune traits and diseases 

After identifying immune cell associated variants we checked whether any of them correlated with 

known disease associations. After identifying immune cell associated variants, we systematically 

checked in public databases whether any of them was, or was highly correlated (r2> 0.8), with a 

known disease associated variant previously reported at p<5x10-8. We identified overlaps at 3 genetic 

loci: HLA, IL2RA, and SH2B3/ATXN2 (Table 2; Figure S4; Extended Experimental Procedures). Such 

overlapping associations identify specific immune cell types that are unbalanced in disease status 

and also suggest mechanisms by which specific risk alleles might lead to disease susceptibility, as 

follows. 

Variation downstream of the HLA-DRA gene decreased the levels of memory CD8+ cells not 

expressing the co-stimulatory molecule CD28 (CD45RA- CD28- CD8+ cells) and correlated with 

published associated risk alleles for ulcerative colitis, systemic sclerosis, Parkinson’s disease and 

Hodgkin's lymphoma (Barrett et al., 2009; Enciso-Mora et al., 2010; Gorlova et al., 2011; Hamza et 

al., 2011).  

A variant in the IL2RA gene region, rs61839660, was associated with a memory T cell subset 

expressing high CD25 levels (CD45RA- CD25hi CD4+ not Treg cells) and is also the strongest type 1 

diabetes (T1D) associated variant in the region (Huang et al., 2012; Lowe et al., 2007). Moreover, 

association with the same immune cells was previously observed at a variant in moderate LD 

(r2=0.77), which was at the time the strongest T1D-associated variant (Dendrou et al., 2009). The 

allele responsible for an increase in the CD45RA- CD25hi CD4+ not Treg cells reduces the risk for T1D, 

thus linking this specific cell type to protection against T1D. The results also suggest that anti-CD25 

therapies might increase risk for T1D by reducing the number of this protective cell type. Consistent 

with this, clinical trials have suggested an increased risk of T1D in transplant patients treated with 

anti-CD25 antibody (Bayes et al., 2007; Vendrame et al., 2010). 

Another overlap was seen for a variant in ATXN2 that is highly correlated with a missense 

variant within the SH2B3 gene (R262W). The W262 non-ancestral allele increases the levels of T 

lymphocytes and the helper CD4+ T cell subset with similar effect sizes, and it is positively associated 

with many autoimmune diseases (such as type 1 diabetes and celiac disease), as well as with 

hypertension and related pathologies (i.e., coronary heart disease and chronic kidney disease). 

Additionally, this variant has been associated with several endophenotypes in the general 

population, including platelet and eosinophil levels as well as systolic and diastolic blood pressure 

(Hindorff et al., 2013). SH2B3 encodes the adaptor protein LNK, whose mouse orthologue was earlier 

shown to be a negative regulator of haematopoiesis, cytokine signaling and inflammation (Devalliere 

and Charreau, 2011). An increase of total T cells (CD3+ lymphocytes) and particularly of CD4+ T cells 

resulting from the W262 allele may thereby result in loss of function. Furthermore, this observation 
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is consistent with findings in mouse models and humans suggesting the potential efficacy of 

monoclonal antibodies against CD3 in T1D and other autoimmune diseases (Chatenoud, 2010). 

Relevant to its function, the SH2B3 associated variant marks an extended haplotype spanning 

~200 kb (Figure S3 panel 22A), indicative of strong positive selection (Barreiro and Quintana-Murci, 

2010). During human evolution, a lymphocytosis-associated variant may have been useful for 

thousands of years in resistance to pathogens, but in recent less septic environments becomes a risk 

factor for autoimmunity. 

Other genetic variants might also be enriched by balancing selection to maintain a high 

degree of variation in immune cell levels in a given population, increasing the chances for survival of 

groups of individuals under different and often opposite environmental pressures. Among our 

associated variants, clear evidence of balancing selection was found in the HLA region (Extended 

Experimental Procedures), consistent with its key role in host defense and disease susceptibility. 

In addition to coincident associations clearly satisfying stringent criteria, other overlapping 

signals for variants affecting both levels of specific cells and disease risk are likely genuine. For 

example, the allele associated with a higher level of HLA-DR+ (activated) T lymphocytes at CIITA is in 

moderate LD (r2=0.44) with the risk allele for Celiac Disease (CD) (Trynka et al., 2011). In this case the 

lack of full coincidence at the same SNP or a suitable proxy may be attributable to differences in map 

resolution in different studies (the coverage at this locus was low in the CD study). Furthermore, our 

top variant is in strong LD (r2=0.99) with a variant showing suggestive association with ulcerative 

colitis (McGovern et al., 2010). 

Overall, the coincident associations between diseases and immune traits have special 

potential to reveal sites for therapeutic intervention, and indeed some of those detected had already 

been selected as targets for pharmaceutical therapy (Table S6C). It is also noteworthy that our work 

does not support some previous claims, largely based on functional evidence, about the involvement 

of specific cell type levels in specific diseases. For instance, a protective role of CD39+ activated CD4+ 

Tregs in various autoimmune diseases has been suggested (Chalmin et al., 2012; Fletcher et al., 

2009), but no overlapping association was observed between disease and the major genetic variants 

affecting the quantitative regulation of this cell type. 

 

Conclusions and prospects 

As part of the dynamic mounting and control of immune reactions, our results reveal that DNA 

variation superimposes powerful programmed regulation on various subtypes of leukocytes. 

Interestingly, those showing the greatest estimated inherited control are implicated in the more 

sophisticated cellular functions, such as regulatory T cells, which were phylogenetically the last to 

evolve and are also the last to appear in ontogenesis. 

A number of the genetic associations identified here explain an appreciable fraction of trait 

heritability and demonstrate the feasibility of genetic dissection of quantitative variation of specific 

immune cell types. At least three factors likely contribute to the unusually high degree of explained 

heritability, which contrasts sharply with typical observations in GWAS for quantitative traits, for 

which “missing heritability” is the norm. First, examining more restricted cell types avoids dilution 

and possible opposing effects in mixtures of leukocytes; this notion is consistent, for example, with 

findings of large effect size variants associated with fetal hemoglobin that have no detectable effects 

on total hemoglobin (Uda et al., 2008). Second, the large genetic effect sizes could be related to 
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intrinsic properties of the immune response which, confronted at the population level with an 

unpredictable and changing environment, must ensure optimal primed variability in the quantitative 

levels of immune cell types. Finally, the sequencing based approach employed provides assessment 

of genomic variation at an unprecedented level of resolution, except for very rare SNPs and indels. 

The 13 reported loci point to specific DNA polymorphisms and putative proteins and 

mechanisms involved in regulation of cellular immunity. They also identify specific molecules and cell 

subtypes involved in a range of diseases, particularly autoimmune diseases, reflecting the 

dramatically shifting evolutionary balance between the optimization of effective response to 

pathogens and the risk of autoimmunity. Given that several association signals may have not been 

captured in this study due to sample size restrictions --and in most previous disease GWAS due to 

their restriction to common ubiquitous variants-- many more overlapping associations are likely to be 

forthcoming when the approach described here is extended to larger samples. These overlaps should 

include multiple associations for the same trait and disease, reinforcing evidence of causal 

relationships between them. Our survey also reveals primary candidate genes to be re-sequenced in 

searches for both germ line mutations in patients with selective and combined immunodeficiencies 

and driver somatic mutations in patients with circulating haematopoietic malignancies. Some of the 

observations presented here also hint at previously undocumented involvement of the immune 

system in maladies such as Parkinson, though rigorous testing in appropriate cohorts is required to 

assess these possibilities further.  

For some autoimmune pathologies, the mechanistic clues involving specific cell types suggest 

targets but also concomitant risks for therapeutic interventions, with some drugs already in use or 

under clinical experimentation targeting the associated protein products for a number of loci. 

Further functional studies to explicate the effects of the variants on identified cell types could foster 

therapies aimed at controlling the numbers of those cell types to help regulate the immune system 

safely, preventing occurrence or lessening severity of autoimmune diseases.  

 

 

EXPERIMENTAL PROCEDURES 

 

Study population 

The SardiNIA project is a longitudinal study that recruited and phenotyped 6,148 individuals, males 

and females, aged 14–102 y, from a cluster of four towns in the Lanusei Valley (Pilia et al., 2006), 

located on the central east coast of Sardinia, Italy. During clinic visits, fresh blood samples were 

collected and used for both DNA extraction and flow cytometric measurements. Initially, 1,629 

individuals were characterized for the immune-related phenotypes described below, followed by an 

additional 1,241 individuals from the same cohort, to extend the sample size and validate the 

identified association results. Ethical permission for this study was granted by the Regional Ethics 

Committee (No 2009/0016600). 

 

Flow cytometric measurements 

Immunophenotyping was carried out by flow cytometry on fresh blood samples and cell 

phenotyping was performed within two hours after collection, to avoid any time dependent 

artifacts. We selected and tested a set of multiplexed fluorescent antibodies to characterize the 
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major leukocyte cell populations in peripheral blood, including monocytes, granulocytes, circulating 

dendritic cells and lymphocytes subdivided into NK, B and T cells and their subsets (Extended 

Experimental Procedures; Figure S1; Table S1A). In particular, we assessed regulatory T cells 

(CD25hi, CD127-), subdivided into resting, activated and cytokine-secreting non-suppressive cells 

(Miyara et al., 2009; Shevach, 2000). We also used the HLA-DR marker to assess the activation status 

of T and NK cells, and both the chemokine receptor CCR7 and the phosphatase CD45RA antigens to 

distinguish between naïve, central memory (CM), effector memory (EM) and terminally 

differentiated (TD) T cell subsets (Sallusto et al., 1999). Moreover, in selected T cell subpopulations 

we assessed the positivity for the ectoenzyme CD39 and the CD28 co-stimulatory antigen (Keir and 

Sharpe, 2005). Finally, cDCs were separated into myeloid (mDCs) and plasmacytoid (pDCs) cells and 

further subdivided by the expression of the adhesion molecule CD62L and the co-stimulatory ligand 

CD86 (Steinman and Banchereau, 2007; Ohnmacht et al., 2009). 

For all cell populations, we measured both absolute counts (AC) and the proportion of each 

type with respect to their progenitor cell lineages, expressed as percentages of the levels of parent 

(%P) and grandparent (%GP) cell lineages (Figure 1; Table S1B). For example, helper CD4+ T cells 

were evaluated relative to CD3+ cells (parent cell population representing all T cells) and to total 

lymphocytes (grandparent cell population). Percentages with respect to parental and grandparental 

cell populations lead to more robust measures of cell levels by reducing variability in measurements 

resulting from sample handling or fluctuations by transient environmental factors that affect the 

total leukocyte counts. These percentages may also reveal association with molecular changes that 

alter factors involved in feedback mechanisms responsible for maintaining a balance between cells. 

Finally, we assessed the specific ratios of cell types that are widely clinically used and that examine 

the balance between T and B cells and between helper (CD4) and cytotoxic (CD8) T cells. 

Overall, we examined 95 absolute counts, 94 percentages with respect to parent cells, 80 

percentages with respect to grandparent cells, and 3 ratios between cell subsets (Table S1B). 

To ensure reproducible measures over time we followed a rigorous standardization protocol 

(Extended Experimental Procedures, “Flow cytometry instrument setting and reproducibility of 

measurements” paragraph). Briefly: i) we daily adjusted internal parameters of FACS using 

standardized fluorescent beads to check and correct for laser wear and fluidic instability; and ii) we 

weekly validated cell counts through suitable quality control of stabilized blood samples. To directly 

assess reproducibility we repeated the FACS measurements in 35 participants sampled at least three 

months after their initial enrollment, finding overall high reproducibility (median value for all traits 

0.90, mean 0.85, standard deviation 0.13) (Table S2B). 

 

Heritability estimation and bivariate analysis 

We estimated heritability for all inverse-normalized traits in the first 1,629 immunophenotyped 

individuals (comprising 211 unrelated individuals, and 1,418 subjects grouped in 249 families, 

leading to 567 sib-pairs, 30 half-sib pairs, 248 cousins-pairs, 609 parent-child pairs, 32 grandparent-

grandchild pairs and 561 avuncular pairs for analysis), including age and gender as covariates. 

Furthermore, familial clustering of blood sampling (i.e., same day sampling of closely related 
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individuals), which could bias heritability estimates, was checked for and excluded (Extended 

Experimental Procedures, “Heritability and bivariate analysis” paragraph). 

We also performed a bivariate analysis to estimate the phenotypic and genetic correlations between 

traits. In particular, for each trait pair the phenotypic correlation was computed as the Spearman 

coefficient, whereas the genetic correlation was estimated as the cross trait-cross individual additive 

genetic covariance between traits normalized by the geometric mean of the individual trait genetic 

variances and by the kinship coefficient of pairs of individuals. We then used a hierarchical clustering 

analysis that successively connected the most similar traits, based on the estimated phenotypic and 

genetic correlation coefficients (Extended Experimental Procedures, “Heritability and bivariate 

analysis” paragraph). 

Genotyping and whole genome sequencing 

The entire SardiNIA cohort was characterized using two Illumina custom arrays: the Cardio-

MetaboChip and the ImmunoChip. These arrays were designed by international consortia to 

genotype regions of prior interest in metabolic and immune related traits and diseases, respectively 

(Cortes and Brown, 2011; Voight et al., 2012) and resulted in quality controlled 284,722 SNPs 

derived from both arrays. We also whole-genome sequenced 1,146 Sardinians at low pass (average 4 

fold coverage) (Extended Experimental Procedures, “Genotyping arrays” and “Sample sequencing 

and variant calling” paragraphs).  

Statistical and bioinformatical analyses 

We performed a GWAS for each trait analyzing ~8.2 million variants assembled from the integration 

of the two assessed arrays, and markers imputed with the Sardinian sequencing reference panel 

(Table S3; Extended Experimental Procedures, “Genotype imputation” and “Association analyses” 

paragraphs) (Li et al., 2009). Association was evaluated by a variance component-based regression 

analysis, to account for family structure, using the same covariates as in heritability estimation (Chen 

and Abecasis, 2007). Traits were normalized using inverse normal transformation. 

We selected all independently associated variants for each trait (r2<0.1 or those remaining 

significant in a stepwise conditional analysis), using a significance threshold of p<5.26x10-10. This 

threshold corresponds to the standard genome-wide threshold of 5x10-8 after further adjustment for 

95 independent tests (the number of absolute cell count measurements). While this approach is 

conservative given the high interdependency of cell lineages, it ensures the robustness of our 

findings. We successively removed poorly imputed variants, and then eliminated redundant trait-

variant associations by prioritizing the most strongly associated variants at each locus and removing 

those in LD. We also included two suggestive associations (5.26x10-10<p<5x10-8) at the previously 

described SH2B3/ATXN2 and SLFN13 gene regions (Ferreira et al., 2010).  

To validate findings, we measured the corresponding associated immunophenotypes in an 

additional 1,241 individuals from the same SardiNIA cohort and genotyped variants representing 

novel signals that were not supported by a directly genotyped variant (r2>0.85). Variants showing an 

excess of discordant genotypes or less significant p-values after addition of the extended sample 
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were excluded from further analyses (Table S4A,B; Extended Experimental Procedures, “Validation 

of findings” paragraph). 

To calculate the amount of phenotypic variance explained by genetic factors, for each trait 

we fitted a linear model containing age, gender and all the independent SNPs associated with that 

specific trait (full model), and a linear model containing only age and gender (basic model). The 

variance explained was calculated as the difference of the r2-adjusted quantity observed in the full 

and basic models (Table S2A). 

To prioritize candidate gene(s) at each locus, we searched for correlated expression 

quantitative trait loci (eQTLs), coding variants and nearby genes involved in immune-related 

disorders, as reported in OMIM (Online Mendelian Inheritance in Man), or implicated in immunity in 

previous studies (Table S4C,D). Bioinformatic analyses were carried out to characterize variants and 

genes, including co-localization with regulatory features, and their potential for pharmaceutical 

interest (Table S6A,B,C). Lastly, to assess possible impact of the detected variants on disease 

susceptibility, we searched for coincident associations in public repositories (Table 2), such as the 

GWAS catalog (Hindorff et al., 2013) and ImmunoBase (http://www.immunobase.org/) (Extended 

Experimental Procedures). 

 

A schematic overview of the overall study design is depicted in Figure S5.  

The Extended Experimental Procedures, included in the Supplemental Information file, provide 

details about the study design, genetic and immunophenotypic data collection, and statistical and 

bioinformatic analyses. They are all available online on Cell Journal website. 

 

 



 

Table 1. Twenty-three variants at the 13 associated loci 
The independently associated variants for each locus are tabulated, along with the association parameters. Indicated are, from left to right, the locus number; 

the candidate genes potentially regulated by the variant (for each candidate gene a letter indicates the reason for inclusion: p=position; e=eQTL; c=coding; 

o=OMIM; b=biological candidate); the chromosomal position on hg19/GRCh37 genomic build of the lead variant and the corresponding SNP identification 

number (rs ID), when available; the major and minor alleles (A1 and A2) and the frequency of the major allele; the corresponding associated trait (CD8+ 

corresponds to the summation of CD8bright and CD8dim cells); the effect size in standard deviation units per each copy of allele A1; the standard error; the 

variance explained; and the p-value. The last three columns report parameters for the SNP used in the validation step: the chromosome position with the 

corresponding identification number; the correlation with the lead SNP and the p-value of the validation data set are listed, respectively. See also Table S4A. 

 

Locus Candidate genes 
topSNP 

(chr:position)/rsID 
A1/A2 Freq A1 Trait Effect (SE) 

Var. 

Expl. 

p-value 

(N=1,629) 

SNP for validation 

(chr:position/ rsID) 

r
2
 with 

topSNP 

Validation 

p-value 

(N=2,870) 

1 FCGR3A(p,c,o), FCGR2C(p,o), 

FCGR2A(e,c,o), FCGR2B(e,o), 

HSPA6(e), HSPA7(e) 

chr1:161536758/ 

rs58055840 

T/C 0.742 CD62L- myeloidcDC AC -0.895 (0.044) 30.26 3.73x10
-91

 chr1:161515326/ 

rs55971447 

0.937 6.83x10
-129

 

2 HNRPLL(p) chr2:38792045/ 

rs183949931 

T/C 0.967 CD45RA- CD28- CD8br 

%P 

0.778 (0.105) 4.05 1.05x10
-13

 chr2:38792045/rs183949931 Same SNP 1.046x10
-20

 

2 GALM(p,c,e), HNRPLL(b) chr2:38897074/ 
rs13011383 

G/A 0.730 TD CD4+ %GP -0.371 (0.042) 5.52 6.05x10
-19

 chr2:38886041/ rs4670262 0.87 1.26x10
-27

 

2 GALM(p), DHX57(e), HNRPLL(b) chr2:38921934/ 

rs7583259 

G/C 0.508 CD45RA- CD28- CD8br 

%P 

-0.548 (0.039) 15.09 9.40x10
-46

 chr2:38932777/ rs4670265 0.9 2.82x10
-62

 

3 CD8A(p,c,o), RMND5A(p), 

CD8B(b), VPS24(e) 

chr2:87014377/ 
rs2944254 

C/T 0.810 CD4+ CD8dim AC 0.383 (0.05) 4.55 2.52x10
-14

 chr2:87018547/ rs3810831 0.943 1.3x10
-22

 

4 COQ2(e), PLAC8(e), HPSE(e) chr4:84150313/ 
rs4431216 

T/C 0.633 CD62L- plasmacytoidcDC 
%P 

0.337 (0.04) 5.19 4.96x10
-17

 chr4:84179071/ rs7667017 0.84 3.37x10
-23

 

5 HLA-E(p,c,e), HCG27(e), GNL1(c), 

ABCF1(e), C2(e), PSORS1C3(e), 

RPP21(e), TRIM39(e), 

ZKSCAN2(e) 

chr6:30466505/ 

rs117765619 

G/T 0.516 CD45RA- CD8+ AC -0.228 (0.037) 2.62 5.24x10
-10

 chr6:30482993/ rs2534812 0.974 1.34x10
-11

 

5 HLA-B(p,c), VARS2(e), IER3(e), 

ZFP57(e) 

chr6:31327382/ 
rs2395476 

T/G 0.858 CD45RA- CD28+ CD8+ %P 0.352 (0.051) 3.21 3.69x10
-12

 chr6:31327382/ rs2395476 Same SNP 1.827x10
-19

 

5 HLA-DRA(p,e), BTNL2(p,c), HLA-

DRB1(c,e), HLA-DQA1(e), HLA-

DQB1(e), HLA-DRB5(e), HLA-

DOB(e), LOC642073(e), 

VARS2(e), LST1(e), IER3(e), 

GTF2H4(e), HMGA1(e), 

RPL34(e)*, AOAH(e)* 

chr6:32386433/ 
rs113534101 

G/A 0.776 CD4+ CD8dim %P -0.299(0.043) 3.07 5.68x10
-12

 chr6:32383138/ 
rs115615758 

0.97 2.78x10
-16

 

5  HLA-DRA(p), LOC642073(e), 

HLA-DOB(e), 

RPL34(e)*,ARHGAP24(e)*, 

AOAH(e)* 

chr6:32428186/ 
rs6923504 

G/C 0.618 CD45RA- CD28- CD8+ AC -0.249 (0.037) 3.01 2.81x10
-11

 chr6:32428285/ rs6903608 0.99 4.3x10
-13

 



 
 

6 IL2RA(p,o) chr10:6094697/ 
rs61839660 

C/T 0.934 CD45RA- CD25hi CD4+ 
not Treg %P 

-0.49 (0.073) 2.82 1.85x10
-11

 chr10:6094697/ rs61839660 Same SNP 5.65x10
-23

 

6 RBM17(p), IL2RA(p,o) chr10:6158412/ 
rs8463 

A/G 0.802 CD25hi CD4+ %P -0.294 (0.046) 2.85 1.21x10
-10

 chr10:6158412/ rs8463 Same SNP 2.02x10
-15

 

7 SORBS1(p), C10orf61(e), 

ALDH18A1(c), ENTPD1(e) 

chr10:97331924/ 
rs117568941 

T/C 0.955 CD39+ CD8+ %GP -0.650 (0.062) 6.68 1.45x10
-25

 chr10:97331958/ rs7099430 0.969 1.32x10
-35

 

7 ALDH18A1(p), ENTPD1(b) chr10:97393678/ 
rs1890187 

A/G 0.975 CD39+ activated CD4+ 
Treg %P 

-0.671 (0.073) 5.97 5.72x10
-20

 chr10:97550405/ 
rs11188485 

0.97 2.97x10
-32

 

7 ENTPD1(p,e) chr10:97564532/ 
rs11517041 

T/C 0.578 CD39+ activated CD4+ 
Treg %P 

-1.113 (0.037) 60.81 1.12x10
-202

 chr10:97515137/ rs3814159 0.993 7.05x10
-327

 

7 ZNF518A(p), BLNK(p,o), 

ENTPD1(b) 

chr10:97932006/ 
rs117592294 

C/T 0.955 CD39+ CD25hi CD4+ %P 0.497 (0.066) 4.33 6.26x10
-14

 chr10:97932006/ 
rs117592294 

Same SNP 1.35x10
-15

 

7 DNTT(p), OPALIN(p), BLNK(o), 

ENTPD1(b) 

chr10:98088623 A/G 0.978 CD39+ CD4+ AC -0.777 (0.094) 6.05 1.87x10
-16

 chr10:98088623 Same SNP 1.809x10
-20

 

8 NCAM1(b) chr11:112706386/ 
rs76771478 

G/T 0.890 Lymphosum %P 0.455 (0.064) 4.51 1.62x10
-12

 chr11:112707378/ 
rs1992842 

0.96 7.18x10
-17

 

9 CD4(p,e,o) chr12:6899181/ 
rs2855537 

G/T 0.606 naive (CD4+ CD8+) AC 0.315 (0.048) 4.70 5.94x10
-11

 chr12:6898460/ rs7956804 1 4.77x10
-13

 

10 TNFSF13B(p), LIG4(o) chr13:108957063/ 
rs9520836 

A/G 0.513 B cell %GP -0.239 (0.035) 2.95 1.45x10
-11

 chr13:108957063/ 
rs9520836 

Same SNP 1.39x10
-14

 

11 CIITA(p,o) chr16:10974355/ 
rs9924520 

A/G 0.778 HLA DR+ T lymphocyte 
%P 

-0.435 (0.039) 8.15 2.20x10
-28

 chr16:10975311/ rs4781011 0.994 9.29x10
-50

 

12 ATXN2(p), SH2B3(p,o) chr12:111973358/ 
rs597808 

G/A 0.539 T lymphocyte AC -0.195 (0.035) 2.01 3.84x10
-08

 chr12:111973358/ rs597808 Same SNP 1.87x10
-09

 

13 SLFN13(p), SLFN12L(p,c), CCL1(e) chr17:33797371/ 
rs9916257 

T/G 0.568 NK %GP -0.212 (0.035) 2.54 9.78x10
-10

 chr17:33797371/ rs9916257 Same SNP 4.72x10
-20

 

 

*Trans eQTLs 

  



 

Table 2. Overlapping associations with complex diseases 

Association statistics from the immune trait analyses are reported in the first six columns. The pathology, the disease associated variant, its best-reported p-

value in public repositories and the risk allele are indicated in the 7th, 8th, 9th and 10th columns, respectively. The LD (r2) between immune trait variant and the 

disease associated variant is shown in column 11th, whereas column 12th lists the risk allele coupled with the corresponding immune trait allele (and its effect). 

The last column indicates whether the disease was reported in GWAS Catalog (1), or ImmunoBase (2), or in PMID:23603763 (3). The disease-associated variants 

highlighted in boldface reach the standard genome-wide association threshold (p<5x10-8) in public databases. See also Figure S4. 

 

Gene (region) Immune trait SNP 
Effect 

allele/ 

Other 
Effect (SE) p-value Disease 

SNP 

disease 
Best reported 

p-value 

Risk 

allele/ 

Other 
r2 

Risk allele/ 

Corresponding 

trait allele (effect) 
HLA Class II 

(chr6p21.1) 

CD45RA- CD28- CD8+ AC rs6923504 G/C -0.249 (0.037) 2.81E-11 Hodgkin's lymphoma rs6903608  2.84E-50 G/A 0.99 G/G (decrease) 

      Systemic sclerosis rs3129882 1.89E-27 G/A 0.803 G/G (decrease) 

      Ulcerative colitis rs9268877 3.90E-23 T/C 0.83 G/G (decrease) 

      Parkinson's disease rs3129882 1.90E-10 G/A 0.803 G/G (decrease) 

            
IL2RA 

(chr10p15.1) 

CD25hi CD4+ %P rs61839660 C/T -0.484 (0.072) 2.38E-11 Type 1 diabetes rs61839660 5.10E-09 C/T 1 C/C (decrease) 

 CD45RA- CD25hi CD4+ not Treg AC rs61839660 C/T -0.484 (0.072) 1.05E-10 Type 1 diabetes rs61839660 5.10E-09   C/C (decrease) 

 CD45RA- CD25hi CD4+ not Treg %P rs61839660 C/T -0.484 (0.072) 1.85E-11 Type 1 diabetes rs61839660 5.10E-09   C/C (decrease) 

            
SH2B3/ATXN2 

(chr12q24.12) 

T lymphocyte AC rs597808 G/A -0.195(0.035) 3.84E-08 Type 1 diabetes rs3184504 2.80E-27 T/C 0.95 T/A (increase) 

      Celiac disease rs3184504 5.40E-21 T/C  T/A (increase) 

      Primary hypothyroidism rs3184504 2.60E-12 T/C  T/A (increase) 

      Primary sclerosing cholangitis rs3184504 5.91E-11 T/C  T/A (increase) 

      Juvenile rheumatoid arthritis rs3184504 2.60E-09 T/C  T/A (increase) 

      Rheumatoid arthritis rs3184504 6.00E-06 T/C  T/A (increase) 
      Coronary heart disease rs3184504 6.35E-06 T/C  T/A (increase) 

      Multiple sclerosis rs3184504 6.70E-05 T/C  T/A (increase) 
 CD4+ AC rs597808 G/A -0.195(0.036) 4.66E-08 Type 1 diabetes rs3184504 2.80E-27   T/A (increase) 

      Celiac disease rs3184504 5.40E-21   T/A (increase) 

      Primary hypothyroidism rs3184504 2.60E-12   T/A (increase) 

      Primary sclerosing cholangitis rs3184504 5.91E-11   T/A (increase) 

      Juvenile rheumatoid arthritis rs3184504 2.60E-09   T/A (increase) 

      Rheumatoid arthritis rs3184504 6.00E-06   T/A (increase) 

      Coronary heart disease rs3184504 6.35E-06   T/A (increase) 
      Multiple sclerosis rs3184504 6.70E-05   T/A (increase) 
 CD4+ not Treg AC rs597808 G/A -0.195(0.036) 4.80E-08 Type 1 diabetes rs3184504 2.80E-27   T/A (increase) 

      Celiac disease rs3184504 5.40E-21   T/A (increase) 

      Primary hypothyroidism rs3184504 2.60E-12   T/A (increase) 

      Primary sclerosing cholangitis rs3184504 5.91E-11   T/A (increase) 

      Juvenile rheumatoid arthritis rs3184504 2.60E-09   T/A (increase) 

      Rheumatoid arthritis rs3184504 6.00E-06   T/A (increase) 

      Coronary heart disease rs3184504 6.35E-06   T/A (increase) 
      Multiple sclerosis rs3184504 6.70E-05   T/A (increase) 
 T lymphocyte AC rs597808 G/A -0.195(0.035) 3.84E-08 Celiac disease rs653178 7.15E-21 C/T 0.96 C/A (increase) 

      Chronic kidney disease rs653178 3.50E-11 C/T  C/A (increase) 



 
 

      Rheumatoid arthritis rs653178 1.50E-05 C/T  C/A (increase) 

 CD4+ AC rs597808 G/A -0.195(0.036) 4.66E-08 Celiac disease rs653178 7.15E-21   C/A (increase) 

      Chronic kidney disease rs653178 3.50E-11   C/A (increase) 

      Rheumatoid arthritis rs653178 1.50E-05   C/A (increase) 

 CD4+ not Treg AC rs597808 G/A -0.195(0.036) 4.80E-08 Celiac disease rs653178 7.15E-21   C/A (increase) 

      Chronic kidney disease rs653178 3.50E-11   C/A (increase) 

      Rheumatoid arthritis rs653178 1.50E-05   C/A (increase) 
 T lymphocyte AC rs597808 G/A -0.195(0.035) 3.84E-08 Primary biliary cirrhosis rs11065979 2.87E-09 T/C 0.92 T/A (increase) 

 CD4+ AC rs597808 G/A -0.195(0.036) 4.66E-08 Primary biliary cirrhosis rs11065979 2.87E-09    

 CD4+ not Treg AC rs597808 G/A -0.195(0.036) 4.80E-08 Primary biliary cirrhosis rs11065979 2.87E-09    

 T lymphocyte AC rs597808 G/A -0.195(0.035) 3.84E-08 Vitiligo rs4766578 3.54E-18 T/A 0.96 T/A (increase) 

 CD4+ AC rs597808 G/A -0.195(0.036) 4.66E-08 Vitiligo rs4766578 3.54E-18    

 CD4+ not Treg AC rs597808 G/A -0.195(0.036) 4.80E-08 Vitiligo rs4766578 3.54E-18    

            

CIITA 

(chr16p13.13) 

HLA DR+ T lymphocyte AC rs9924520 A/G -0.425(0.042) 1.46E-23 Ulcerative colitis rs4781011 3.23E-06 T/G 0.99 T/G (increase) 

 HLA DR+ T lymphocyte %P rs9924520 A/G -0.435(0.039) 2.20E-28 Ulcerative colitis rs4781011 3.23E-06 T/G   

 HLA DR+ T lymphocyte %GP rs9924520 A/G -0.449(0.041) 2.35E-28 Ulcerative colitis rs4781011 3.23E-06 T/G   
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Figure 1. Studied leukocyte subpopulations 

Color-coded diagram of the cell types analyzed by flow cytometry with arrows depicting the hierarchical levels of 

separation of circulating cell populations (leukocytes) and constituent subsets of the two main arms, innate and 

adaptive, of the immune system. Innate cell types, which provide prompt but generic responses to aggressors, include 

granulocytes (yellow), monocytes (pale blue) and dendritic cells (red). Adaptive cell types, which provide highly specific 

responses to microbial targets and may maintain a “memory” that enables a faster and greater response to previously 

encountered pathogens, include B cells (magenta) and T cells (green). The natural killer cells (orange) share features of 

both arms of the immune system. The name and, when relevant, the identifying marker are indicated beside each 

population. Cells inside a light blue rectangle were phenotypically characterized with the antigen pointed to by the 

adjacent light blue arrow; for example, the six CD3+ subsets (CD4- CD8-, CD4+, CD4+ CD8dim, CD4+ CD8br, CD8br, and 

CD8dim) are shown within a blue rectangle, and were further subdivided into naïve, central memory, effector memory, 

and terminally differentiated cells. The red rectangle indicates that the included cell populations have been jointly 

analyzed for CD39, the marker indicated by the red arrow. For simplicity, 45 of the 95 analyzed cell type, described in 

the full text, are shown. See also Figure S1 and Table S1 for further details. 
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Figure 2. Phenotypic and genetic clustering 

Heat map of phenotypic (lower-right triangle) and genetic (upper-left triangle) correlations for cell counts and CD4:CD8 

and T:B cell ratios. Traits with a phenotypic correlation ≥0.99 were excluded (Extended Experimental Procedures). 

Genetic and phenotypic triangles follow the same trait order, dictated by the clustering of phenotypic correlations, and 

the dendrogram at the right reflects the clustering. Traits connected by short branches share stronger phenotypic 

correlation, whereas traits that join near the root of the tree are weakly correlated. Color gradations indicate correlation 

strength, with red indicating direct correlation (from 0 to +1) and blue inverse correlation (from 0 to -1). 
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Figure 3. Manhattan plot of best p-values 

For each SNP, the best p-value observed among all assessed traits is plotted on a –log10 scale (Y-axis), according to its 

genomic coordinates (X-axis). SNPs are colored in blue if the corresponding best p-value was directly genotyped with 

ImmunoChip (IC) or Cardio-MetaboChip (MC), and in gray if imputed from genomic sequencing of Sardinians. The dotted 

horizontal line indicates the threshold for declaring a locus genome-wide significant (5.26x10-10). The best candidate 

gene is indicated nearby the peak. Loci below the significance threshold and previously described are marked with an 

asterisk.  
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Figure 4. Regional plot and boxplot for the top signal in ENTPD1 

These two panels represent the association in the genomic context (panel A) and in the biological context (panel B), for 

the most strongly associated variant at the ENTPD1 gene. Panel A represents the association strength (Y axis shows the –

log10 p-value) versus the genomic positions (on hg19/GRCh37 genomic build) around the most significant SNP, which is 

indicated with a purple circle. Other SNPs in the region are color-coded to reflect their LD with the top SNP as in the left-

inset (taken from pairwise r2 values calculated on Sardinian haplotypes), whereas symbols reflecting genomic functional 

annotation are indicated in the right-inset. Genes and the position of exons, as well as the direction of transcription, are 

noted in lower boxes. This plot was drawn using the standalone version of the LocusZoom package (Pruim et al., 2010). 

Panel B shows the distribution of the immunophenotypic levels within each genotype class considering the normalized 

trait adjusted for age and gender in relation to the 1,629 initial samples, showing the additive effect that was statistically 

observed. See also Figure S3. 
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Figure 5. Proportion of heritability explained  

The bar plots show the heritability of each trait (represented by a bar) for which genetic association was detected. The 

proportion of heritability explained by the detected loci is indicated in dark blue, while the proportion of heritability that 

remains to be explained is shown in light blue. Bars are grouped in their corresponding biological category as specified in 

Table S1B. See also Table S2A.  
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ABSTRACT  

We report ~17.6M genetic variants from whole-genome sequencing of 2,120 Sardinians; 22% are absent from prior 

sequencing-based compilations and enriched for predicted functional consequence.  Furthermore, ~76K variants 

common in our sample (frequency >5%) are rare elsewhere (<0.5% in the 1000 Genomes Project). We assessed the 

impact of these variants on circulating lipid levels and five inflammatory biomarkers.  Fourteen signals, including two 

major new loci, were observed for lipid levels, and 19, including two novel loci, for inflammatory markers. New 

associations would be missed in analyses based on 1000 Genomes data, underlining the advantages of large-scale 

sequencing in this founder population.  

INTRODUCTION 

Studies of common genetic variants have provided entry points to analyse the mechanisms underlying many complex 

traits and diseases (1–4). Extension of these studies to the large reservoir of rare and population-specific variants could 

accelerate translation of genetic information into biological understanding, but has not thus far been systematically 

applied (5,6). Rare variants can be discovered and genotyped with rapidly improving DNA sequencing techniques, but 

designing studies in which enough copies of each variant can be observed to detect genetic associations is challenging (5–

7). Studies of families and founder populations, where variants that are rare or absent elsewhere can occur at moderate 

frequencies, help overcome these limitations (8). Here, we use genome sequencing in the Sardinian founder population 

to systematically assess the contribution of genetic variation to quantitative traits, using as examples the levels of blood 

lipids and inflammatory markers. Discovery of variants associated with these traits could further elucidate causal 

mechanisms and pathways for cardiovascular diseases and other complex disorders (9–11). Besides confirming signals 

from studies of common variants (12,13), our results reveal novel genetic variants and associations that would be missed 

using sequence-based reference panels derived from more cosmopolitan populations.  

 

RESULTS AND DISCUSSION 

Sequencing and rare variant yield 

We generated whole genome shotgun sequence data for 2,120 Sardinian individuals, either living in the Lanusei valley 

and participating in a cohort study of quantitative traits [the SardiNIA study (14); 1,122 individuals, 52.8%  of them 

female, average age 49.4], or from across the island and participating in case-control studies of Multiple Sclerosis (15) 

and Type 1 Diabetes (16) (referred to here as “island-wide sample”; 998 individuals, 48.5% of them female, average age 

41.6). Among these individuals, we sequenced 1,190 parent-offspring pairs distributed across 695 nuclear families in 

order to facilitate high quality estimation of haplotypes and genotypes (17). For each individual we generated an average 

of 10.7x109
 mapped bases of high quality sequence (~4-fold coverage of the genome), corresponding to a total of 

22.7x1012 bases across all individuals. We implemented quality control, alignment, variant calling and genotyping 

protocols that efficiently handled a sample of this size (18, URLs) (see Methods).  

In each sequenced individual, we identified an average of 3.4 million variants (17.6 million variants overall; Table 1). To 

assess quality, we sequenced two parents and a child to >65x coverage per individual. Comparing our initial low-

coverage analysis with the results of deep sequencing for these individuals, we estimate an average genotyping error 

rate of <0.7% at heterozygous sites. As expected (19) this error rate was lower at sites with minor allele frequency (MAF) 

>5%, averaging 0.5%, and higher at sites with MAF <5%, averaging ~2% (Supplementary Table 1). Comparing sequence 

and array genotyping results for 1,068 individuals, we estimate that we have discovered and genotyped >99% of the 

variants with a frequency >0.5% in our sample (and ~70% of variants with frequency <0.5%) (Supplementary Table 2). 
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Among the 17.6M variants discovered, 172,988 (0.98%) overlap protein coding sequences (20) (Table 1). Of these 

variants 84,312 are non-synonymous coding changes; 2,504, essential splice-site altering; and 2,013, nonsense. 

Consistent with the hypothesis that natural selection makes variants with strong biological impact more likely to be rare 

and/or geographically restricted, we observe that 59% of non-synonymous, 53% of splice-altering, and 70% of nonsense 

variants have frequency <0.5% (compared to 48% of variants genome-wide). We also observe that 12% of non-

synonymous, 22% of splice-altering and 22% of nonsense variants are absent from prior sequencing studies [compared 

to 22% of all variants, using dbSNP142 and the Exome Aggregation Consortium (see URLs) as surrogates for the results 

of prior studies (21)].  

Genetic differentiation 

Because of genetic drift -- and, to a lesser extent, natural selection -- following the settlement of Sardinia, many genetic 

variants that are rare elsewhere in Europe have now reached higher frequency (22,23). The consequences of this genetic 

differentiation are a relatively large fraction of population-specific low-frequency variants and long haplotypes shared 

among present day carriers of those variants (24). For example, 98% of the variants present at a frequency of ~1.0% (and 

99.7% of the variants present at a frequency ~5.0%) in a sample of ~2500 individuals from the United Kingdom are also 

present in Phase 1 of the 1000 Genomes Project (25). By contrast, only 77% of the variants with a frequency of ~1.0% 

(and 99.3% of the variants with frequency ~5.0%) in our sample are present in Phase 1 of the 1000 Genomes Project (25). 

Overall, we estimate that 76,286 variants very rare (frequency <0.5%) or absent in the 1000 Genome Project Phase 3 

reach frequencies >5% in our sample. We used a machine learning-based scoring algorithm to summarize the 

deleteriousness of each variant in a CADD score (26). Coding variants that are unique to Sardinia appear to be 

significantly more deleterious than variants of the same frequency that are also observed in the 1000 Genomes Project 

Phase 3 (p=0.02). This suggests that part of the reservoir of variants that have drifted to higher frequency in Sardinia 

could be especially informative for genetic association and functional studies (Supplementary Figure 1). The results 

presented here show a few clear examples. 

The differentiation of allele frequencies in the Sardinian sample from those in other European populations is also 

evident in assessments using the FST differentiation statistic as well as in a principal component analysis of common 

variants (27,28) (Supplementary Figure 2 and 3). Whereas FST between non-Sardinian European populations in the POPRES 

reference sample averages 0.001 (range 0.000 – 0.004), FST between the island-wide sample of Sardinians and POPRES 

European populations averaged 0.006 (range 0.003 - 0.010), and the difference was even greater between the Lanusei 

valley and POPRES European populations (average 0.009, range 0.006 – 0.013) (Supplementary Figure 2).  The 

geographical structure is even more evident when considering less frequent alleles: sharing between mainland 

populations and Sardinia is particularly depressed relatively to sharing within mainland populations for rare sites (such 

at 1000 Genomes CEU and TSI) (29,30)(Figure 1). The patterns of differentiation are again clear in the long identical 

haplotypes surrounding rare f2 variants (variants that are observed in exactly two chromosomes from distinct 

individuals) (25,31) (Figure 2). Of note, both Sardinian samples show similar haplotype lengths flanking f2 variants they 

share with populations outside Sardinia, consistent with a common ancient demography. The more relative isolation of 

the two samples is evident when we examine the length of haplotypes flanking f2 variants present within each sample. 

For variants shared between individuals in the valley, flanking haplotypes averaged 3,570 kb, dropping to 735 kb when 

first and second degree relatives were excluded. These haplotypes averaged 580 kb when shared by a valley resident 

and an individual elsewhere in Sardinia; ~382 kb when shared with an European sequenced in the 1000 Genomes 

Project Phase 3; and ~264 kb when shared with an individual elsewhere in the world in the full set of the 1000 Genome 

Project (Figure 2).  These differences in haplotype length are less marked around variants with higher frequencies, and 

hence shared in more than 2 heterozygous individuals (i.e. f3, f4, etc).  This is evident even when comparing samples 

from the Lanusei valley and elsewhere in the island (Supplementary Table 3). 
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Relatedness and imputation for the Lanusei valley samples 

Participants in the SardiNIA study all live in four small towns in the Lanusei valley. The population in this region is 

relatively stable: all four grandparents were born in the Lanusei valley for at least three-quarters of study participants 

(14). A total of 6,602 individuals from the SardiNIA study were genotyped with four Illumina arrays (OmniExpress, 

ExomeChip, MetaboChip and ImmunoChip), providing a scaffold of 890,542 unique SNPs across the genome. Because 

participants share long stretches of DNA (see above), genetic information obtained for any individual can be propagated 

(“imputed”) to close relatives genotyped with the scaffold of markers (32,33). To increase the power of genetic association 

analyses and sample genetic diversity in the valley, we sequenced individuals distributed across different families 

(Supplementary Table 4). We then searched for shared chromosome stretches between the sequenced individuals and 

the remaining study participants, allowing us to impute both common and rare variants exceedingly well. Imputation 

accuracy, measured as the squared correlation between imputed and laboratory genotypes was r2 = 0.98 for variants 

with frequency >5% and 0.89 for variants with frequency of 0.5 – 1.0% (Supplementary Figure 4). This accuracy 

improved markedly in comparison to the imputation results based on 1000 Genomes Project Phase 3 panel, that 

includes individuals representing genetic diversity across Europe and elsewhere in the world (r2 = 0.92 and 0.62 for 

variants with MAF >5% and 0.5 – 1.0%, respectively; Supplementary Figure 4). Shared stretches of chromosome used to 

fill in missing data within each SardiNIA individual originated in other individuals from the valley ~87% of the time, and 

also strongly correlated with the number of their grandparents born in the area (r2 = 0.67; Supplementary Figure 5).  

Impact on genetic association: the examples of lipid and inflammatory marker levels  

We focused on 4 blood lipid levels [low-density lipoprotein cholesterol (LDL-c), total cholesterol (TC), triglycerides (TG) 

and high-density lipoprotein cholesterol (HDL)] to assess how sequence information might reveal effects of population-

specific and low frequency variation for extensively studied traits (Supplementary Table 4)(12). Imputing variants from 

the sequencing effort on the scaffold of genotyped SNPs expanded the spectrum of variants for association testing in the 

sample from the Lanusei valley to ~13.6 million (selected with high imputation quality; see Methods) (34). Overall, we 

identified fourteen independently associated variants distributed across eleven loci at the classical genome-wide 

significant threshold of 5x10-8 associated with lipid levels in analysis including all individuals or in sex-restricted analysis 

including only males or females (Table 2, Supplementary Figures 6 and 7). These include ten variants with moderate 

effect tagging signals in LIPC, SORT1, PCSK9, CILP2, CEPT, APOA5 (one signal each), and LPL, APOE (two signals) -- loci 

that have been extensively described in prior GWAS and other association studies. Other signals at known loci were 

detected at lower association levels (Supplementary Table 5). To declare novel genome-wide signals we used a 

threshold of 6.9x10-9, which was calculated by empirically estimating the number of independent tests in a Sardinian 

genome (see Methods and Supplementary Table 6).  

The results implicate three variants that are rare or absent elsewhere in the world and were missed in studies of 

European ancestry samples that included >100,000 individuals (12). We previously identified one of them through a 

Sanger-sequencing based effort (35): V578A (frequency 0.5%) in the LDLR gene (Supplementary Table 5) is associated 

with LDL-c and total cholesterol and independent from the known variant rs73015013 (frequency of 14%, effect -5.2 

mg/dl, p=6.4x10-8, r2<0.001). Here we report a novel association for triglycerides levels with a missense variant in 

APOA5 (frequency 3% in Sardinia, effect -20.7 mg/dl, p=1.2x10-12) (Table 2). This variant, R282S, was genotyped and 

included in the ExomeChip array after it was discovered in our sequencing effort, and to date it has been found only on 

two chromosomes in >30,000 Europeans characterized  in the Exome Aggregation Consortium. Of note, this is the 

strongest variant modulating triglycerides levels in Sardinia -- explaining almost 1% of the phenotypic variance -- and is 

also independent  of the known common variant at the locus, rs10750097 (frequency of 17%, effect +11.9 mg/dl, 

p=4.6x10-9 , r2=0.002) (Table 2). These two examples illustrate co-existence in the same locus of population-specific low 

frequency variants along with previously detected and independently associated cosmopolitan common variants (Figure 

3). The third genetic variant is the stop codon mutation Q40X in the HBB gene, better known as beta(0)39 because the 
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corresponding codon was numbered 39 prior to the last update on standard proteins nomenclature. It illustrates how 

variants that are unusually frequent in Sardinia can provide insights about biology. In Sardinia, this mutation is the 

common cause of autosomal recessive beta-thalassemia (36). In our sample, in agreement with earlier epidemiological 

findings (37,38), the heterozygous state is associated with 13.9 mg/dl lower LDL-c levels (p=1.2x10-20) and 16.9 mg/dl 

lower total cholesterol levels (p=1.2x10-22). Of note, this variant accounts for a large fraction of LDL-c variability in 

Sardinia, second only to the APOE variants. The variant is known to be associated with enhanced erythropoiesis (36, 

companion paper) – the heterozygous carriers have red blood cell counts 23% greater on average (p<10-300). This 

provides a likely explanation for decreased lipid levels in the carriers: large amounts of cholesterol are required for the 

replenishment and regeneration of cell membranes and intracellular structures in circulating cells and their bone 

marrow precursors.  

Although this stop codon mutation reaches a frequency of 5.0% in our sample, it is not included in standard genotyping 

arrays and cannot be easily imputed from HapMap or 1000 Genomes because it is very rare outside Sardinia (1000 

Genomes frequency <0.1%). Hence, the signal in this region would have been much weaker and would likely be missed 

or misinterpreted. For example, the analysis after 1000 Genomes Phase 3 imputation points only to an intergenic marker 

(rs76053862) 122 kb away from the beta(0)39 variant, the second most associated SNP using the Sardinian reference 

panel, with a much lower association signal (p = 1.4x10-13) (Figure 3). Finally, two additional signals were observed for 

total cholesterol levels at SNP rs115048493 near genes TMEM33 and DCAF4L1( p=6.94x10-9) and with HDL-c at SNP 

rs8092903 near TGIF1 in females (p=4.49x10-8) (Table 2 and Supplementary Table 7), although the biological bases for 

these associations are presently unclear. Since these signals are below our adjusted genome-wide threshold of 6.9x10-9 

these findings remain tentative. 

We were interested to see whether 1000 Genomes and HapMap based analysis would also miss important loci for other 

traits. As a second example of a class of especially interesting traits, we focused on the levels of five inflammatory 

markers. In a previous study, assessing ~2 million genotyped and HapMap imputed SNPs in the SardiNIA cohort, we had 

found 16 variants associated with at least 1 of 4 inflammatory markers measured: Interleukin-6 (IL-6), erythrocyte 

sedimentation rate (ESR), monocyte chemotactic protein-1 (MCP-1) and high-sensitivity C-reactive protein (hsCRP) (13). A 

fifth inflammatory marker, adiponectin (ADPN), showed no significant association in our previous analyses (unpublished 

results). Nevertheless, with the extended spectrum of variants assessed here we identify another 7 variants associated 

with MCP-1, hsCRP, ESR or ADPN, at the classical 5x10-8 threshold, with five variants in four previously undetected loci as 

well as 2 signals at coding variants in known loci (Table 3, Supplementary Figure 6, 7 and 8). Among the newly identified 

signals, 3 remained significant even with the more stringent threshold of 6.9x10-9. Compared to analysis based on 

HapMap or 1000 Genomes imputation, we also identified more strongly associated lead variants at 3 known loci (APOE, 

HBB and RHCE). These may point to causative variants, as supported by biological evidence, eQTL data and ENCODE 

annotation (see following paragraphs and Table 3).  

In detail, we found a striking novel signal associated with both hsCRP (rs183233091, p=1.1x10-28) and ESR 

(12:125406340, p=4.4x10-23) on chromosome 12, in a stretch of rare variants encompassing several genes (Figure 4). The 

lead variants were not the same but partially in linkage disequilibrium (LD) (r2=0.19, D’=0.79), and the association with 

hsCRP disappeared when conditioning for the lead variant for ESR and vice versa. This implies that the two signals are 

likely due to the same variant(s), an inference that is also consistent with the biological correlation of these two traits. 

The rare alleles at lead variants increase the levels of both inflammatory traits, with effects that appear to be stronger in 

males (Supplementary Table 8).  The extended associated region spans 5.4 Mb and includes 22 non-coding variants with 

association p-value <1x10-15 (Supplementary Figure 9). The majority, to our knowledge, are Sardinian specific, as only 10 

were found in either the 1000 Genomes Project Phase 3 or in the GoNL project databases(39) (4 with MAF between 0.1% 

and 1%, and the other 6 with MAF>1% in Europeans). The association of the latter 6 variants with hsCRP was tested for 

replication in 7,689 European individuals from 8 GWAS cohorts, but no signal was seen (Supplementary Table 9), while 
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nominal association was detected in a subset of 3,505 Southern European individuals for the top variant (Ponetail =0.04). 

These results allow us to exclude these SNPs as causal and indicate that the association is instead primarily driven by a 

variant that is extremely rare or absent outside Sardinia. Consequently, replication would require genetic testing in 

additional samples from Sardinia or in very large Southern European cohorts. 

For hsCRP, we detected additional tentative signals. One near PDGFRL, a gene previously implicated in 

inflammatory/autoimmune processes (40,41) (Supplementary Figure 8), which we again failed to confirm in the 

replication sample set. Currently, there is no other evidence that this signal is genuine, and further studies will be 

required to assess it. Two additional new signals reached the classical 5x10-8 threshold, but not the more stringent 

threshold for novel findings: one for ADPN, at 13:108884835 near the gene ABHD13 p=3.3x10-8, and another for MCP-1, 

at rs76135610, p=1.8x10-8, in a region encompassing the CBLN1 and N4BP1 genes, which is associated in females only 

(see Table 3 and Supplementary Figure 8).  

We uncovered two novel independent variants for MCP-1 that cause non-conservative, likely functional, amino acid 

changes. R89C substitution (rs34599082) in DARC causes the FYB-weak phenotype of reduced antigen expression and 

less ability to bind chemokines (42), and M249K in the transmembrane domain of CCR2 is expected to affect molecular 

interactions and thereby alter downstream signal transduction of bound ligand (43).  

Finally, better leads were found at three known loci. For hsCRP the known association signal near the APOE gene was 

mapped to the known non-synonymous causal variant, C130R. That SNP has been associated with Alzheimer disease, 

and directly with CRP levels both by candidate gene studies and very recently by exome sequencing-based GWAS (44,45); 

it  also coincides with the independent signal for LDL-c levels, linking lipid levels to inflammatory marker regulation. Two 

new lead variants were found for ESR. One again points to the Q40X mutation on HBB gene (Supplementary Figure 8), 

consistent with its effect on red cell counts (as shown above for LDL-c), which are in turn inversely correlated with ESR 

values. This association is thus relevant when interpreting ESR values in these individuals. Finally, a previously reported 

association on chromosome 1 in an intron of the TMEM57 gene (13,46) is refined to intron 3 of the nearby RHCE gene. 

That gene encodes the Rh blood group antigens, and ESR levels are higher in Rh-positive than in Rh-negative healthy 

adults, making RHCE a plausible candidate (Table 3). The lead SNP at this locus alters several regulatory motifs (ENCODE 

annotation  at UCSC genome browser, see URLs) and is strongly correlated (r2=0.80) with a nearby eQTL variant 

(rs11802413 in TMEM57) that affects expression of TMEM57 as well as RHCE in liver (47).  

We also performed gene-based rare variant tests using CMC and VT tests. Six loci passed the Bonferroni threshold of 

5x10-6 for significance (see Methods), but after conditional analysis only two were not driven by nearby associations 

detected in our single-variant GWAS analysis. Particularly strong associations were observed for STAB1 (p=4.7x10-10) and 

adiponectin levels, and another for PTPRH (p=8.3x10-7) and ESR levels. These signals, however, were not further 

investigated (Table 4, Supplementary Table 10), as those traits were not available in the replication cohorts.  

All newly associated variants for both blood lipid levels and inflammatory markers were validated by Sanger sequencing 

(Supplementary Table 11, Methods). Using 1000 Genomes imputation, no other signals were identified and all these 

new signals were either misplaced (as in the Q40X signal, which pointed to other nearby variants) or completely missed 

(Figure 3 and 4, Supplementary Figure 8, and Supplementary Table 12 and 13). 

Further illustrating the high resolving power of the sequence-based association analyses, CADD assessment showed that 

all 5 novel genome-wide signals as well as the 2 new independent signals have the highest CADD scores in their regions 

compared to those in high or moderate LD (r2>0.5), supporting their potential causative role in trait variation 

(Supplementary Table 14 and 15). By contrast, only 6 signals among 23 at known loci for the lipids and inflammatory 

markers – typically driven by common variants -- had top CADD scores, suggesting that the observation for the 7 new 

signals reflects advantages of studying rare or population specific variation.   
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Finally, we used variance component methods to estimate the combined contribution to lipid levels and inflammatory 

markers of all the variants we discovered by sequencing (48). Together, the variants identified in our sequencing study 

and successfully imputed explain about half of the heritability for the traits under analysis, with the sole exception of 

hsCRP, for which they explain almost all of observed trait heritability (Supplementary Table 16 and 17 and 

Supplementary Figure 10).  The missing heritability that could not be explained by sequenced variants might be 

attributable to variants not assessed here, including very rare variants that were not discovered or poorly imputed, or to 

structural variants that were not considered in the present study.  

Overall, the results demonstrate the value of whole genome sequencing-based association studies in this founder 

population, in which variants that are extremely rare in the rest of the world can reach high enough frequencies to 

provide clear and, in some cases, unexpected biological insights (49). On the other hand, our observations also illustrate 

the difficulties that will be encountered when attempting to replicate founder variant association results: the new 

signals we identified were typically due to variants that are extremely rare or absent elsewhere in the world. In our view, 

when the variant is present in other populations, evidence for association there could be used to confirm the signal and 

lack of association could be used to exclude variants as being causal. However, when rare/founder variants are not 

shared, as will often be the case, confirming the validity of results will require either accumulating additional samples in 

the population initially being studied or may depend increasingly on additional criteria such as examination of 

association at other variants in the same genomic region or the use of more stringent significance levels. Our study 

demonstrates the benefits of combining high-throughput sequencing and genotyping technologies with imputation 

methods and customized study designs; we obtained high quality information on the genomes of >6,000 individuals for 

an investment that, using conventional deep whole genome sequencing strategies, would have allowed deep 

sequencing of only 160-180 genomes. This cost-effective approach increases power in genetic analysis (19,companion 

paper) and creates the bases for larger research and personalised medicine programs. 
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METHODS 

Study Samples 

To survey genetic variation across Sardinia, we selected individuals participating in the SardiNIA longitudinal study of 

aging (14) or in case-control studies of Multiple Sclerosis (15) and Type 1 Diabetes (16). All participants gave informed 

consent, with protocols approved by institutional review boards for the University of Cagliari, the National Institute on 

Aging, and the University of Michigan.  

The SardiNIA project includes 6,921 individuals, representing >60% of the adult population of four villages in the Lanusei 

valley in Sardinia. Details of phenotype assessments for these samples have been published previously (13,14). In 

particular, LDL-c levels were estimated using the Friedewald formula. Individuals with triglycerides >400 mg/dl or those 

taking lipid lowering medications were excluded from the LDL-c, and those on medication were also excluded from 

analyses of other lipids. Summary statistics for individuals considered for GWAS analyses are reported in Supplementary 

Table 3. 

When array genotype data are available, sequencing a subset of individuals in a family allows for missing genotypes to 

be imputed in the remaining individuals by tracking haplotype segregation through the family (32,50). We used known 

family relationships among SardiNIA study participants and the ExomePicks program 

(http://genome.sph.umich.edu/wiki/ExomePicks) to prioritize individuals for sequencing. For each family, the program 

identifies subsets of individuals whose haplotypes can be estimated very accurately (for example, parent-offspring trios) 

and estimates the fraction of the genome for each additional family member that can be imputed using these 

haplotypes.  

Our ongoing case-control studies of Type 1 Diabetes and Multiple Sclerosis include 10,106 individuals and 1,109 nuclear 

families, each with one affected child and two unaffected parents. Participants were recruited through regional clinics 

and hospitals distributed throughout Sardinia, with the majority of participants recruited in Cagliari (in the South of 

Sardinia) or Sassari (in the North). Again, we favoured sequencing of parent-offspring trios to improve the accuracy of 

resulting haplotypes (17). Part of the sequencing data used in this study are available through dbGap, under “SardiNIA 

Medical Sequencing Discovery Project”, Study Accession: phs000313.v3.p2. 

Genotyping 

All SardiNIA study samples were genotyped with four different Illumina Infinium arrays: one high density array, 

OmniExpress, which surveyed common variation across the genome, and three low density targeted arrays that provide 

improved coverage of regions associated with cardiovascular and metabolic disease - CardioMetaboChip (51), immune 

disorders - ImmunoChip (52), and coding variation – ExomeChip, 

(http://genome.sph.umich.edu/wiki/Exome_Chip_Design). Genotyping was carried out according to manufacturer 

protocols at the SardiNIA Project Laboratory (Lanusei, Italy), at the Technological Centre - Porto Conte Ricerche (Alghero, 

Italy) and at the National Institute on Aging Intramural Research Program Laboratory (Baltimore, MD). Genotypes were 

called using GenomeStudio (version 1.9.4) and refined using Zcall (version 3) (53). We applied standard per sample 

quality control filters to remove samples with low call rates or where reported relationships and/or sex disagreed with 

genetic data (54).  We also applied per marker quality control filters to remove markers with low call rates, deviations 

from Hardy-Weinberg equilibrium, excess discordance among duplicates or identical twin genotypes, excess Mendelian 

inconsistencies or MAF=zero. Altogether, unique 890,542 autosomal markers and 16,325 X-linked markers were 

genotyped across SardiNIA study samples. Among the autosomal QCed markers, 809,193 are array specific (60,966 from 

ExomeChip, 112,717 from ImmunoChip, 100,554 from MetaboChip and 534,956 from OmniExpress) and 972 SNPs were 

typed in all the 4 arrays. The remaining 80,377 SNPs were typed in 2 or 3 arrays. For 870,108,399 genotypes assayed in 

>1 array, genotype concordance rate was >99.99%.  Our analyses include the 6,602 individuals that were successfully 
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genotyped with all four arrays. 

Sequencing 

Sequence data were generated at the Centro di Ricerca, Sviluppo e Studi Superiori in Sardegna (CRS4) and at the 

University of Michigan Medical School Core Sequencing Lab. Libraries were generated from 3-5 µg of genomic DNA using 

sample prep kits from Illumina and New England Biolabs. Paired-end sequence reads (typically, 100 to 120-bp in length) 

were generated with Illumina Genome Analyzer IIx, Illumina HiSeq 2000 and Illumina HiSeq 2500 instruments. Samples 

were sequenced to an average depth of 4.16X. A single nuclear family (two parents and one child) was sequenced to 

average depth >65x per individual to facilitate assessment of genotyping error rates.   

 

Reads were aligned to the human reference genome (GRCh37 assembly with decoy sequences, as available in the 1000 

Genomes Project ftp site at ftp://ftp.1000genomes.ebi.ac.uk) using BWA-0.5.9 (55), trimming read tails with average base 

quality <15. After alignment, base qualities were recalibrated and duplicate reads were flagged and excluded from 

analysis. We reviewed summary metrics generated using QPLOT(56)  and verifyBamId (57) for each aligned sample, to 

remove samples with low sequencing depth, poor coverage of regions with high or low GC content, or evidence for 

sample contamination.  

Variant Calling 

Variant calling and genotyping was carried out using our GotCloud pipeline (see URLs). Briefly, GotCloud organizes large 

sequence analysis jobs into many small jobs that can be distributed across a high-performance computing cluster. 

GotCloud previously contributed to variant calls for the 1000 Genomes Project and the NHLBI Exome Sequencing 

Project. The approach examines all samples jointly to identify an initial variant list, improving our ability to detect low-

frequency variants with low coverage data. This initial list of variants is then annotated with information on sequencing 

depth, mapping quality, the ratio of reference and alternate alleles at heterozygous sites, information on the evidence 

for alternate alleles by strand and read position, excess of heterozygosity, and others. This information was used to build 

a support vector machine (SVM) based classifier to distinguish between true variants (such as those seen in HapMap or 

validated by the 1000 Genomes Project using Omni arrays) and likely false-positive variants. The list of likely false 

positives was seeded with variants that had extreme sequencing depth and unbalanced representation of reference and 

alternate alleles, both by strand and position. Finally, using the list of likely high-quality sites, genotypes were estimated 

using the haplotype-aware calling algorithms implemented in BEAGLE, to generate initial haplotype estimates, and 

TrioCaller, to refine this initial haplotype set. The entire computational process required approximately 20 years of 

computing time (6 CPU years for quality control and alignment, and 14 CPU years for variant discovery and genotyping). 

The likely functional impact of variants was annotated using CADD scores (26) and Ensembl Variant Effect Predictor (20).  

Variant Discovery Power 

To evaluate our power to discover rare variants through low pass sequencing, we examined 1,068 samples that were 

both sequenced and genotyped with the 4 genotyping arrays previously described. The 4 arrays provided us with an 

incomplete but high quality catalogue of low frequency variants in these samples. We organized these variants by 

frequency and tabulated the fraction of variants that were rediscovered in our sequencing-based analysis for each 

frequency bin. Overall, we estimate that our sequencing effort discovered ~70% of the variants with frequency <0.5%, 

98.8% of variants with frequency 0.5 – 5%, and >99% of variants with frequency >5% (Supplementary Table 2). 

Haplotyping and Imputation 

Genotypes were phased using MACH software (58), using 30 iterations of the haplotyping Markov chain and 400 states 

per iteration. Imputation used minimac software (59) and a reference panel including haplotypes estimated by 
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sequencing. To reduce the number of duplicated haplotypes, whenever a parent-offspring trio was sequenced, only 

parental haplotypes were included in the imputation reference panel (resulting in 1,488 individuals for imputation). To 

reduce computational effort, we did not attempt to impute singleton variants. After imputation, we retained for 

association only markers with an imputation quality (RSQR) >0.3 or >0.6 if the estimated MAF was >=1% or <1% 

respectively(34). For comparison, we repeated imputation using the 1000 Genomes Project Phase 3 haplotype set (using 

all 2,504 available samples, from November 2014 release) and used RSQR >0.3 for all variants as a filter for imputation 

accuracy, as suggested by (34). This strategy led to 13.6 million and 12.7 million markers useful for analyses on the 

Sardinian-based and 1000 Genomes-based datasets, respectively. 

Estimates of Imputation Accuracy  

To further evaluate imputation accuracy, we carried out imputation using CardioMetaboChip, ImmunoChip and 

OmniExpress as a scaffold, and compared imputed genotypes with ExomeChip genotypes. This comparison excluded any 

markers that overlap between the 3 scaffold arrays and the ExomeChip (Supplementary Figure 4). To track the origin of 

haplotypes used as templates during imputation, we interspersed dummy markers in the haplotypes, arbitrarily labelled 

with allele ‘1’ for individuals recruited from the Lanusei valley and labelled with allele ‘0’ for individuals recruited 

elsewhere in SardiNIA. 

Population structure analyses 

To calculate FST we used a random sampling of 200 unrelated individuals from the Lanusei valley and 200 from the case-

control control cohort study, and all POPRES European populations with sample sizes greater than 15. To obtain 

unrelated Sardinian individuals we removed a random individual from each pair of putative relateds until no pairs of 

individuals had an estimated proportion of IBD sharing ≥0.05 (as measured using PLINK based on variants with 

MAF>5%). We calculated the Weir & Cockerham FST values between all pairs of populations. Significance is assessed by 

1000 permutations of individual labels between a given pair of populations (Supplementary Figure 2).PCA analysis was 

performed using EIGENSTRAT version 5.0 after removing one SNP of each pair of SNPs with r2 ≥0.8  (in windows of 50 

SNPs and steps of 5 SNPs) as well as SNPs in regions of known to exhibit extended long-range LD (60). We first considered 

a subset of 400 unrelated Sardinians along with all POPRES European populations. We then considered the full set of 

sequenced genomes and projected samples into an existing PCA coordinate space, one a time (Supplementary Figure 3). 

This analysis requires a small adjustment to the placement of each sample, which otherwise would be shifted towards 

the origin (61).  To address this, we devised a regression-based empirical correction scheme (J. Novembre and colleagues, 

unpublished).  The approach uses a leave-one-out procedure to learn how the shift effect depends on the PC values, and 

then applies this correction to all projected values.  This procedure is not sensitive to the inclusion of related and thus 

we are able to project the full Sardinian sample. To display levels of allele sharing between populations at different allele 

frequencies we used a metric previously described(29,30).  

Association Testing 

We searched for evidence of association using EPACTS (62), a software that performs a linear mixed model adjusted with 

a genomic-based kinship matrix calculated using all quality checked genotyped, autosomal SNPs with MAF >1% (599,975 

SNPs out of the 890,542).  The advantage of this model is that the kinship matrix encodes a wide range of sample 

structures, including both cryptic relatedness than population stratification. As a proof of appropriate adjustment of all 

confounders, the genomic control was 0.97, 0.99, 0.97, 1.01, 1.01, 1, 1.01, 1 and 1 for LDL-c, HDL-c, TC, TG, ADPN, 

hsCRP, IL-6, MCP-1 and ESR respectively.  Only additive effects of each allele were considered and age, age-squared and 

sex were included as covariates in all analyses. Traits were normalized with quantile transformation, prior analyses. For 

the inflammatory traits, we also included smoke and BMI as covariates (13).  
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To identify sex-specific effects, we firstly performed GWAS analysis separately for males and females using the same 

transformation and same covariates (excluding gender) as in the primary GWAS.  We then assessed significance to 

observed differences by testing heterogeneity of effect sizes with a chi-square test implemented in METAL (63). 

Rare variant analysis 

We performed two regional-based tests:  the Combined Multivariate and Collapsing (CMC)(64) and the variable 

thresholds method (VT) (65). Both tests were implemented in EPACTS (see URLs) to account for familiar relationships in 

our GWAS. To perform these rare variants tests we used all non-synonymous SNPs and variants altering splicing, with 

MAF <5%. In each test, we assessed 10,000 regions and thus considered a Bonferroni threshold of 5x10-6 to declare 

significance.  

Calculation of variance explained 

The variance explained by the strongest associated SNPs was calculated for each trait as the difference of R2-adjusted 

observed in the full and the basic model, where the basic model only includes phenotypic covariates (age, age2 and sex 

for lipid levels traits, age, age2, sex, BMI and smoke for the inflammatory markers) and the full model also includes all 

the independent SNPs associated with a specific trait. Variance for all available SNPs was calculated using GCTA software 

(48) taking account of both closely and distantly related pairs of individuals (66). The set of all available SNPs included all 

quality checked SNPs after removing those which were monomorphic in the subset of phenotyped individuals (this set is 

also called as “accessible genome”). 

Conditional analysis 

To identify independent signals, we performed GWAS analysis for each trait by adding the leading SNPs found in the 

primary GWAS as covariates to the basic model. A SNP reaching the classical genome-wide significance threshold (p <5 

x10-8) was considered a significant independent signal, with the sole exception for rs72658864 which did not reach the 

threshold but was supported by previous reports. 

Estimate of genome-wide significance threshold in Sardinians 

We defined a threshold for significance that applies to Sardinians when considering whole-genome sequencing data 

using empirical estimates (R package available at cran.r-project.org )(67). We performed analyses in the SardiNIA cohort 

as well as in a cohort of 2,700 unrelated individuals from the Sardinian case-control study of Multiple Sclerosis and Type 

1 Diabetes, who have been genotyped using OmniExpress and ImmunoChip and imputed using the Sardinian reference 

panel. This additional cohort was used to ensure that there was no bias introduced into the estimation of the threshold 

by dealing with families in the SardiNIA study. The method consists in simulating phenotypes under the null and running 

single-marker association tests to calculate the threshold to maintain a family-wide error rate of 5%. Associations were 

performed for all the SNPs on chromosome 3, and the genome-wide significance threshold was then predicted assuming 

that the whole genome is approximately 15.6 times longer than chromosome 3. 

For the SardiNIA samples we simulated three sets of 300 normally distributed phenotypes assuming three different 

heritability (20%, 40% and 70%) using Merlin (--simul option)(68). We assumed no underlying QTLs among the genotyped 

and imputed variants. For the CaseControl study, we simulated 300 normally distributed phenotypes under the null 

hypothesis of no association. Results were highly comparable among all scenarios (Supplementary Table 6). To obtain a 

more accurate estimate, we increased the number of simulations up to 1,000 for all the phenotypes (except for the 

phenotype with 70% of heritability because it is not a typical scenario in GWAS). We then calculated the genome-wide 

significance thresholds for analyses that aim to test all variants and for those that evaluate only variants with MAF>0.5%. 
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Our estimates led to a significant threshold of 6.9x10-09 and of 1.4x10-08 for GWAS with all variants and with only variants 

with MAF>0.5%, respectively.  

Variant Replication  

We searched for replication of the two novel signals associated with hsCRP in 7,689 individuals from 8 European cohorts 

(TwinsUK, FVG, VBI, HA, HP, ALSPAC, INCIPE1, INCIPE2)(69–72); ESR, MCP-1 and ADPN values were not available in those 

samples. In TwinsUK and ALSPAC we analysed genotypes from whole-genome sequence data(73), while for FVG, VBI, HA, 

HP, INCIPE1 and INCIPE2 cohorts we used genotypes imputed using the 1000 Genomes Phase I sequencing panel. 

Specific details on each cohort are provided in Supplementary Note. Association was evaluated by fitting a linear 

regression model that included age and gender as covariates, using as software GEMMA (TwinsUK, FVG, VBI, HA, HP) 

and SNPTEST (ALSPAC, INCIPE1, INCIPE2)(see URLs). Normalization was not applied to the trait.  

 

URLs 

Exome Aggregation Consortium browser: http://exac.broadinstitute.org 

GotCloud: http://genome.sph.umich.edu/wiki/GotCloud 

EPACTS: http://genome.sph.umich.edu/wiki/EPACTS 

GCTA: http://www.complextraitgenomics.com/software/gcta/ 

GEMMA: http://www.xzlab.org/software.html 

SNPTEST: https://mathgen.stats.ox.ac.uk/genetics_software/snptest/snptest.html 

UCSC Browser: http://genome.ucsc.edu/ 

Genevar eQTL browser: http://www.sanger.ac.uk/resources/software/genevar/ 

NCBI eQTL browser http://www.ncbi.nlm.nih.gov/projects/gap/eqtl/index.cgi 

Pritchard’s lab eQTL browser: http://eqtl.uchicago.edu/ 
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Figure Legends 

Figure 1. Geographical differentiation based on common and rare sites 

The figure show allele sharing among the Sardinian and the 1000 Genomes European populations. In panel a) 

differentiation is represented for three different frequency intervals over the geographic map of Europe. The thickness 

and the color of the lines connecting the dots are proportional to the allele sharing statistic as indicated in the color 

map. In panel b) we instead represent the relationship between the frequency (evaluated in 360 chromosomes) (X axis) 

and the sharing ratio (on the Y axis) for different 1000 Genomes Project populations (continuous lines). Results are 

plotted separately for the Lanusei valley sample (left panel) and the case control samples (right panel). The dotted line 

are used as comparison to show the sharing ratio between the TSI and other 1000 Genomes Project populations. 

 

 

  



113 
 

 

Figure 2. Length of shared haplotypes surrounding f2 variants within Sardinians and populations in 1000 Genomes. 

Length of shared haplotypes surrounding f2 variants shared between one of our sequenced individuals and one of 100 

randomly selected individuals sampled from our study or from a particular 1000 Genomes Project population. Panel a) 

shows the length of these shared haplotypes, in kilobases, in comparisons between Sardinia and several 1000 Genomes 

Project populations. Panel b) shows the number of f2 variants in each comparison. Panel c) shows the number of f2 

variants in comparisons within Sardinia (note the wider Y-axis range). SNIA: Sardinians from the Lanusei Valley. 
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Figure 3. Regional association plots for novel lipids loci. 

Regional association plots at the HBB locus for LDL-c, and at APOA5 for triglycerides for imputation performed using the 

Sardinian (panels a and c) and 1000 Genomes (panels b and d) reference panels, respectively. At each locus, we plotted 

the association strength (Y axis shows the –log 10 pvalue) versus the genomic positions (on the hg19/GRCh37 genomic 

build) around the most significant SNP, which is indicated with a purple dot. Other SNPs in the region are color-coded to 

reflect their LD with the top SNP as in the inset (taken from pairwise r2 values calculated on Sardinian and 1000 

Genomes haplotypes for left and right panels, respectively). Symbols reflect genomic functional annotation, as indicated 

in the inner box of panel A. Genes and the position of exons, as well as the direction of transcription, are noted in lower 

boxes. This plot was drawn using the standalone version of the LocusZoom package (74). 
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Figure 4. Regional association plot at chromosome 12 for hSCRP and ESR. 

Regional association plots at the chromosome 12 locus for hsCRP and for ESR, using the Sardinian (panels a and c) and 

1000 Genomes (panels b and d) reference panels for imputation, respectively. For the plot style, see Figure 3 legend.  
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Table 1. Summary of Discovered Variants 

The table provides an overview of the sequencing data, including summary statistics on data generated, a breakdown by 

frequency and biological function of all variants discovered and their novelty rate based on public databases. Finally, we 

show the distribution of variants discovered per each sequenced individual. 

Data Generation                 

Total Mapped Bases *** 22,684 Gb *** 

Average Depth *** 4.16X *** 

         

   Coding Variation 

 Genome  Regulatory Silent Splice 

Essential 

Splice Missense Nonsense 

         

Total Variation                 

No. of Variants 17.6M  1,596,737 63,062 21,097 2,504 84,312 2,013 

Novelty rate  vs dbSNP 135 31.6%  31.7% 24.0% 31.8% 36.2% 34.8% 48.7% 

Novelty rate vs dbSNP 142 21.7%  21.6%  15.2%  19.1%  26.5%  22.6% 34.8% 

Novelty rate vs dbSNP142 
and Exome Aggregation 

21.6%  
 

21.5% 7.0% 14.2% 21.8% 11.8% 21.6% 

         
Total Variation by 

Frequency                 

Common  

(MAF > 5%) 31.8%  31.2% 29.1% 28.7% 26.8% 20.7% 14.5% 

Low Frequency  
(MAF 0.5-5%) 19.8%  21.2% 21.5% 20.7% 20.1% 19.8% 15.8% 

Rare  

(MAF < 0.5%) 47.7%  47.5% 49.4% 50.6% 53.2% 59.5% 69.7% 

Singletons 9.0%  8.8% 9.2% 9.6% 9.8% 12.3% 17.9% 

         

Variation per individual                 

5th Percentile 3,332,299  293,928 10,619 3,331 361 10,738 158 

Average 3,359,655  293,928 10,778 3,396 380 10,920 172 

95th Percentile 3,383,736  298,766 10,934 3,465 400 11,100 186 

 

 



 

Table 2. Summary of Lipid Association Results 

The table lists association signals that reach p <5x10-8 for association with lipid levels in our study. At each novel locus, we indicated the genes likely to be 

modulated by the lead SNP, the location of the lead variant (human genome build GRCh37), the variant identifier rs#, the nearest gene, the effect and other 

allele, the frequency of the effect allele, the effect size in standard deviation units and the standard error, the pvalue, the proportion of variance explained by 

the allele (R2%), the imputation accuracy (RSQR) , the functional consequence of the variant and the r2 with hits previously identified in (12). When reporting a 

second signal within a locus, we first controlled for association with the local peak variant, as indicated by an asterisk (*, **) in the corresponding rows. Novel 

signals are shown in bold. 

Candidate Gene Chr:position rs name 

 Effect 

Allele / 

Other 

Freq Effect (StdErr) pvalue R2(%) RSQR 
Variant 

Consequence 

r
2
 with 

previous hit 

           

LDL           

PCSK9 1:55505647 rs11591147 T/G 0.038 -0.406(0.053) 1.73 x 10
-14

 1.0 Genotyped Missense, R46L Same SNP  

SORT1 1:109821307 rs583104 G/T 0.180 0.156(0.027) 1.87 x 10
-08

 0.5 Genotyped Downstream 0.821 

HBB 11:5248004 rs11549407 A/G 0.048 -0.473(0.051) 1.17 x 10
-20

 1.5 0.917 Stop gained, Q40X - 

CILP2  19: 19456917 rs58489806 T/C 0.074 -0.232(0.042) 2.58 x 10
-08

 0.5 Genotyped Intronic 0.858 

APOE  19:45412079 rs7412 T/C 0.036 -0.645(0.053) 2.47 x 10
-33

 2.4 Genotyped Missense, R176C Same SNP 

APOE    19:45411941 rs429358 
a
 C/T 0.074 0.264(0.039) 1.21 x 10

-11
 0.8 0.999 Missense, C130R Same SNP 

TC           

PCSK9 1:55505647 rs11591147 T/G 0.038 -0.390(0.053) 1.69 x 10
-13

 1.0 Genotyped Missense, R46L Same SNP 

TMEM33,  DCAF4L1, 

SLC30A9 
4:41980435 - G/A 0.013 -0.520(0.091) 6.94 x 10

-9
 0.6 0.91 Intergenic - 

HBB 11:5248004 rs11549407 A/G 0.048 -0.490(0.05) 6.88 x 10
-22

 1.5 0.917 Stop gained, Q40X - 

CILP2 19:19456917 rs58489806 T/C 0.074 -0.260(0.041) 2.15 x 10
-10

 0.7 Genotyped Intronic 0.858 

APOE 19:45412079 rs7412 T/C 0.036 -0.544(0.053) 2.06 x 10
-24

 1.7 Genotyped Missense, R176C Same SNP 

APOE 19:45411941 rs429358 
a
 C/T 0.074 -0.210(0.038) 2.18 x 10

-08
 0.5 0.999 Missense, C130R Same SNP 

HDL           

LPL * 8:19815256 rs286 T/A 0.125 0.257(0.046) 2.70 x 10
-08

 1.2 Genotyped Intronic 0.315 

LIPC 15:58687603 rs174418 T/C 0.467 0.136(0.021) 7.96 x 10
-11

 0.7 0.999 Intergenic 0.485 

CETP 16:56989590 rs247616 T/C 0.268 0.190(0.023) 2.37 x 10
-16

 1.1 Genotyped  Intergenic 0.994 

TGIF1 *  18:3412386 rs8092903 T/C 0.026 -0.448(0.082) 4.49 x 10
-08

 0.8 0.954 Intronic - 

TG           



 
 

LPL 8:19845376 rs7841189 T/C 0.209 -0.160(0.026) 8.36 x 10
-10

 0.6 Genotyped Intergenic Same SNP 

APOA5 11:116661101 - T/G 0.025 -0.450(0.064) 1.24 x 10
-12

 0.9 Genotyped Missense, R282S - 

APOA5 11:116664040 rs10750097 
b
 G/A 0.172 0.160(0.027) 4.64 x 10

-09
 0.6 Genotyped Upstream Same SNP 

CILP2 19:19456917 rs58489806 T/C 0.074 -0.260(0.039) 2.14 x 10
-11

 0.8 Genotyped Intronic 0.858 

 

a Association parameters reported for this marker refer to a model that includes rs7412 as additional covariate 

b
 Association parameters reported for this marker refer to a model that includes 11:116661101 as additional covariate 

* Results refer to the sex specific analyses. See Supplementary Table 7 for more details 

  



 

Table 3. Summary of Inflammatory Marker Association Results  

The table shows the association results at that reach p < 5x10-8 for ADPN, hsCRP, ESR, MCP-1 and IL-6. At each locus, we indicated the genes likely to be 

modulated by the lead SNP. For each lead SNP, we also showed the rs ID when available, the effect allele and its frequency, the regression coefficients, , the 

proportion of variance explained by the allele (R2%), the imputation accuracy (RSQR) for those that were imputed, the biological type of the corresponding 

nucleotide change, and the r2 with the hits previously reported in (13). Novel signals are shown in bold; independent signals are shown in italics.  

 

Candidate 

Gene 
Chr:position rs name 

Effect Allele 

/ Other 
Freq  Effect (StdErr) pvalue R2(%) RSQR 

Variant 

Consequence 

r
2
 with 

previous hit 

ADPN  

ADIPOQ  3:186559460 rs17300539 A/G 0.156 0.247 (0.025) 1.35x10
-22

  1.6 Genotyped Intergenic -- 

ABHD13 13:108884835 N/A A/G 0.001 -1.519 (0.275)  3.35x10
-08

 0.5 0.921 3’UTR -- 

hsCRP  

CRP  1:159684665 rs3091244 A/G 0.428 0.207 (0.019)  5.28x10
-27

 2.0 Genotyped Intergenic 0.249 

PDGFRL 8:17450500 rs73198138 A/G 0.004 -0.894 (0.151) 3.31x10
-09

  0.6 0.977 Intronic -- 

HNF1A  12:121415293 
a
 rs7139079 G/A 0.377 -0.118 (0.020)  2.11x10

-09
 0.6 0.998 Intergenic 0.710 

BRI3BP, AACS  12:125533106 rs183233091 A/G 0.010 1.054 (0.094) 1.09x10
-28

 2.1 0.941 Intergenic -- 

APOE  19:45411941 rs429358 C/T 0.073 -0.237 (0.036) 3.78x10
-11

 0.7 1 Missense, C130R 0.565 

ESR  

RHCE 1:25724005 
b
 rs630337 T/C 0.297 -0.109 (0.020) 4.03x10

-08
 0.5 0.957 Intronic 0.797 

CR1 1:207684359 rs11117956 T/G 0.400 -0.153 (0.018)  9.43x10
-18

 1.2 Genotyped Intronic 0.989 

HBB  11:5248004 rs11549407 A/G 0.048 -0.437 (0.042)  1.02x10
-25

 1.8 0.918 Stop gained, Q40X 0.330 

AACS, MIR5188 12:125406340 N/A G/A 0.007 1.034 (0.104)  4.40x10
-23

 1.6 0.952 Intergenic -- 

MCP-1  

DARC,CADM3  1:159175354 rs12075 G/A 0.446 -0.405 (0.019) 1.08x10
-96

 7.2 Genotyped Missense, G44D Same SNP 

DARC,CADM3  1:159164454 
c
 rs2852718 C/T 0.022 -0.515 (0.063)  3.34x10

-16
 1.1 0.999 Intronic 0.005 

DARC,CADM3  1:159175494 
d
 rs34599082 T/C 0.037 -0.338 (0.049) 8.23x10

-12
 0.8 Genotyped Missense, R89C -- 

CCR2, CCR3  3:46383906 rs113403743 T/G 0.099 0.273 (0.034) 1.47x10
-15

 1.1 0.997 Intergenic 0.988 

CCR2  3:46399764 
e
 rs200491743 A/T 0.005 0.799 (0.130) 9.94x10

-10
 0.6 Genotyped Missense, M249K -- 

N4BP1, CBLN1*   16:49072490 rs76135610 T/C 0.005 0.969 (0.172) 1.76x10
-08

 0.9 0.915 Intergenic -- 

IL-6  

IL6R  1:154428283 rs12133641 G/A 0.255 0.118 (0.020)  6.87x10
-09

 0.6 1 Intronic 0.998 

ABO  9:136142355 rs643434 A/G 0.263 -0.221 (0.020) 5.80x10
-27

 2.0 Genotyped Intronic 0.980 



 
 

 

Notes: 
a Results refer to the conditional analyses after conditioning on rs183233091 
b Results refer to the conditional analyses after conditioning on rs11117956 
c Results refer to the conditional analyses after conditioning on rs12075 
d Results refer to the conditional analyses after conditioning on rs12075 and rs2852718 
e Results refer to the conditional analyses after conditioning on rs113403743 
* Results refer to the female-specific analysis (see Supplementary Table 8 for more details); these genes do not fulfil our specific criteria for being candidates, 

but they are the nearest to lead SNP in the region (N4BP1, 428.3 Kb; CBLN1, 239.3 Kb) 

  



 

Table 4. Rare variant tests  
The table shows results for the rare variant association tests at genes passing the significant threshold for at least on the two statistical tests (CMC and VT). Of 
note, no significant results were observed for LDL-c, hsCRP and IL-6. For each gene, we indicated the genomic location assessed for analyses (in hg19 genomic 
build), the number of available SNPs considered, the number of SNPs passing the tests-specific criteria for inclusion, and the number and the fraction of 
individuals carrying a rare allele. For the CMC test, the effect size and its standard error, along with the pvalue and the phenotypic variance explained are 
reported. For the VT the impact on the phenotype (+ increase, - decrease) of rare variants, the pvalue and the phenotypic variance explained are reported. We 
also reported the pvalue observed after adjusting for the lead variant at the same or the nearby gene. Specifically, STAB1 was adjusted for rs7639267; CCR2 was 
adjusted for rs113403743 and rs200491743; IFI16 was adjusted for rs12075, rs2852718 and rs34599082; HBB and OR52H1 were adjusted for rs76728603, 
and PTPRH was adjusted for the best lead in the region (rs7253814). Pvalues that remain significant after adjustment are marked in bold.   
 
Gene   

  

Chr:Start-end  #SNPs  #Pass  Burden 

Count  

Fraction with 

rare  

CMC test    VT test    

Effect(StdErr) pvalue R2 Adjusted 

pvalue 

 Direction Pvalue R2 Adjusted 

pvalue 

ADPN            
         

STAB1  3:52535766-52558237  25  23  752  0.12886  0.245 (0.039) 4.71x10-10
 0.007 1.92x10-09

  + 1.00x10-07
 0.007 1.00x10-07

 

MCP1            
         

CCR2  3:46399158-46401290  4  3  105  0.01797  0.541 (0.104) 1.84x10-07
 0.005 0.7092  + 1.00x10-06

 0.005 0.92 

IFI16  1:158979950-159024668  10  8  567  0.09702  0.218 (0.046) 2.50x10
-06

 0.004 0.1564  + 1.40x
-05

 0.003788 0.115 

ESR            
         

HBB  11:5247914-5248004  2  2  613  0.10318  -0.345 (0.039) 9.77x10-19
 0.013 0.015  - 1.00x10-07

 0.013 0.025 

OR52H1  11:5565906-5566751  5  3  529  0.08904  -0.205 (0.042) 1.23x10-06
 0.004 0.345  - 3.40x10-06

 0.004 0.69 

PTPRH  19:55693244-55716713  22  15  1152  0.19391  -0.146 (0.029) 8.31x10-07
 0.004 4.22x10-06

  -. 1.18x10-05
 0.0041 1.90x10-05

 

 

 

. 
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Chapter 6: Genome-wide association analyses based on whole-genome sequencing in 

Sardinia provide insights into regulation of hemoglobin levels 
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ABSTRACT 

We report GWAS results for the levels of A1, A2 and fetal hemoglobins, analyzed for the first time 

concurrently. Integrating high-density array genotyping and whole-genome sequencing in a large general 

population cohort from Sardinia, we detected 23 associations at 10 loci. Five are due to variants at 

previously undetected loci: MPHOSPH9, PLTP-PCIF1, FOG1, NFIX, and CCND3. Among those at known loci, 

10 are new lead variants and 4 are novel independent signals. Half of all variants also showed pleiotropic 

associations with different hemoglobins, which further corroborated some of the detected associations and 

revealed features of coordinated hemoglobin species production.  

 

INTRODUCTION 

The provision of oxygen to tissues depends on hemoglobin, requiring the coordinated expression of several 

globin chains that form functional tetramers. An index of the importance of hemoglobin function is the 

evolutionary duplication and divergence of regulation of globin gene copies to adapt to stages of 

development and buffer the effects of mutational loss. In particular, at birth, a switch occurs from fetal 

hemoglobin (HbF) toward hemoglobin A2 (HbA2) and hemoglobin A1 (HbA1), so that during adult life the 

hemoglobin forms comprise ~1 % HbF, ~3 % HbA2 and ~96 % HbA1. The different hemoglobins all contain 

alpha-globin chains, encoded by two eponymous genes on chromosome 16. Those aggregate with non-

alpha-globin chains encoded, respectively, by the gamma (for HbF), delta (for HbA2) and beta-globin (for 

HbA1) genes in the “beta-globin gene cluster” on chromosome 11 (Figure 1). The molecular switch between 

fetal and adult hemoglobin occurs via the binding of transcription factors to regulatory DNA sequences 

controlling the expression of globin genes. In particular, the various genes in the beta-globin cluster are 

sequentially activated during ontogeny, so that time-specific expression patterns follow their genomic 

order1.  

Inherited disorders of hemoglobin, such as beta-thalassemia caused by mutations at the hemoglobin beta 

(HBB) locus, represent the most common monogenic disorders worldwide2. Prevalence is highest in areas 

where malaria was or remains endemic3. The severity of inherited hemoglobin disorders is also variable, 

from severe life-long transfusion-dependent anemia to mild anemia that does not require transfusion, 

depending on the molecular defect and genotype status as well as ameliorating variants in modifier genes. 

Therefore, studying the genetic regulation of hemoglobin levels might reveal new factors and mechanisms 

to optimize strategies for the therapy of the disorders.  

The large heritable contribution to phenotypic variance of HbA2 and HbF in the general population (0.728 

and 0.633 respectively; see Methods and previous report4) indicates that genetic analyses could lead to 

new insights. In genome-wide association studies (GWAS), two genomic regions, the beta-globin gene 

cluster locus and the HBS1L-MYB locus, have been associated at a genome-wide significant level with 

variations in the amount of HbA25, and only those loci and BCL11A have been associated with HbF levels6,7. 

Variants at all four loci are powerful modifiers of the severity of beta-thalassemia and sickle-cell disease7–10. 

Notably, none of the variants associated with HbA2 or HbF have been found associated with total 

hemoglobin, even in the largest meta-analysis of over 135,000 individuals11. This indicates that in analyses 

of total hemoglobin levels, association signals for subtypes are diluted and possibly obscured by opposite 

directions of effects. Currently, most of the HbF and HbA2 heritability also remains to be explained, and 

HbA1 variation has never been specifically assessed by GWAS at all.  
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A promising source to extend analyses is the founder Sardinian population, in which previous associations 

have been detected in a large cohort through the analysis of genotyping arrays bearing 

common/ubiquitous variants7. Here, we extend these analyses to rarer and Sardinian-specific variants 

inferred from whole-genome population sequencing in the same cohort (see Supplementary Note and 

Supplementary Figure 1). Furthermore, analyzing variants modulating HbA1, HbA2 and HbF levels 

concurrently in a single cohort provides a route to assess associations that overlap for different hemoglobin 

forms without the need to account for differences in study size, ethnic background or measurements.  

RESULTS 

To test for genetic associations with the levels of HbA1, HbA2 and HbF, we interrogated ~10.9 million single 

nucleotide polymorphisms (SNPs), genotyped or imputed in 6,602 general population volunteers of the 

SardiNIA longitudinal study4 (see Methods and Supplementary Table 1).  

Initial analyses showed a predominant role for the HBB:c.118C>T stop-codon mutation -- Q40X, better 

known as beta(0)39 mutation -- a variant common in Sardinia (rs11549407, allele frequency 4.8 %). It 

results in complete absence of beta-globin chain synthesis (beta0) and consequent beta-thalassemia in 

homozygous individuals, and in a decrease of HbA1 and increase of HbA2 and HbF in heterozygous 

individuals (with p-values < 1.0x10-200). Because its effect has been established previously7,12, we considered 

this mutation and other rarer beta0-thalassemia mutations known in Sardinia as covariates (see Methods 

and Supplementary Table 2). The assessed individuals in the cohort include 664 healthy heterozygous 

carriers but no beta0-thalassemia patients.  

The genome-wide scan revealed 23 unique variants at 10 loci at the classical 5x10-08 threshold. Of note, 21 

are significant even considering a more stringent threshold of p = 1.4x10-8, calculated based on an empirical 

estimate of the number of independent tests in the Sardinian genome (see Chapter 5). 

Five variants are at previously undetected loci, 4 are new independent signals at known loci, and 10 refine 

previously described associations to new lead polymorphisms that may have functional effects (Table 1). 

Six, 14 and 8 independent genome-wide significant signals were seen for HbA1, HbA2 and HbF respectively 

(Supplementary Figure 2). Hence, some of the associated variants significantly affected more than one 

hemoglobin, resulting in 28 variant-trait associations (see Table 1, and Supplementary Table 3). Variants 

resulting from imputation and not supported by linked genotyped markers were experimentally validated 

(Supplementary Table 4) 

 

Novel associations at new loci 

Novel associations were detected for all 3 hemoglobin forms. For HbA1, we observed a signal led by 

chr12:123681790 (in an intron of MPHOSPH9), encompassing several SNPs in complete linkage 

disequilibrium (LD) in a region encoding several genes (see Supplementary Figure 3). Which gene is truly 

associated, and how it affects hemoglobin production, remains unclear, although among the top associated 

SNPs, a variant in an intron of ARL6IP4 (chr12:123465483) falls in a highly conserved region rich in putative 

transcription factor binding sites and has the highest score for in-silico prediction of deleterious impact on 

function (CADD score)13 as detailed in Supplementary Table 2. Although this association is just below the 

more stringent empirical threshold of significance, it is further strengthened by independent association 

with another hemoglobin form (HbA2, p = 5.9x10-5), as detailed in Table 1. 
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For HbA2, we identified 3 novel signals. One, rs141006889, is a missense variant located in ZFPM1, a gene 

also known as FOG1 that encodes a cofactor of the hematopoietic transcription factors GATA1 and GATA214 

(Supplementary Figure 4). The complexes formed by FOG1 and GATA proteins are essential for normal 

erythroid differentiation14, as demonstrated by pathogenetic mutations that abrogate the FOG-GATA 

interaction to cause familial dyserythropoietic anemia and thrombocytopenia15. Another signal is defined 

by a pair of statistically indistinguishable variants, rs113267280 and rs112233623 (p-values: 1.11x10-29 and 

1.29x10-29), located in CCND3 gene, whose product, cyclin D3, is thought to be critical for erythropoiesis16. 

Knockdown of cyclin D3 correlates with reduction in the number of cell divisions during terminal 

erythropoiesis, thereby producing fewer and larger red blood cells17. These variants are also in partial LD 

with rs9349205 (r2 = 0.40), a SNP previously associated with mean red blood cell volume and number (see 

Supplementary Table 6), which falls 160bp away from rs112233623 in the same erythroid specific enhancer 

functionally associated with CCND3
17–19. The latter is also the associated variant with highest CADD score 

(see Supplementary Table 5). 

An additional variant related to HbA2, rs59329875, was observed for the first time in this study. It is 

situated between PLTP, which has been associated with several plasma lipoprotein and triglyceride levels20–

23, and PCIF1, which is thought to negatively regulate gene expression by RNA polymerase II24. 

As for HbF, we identified one new variant associated with its level: rs183437571, located on chromosome 

19 in an intron of NFIX, which encodes a CCAAT-binding transcription factor. This variant is just below the 

empirical significance threshold of p = 1.4x10-8 but is supported by considerable biological evidence 

implicating the gene and the surrounding region in hemoglobin regulation. Specifically, rs183437571 falls in 

a CpG region that is differentially methylated in fetal and adult red blood cell progenitors25. In mice, Nfix 

was recently identified as one of the regulatory factors with relatively restricted expression in 

hematopoietic stem cells,26 and required for the survival of hematopoietic stem and progenitor cells during 

stress hematopoiesis27. Intriguingly, NFIX is situated in a region of ~300 Kb that encompasses a number of 

genes involved in erythropoiesis (DNASE2 and KLF1)28–32 or otherwise associated with red blood cell traits, 

including mean corpuscular hemoglobin (SYCE2, FARSA and CALR)11 (Supplementary Figure 5 and 

Supplementary Table 6). KLF1 is a particularly interesting candidate gene32,33, but mutations observed in 

previous studies34 were not found and the gene itself is situated in an LD block distinct from our association 

signal. However, long distance regulatory interactions remain a possibility.  

Of the 5 novel signals, the discovery of chr12:123681790 for HbA1, rs141006889 for HbA2, and 

rs183437571 for HbF were strongly influenced by the assessment of variants from Sardinian whole-genome 

sequencing. Specifically, chr12:123681790 was missing in 1000 Genomes phase III35, and using this public 

reference panel the signal was misplaced to another variant ~1Mb away; rs141006889 was included in the 

design of one genotyping array (ExomeChip) after it was identified through our sequencing effort, but is 

currently not detected in sequenced 1000 Genomes samples; and rs183437571 was poorly imputed with 

1000 Genomes phase III, with a resulting signal that was not genome-wide significant (see Table 1 and 

Supplementary Table 7). 

Overall, the amount of variance explained by markers associated at the genome-wide level (Table 1) 

account for a fraction of the estimated genetic component of each trait (from 46 % for HbA1 to 68 % for 

HbA2, see Methods), supporting inheritance models that include small effect size and/or rare variants. For 

instance, 21 additional genes with suggestive significance signals (p<1.x10-04, minor allele frequency [MAF] 

> 0.5 %) were related to genome-wide significant loci listed here, either in the scientific literature (Pubmed 

before 2006) or by expression levels (Human Expression Atlas36) or Gene Ontology37 categories, using GRAIL 
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software38 (see Supplementary Note and Supplementary Table 8). Four of the suggestive signals most 

strongly linked to genome-wide association findings were located in NFE2, which encodes Erythroid Nuclear 

Factor 239; ADGB, which encodes a recently discovered globin of unknown physiological function40; and 

SPTB and ANK1, both of which encode proteins affecting the stability of erythrocyte membranes41.  

To test for replication of the associations at new loci detected in Sardinia, we used the largest independent 

sample reported to date, which measured HbA2 and HbF as well as F-cells (see Methods) in 4,131 

individuals from the TwinsUK cohort enrolled from the United Kingdom (UK) general population42. For two 

loci, both associated with HbA2, we successfully replicated the association seen in Sardinia. In particular, 

we observed a p-value of 6.98x10-06 for rs59329875 in the PLTP-PCIF1 intergenic region (MAF of 0.18) and a 

p-value of 1.73x10-04 for rs113267280 in CCND3 (MAF of 0.01). The rarity of other variants precluded 

replication. The MPHOSPH9 and FOG1 variants associated with HbA1 and HbA2, respectively, are missing in 

publicly available imputation panels (as detailed above), and rs183437571 in NFIX associated with HbF was 

imputed as monomorphic in the TwinsUK cohort (see Table 2 and Methods).  

 

Fine mapping at known loci 

The integration of whole-genome sequence variants in the scan was also instrumental to refine signals at 

previously known loci, either identifying a better lead variant or indicating novel independent signals. 

Specifically, as detailed below, we refined the association within the alpha and beta-globin gene clusters 

with all 3 hemoglobins; the association of the HBS1L-MYB intergenic region with HbA2 and HbF; and the 

association of the BCL11A gene with HbF. 

 

Associations within the beta-globin gene cluster were intricate. As reported above, the strongest modifier 

in this region is the HBB beta(0)39 variant, acting on all 3 hemoglobin types (see Figure 1, Methods and 

Supplementary Table 2). Multiple additional independent signals were observed in conditional analyses for 

HbA2 and HbF, but they were distinct for each hemoglobin type, highlighting different regulatory patterns 

within the beta-globin gene cluster. Specifically, for HbA2, we confirmed 2 known independent associations 

at missense mutations in the HBD gene (rs35152987 and rs35406175, the latter perfectly tagged by our 

lead signal, see Supplementary Table 2). In addition, we identified 3 novel independent signals 

(rs12793110, rs11036338 and rs7936823) within a block of LD around the HBB gene, confirming a 

controlling role of this region in HbA2 production5 (see Figure 1 and Supplementary Figure 4). For HbF 

levels, 2 new independent signals were detected in a separate LD-block of the beta-globin gene cluster (see 

Figure 1 and Supplementary Figure 5). The first, situated in an intron of the HBE1 gene (rs67385638), 

remained associated even when taking into account 43 other variants in the beta-globin gene cluster 

associated with hemoglobin variation (see Supplementary Note). The second was located in a cyclic AMP 

response element upstream from HBG2 (rs2855122) already implicated in drug-mediated HbF induction by 

butyrate43 : different features of this marker make it a strong candidate for fetal to adult hemoglobin 

switching modulation (see Supplementary Note). 

At the alpha-globin gene cluster, 2 variants were associated with HbA1 and 3 with HbA2, of which one 

affected both traits (Table 1 and Figure 1). All results at this locus were corrected for any effect of the most 

frequent alpha-globin gene deletion present in Sardinia (NG_000006.1:g.34164_37967del3804, known as –

a3.7 deletion type I), directly genotyped in a subset of the volunteers and imputed for the rest of the cohort 
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(see Methods). This deletion was associated at the genome-wide level with both HbA1 and HbA2 and only 

nominally with HbF (see Table 1 and Supplementary Table 2). The most strongly associated signals 

(rs570013781 and rs141494605) were situated within the NPRL3 and HBM genes, affecting HbA1 and HbA2 

respectively. NPRL3 contains several hypersensitive sites involved in the regulation of alpha-globin gene. 

HBM encodes a globin member of the avian alpha-D family44 and its expression is highly regulated in human 

erythroid cells, although the protein has not been detected in human erythroid tissues. These observations 

suggest a possible regulatory function for which high-level protein expression is not required44. An 

independent variant associated with HbA1 and HbA2 (chr16:391593) was observed within the AXIN1 gene, 

in which a further independent SNP (rs148706947) was found associated with HbA2 alone (Supplementary 

Figure 3 and Supplementary Figure 4).  

We also examined variants in the HBS1L-MYB intergenic region known to be associated with HbF and HbA2 

levels5. We confirmed the role of the known variant (rs66650371, a TAC deletion) on the expression of both 

forms of hemoglobin45,46 (see Supplementary Note). A further novel independent signal for HbF was found 

at rs11754265 in an intron of HBS1L, which has been shown to be a much stronger eQTL than rs66650371 

for HBS1L and the neighboring ALDH8A1 in monocytes47. 

In line with previous studies6–8,48,49 the second intron of BCL11A gave multiple signals associated with HbF 

levels. They are explicable by the joint action of variants in each of two independent groups of statistically 

indistinguishable SNPs: one group formed by rs4671393, rs766432 and rs1427407, with p-values between 

2.6x10-130 and 5.6x10-129, and the other by rs13019832 and rs7606173, with p-values of 6.1x10-33 and 

9.1x10-33 in our cohort. The most likely causal candidate in the first group is rs1427407, a variant already 

associated with HbF in other population cohorts and functionally associated with BCL11A regulation50. In 

the second group we can instead point to rs13019832, which shows the highest functional CADD score 

(Supplementary Table 5). This variant has also been correlated, in adipose tissue, with the methylation of a 

CpG site (cg23678058) in a region that is functionally associated with BCL11A expression51 and shows 

evidence of an effect on GATA-1 binding in peripheral blood-derived erythroblasts52,53.  

 

Pleiotropic effects 

Among our 23 lead variants, 6 were associated (at least with p<0.01) with a second hemoglobin type, and 

another 6 were associated with all 3 (including beta(0)39 and –a3.7 deletion type I) (Figure 1 and Table 1). 

Overall, all but 3 pleiotropic variants modulate different hemoglobins in the same manner, i.e., with the 

same allele increasing the levels of all associated hemoglobins. The 3 exceptions include the beta(0)39 

variant, which decreases HbA1 while increasing HbA2 and HbF, and 2 SNPs mapping in the beta-globin gene 

cluster, both affecting HbA2 and HbF but in opposite directions (Figure 1 and Table 1). In addition, many of 

the additional suggestive signals are associated with more than one hemoglobin type, increasing the 

likelihood that they are true signals (see Methods). In fact, 14 of these variants – all sharing effects on 

HbA1 and HbA2, but none with HbF – showed between-trait combined p-values that were genome-wide 

significant (Supplementary Table 9) and hint at additional pathways of potential interest in hemoglobin 

dynamics. 

In general, the extended number of genetic variants showing joint association with HbA1 and HbA2 rather 

than HbF is consistent with high correlations of levels of adult hemoglobins HbA1 and HbA2 but only partial 

correlations of these hemoglobin forms with levels of HbF (see Methods). 
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Given the central role of hemoglobin in providing oxygen to the body tissues and the substantial fraction of 

total body cells accounted for by circulating red cells, factors impacting hemoglobin production and red cell 

count unsurprisingly have pleiotropic effects on other non-hematological traits. This is exemplified by the 

strong impact of the major beta(0)39 mutation on cholesterol and LDL-cholesterol. Here we extended the 

analysis for this mutation to 69 non-hematological quantitative traits selected from among those assessed 

in the SardiNIA cohort4 (see Supplementary Note). We found the variant also significantly associated with 

increased total white blood cell counts (p = 3x10-7) -- with the major contribution coming from neutrophil 

counts (p = 1x10-6) -- and platelet counts (p = 9x10-5) (see Supplementary Table 10) 

 

DISCUSSION 

We provide evidence for 23 associated variants at 10 loci influencing the levels of one or more of the 3 

hemoglobin species measurable in post-natal life. Our results are based on a cohort from the Sardinian 

founder population that is much larger than previously described GWAS for HbF and HbA2 and interrogates 

a high resolution genetic map, based on population sequencing that expands the assessed spectrum of 

allelic variants 10-fold compared to previous studies. The finding that 2 of the 5 newly reported loci were 

not detectable without using the SardiNIA reference panel, and the others were misplaced (Table 1 and 

Supplementary Table 7), further highlights how large-scale sequencing efforts in this founder population 

can reveal functionally relevant variants that may be very rare and hence missed in other populations.  

For the same reasons, however, replication of results for such variants or translation of findings directly to 

other populations is difficult. For example, the other currently reported sample of comparable size, from 

the United Kingdom, could provide replication only for the two variants present there. Similar limitations 

will likely be found in other GWAS designed to detect effects of rare and founder variants. However, 

additional corroboration of our findings for such variants comes from their independent associations with 

other hemoglobin species and hematological traits in Sardinians, and also from the biological function of 

the genes involved. For instance, variant chr12:123681790 within MPHOSP9, associated with HbA1, also 

shows suggestive evidence of association with HbA2. The variant in FOG1, very rare in Europeans (MAF 0.4 

%), is a missense variant in a gene implicated in erythropoiesis; and the variant in NFIX, absent in other 

European populations, falls within a cluster of genes involved in erythropoiesis and in a CpG region 

differentially methylated in fetal and adult red blood cell progenitors25. 

By carrying out GWAS for HbA1, HbA2 and HbF assessed for the first time in the same individuals, we see a 

wide range of pleiotropic effects of variants across the 3 hemoglobin types (Table 1). Strikingly, HbA2 

harbors more than half of the loci discovered here (see   
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Figure 2), with many pleiotropic effects on HbA1 and some on HbF. Thus, although it has a minor role in the 

transport of oxygen to tissues54, variations in HbA2 participate in pathways that regulate the levels of the 

other hemoglobins active in postnatal life.  

The direction of pleiotropic effects among the different hemoglobin types provides some additional clues 

to mechanism. Within the alpha-globin gene cluster, in agreement with the presence of alpha-globin chains 

in HbA1, HbA2 and HbF, all variants affecting more than one hemoglobin showed the same direction of 

effect for all. The regulation of globin chains from the beta-globin gene cluster, however, is more 

complicated. It involves variants with the same direction of effect for all hemoglobins (rs7936823) and 

other variants most likely involved in switching mechanisms that affect fetal and adult hemoglobins in 

opposite directions (rs2855122). Still other variants change the kinetics of competition among non-alpha 

globin chains; for example, the beta(0)39 mutation decreases beta-globin levels and thereby increases the 

availability of alpha-globin chains to combine with delta and gamma-globins, leading to higher levels of 

HbA2 and HbF.  

Variants influencing only 2 forms of hemoglobin acted mainly in the same direction and never jointly 

affected HbA1 and HbF. As for variants shared only between HbA2 and HbF, they can be attributed to 

specific cis-regulatory mechanisms in the beta-globin gene cluster (rs12793110 and rs7944544) or to loci 

with a role in erythroid differentiation (CCND3 and MYB). By contrast, variants shared between HbA2 and 

HbA1 were either trans-acting (in MPHOSPH9) or localized in the alpha-globin gene cluster but with effect 

sizes probably too small to impact HbF production. Consistent with the latter possibility, the –a3.7 deletion 

type I, which has strong genome-wide significant effects on HbA1 and HbA2, had much smaller, only 

suggestive, effects on HbF (see Supplementary Table 2). 

Our analyses also detected broader pleiotropic impacts, most strikingly for the beta(0)39 variant. In 

addition to effects on LDL-c described in the companion paper, we report for the first time that beta(0)39 is 

also significantly associated with increased total counts of white blood cells (and some subsets) as well as 

platelet counts. This suggests that in heterozygous carriers this variant drives a broader increase in bone 

marrow-derived blood cells. Speculatively, some of these, such as augmented leukocyte and neutrophil 

counts, may have provided protection against pathogens other than malaria, thus increasing selection for 

the balanced polymorphism.  

The detected variants provide candidate modifiers influencing the clinical status of patients with 

monogenic hemoglobin disorders. For example, we carried out a preliminary analysis of a small sample of 

306 beta-thalassemia patients homozygous for the beta(0)39 stop codon mutation but showing very great 

heterogeneity in disease presentation and course. In addition to those described previously7–10, some 

variants detected in this study showed possible effects as modifiers of disease severity (see Supplementary 

Note). However, the potential of these variants to help predict disease severity remains tentative without 

studies of larger sample sets. Nevertheless, the variants already add to the candidate targets for 

therapeutic intervention in the widely prevalent inherited beta-thalassemia and other 

hemoglobinopathies2. 
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FIGURES AND TABLES 

Figure 1. Association at the globin clusters. 

Schematic representation of association results in the genomic context of the beta-globin (panel a) and 

alpha-globin (panel b) gene clusters. For each hemoglobin, the markers associated are positioned with + or 

– corresponding to an increase or decrease in the corresponding trait by the effective allele (as in Table 1). 

Symbol is larger if the marker is associated at genome-wide level or smaller if it results from the analysis of 

pleiotropic effects. The beta(0)39 mutation and –a3.7 type I deletion as well as relevant genes and the 

locus control region hypersensitivity sites (HS) are indicated. Finally, at the bottom of each panel is 

represented the linkage disequilibrium (r2) profile for the region in Sardinia, with colors ranging from high 

(red), to intermediate (green), and low (blue). 
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Figure 2. Diagram of genome-wide associated loci. 

Representation of genome-wide significant findings on hemoglobin levels in relation to their contribution 

to the phenotypic variation (variance explained, panel a) or to their individual impact (effect size, panel b). 

At each step, the length of the black bar represents the magnitude of variance explained (panel a) or effect 

size (panel b) for each trait, locus, gene and variant. The bars are connected by colored bands to their sub-

components (loci for each trait, genes for each locus, variants for each gene). Three colors (yellow, green 

and blue) represent the 3 hemoglobin forms (HbA1, HbA2 and HbF respectively), and for loci or genes 

affecting more than one hemoglobin: gray combines HbA1 and HbA2, cyan combines HbA2 and HbF, and 

light gray represents effects common to all 3 hemoglobin forms. Each panel is drawn to show loci in order 

of their importance, i.e. from the largest to smallest amount of explained phenotypic variance (panel a) or 

effect size (panel b). The variance explained by each locus was calculated fitting a regression model 

including all variants at that locus, while the effect size for a locus is the sum of effect sizes of all variants in 

that locus (Supplementary Table 3 reports effect sizes for such joint models). For variants associated with 

more than one trait the maximum value is used. Markers are reported as chromosome : position when an 

rs ID was not available; and when an intergenic region is involved instead of a single gene, we show nearby 

genes within brackets.  

 



 

Table 1. Most significant independent association results from single variant tests for hemoglobin A1, A2 and fetal. 

The table shows the most significant association results (all results are corrected for beta0 mutations observed in the HBB gene, and results on the alpha-globin 

gene cluster are adjusted for the -a3.7 deletion type 1, see Methods). Novel signals are shown in bold while variants refining previously reported signals are in 

italic. At each locus, we indicated the chromosome and genomic position (hg19 build), the rs ID when available, the effect allele tested for association (EA) and 

the other allele at the SNP (OA), the imputation accuracy (RSQR), the SNP effect allele frequency (EAF) and the regression coefficients. We then indicated 

whether the SNP is also linked the other hemoglobin forms (p < 0.01), and indicated the direction of the effect allele (+ for increasing the levels of Hb, - for 

decreasing). The candidate genes likely to be modulated by the lead SNP are also reported along with their inclusion criteria, as described in Methods (p = 

position, c = coding, e = eQTL, o = OMIM, b = biological). Where “Alpha-globin gene cluster” is mentioned we refer to NPRL3, HBZ, HBQ1, HBA1, HBA2 and HBM 

genes; while for “Beta-globin gene cluster” we refer to HBB, HBD, HBBP1, HBG1, HBG2 and HBE1 genes. Association coefficients for males and females are 

reported in Supplementary Table 11. 

  Shared effects 

 

Traits (units) 

and loci # 

Candidate genes chr:position 
rsID from 

dbsnp142 

Alleles 

(EA/OA) 

RSQR EAF Effect (StdErr) p-value HbA1 HbA2 HbF 

HbA1 (g/dl)            

locus1 
1
 

Alpha-globin gene cluster(p,o,b); MPG(p) 16:149539 
1,4

 rs570013781 A/G 0.98 0.136 -0.1995 (0.023) 5.86x10
-18

 - - - 

Alpha-globin gene cluster (p,o,b); AXIN1(p) 16:391593 
1,3,5

 (cond.) - T/C 0.94 0.012 -0.4028 (0.058) 3.28x10
-12

 - -  

locus2 FAM3A(p); G6PD(p,c,o,b); IKBKG(p) X:153762634 
4
 rs5030868 A/G Genotyped 0.085 -0.1256 (0.019) 2.78x10

-11
 -   

locus3 
2
 MPHOSPH9(p) 12:123681790 

2
 - A/C 0.96 0.010 -0.3606 (0.064) 1.68x10

-08
 - -  

HbA2            

locus1 
4
 (%) 

Beta-globin gene cluster(p,o,b); HBD(c) 11:5255582 
4
 rs35152987 A/C Genotyped 0.004 -2.182 (0.109) 4.35x10

-86
  -  

Beta-globin gene cluster (p,o,b); HBD(c) 11:5251849 
4
 (cond.) rs7944544 T/G 0.98 0.005 -1.26 (0.097) 3.90x10

-38
  - + 

Beta-globin gene cluster (p,o,b); HBB(c); HBG1/HBG2(e); 

OR51V1(p) 
11:5231565 

4
 (cond.) rs12793110 T/C 1.00 0.181 -0.2408 (0.019) 5.75x10

-36
  - - 

Beta-globin gene cluster (p,o,b); OR51V1(p) 11:5242698 
4
 (cond.) rs11036338 C/G 0.99 0.381 0.1282 (0.017) 2.03x10

-14
  +  



 

Beta-globin gene cluster (p,o,b); HBG1/HBG2(e) 11:5250168 
4 

(cond.) rs7936823 G/A 0.96 0.466 0.1117 (0.015) 5.00x10
-13

 + + + 

locus2 
1,3,5

 (g/dl) Alpha-globin gene cluster (p,o,b); HBM (c); LUC7L(p) 16:216593 
1,3

 rs141494605 C/T 0.97 0.149 -0.3080 (0.025) 3.94x10
-35

 - - - 

 Alpha-globin gene cluster (p,o,b); AXIN1(p) 16:391593 
1,3,5

 (cond.) - T/C 0.94 0.012 -0.5112 (0.063) 6.48x10
-16

 - -  

 
Alpha-globin gene cluster (p,o,b); ARHGDIG(p); 

AXIN1(p); ITFG3(p); PDIA2(p); RGS11(p) 
16:342218 

1,3,5
 (cond.) rs148706947 T/C 0.93 0.021 0.2892 (0.051) 1.04x10

-08
  +  

locus3 
2
 (%) CCND3(p,b) 6:41952511 

2
 rs113267280 G/T 0.99 0.101 0.2923 (0.026) 1.11x10

-29
  + + 

locus4 (%) MYB(b) 6:135418916 rs7776054 G/A Genotyped 0.210 0.1762 (0.020) 3.71x10
-19

  + + 

locus5 
2
 (%) CTSA(p); PCIF1(p,c); PLTP(p,e); MMP9(e); TNNC2(e) 20:44547672 

2
 rs59329875 C/T 1.00 0.134 -0.1399 (0.024) 3.64x10

-09
  -  

locus6 
2
 (%) FOG1(p,b,c); C16orf85(p) 16:88601281 

2
 rs141006889 G/A Genotyped 0.007 -0.5074 (0.087) 5.33x10

-09
  -  

HbF (g/dl)            

locus1 

BCL11A(p,o,b) 2:60720951 rs4671393 A/G 1.00 0.136 0.578 (0.023) 2.60x10
-130

   + 

BCL11A(p,o,b) 2:60710571 
4 

(cond.) rs13019832 A/G 1.00 0.484 -0.2024 (0.017) 9.12x10
-33

   - 

locus2 

MYB(b) 6:135419018 rs9399137 C/T Genotyped 0.205 0.4202 (0.020) 1.09x10
-93

  + + 

HBS1L(p,c,e); ALDH8A1(e) 6:135356216
 3

 (cond.) rs11754265 C/G 1.00 0.367 -0.1421 (0.021) 5.04x10
-12

   - 

locus3 
4
 

Beta-globin gene cluster (p,o,b); HBG1/HBG2(e) 11:5290370
 4

 rs67385638 G/C 1.00 0.236 0.2038 (0.019) 1.09x10
-25

   + 

Beta-globin gene cluster (p,o,b); HBG1/HBG2(e) 11:5277236 
4
 (cond.) rs2855122 C/T 1.00 0.395 -0.1458 (0.022) 2.57x10

-11
 + + - 

locus4 
2,5

 NFIX(p) 19:13121899 
2,5

 rs183437571 T/C 0.97 0.010 0.4607 (0.081) 1.61x10
-08

   + 

 

1 = association results locally corrected for the –a3.7 deletion type I (NG_000006.1:g.34164_37967del3804) (see Supplementary Note);   2 = first time 

associated to the trait and in a novel locus;  3 = first time associated to the trait in a previously reported locus; 4 = signal refining a previously reported signal;  5 = 

result not found using the 1000 Genomes reference panel ;  cond. = obtained by conditional analysis on variants reported on the upper rows for the considered 

locus.   

  



 

Table 2. Replication of novel loci. 

 

The table describes association in the TwinsUK cohort (N = 4,131 individuals). For each SNP, we indicated the associated hemoglobin tested, the number of 

samples analysed, the imputation accuracy according to the IMPUTE-INFO metric, the effect allele tested for association (EA) and the other allele at the SNP 

(OA), the SNP effect allele frequency (EAF) and the regression coefficients. The last column explains the reason for the SNPs not being tested. 

 

Traits (units) and loci # 

from Table 1 
SNP Candidate genes 

INFO 

score 

Alleles 

(EA/OA) 

EAF Effect (StdErr) p-value Notes 

HbA1 (g/dl)         

locus3 chr12:123681790 MPHOSP9 - - - - - 
Not imputable because absent in 1000 Genomes; at the 

moment, Sardinian specific. 

HbA2 (%)         

locus3 rs113267280 CCND3 0.843 G/T 0.011 0.442 (0.118) 1.73x10
-04

 . 

locus5 rs59329875 PLPT-PCIF1 0.994 C/T 0.185 0.132 (0.029) 6.98x10
-06

  

locus6 rs141006889 FOG1 - - - - - 
Not imputable because absent in 1000 Genomes; detected in 

the NHLBI GO Exome Sequencing Project (ESP). 

HbF (%)         

locus4 rs183437571 NFIX 0.294 T/C 0.000 - - Imputed as monomorphic in TwinsUK cohort. 
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METHODS 

Sample description 

The population studied here includes 6,921 individuals, representing > 60 % of the adult 

population of 4 villages in the Lanusei Valley in Sardinia, Italy. They are part of the SardiNIA 

project, a longitudinal study including genetic and phenotypic data of 1,257 multigenerational 

families with more than 37,000 relative pairs. Details of phenotype assessments for these 

samples have been published previously4. All participants gave informed consent to study 

protocols, which were approved by the institutional review board of the University of Cagliari, 

the National Institute on Aging, and the University of Michigan. 

For whole-genome sequencing, we selected 1,122 individuals from the SardiNIA study and 998 

individuals enrolled in case–control studies of Multiple sclerosis and Type I Diabetes in Sardinia. 

Genomes were sequenced to an average coverage of 4.16-fold. Details on sequencing protocol, 

data process and variant calling can be found elsewhere55 and in the companion paper. The 

2,120 sequenced samples consist of 695 complete and incomplete trios; to avoid over-

representation of rare haplotypes during imputation process we considered only parents for each 

trio – totaling 1,488 samples – to build our reference panel55 (see companion paper for details). 

Part of the sequencing data used in this study are available through dbGap, under “SardiNIA 

Medical Sequencing Discovery Project”, Study Accession: phs000313.v3.p2.  

 

Genotyping and Imputation 

The 4 micro-arrays used for genotyping the entire SardiNIA cohort were the Illumina® Infinium 

HumanExome BeadChip, ImmunoChip, Cardio-MetaboChip and HumanOmniExpress BeadChip. 

Genotyping was carried out according to manufacturer protocols at the SardiNIA Project 

Laboratory (Lanusei, Italy), at the Technological Center - Porto Conte Ricerche (Alghero, Italy) and 

at the National Institute on Aging Intramural Research Program Laboratory of Genetics 

(Baltimore, MD). Genotypes were called using GenomeStudio (version 1.9.4) and refined using 

Zcall (version 3)56. We applied standard per sample quality control filters to remove samples with 

low call rates or for which reported relationships and/or gender disagreed with genetic data. 

Details on quality controls were described elsewhere55. Altogether, 890,542 autosomal markers 

and 16,325 X-linked markers were genotyped across SardiNIA study samples. We selected for 

phasing and imputation only the 6,602 samples for which all 4 arrays were successfully 

genotyped.  

Genotypes were phased using MACH software57, using 30 iterations of the haplotyping Markov 

chain and 400 states per iteration. We performed imputation using Minimac software58 and a 

reference panel including haplotypes of 1,488 Sardinian whole-genomes55 (see companion 

paper). Variants with estimated imputation quality (RSQR) <= 0.3 or <0.8 were discarded if the 

estimated MAF was >= 1 % or between 0.5 % and 1 % respectively; variants with MAF < 0.5 % 

were kept only if genotyped. RSQR thresholds for rare and low frequency variants were more 

stringent than those proposed for other traits55 as they led to better genomic control parameters 

(1.001, 0.993 and 0.985 for HbA1, A2 and fetal, respectively). We also performed imputation 
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using the 1000 Genomes Project Phase III (version 5)59 haplotype set, and used the same 

thresholds to discard variants. Genomic control parameters for 1000 Genomes imputation were 

1.050, 0.997 and 0.984 for HbA1, A2 and fetal, respectively. 

 

Association analysis 

We performed association analyses of all 3 hemoglobins in grams per deciliter (g/dl) as well as 

percentage (%) for HbA2 and HbF. HbA2 (%) and HbF (%) were directly measured from high-

performance liquid chromatography, while HbA1 (g/dl), HbA2 (g/dl) and HbF (g/dl) were derived 

from total hemoglobin measured by Coulter counter. As expected, measurements in % and g/dl 

were highly correlated for HbF (Spearman’s Rho = 0.99) and for HbA2 (Rho = 0.85). HbA1 (%) was 

not considered for genetic association because it was too highly correlated with both HbA2 (%) 

and HbF (%) as a consequence of their derivation formula (Rho = -0.803 and -0.757, respectively, 

p < 1x10-20). Considering only non-carriers of beta0-mutations, HbA1 (g/dl) was highly correlated 

with HbA2 (g/dl) (Rho = 0.662, p < 1x10-20) and poorly with HbF (g/dl) (Rho = -0.055, p = 3.44x10-

5). Likewise, HbA2 and HbF were weakly positively correlated as percentage measures (Rho = 

0.108, p = 4.08x10-16) and even less as g/dl (Rho = 0.066, p = 5.81x10-5), consistent with previous 

findings5. Measurements were available for a subset of 6,305 individuals; descriptive statistics are 

reported in Supplementary Table 1. Association results were considered genome-wide significant 

when p-value was less than 5x10-08, however we also noted in the text variants that would not 

meet a threshold of 1.4x10-8 we introduce for sequencing based GWAS carried out in Sardinians 

for variants with MAF > 0.5 % (see companion paper). 

Before association analyses, traits were normalized using inverse normal transformation; for HbF 

we also removed outliers with values above 5 %. Analyses were adjusted for age, age2, and 

gender as well as for the presence of at least one of the 3 beta0 mutations (beta(0)39 

(rs11549407), HBB:c.20delA (rs63749819) and HBB:c.315+1G>A (rs33945777)), all directly 

genotyped or sequenced (see Characterization of beta0 mutations paragraph). Regression 

coefficients for beta(0)39 – the most common in Sardinia with 10.3 % of carriers – are reported in 

the Supplementary Table 2.  

Association was performed using the q.emmax test in EPACTS60, which implements a linear mixed 

model procedure to correct for cryptic relatedness and population stratification by incorporating 

a genomic-based kinship matrix. Associations reported in the table refer to the best p-value 

obtained with either percentage or original units for HbA2 and HbF. Notably, HbF signals always 

resulted in lower p-values considering g/dl, whereas for HbA2 analysis, this was only the case for 

rs141494605. All loci passed the genome-wide significance threshold of p<5x10-08 for both % and 

g/dl except for rs59329875, which was genome-wide significant only for the HbA2 measure 

reported in Table 1.  

To identify independent signals we performed regional conditional analysis, using forward 

selection procedure adding, at each step, the most associated variant as covariate in the model. 

In this sequential analysis, we tested only SNPs lying in a region of 2Mb centered on the lead 

variant. The same genome-wide significance threshold used for primary signals was also 

considered for independent signals. For loci where different independent signals were found, we 
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also report model parameters of jointly associated variants in Supplementary Table 3. Finally, 

the lead variants and their surrogates (r2 > 0.90) were annotated using Combined Annotation 

Dependent Depletion (CADD) score13 and reported in Supplementary Table 5.  

 

Heritability and variance explained  

We estimated heritability for the 3 hemoglobins using Merlin-regress61 on the same sample used 

for the GWAS study. Estimates for normalized levels of hemoglobins were respectively 0.520 for 

HbA1 (g/dl), 0.728 for HbA2 (%) (0.700 for g/dl) and 0.633 for HbF (%) (0.624 for g/dl). We then 

calculated for each hemoglobin form the proportion of phenotypic variance explained by the 

associated lead variants. We measured that as the difference of R2-adjusted observed between 

the full and the basic model, where the basic model includes only phenotypic covariates (age, 

age2 and gender) and the full model also includes all the independent SNPs associated with the 

specific trait. R2-adjusted values were calculated using a linear mixed model procedure from 

lmekin() function in the “Kinship” R package62. Estimates were 0.240 for HbA1 (g/dl), 0.492 for 

HbA2 (%) and 0.383 for HbF (%).  

 

Characterization of beta
0
 mutations 

For the present study we designed a Taqman custom assay for the HBB:c.118C>T nonsense 

mutation (rs11549407, also known as beta(0)39), and genotyped 6,602 samples. Comparison of 

Taqman genotypes and imputation results (rs11549407, RSQR = 0.92) produced an overall 

concordance of 98.8 %. Also, we further sequenced all samples discordant between red blood 

cell index-based diagnosis (using MCV, MCH, HbF % and HbA2 %) and Taqman genotypes, using 

Sanger sequencing to determine any additional beta-globin mutations different from beta(0)39, 

thus identifying 3 carriers for the HBB:c.20delA (rs63749819) and one for the HBB:c.315+1G>A 

(rs33945777) mutations.  

 

Characterization of the deletion at the alpha-globin gene cluster 

In Sardinia 3 variants are known to be mainly responsible for alpha-thalassemia: SNPs 

rs111033603 and rs41474145, and the deletion NG_000006.1:g.34164_37967del3804; the latter, 

known as the –a3.7 deletion type I, is by far the most common63. We did not observe the rarer 

rs111033603 or rs41474145 in our sequencing effort. To establish genotypes at the deletion site 

in the full cohort, we used an inference strategy combined with experimental data. Specifically, 

we first characterized the structural variant by PCR in 260 unrelated sequenced individuals 

randomly selected in the SardiNIA cohort. We calculated the relative coverage of the deleted 

region in the whole-genome sequenced samples by considering the ratio of read count in the 

potentially deleted region (223,450 to 226,953 bp – excluding 150 bp boundaries) with read 

count in the nearby region not subject to deletion (227,254 to 230,757 bp). We then identified 

coverage ratio thresholds that best predicted PCR genotypes at the deletion and used these 

thresholds to infer genotypes for the 2,120 sequenced individuals. We then inserted genotypes in 
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the Sardinian reference panel and imputed the deletion on the total SardiNIA cohort. To assess 

accuracy of imputation we considered the best guess genotypes and searched for Mendelian 

errors in families. The observed rate was 0.58 % over 1,193 parent-offspring pairs, consistent 

with high imputation precision. Association results reported in the manuscript at this locus are 

corrected for the inferred –a3.7 deletion type I dosages. 

Variants validation 

We validated all variants that showed genome-wide significant p-values in the primary or 

conditional analysis that were not directly genotyped or had no surrogates (r2 > 0.90) that were 

directly genotyped. We did not validate variant rs13019832 at BCL11A for HbF, which was highly 

linked with findings of previous reports (rs7606173)48,50. Validation was performed using Sanger 

sequencing or Taqman, depending on variant frequency, for 5 variants. We selected for each 

variant all individuals carrying the minor allele (heterozygous and homozygous) plus a random 

subset of subjects homozygous for the other allele (in all, 3,084 subjects were genotyped), except 

for rs141494605 and chr16:391593, for which we specifically selected worse imputation dosages 

(borderline RSQR). In addition, for rs17525396, we used independent genotypes available for a 

subset of the cohort64, derived from Affymetrix 6.0 (see Supplementary Table 4). 

 

Replication of variant effects 

Replication was performed in the TwinsUK cohort42. Genotyping was performed using a 

combination of Illumina arrays (HumanHap300, HumanHap610Q, 1M-Duo and 1.2MDuo 1M), 

and imputation performed using the IMPUTE software package (v2) and 1,000 Genomes 

haplotypes released on 16 Jun 2014-- Phase I integrated variant set release35,65. Details on quality 

controls are provided as Supplementary Note. HbA2 levels and HbF percentage were obtained by 

HPLC, and F-cells were enumerated after intracellular HbF staining and subsequent flow 

cytometry66. Measurements were available in 4,131 samples. Association analyses were 

performed with merlin-offline package in Merlin, to account for relatedness61. To be consistent 

with analyses performed in the SardiNIA study, age, age squared and gender were used as 

covariates and the traits transformed using quantile normalization. 

Selection of candidate genes 

At each locus, we defined a list of genes to be considered as plausible candidates if they satisfied 

one of the following: 1) genes that were +/- 25Kb of the lead SNP, indicated (p) in Table 1; 2) 

genes with exonic variants (frame-shift, stop-codon, non-synonymous and synonymous) along 

with splice-site and 5'/3' UTR variants in LD (r2≥0.8) with the lead SNP (c); 3) genes whose 

expression was modulated by the SNP itself or by an eQTL in LD (r2≥0.8) with the top SNP (e); 4) 

genes with clear biological function connected to the traits (b); or 5) genes harboring variants 

responsible for which Mendelian diseases, as reported in OMIM (o). Candidate genes from eQTL 

data were searched using an automatized pipeline querying 16 eQTL public repositories47,67–81, 

including the Pritchard eQTL browser; only top SNP eQTLs or any SNP with FDR < 0.05 were 

considered. 

 



141 
 

Pleiotropy and gene connections analysis 

To characterize genome-wide significant results and to identify suggestively significant ones, we 

searched for effects shared between the different hemoglobin forms as well as evidence of 

connections between both. Specifically, for genome-wide significant markers, we simply reported 

the effect direction for all traits with p < 0.01 when a marker is associated at genome-wide level 

for one trait (see Table 1). To identify candidates with suggestive p-values between 1.00x10-04 

and 5.00x10-08, we selected among these:  

- markers with MAF > 0.5 % and showing 2-trait combined p-values < 5x10-08; p-values 

were combined using inverse variance weighted meta-analysis, as implemented in Metal 

software82; 

- markers falling in or nearby genes that demonstrated evidence of connections with 

genome-wide significant loci, either in Pubmed (using the 2006 data set to avoid 

confounding by subsequent GWAS discoveries), or in Human Expression Atlas36 and Gene 

Ontology37 databases using GRAIL38 and considering genes reported with multiple 

hypothesis corrected p-values < 0.05.  

Using these criteria, we identified 21 further genes with biological connections to genome-wide 

significant loci reported in Supplementary Table 8 and 14 variants with combined p-values 

between 2.08x10-08 and 1.18x10-11, reported in Supplementary Table 9. 

 

 

URLs 

SardiNIA project: https://sardinia.irp.nia.nih.gov 

1000 Genomes project: http://www.1000genomes.org 

HumanExome BeadChip design: http://genome.sph.umich.edu/wiki/Exome_Chip_Design 

ImmunoChip, Cardio-MetaboChip and HumanOmniExpress BeadChip: http://www.illumina.com 

GenomeStudio software: http://www.illumina.com/applications/microarrays/microarray-

software/genomestudio.html 

MACH software: http://csg.sph.umich.edu/abecasis/MACH 

Minimac software: http://genome.sph.umich.edu/wiki/Minimac 

Zcall software: https://github.com/jigold/zCall 

IMPUTE v2 software: http://mathgen.stats.ox.ac.uk/impute/impute_v2.1.0.html 

Merlin (including Merlin-regress and Merlin-offline): http://csg.sph.umich.edu/abecasis/merlin 

Epacts software: http://genome.sph.umich.edu/wiki/EPACTS 

Metal software: http://csg.sph.umich.edu/abecasis/metal 

GWAS Catalog: http://www.genome.gov/gwastudies 

Grail software: https://www.broadinstitute.org/mpg/grail 

Gene Ontology: http://geneontology.org 

Human Expression Atlas: http://symatlas.gnf.org 

Pritchard eQTL browser: http://eqtl.uchicago.edu 
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Chapter 7: Major height reducing variants and selection for short stature on the 
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ABSTRACT 

We report sequencing-based whole-genome association analyses to evaluate the impact of rare 

and founder variants on stature in a cohort of 6,307 Sardinian islanders. We identified two 

variants with large effects. One is a rare stop codon in the GHR gene, relatively frequent in 

Sardinia (0.87% vs <0.01% elsewhere), which in homozygosity causes the short stature Laron 

syndrome. We find that it reduces height in heterozygotes by an average of 4.2 cm (-0.64 s.d). 

The other variant, in the imprinted KCNQ1 gene (MAF = 7.7% vs <1% elsewhere) reduces height 

by an average of 1.83 cm (-0.31 s.d.) when maternally inherited. Additionally, polygenic scores 

indicate that known height-decreasing alleles are at systematically higher frequency in 

Sardinians than would be expected by genetic drift. The findings are consistent with selection 

toward shorter stature in Sardinia and a suggestive human example of the proposed “island 

effect” reducing the size of large mammals. 

 

Human height is a canonical complex trait, under tight genetic control with heritability of 80-90% 

(1,2). Although rare variants with strong effects have been reported in families with monogenic 

forms of dwarfism or gigantism, the ~700 reported variants affecting height - which explain only 

about 16% of the observed heritability - are typically common alleles with modest effect sizes 

(average <0.3 cm) (3,4). Little is known about the impact of rare and founder variants on stature at 

a population level and whether they contribute to variation in height between populations. The 

founder Sardinian population is especially suitable to assess the impact of such variants. Although 

most of the common genetic variants present elsewhere in Europe also exist in Sardinia, the 

isolated island population is enriched for numerous variants that are very rare or absent 

elsewhere (5) and were not included in the commercial genotyping arrays or multi-population 

sequencing panels that are commonly used to characterize genetic variants through imputation 

(6). 

We therefore used whole genome sequencing to investigate height in a large sample of 

Sardinians, who, with an average male stature of 168.5 cm (7), are among the shortest European 

populations. 

We used whole genome sequencing (~4x) of 2,120 Sardinians to construct a reference panel of 

~17.6 million SNPs (Supplementary Fig. 1a,b) and carry out a genome wide association study 

(GWAS) for height. After stringent quality controls and imputation using a scaffold of 890,542 

genotyped SNPs, 11,826,948 SNPs were assessed in 6,307 participants in the SardiNIA study, 

from villages in the Lanusei valley (1). The GWAS found two signals strongly associated with 

stature, one located in the GHR (5p12) and the other in the KCNQ1 (11p15.5) genes, which 

encode the growth hormone receptor and a voltage-gated potassium channel, respectively 

(Supplementary Fig. 1c). Notably, their joint effect in the SardiNIA cohort is as large as that 

contributed jointly by the top 10 height associated alleles assessed in the GIANT meta-analysis(4) 

and by the top 5 when using the effect sizes observed in the replication set.  

The first of these signals is rs121909358 (p=1.07x10-10, effect -0.64 s.d. corresponding to -4.2 cm, 

Fig.1a, Supplementary Fig. 2). The height-reducing T allele is found on a single haplotype 

(Supplementary a Fig. 3). It creates a loss of function termination codon (R61X) in GHR. The 

variant and its association with height would not have been detected without imputation from 
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the Sardinian sequencing panel (imputation accuracy, RSQR=0.94, validated by direct genotyping) 

(6), as the variant is extremely rare outside of Sardinia (frequency <1/60,000, ExAC Browser, 

URLs). 

Homozygosity for this stop codon variant is one of several mutations in GHR known to cause 

Laron syndrome (LS) (OMIM#262500); a rare autosomal recessive condition characterized by 

primary growth hormone insensitivity. Since the initial description (8), more than 250 LS cases 

have been reported (Orphanet, URLs), with the majority of patients identified in Maghrebi-

Sephardic Jewish groups (9) and an isolated population of Spanish descent in Ecuador (10). The 

global estimated prevalence of LS is 1-9 per million (Orphanet, URLs) suggesting world-wide 

carrier frequencies of less than 0.01%. In contrast, we observed an unexpectedly high frequency 

of 0.87% for the R61X variant among 1,481 unrelated individuals from the SardiNIA cohort. 

Consistent with this frequency, 1 homozygous affected LS individual has been observed among 

the 10,721 inhabitants of the 4 villages in the Lanusei valley. The association of R61X with height 

was replicated in an independent Sardinian cohort of 5,314 individuals from an additional 6 

villages (Supplementary Note), though its frequency and the effect size are estimated to be 

smaller (MAF= 0.46% in 857 unrelated individuals, pone-tail =0.015, effect -0.31 s.d., corresponding 

to -1.89 cm). 

Our results extend to the general population the evidence that GHR mutations affect height of 

heterozygous carriers (Supplementary Table 1, 11,12). In addition, 30% of the carriers from the 

SardiNIA study also showed limited elbow extension, which is very rare in unaffected individuals 

but characteristic of LS patients due to underdevelopment of the muscular system and an 

abnormal degree of humerus rotation (Supplementary Table 2, 
8). Interestingly, among 2,120 

sequenced Sardinians, we also found instances of two additional rare variants described to cause 

LS in Southern European and South American populations (Supplementary Note, Supplementary 

Table 3); however those variants were at frequencies too low in the SardiNIA cohort 

(MAF<0.003) to assess phenotypic effects in heterozygotes. 

The second GWAS signal in KCNQ1 (Fig. 1b) is complicated by the fact that it falls in a known 

tissue-specific imprinted gene cluster. Indeed, we found striking evidence that the association 

with short stature is maternally inherited (Fig. 1, Table 1), with the strongest maternal effects at 

rs150199504 (MAF= 7.7%, p=5.6x10-9, maternal effect -0.315 s.d., corresponding to -1.83 cm), 

and no significant paternal effect (p=0.95) (Table 1, Supplementary Fig. 2). By directly typing one 

of the top associated variants, rs2075870, which also showed a modest albeit significant 

association with decreased height in ~90,000 individuals of European origin (13), we confirmed 

the association in the independent Sardinian cohort (p=3.6x10-4 for the maternal effect -0.22 s.d., 

corresponding to -1.17 cm and p=0.1 for paternal effect). The association signal spans 48Kb 

encompassing rs2075870 and 4 additional variants in LD with rs150199504 (pvalue <1x10-6, r2> 

0.7) (Fig. 1, Table 1) making it difficult to identify the causal variant (s). 

However, we found that differences in allele frequencies and LD patterns among the variants in 

Sardinia compared to other populations provided a route to prioritize the list for the responsible 

variant(s) (Fig. 2). Remarkably, among the SNPs in LD in Sardinia, we could exclude rs2075870, 

rs67004488, rs149658560 and rs12790610 as causal based on their frequencies, LD patterns and 

results from GWAS in other populations. In particular, these variants are common (MAF ~10%), in 
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LD with each other (r2>0.3) in South Asia, and yet no association of rs2075870 with height has 

been observed there (13). By contrast, among our core associated SNPs, the top variants 

rs150199504 and rs143840904 are in lower LD with rs2075870 and much rarer in South Asia 

(r2<0.3 and MAF <1.2 % and <2.6% respectively) (Fig. 2d) and thus association with height could 

be missed if they are not directly typed in very large sample sets. Hence, rs143840904 and 

especially our lead variant rs150199504 are plausible causal candidates. 

To further assess their candidacy, we directly tested the 6 core associated variants in 19,053 

individuals from 6 GWAS European cohorts, among which we expect more resolving power than 

in Sardinia due to lower LD in the region (Fig. 2b, 2c). Among the 5 variants that passed quality 

checks, rs150199504 was again the most significantly associated and had the strongest effect in 

these samples as well (p=2.82x10-4, effect -0.243 s.d) – even though it was the rarest of the five 

(MAF = 0.89 %). To a lesser extent significant association was also seen for rs143840904 

(p=1.23x10-3, effect -0.145 s.d.), but was not observed for the 3 other variants (Supplementary 

Table 4). Interestingly, in a reciprocal conditional analysis, the effect of rs143840904 was 

completely accounted for by rs150199504 (p=0.24, effect -0.06 s.d.). By contrast residual 

association remained at rs150199504 after conditioning on rs143840904 (p=0.06, effect -0.172 

s.d.). This further genetic evidence supports rs150199504 as the main driver of the association 

with decreased height at this locus. Suggestively, rs150199504 (and rs143840904) fall in a 

differentially methylated region (ENCODE, URLs), hinting at a possible effect on expression. 

The maternal effect we observed for KCNQ1 on height is consistent with the established 

monoallelic expression of maternal alleles at this imprinted locus (14). Furthermore, the 

observation that translocations and inversions disrupting the function of KCNQ1 result in 

Beckwith-Wiedemann gigantism (15) suggests that, by inference, the short stature alleles 

reported here result in a gain of function. 

KCNQ1 variation has been implicated in several other traits, including platelet aggregation, 

electrocardiographic measures and type 2 diabetes, with the latter also influenced by parent of 

origin effects (16–20). Those associations were, however, all completely independent of any of the 

6 top KCNQ1 associated variants considered here (r2<0.08). Furthermore, the 6 variants showed 

no significant association with any of 193 traits measured in the SardiNIA study participants (data 

not shown)(1,21). 

To evaluate the overall impact of known variants on the average short stature observed in 

Sardinia relative to other populations and to test the possibility that short stature might be 

selected for in this island population, we used polygenic height scores. These scores measure the 

total frequency of height-changing alleles in a population, weighing each allele by its effect size. A 

general North-to-South gradient for height in Europe due to directional selection has been 

reported (22,23) with Sardinia as a significant outlier among the Human Genome Diversity Panel 

European populations (URLs). Consistent with these studies, we observed a significantly lower 

polygenic height score in Sardinia compared to other European populations examined in the 

1000 Genomes project, including the Southern European Tuscans and Spanish (Fig. 3). Adding our 

KCNQ1 and GHR variants to the previously described 691 alleles (4), the polygenic score of 

Sardinians decreased by 3.8%. Overall, Sardinian scores are lower than would be expected 

compared to other European populations (p=1.62x10-6, -5.9cm relative to CEU, 1.6% average 
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increase in frequency for height decreasing alleles), even when calibrating for genome-wide 

patterns of differentiation due to genetic drift, suggesting that selection has played a role in 

decreasing height in Sardinia. The differences in height explained by the polygenic score are in 

accord with the observed ~10 cm of phenotypic differences between Sardinians and the other 

European populations. 

We have also considered the possibility that Sardinians might have an additional contribution of 

reduced height due to the expression of recessively acting height-decreasing alleles exposed due 

to founder effects. However, the impact of elevated homozygosity among Sardinians on height 

appears to be small (0.129 s.d.) relative to the effects predicted by the polygenic score (0.910 

s.d.) (Supplementary Note). 

An example of low frequency allele affecting height was recently reported from the Icelandic 

population (24). However, our findings demonstrate for the first time that part of the missing 

heritability of human height can be attributable to rare variants involved in monogenic disorders, 

as shown by GHR, as well as by variants common in isolated populations but rare elsewhere, as 

exemplified by KCNQ1. Indeed, a shift toward higher frequencies for variants with large size 

effects observed in Sardinia (6,25) – and in this case the powerful height-decreasing variants -- 

allowed us to detect, in a cohort of thousands of participants, associations that were missed in 

GWAS and meta-analyses of hundreds of thousands of individuals.  

Intriguingly, the increased frequencies of height-decreasing alleles at GHR and KCNQ1, and 

especially the polygenic height scores in this population, are also consistent with the long-

standing observation of an “island effect” in which many large animals become adaptively 

smaller on islands relative to their mainland counterparts (26). The extinct Sardinian mammoth 

(Mammuthus lamarmorae) and deer (Megaloceros cazioti) are two examples (27). One 

complication to assess this in in humans is that selection for decreased height likely began prior 

to the peopling of Sardinia among the early European farmer lineage (28) that is thought to have 

initially colonized the island(29), and Sardinians might have simply retained short stature that 

evolved earlier. However, we observe lower polygenic height scores in Sardinia even when 

compared with other populations with high proportions of early European Neolithic ancestry 

(Tuscans and Spanish)(30). Thus, selection for decreased height likely continued and was 

particularly strong in the lineage leading to modern Sardinians. One conjecture is that crop yields 

or other nutritional sources were limited in the restricted island environment, but exactly why 

selection for decreased height was acting among the Neolithic ancestors of the Sardinians, and 

likely intensified after the occupation of the island, remains an open and interesting question. 

URLs 

HGDP: http://www.hagsc.org/hgdp/index.html 

OMIM: http://www.omim.org/ 

ExAC Browser: http://exac.broadinstitute.org 

SardiNIA project home page: https://sardinia.irp.nia.nih.gov/ 

EPACTS: http://genome.sph.umich.edu/wiki/EPACTS  
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ENCODE: https://www.encodeproject.org/ 

GWAS Catalog: https://www.ebi.ac.uk/gwas/ 
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FIGURES AND LEGENDS 

Figure 1. Regional association plots for GHR and KCNQ1 locus. a) GHR locus, the Y axis shows the 

association strength (–log10 pvalue) versus the genomic positions (hg19/GRCh37) around the 

most significant SNP (purple). Other SNPs in the region are color-coded to reflect their LD with 

the top SNP. Symbols reflect genomic functional annotation. Genes and the position of exons are 

shown below. b) Regional plot at the KCNQ1 locus for the paternal and maternal effects 

respectively. The position of GWAS catalog SNPs (URLs) with the corresponding traits and the 

position of exons in the KCNQ1 region are indicated below. 
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Figure 2. Worldwide frequency and LD pattern for the six top KCNQ1 SNPs. The figure illustrates 

the frequency (upper panel) and the pairwise LD matrix (lower panel) for the six top SNPs 

associated in Sardinia at the KCNQ1 locus. Data are presented for 4 populations: a) Sardinia, b) 

Southern Europe, c) Northern Europe, d) South Asia. Matrix cells are colored according to the LD 

value: green if r2>=0.7; yellow if 0.3<= r2 <0.7 ; red if r2<0.3. 

 

 

Figure 3. Polygenic score analysis for height. Polygenic score based on the 2 top associated 

variants (rs121909358 and rs150199504) and the 691 height loci from GIANT for which the effect 

size in Sardinia and allele frequencies in 1000 Genomes phase 3 data are available. The black 

circles indicate the scale for display of p-values according to circle size. Abbreviations: SDI: 

SardiNIA cohort; IBS, TSI, GBR, CEU, and FIN: 1000 Genomes populations. 

 

 

 



 
 

Table 1. Parental of origin effects at KCNQ1. The table summarizes the strongest results for the parental of origin association test at the KCNQ1 locus 

(defined as pvalue<1x10-6 in either the maternal or paternal tests for the assessed 500Kb region). At each SNP, we report in the column N the number of 

informative transmissions used (see Methods) and the association parameters obtained evaluating the minor allele i) without considering parent of origin, 

ii) when maternally inherited, and iii) paternally inherited. The last column reports the pvalue for heterogeneity between estimated paternal and maternal 

effects. 

     Both Maternal Paternal 

rs ID 
Chr:Position 

Minor 

Allele/ 

Other 

MAF N 
 

Effect (StdErr) 
Pvalue 

 

Effect (StdErr) 
pvalue Effect (StdErr) pvalue 

Heterogenity 

pvalue 

rs150199504 11:2814960 G/C 0.083 5059 -0.168 (0.039) 1.84x10
-5

 -0.315 (0.054) 5.56x10
-9

 -0.0032 (0.050) 0.9488 2.46x10-5 

rs143840904 11:2813322 T/C 0.094 5041 -0.152 (0.038) 4.58x10
-5

 -0.274 (0.050) 3.92x10
-8

 +0.0021 (0.049) 0.9653 7.55x10
-5

 

rs2075870 11:2790019 A/G 0.094 5044 -0.158 (0.038) 2.65x10
-5

 
 

-0.273 (0.051) 
6.97x10

-8
 -0.0172 (0.048) 0.793 0.0002 

rs149658560 11:2767262 A/G 0.076 5050 -0.161 (0.042) 1.01x10
-4

 
 

-0.297 (0.058) 2.93x10
-7

 -0.0121 (0.052) 0.8183 0.0003 

rs12790610 11:2794998 G/A 0.095 5014 -0.165 (0.037) 1.02x10
-5

 
 

-0.258 (0.051) 
4.73x10

-7
 -0.044 (0.048) 0.3531 0.0023 

rs67004488 11:2787804 G/A 0.104 5026 -0.157 (0.036) 1.2x10
-6

 
 

-0.244 (0.049) 
5.21x10

-7
 -0.040 (0.047) 0.3875 0.0024 
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Online Methods 

Research subjects. 

All individuals included in the study were of Sardinian origin and participate in a longitudinal study of age-

related quantitative traits on the island (SardiNIA, URLs). The study involves four villages: Lanusei, Ilbono, 

Elini end Arzana, located in the Lanusei Valley(1,21,31). 6,148 volunteers have been described before (1) and 

an additional 773 individuals have been enrolled during the follow up stage of the project (6). 6,602 

individuals had complete genotyping data. For analyses, we only included measurements for individuals at 

age >20 years, and also discarded 4 subjects with Morquio Syndrome (OMIM *607939), leading to a total of 

6,307 samples. 

All participants provided informed consent and studies were approved by the Local Research Ethic 

Committees (No 2009/0016600). 

Genotyping methods, low-pass sample sequencing, variant calling, genotype imputation and GWAS 

analysis. 

All SardiNIA individuals were typed with four Illumina Infinium arrays. Low pass sequencing, variant calling, 

genotype imputation and GWAS analysis was conducted as previously described (31). 

GWA analysis. 

For our GWAS we tested association for the 11,826,948 imputed or genotyped variants that passed quality 

control filters [MACH r2>0.3 for MAF>=0.01, r2>=0.6 for MAF<0.01 (31)], assuming an additive model of 

inheritance and adjusting for age, age squared and gender as covariates and applying the inverse normal 

transformation to the residuals. Association was performed using EMMAX (32) as implemented in the 

software EPACTS (URLs), which accounts for relatedness and population structure using an empirical 

kinship matrix derived from genotype data. The genomic control inflation factor was λ=0.989, indicating no 

inflation of results. 

Validation of imputation results by genotyping. 

GWAS identified three loci significantly associated with stature: the GHR gene, with top variant 

rs121909358; the KCNQ1 gene, with 6 variants in LD (Table 1); and the SMURF2 gene, with top variant 

rs143051029. 

We validated imputation of rs121909358 genotypes by directly genotyping 2,818 samples with a TaqMan 

assay. Concordance between imputation and validation was 99.89%. At KCNQ1, two leading variants, 

rs67004488 and rs2075870, were present on the Cardio-Metabo Illumina chip, so that validation was not 

necessary. The third association at rs143051029 was evaluated with standard Sanger sequencing. We 

selected 96 samples for sequencing, including 4 imputed homozygotes, 22 imputed heterozygotes with 

uncertain allele dosages and 70 randomly selected samples. The variant, located in a complex region, did 

not pass validation due to the high mismatch rate (34.4%) between imputed genotypes and those validated 

by Sanger sequencing and was not further considered in analyses. 

Conditional analysis. 

We conducted standard conditional analyses using EPACTS software for the two identified regions by 

including the top variants as covariates. We examined the 1Mb region around the top SNPs (rs121909358 
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for GHR and rs150199504 for KCNQ1). In both cases, the top variant completely explained the association 

at the two loci; none of the SNPs in the region passed the significance threshold after Bonferroni 

correction. The variant chr5:43229441, 540Kb away, from rs121909358, was fully explained by the effect of 

rs121909358 (p after conditional = 0.1). 

Replication cohorts. 

We replicated findings in an independent cohort of 5,314 Sardinians and 19,053 non-Sardinian European 

samples. Details on genotyping and analyses are described in Supplementary. 

Characterization of the associated region on chromosome 5. 

To visualize the haplotypes carrying the Laron variant (Supplementary Fig. 3), we interrogated ±3Mb 

surrounding chr5:42689036 in 11 sequenced unrelated carriers of rs121909358. The analysis was 

performed using SelScan (33) and included 9,526 SNPs with MAF >5% in Sardinia. 

Parent-of-origin effects. 

For SNPs in the KCNQ1 locus, we estimated parental origin of alleles for all individuals using Merlin (--best 

option)(34). We then considered two separate variables, one for the maternal  (Gm) and one for the paternal 

(Gp) allele, coded as 1 if the corresponding transmitted allele was the minor allele at the SNP, and 0 

otherwise. Missing values were assigned to founders and other individuals for whom parental origin could 

not be defined unambiguously. Of consequence variables Gm and Gp were non-missing for 5,026 SardiNIA 

individuals and 4,666 OGP individuals. Two linear models were then used: 

Y ~ β0 + β1Gm + βTC 

Y ~  β0 + β2Gp + βT C 

 

where Y denotes trait and C, other covariates. As both the SardiNIA and OGP studies consists of large 

families, the transmissions evaluated by Gp and Gm are not independent. We therefore tested the null 

hypothesis β1≠0 (for model 1) andβ2≠0 (for model 2) by fivng a mixed linear regression model that 

accounts for familiar relatedness (lmekin() and kinship() functions in the coxme and kinship R packages). In 

the models, we used the same covariates and trait normalization procedure as in the GWAS analysis. We 

then assessed the hypothesis of heterogeneity of effects, β1 ≠β2, using Cochran’s Q statistic. The test was 

carried out for all SNPs in the KCNQ1 gene, and on SNP rs2075870 in the OGP cohort. 

Population-level height polygenic score calculation and evaluation. 

In the population genetic analyses, we focused on a subset of 1,081 unrelated sequenced individuals 

(Supplementary Note). 

To investigate whether height-decreasing loci have been under selection in Sardinia, for each population m, 

we calculated the polygenic height score as 

�� = 2������
	

�
�
 

where βl is the effect size of the height-increasing allele l and pml is the frequency of allele l in population m. 

To avoid biases and to ensure uniformity of the source of effect size estimates, we used the effect size 
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estimates from the Sardinian dataset regardless of whether the variant is significantly associated with 

height in this dataset. We first calculated the polygenic height score (Zm) based on the 691 height loci 

identified by the GIANT consortium (4) with effect sizes estimated in the Sardinian dataset and then added 

the two top variants reported, totaling 693 height alleles. To test if there were a signature of polygenic 

adaptation on height in Sardinia, we adopted a framework developed by Berg and Coop (23), which builds a 

multivariate normal model based on matched, presumably neutral variants, to account for relationships 

among populations (Fig. 3). Populations with extreme polygenic scores relative to the expectation (pvalue = 

0.01) are likely to have undergone selection. To construct a null distribution of frequencies needed for the 

multivariate normal framework, we obtained for each of the height loci all variants in the 1000 Genomes 

phase 3 European data with minor allele count +/- 10 counts (~ 1% in frequency), B score (35) +/- 50 units, 

and local recombination rates +/- 0.5 cM/Mb. A random subset of 509,386 SNPs, representing 10% of the 

union of the matched SNPs, were then used as a set of matched SNPs for the analysis. Of note, we also 

repeated the calculation using effect sizes estimated by the GIANT consortium as well as using only a subset 

of 162 SNPs that are not subject to population stratification (22) (Supplementary Fig. 4). 
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Part III: Improving GWAS studies with population-specific reference 
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After the completion of the Human Genome Project and the advent of genome-wide association studies 

(GWAS), thousands to million of markers across the genome were evaluated for several complex traits and 

diseases. Those studies revealed that, with only few exceptions, the genetic component of complex traits 

and diseases is fractioned into multiple variations of moderate or small impact (effect size) rather than a 

few with large effect size. The number of DNA variants contributing to the polygenic liability of a disease or 

trait’s variation is unknown a priori, and it can be extremely large even for highly heritably traits. For 

example, in the past decade GWAS studies have identified up to 697 independent single nucleotide 

polymorphisms (SNPs) that influence human height, but their global contribution explains only 20% of the 

estimated heritability [Wood et al, Nature Genetics 2014]. Therefore many more associated variants have 

yet to be found for human height. The scenario is similar for other complex traits: despite the many SNPs 

identified, a substantial fraction of the heritability remains unexplained [Manolio et al, Nature 2009]. What 

is the cause of this “missing heritability”? Previous genome-wide association studies have assessed 

thousands of individuals, but they focused mostly on common SNPs (minor allele frequency (MAF) in the 

population >5%) which were experimentally derived by commercial genotyping arrays or statistically 

inferred with genotype imputation methods and the HapMap Project [Li et al, Annu Rev Genomics Hum 

Genet. 2009]. Low frequent (MAF<5%) and rare variations (MAF<1%), as well as other types of genetic 

alterations, have therefore been largely unexplored.  

In principle, known variants in this frequency range can be assessed by custom genotyping arrays. 

However, as custom arrays can only include a limited number of variants, one needs to focus on a specific 

subset. For example, the Illumina ExomeChip custom array was designed to assess ~200,000 variants in 

coding regions, while the ImmunoChip and Cardio-MetaboChip were set up to study a similar number of 

variants in genes associated or potentially involved in immune or cardio-metabolic traits, respectively. The 

cost of such arrays is still affordable and allowed the characterization of hundreds of thousands of 

individuals. It has to be noted that those arrays are limited not only in the number of variants that can be 

tested, but are also limited to those variants that are known by the time of the array’s design.  

Identification of novel variants and assessment of the full variation present on a genome is possible by 

whole-genome sequencing. However efficient detection of rare and low frequency variants requires 

sequencing hundreds to thousands of individuals of which the cost is still prohibitively high. An alternative 

cost-effective approach is to sequence a subset from a study sample that incorporates a maximal number 

of variants (i.e. founders individuals), and use their haplotypes to impute the missing genotypes in the 

other study samples with the genotype imputation approach [Li et al, Annu Rev Genomics Hum Genet. 
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2009]. The benefits are higher for homogenous populations, especially in isolates, as there are fewer 

haplotypes to be tracked down, but there is clear evidence of successful designs in “open” populations.  An 

additional route that only has a computation cost is to use publicly available sequencing data, such as the 

1000 Genomes Project.   

 

The 1000 Genomes Project 

The goal of the 1000 Genomes Project was to find most genetic variants that have frequencies of at least 

1% in the populations studied, by sequencing the whole-genome of 2,500 individuals from 26 different 

populations among five continental groups—Africa (AFR), the Americas (AMR), East Asia (EAS), Europe 

(EUR) and South Asia (SAS). The effort is an extension of the HapMap project which was created to 

catalogue common genetic variation (MAF>5%).  The completion of the 1000 Genomes Project was 

announced recently [1000 Genomes Consortium, Nature 2015], but several phases of interim data have 

been released starting from 2009. At each release, the data was promptly formatted to be used with the 

most commonly used genotype imputation software (MACH/minimac, 

http://genome.sph.umich.edu/wiki/Minimac; IMPUTE/IMPUTE2, 

https://mathgen.stats.ox.ac.uk/impute/impute_v2.html; Beagle 

https://faculty.washington.edu/browning/beagle/b3.html ), and to date there are already hundreds of 

publications that have benefitted from this resource in genome-wide association studies (GWAS 

catalog, www.genome.gov/gwastudies). The 1000 Genomes catalogued 84.7 million single nucleotide 

polymorphisms (SNPs), 3.6 million short insertions/deletions (indels), and 60,000 structural variants), all 

phased onto high-quality haplotypes [1000 Genomes Consortium, Nature 2015; Sudmant et al, Nature 

2015]. This is a massive repository of variations, and represents a unique resource for studies that cannot 

afford whole-genome sequencing of their samples of interest. However, large population-specific reference 

panel are expected to be useful for genotype accuracy, as only ~500 individuals per ancestry were 

sequenced and therefore low frequent and rare variation may still be missed or poorly represented. 

Evidence of successful results with population-specific reference panels are discussed below.  

 

Population-specific reference panels in isolates 

The first example of successful population-specific reference panel design in the era of whole-genome 

sequencing has been seen in the Icelandic population. In 2011, the deCode group 

(http://www.decode.com/) identified a novel susceptibility locus for sick sinus syndrome (SSS) by 

combining both public and population specific whole-genome sequences with GWAS-genotyping array data 

of >38,000 Icelandic individuals [Holm et al. Nature Genet 2011]. A first GWAS for SSS with 792 cases and 

37,592 controls was carried out to assess 7.2 million SNPs, directly genotyped or imputed from either 

HapMap or 1000 Genomes pilot 1. The results highlighted a novel locus on chromosome 14q11 with three 

statistically indistinguishable variants, at which the minor allele frequency was low (1–2.6%), and the minor 

allele was the risk allele. To refine this association, 7 SSS cases, enriched for carriers of the detected 

variants, and 80 controls were whole-genome sequenced at 10× depth on average, and then the ~11 

million detected variants were imputed into the full GWAS data set. The increased genomic resolution 

allowed to narrow the signal at 14q11 and point to a missense variant, c.2161C>T, located in exon 18 of the 

MYH6 gene, encoding the alpha heavy chain subunit of cardiac myosin. The signal was confirmed by direct 

genotyping and replication in an additional cohort, independent from the GWAS study. The c.2161C>T 
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variant was neither present in the available 1000 Genomes Project data nor in the HapMap samples and 

neither in  121,390 chromosomes inspected by the Exome Aggregation Consortium 

(http://exac.broadinstitute.org/); therefore this association could not be found in other populations or 

even in the Icelanders without their population-specific sequencing panel (Table 1).  

The same group of scientists have continued to sequence Icelandic individuals and recently published novel 

genetic discoveries with the use of an expanded population-specific reference panel. A total of 2,636 

Icelanders were whole-genome sequenced at a medium depth of 20×, leading to the characterization of 20 

million SNPs and 1.5 million indels which were subsequently imputed in 104,220 Icelanders genotyped for 

676,913 autosomal SNPs using Illumina chip arrays [Gudbjartsson D. et al Nature Genet 2015]. With this 

extended data set the authors carried out several GWAS for different traits and diseases as well as different 

model of inheritance (additive, recessive, parental-of-origin specific). They identified a novel association at 

MYL4, where a rare c.234delC frameshift deletion (MAF=0.65%) strongly increases the risk of early-onset 

atrial fibrillation;  a novel association with gallstone disease and liver function at two rare (MAF=0.22% and 

0.21%) coding variants in the ABCB4 gene (p.Gly622Glu and p.Leu445Glyfs*22); and a novel association 

between thyroid stimulating hormone (TSH) levels and a rare variant (rs139242164, MAF=0.44%) in the 

GNAS gene, when the minor allele was maternally inherited. The latter variant was likely missed in previous 

European studies because parent-of-origin effects are not assessed in standard GWAS; the variant is also 

more frequent in other European populations (MAF 1-2%, based on 1000 Genomes). By contrast,  the first 

and third variants are absent from the most recent 1000 Genomes release and Exome Aggregation 

Consortium (ExAC, http://exac.broadinstitute.org/), and the second (p.Gly622Glu) has been seen in only 1 

chromosome among the 121,354 assessed by the ExAC (Table 1). Therefore and again, the results could 

have been achieved only by means of the population-specific sequencing panel. 

Recently, large scale sequencing reference panels have been reported for another large population isolate: 

Sardinians. By low-pass whole-genome sequencing of >2,000 individuals and integration with genotyping 

arrays in > 6,000 individuals, scientists from the SardiNIA cohort have documented the relevance of a 

population-specific panel not only as average increase in imputation accuracy [Pistis et al, Eur J Hum Genet 

2014] but also as an effective tool for genetic discoveries [Orrù V et al, Cell 2013; Sidore C et al, Nature 

Genet 2015; Danjou et al, Nature Genet 2015; Zoledwieska et al, Nature Genet 2015]. The group reported 

sequencing-based GWAS analysis for 285 quantitative traits (272 immune related traits, 12 blood markers 

and height). Among the novel signals, many would have been missed without the Sardinian sequencing 

panel because they were either i) absent in the 1000 Genomes panel or ii) too rare to be well imputed. In 

fact, when repeating the analyses using 1000 Genomes for imputation, such associations were either below 

genome-wide significance or misplaced to a nearby variant (Table 1). For example, Sidore and colleagues 

[Sidore C et al, Nat Genet 2015] reported an association with triglyceride levels and a missense variant, 

R282S, in a known gene, APOA5; the frequency is 2.5% in Sardinia but is currently absent from 1000 

Genomes and to date it has been found only on two among 120,520 chromosomes characterized  in the 

Exome Aggregation Consortium. This variant would therefore be missed without the population-specific 

reference panel. There were two other examples of alleles that rose in frequency in Sardinia and for which 

imputation was aided by the customized haplotype reference set. One is a stop codon variant (Q40X) in the 

HBB gene [Sidore et al, Nature Genet 2015] which was shown to be associated with LDL-cholesterol levels. 

The minor allele has been seen in one chromosome among the 5,008 sequenced in the 1000 Genomes 

Phase 3 project but is instead fairly common in Sardinia (MAF=4.8%) due to selection forces. The 

imputation with 1000 Genomes panel was very inaccurate (imputation accuracy RSQR=0.31) and the 

association at this locus was misplaced to an intronic marker (rs76053862) located 122 kb away from the 
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coding SNP. The second is a variant near the CCND3 gene, which showed association with HbA2, an adult 

form of hemoglobin [Danjou et al, Nature Genet 2015]. The variant, rs113267280, has a MAF of 1% in 

Europe, but there was a 10-fold increase in frequency in Sardinia and therefore 1000 Genomes imputation 

misplaced the association to an intronic SNP located 202Kb away. Because this variant is relatively common 

in populations outside Sardinia, replication of this finding was possible in an independent cohort from UK.  

There was another interesting finding in the SardiNIA sequencing based GWAS that demonstrated the value 

of a large scale population-specific reference panel to efficiently detect and accurately impute rare and low 

frequency variants. In an association scan for height variation, authors identified a rare variant (encoding 

p.Arg61*, MAF=0.87%) which creates a loss-of-function termination codon in the GHR gene [Zoledwieska et 

al, Nature Genet 2015]. The imputation accuracy was high (RSQR=0.94) and estimated genotypes were 

highly concordant when consequently validated with experimental methods (99.89%). This variant is one of 

the mutations in GHR known to cause Laron syndrome (Online Mendelian Inheritance in Man (OMIM), 

#262500), a rare autosomal recessive condition characterized by primary growth hormone insensitivity. Its 

frequency is extremely low outside Sardinia (currently seen only in 2 chromosomes among 121,388 

assessed by the ExAC) and replication was only possible in an independent Sardinian population cohort.  

Population-specific reference panels are being created also for genetic isolates in a broader sense, such as 

the Ashkenazi Jews (AJ), identified as Jewish individuals of Central- and Eastern European ancestry in the 

United States. Genetic analyses of recent AJ history highlighted a narrow population bottleneck of only 

hundreds of individuals in late medieval times, followed by rapid expansion, suggesting that whole-genome 

sequencing of a limited number of samples representing diversity in the settlers group could catalogue 

nearly all founder variants. Carmi and colleagues [Carmi S et al, Nature Commun. 2014] reported a 

population specific (AJ) reference panel set up with 128 high depth genomes (>50x) and they estimated 

that the panel improves imputation accuracy for AJ SNP arrays by 28%. Imputation with this panel lowers 

the number of wrongly imputed non-reference variants with MAF <1% by 2.7-fold, with the improvement 

remaining at 1.5–2-fold at higher frequencies. These results motivate using a population-matched, rather 

than a merely continent matched, reference panel, even for the closely related AJ and European 

populations. 

 

Population-specific reference panels in open populations 

Non-isolate populations of European origin can be relatively well imputed with publicly available panels 

such as 1000 Genomes. However, because the degree of ancestry matching between the genotyped sample 

(to be imputed in) and the reference haplotype panel (e.g., 1000 Genomes) as well as the number of 

individuals in the reference haplotype panel are both key ingredients for genotype imputation, large 

population-specific reference panels can further increase imputation accuracy. This is especially true for 

low-frequency and rare variants. The number of individuals in the panel is important because imputation 

accuracy is in part a function of how many copies of a variant exist in the haplotype panel. If only one copy 

exists (i.e., a singleton), that variant will likely be difficult to impute accurately. One simple way to increase 

the number of copies of a variant is to increase the number of individuals in the haplotype panel. 

Furthermore, by sequencing thousands of individuals there is an increased chance to detect rare sites that 

are missed or poorly represented in 1000 Genomes Project and that can be associated to phenotypes 

variation. Several sequencing efforts are currently ongoing in this direction for many populations, and 

results reported so far are encouraging. For example, Vrieze and colleagues carried out whole-genome 
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sequencing at moderate-high depth (10x on average) on 1,325 individuals of European origin living in 

Minnesota [Vrieze et al, Psychophysiology 2014]. They identified 27.1 million autosomal variants, of which 

21.3 Million have MAF <5% in the samples studied. Using this reference panel for imputation in a cohort of 

6,610 Minnesotans accuracy increased by 36% compared to that observed with 1000 Genomes [Vrieze et 

al, Psychophysiology 2014; Pistis et al Eur J Hum Genet 2014].  

A very large reference panel has been created for the British population by the UK10K consortium. A total 

of 3,781 British individuals were sequenced at low depth (average 7x), and when compared to two large-

scale European sequencing repositories, the effort led to the discovery of over 24M novel single nucleotide 

variants, of which 99% had MAF <1% [The UK10K Consortium, Nature 2015]. When using this British-specific 

reference panel, imputation accuracy in British cohorts increased at all frequency ranges, and further 

increases when combining the panel with 1000 Genomes haplotypes [Huang et al, Nature Commun. 2015].  

For example, for variants with MAF between 0.5% and 1%, the average imputation Rsq is 0.477 with 1000 

Genomes, and increases to 0.573 and 0.702 when using the UK10K and UK10K+1000Genomes panels, 

respectively. Using this combined reference panel in a GWAS of >9,000 British individuals for lipids and 

inflammatory levels, two novel variants were identified. The first was a low-frequency intronic variant (MAF 

2.6%) in ADIPOQ associated with decreased adiponectin levels, and the second was a rare splice variant 

(rs138326449) in APOC3 [Timpson, et al. Nature Commun. 2014] associated with triglycerides. The minor 

allele at the splice site was seen in 1% of the British chromosomes, while it appears very rare (<0.5%) in 

other European populations. The variant was previously found to be associated with triglycerides in a study 

that combined genotyping data with exome-sequencing and used a specific statistical test that aggregates 

rare mutations in one unique score to improve power [The TG and HDL Working Group of the Exome 

Sequencing Project, NHLBI. N. Engl. J. Med. 2014]. It could not have been found using standard single 

variant tests outside of the British population and without the population specific panel.  

A population-specific reference panel was also built for the Dutch population within the Genome of the 

Netherlands (GoNL) Project [Francioli et al, Nature Genet 2014]. By whole-genome sequencing 769 

individuals in 250 families at ~13× coverage, the project built a resource of 1,000 independent haploid 

genomes as representative of a small (41,543-km2), densely populated (>17 million inhabitants) country in 

northwestern Europe.  The project discovered 20.4 million SNPs in addition to 1.2 million biallelic indels 

(<20 bp in length) and 27,500 larger deletions (>20 bp in length). Of the SNPs, 6.2 million were common 

(MAF>5%), 4.0 million are low frequency (MAF=0.5–5%), and 10.2 million are rare (MAF<0.5%). Relatively 

to dbSNP (release 137) and the 1000 Genomes Project Phase 1 and HapMap CEU panels, GoNL identified 

7.6 million novel sites of which the majority are very rare (MAF < 0.5%), including 5.8 million singletons. The 

panel improved imputation accuracy when inferring missing sites in a Dutch samples set, and for low 

frequent and rare variants there was a further gain when incorporating the 1000 Genomes sequence data, 

albeit smaller than that estimated for the British population. Specifically, the average imputation accuracy 

was 0.65 for variants with MAF 0.5-1%, and increased to 0.75 and 0.77 when using the GoNL and 

GoNL+1000KG, respectively [Francioli et al, Nature Genet 2014; Deelen et al, Eur J Hum Genet 2014]. The 

GoNL reference panel was used to impute nine large Dutch biobanks (~35,000 samples) and perform 

association analyses on blood lipid levels [van Leeuwen et al, Nature Comm 2015]. The nine cohorts were 

imputed and analyzed independently and the statistics were meta-analyzed. The results highlighted five 

novel signals at four loci, of which three have an increased frequency in GoNL compared with 1000 

Genomes, suggesting that there may have been genetic drift in the Dutch population for these loci. The 

most interesting is a rare missense variant, which is 3.65-fold more frequent in the Dutch compared to 

other European populations (frequency 3.4% vs 0.5% in 1000 Genomes non-CEU samples)(Table 1). The 
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GoNL imputation panel was therefore useful to accurately estimate genotypes at this site. The association 

was seen with both LDL-C and total cholesterol and points to the ABCA6 gene (ATP-binding cassette, 

subfamily A (ABC1), member 6). The mutation changes the amino acid cysteine into arginine at position 

1359 (Cys1359Arg) and is predicted to be damaging for the structure and function of the protein [van 

Leeuwen et al, Nature Comm 2015].  

The findings from GoNL and UK10K suggest that efforts with next-generation sequencing to build 

population-specific imputation panels will enhance discovery of clinically relevant findings even in open 

populations.  

Other community resources 

It has been clear that large and ancestry-matched reference panels lead to better accuracy and more 

discoveries: many research groups are sequencing hundreds to thousands individuals to create a study-

specific panel that well matches with the samples in a cohort of interest. It is also clear that for the rare and 

very rare sites there is always an improvement in combining sequencing data from other, even diverse, 

populations, for example by combining the population-specific panel with 1000 Genomes [Huang et al, 

Nature Commun. 2015; Deelen et al, Eur J Hum Genet 2014; Vrieze et al, Psychophysiology 2014]. Those 

observations motivated a community-wide effort to create a unified reference panel across diverse 

populations: the Haplotype Reference Consortium (HRC, http://www.haplotype-reference-

consortium.org/). The HRC will create the largest reference panel for imputation by collaborating with all 

single research groups that are carrying out whole-genome sequencing, including GoNL, UK10K and 

SardiNIA. The first release of the HRC panel includes the 1000 Genomes Project Phase 3 data as well as 

additional ~ 30,000 samples, mostly of European origin. In the future, the reference panel will increase in 

size and include samples from a more diverse set of world-wide populations. Free imputation servers will 

allow anyone to use the full haplotype reference panel to impute missing genotypes in their data: users will 

be able to upload genotype data to the server, imputation will be carried out remotely on the server, and 

the imputed data will then be made available to the user (https://imputation.sanger.ac.uk/; 

https://imputationserver.sph.umich.edu/ ). This is a valuable resource especially for medium and small size 

laboratories that do not have sufficient expertise and computational capacity to carry out imputation, and 

it represents a step toward a responsible sharing of genomic research data.  

 



 

Table 1. Novel loci detected with population-specific reference panels 

The table shows associations whose discovery was enhanced, or only detectable, with population-specific reference panels. For each variant, we list the 

associated trait, the rs number (when available, or chromosome and position or substitution as given in the original manuscript), the population where it was 

discovered, the minor allele frequency (MAF) in other Europeans according to 1000 Genomes estimates, and the MAF in the ExAC browser among all samples 

studied (only for variants in a coding region).  hsCRP= high sensitivity C-reactive protein; ESR= erythrocytes sedimentation rate. 

Associated trait Variant (Gene) Discovery 

Population 

MAF in the 

discovery 

population 

MAF in other 

Europeans  

(1000Genomes) 

MAF in ExAC  

(if coding) 

Sick Sinus syndrome c.2161C>T/p.Arg721Trp (MYH6) Icelanders 0.38% absent   absent 

Early-onset atrial fibrillation c.234delC/p.Cys78Trpfs*29 (MYL4) Icelanders 0.65% absent   absent 

Gallstone disease and liver function p.Gly622Glu (ABCB4) Icelanders 0.22% absent  0.00082% 

Gallstone disease and liver function p.Leu445Glyfs*22 (ABCB4) Icelanders 0.21% absent  absent 

CD39+ CD4+ cells count 10:98088623 (near ENTPD1) Sardinians 3.2% absent --- 

CD62L- myeloid dendritic cells count rs58055840 (near FCGR3A) Sardinians 26% 14% --- 

LDL cholesterol, total cholesterol  rs11549407 (HBB) Sardinians 4.8% absent 0.04% 

Triglycerides 11:116661101 (APOA5) Sardinians 2.5% absent 0.0016% 

hsCRP, ESR  12:125406240 (near AACS) Sardinians 0.7% absent --- 

Hemoglobin A1 12:123681790 (near MPHOSPH9) Sardinians 1% absent --- 

Hemoglobin A2 rs113267280 (near CCND3) Sardinians 10% 1% --- 

Hemoglobin A2 rs141006889 (FOG1) Sardinians 0.7% absent 0.06% 

Fetal Hemoglobin rs183437571 (near NFIX) Sardinians 1% absent --- 

Height rs121909358 (GHR) Sardinians 0.87% absent 0.0016% 

Triglycerides rs138326449 (APOC3) British 1% 0.5%  0.14% 

LDL cholesterol rs77542162 (ABCA6) Dutch 3.4% 0.5%  1.08% 
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Chapter 9: Conclusions and future prospects 

 

 

 

 

The studies described in this thesis can be divided in two major parts. In the first part (Chapter 2 and 3), we 

showed the advantages of combining genotyping with whole-genome sequencing by genotype imputation 

in the isolate of Sardinia. We firstly investigated benefits of this approach for detecting traits-associated 

rare and low frequent variants in the worst case scenario: sequencing only the exons of already established 

loci in a small subset of individuals. Given the success of this proof-of-concept study, we carried out whole-

genome sequencing of a larger subset of individuals and evaluated the benefit of using this population-

specific reference set of haplotypes instead of the publicly available 1000 Genomes data. We showed that 

this approach can greatly enhance the genetic information content for genome-wide association studies 

(GWAS) in a cost-effective manner. We then assessed for association with several, clinically diverse traits all 

the 17 million discovered and imputed variants in up to 6,602 individuals. The results are illustrated in the 

second part of the thesis (Chapter 4 to 7). Our association analyses not only revealed novel loci for all the 

traits analyzed, but also highlighted several key messages. First, population isolates are an ideal setting to 

study rare variants. In fact, most of the novel signals identified in the SardiNIA cohort were more frequent 

in Sardinians than in other European populations; this demonstrates that isolation and genetic drift confer 

an intrinsic enhanced power for association of rare variants. We also showed that replication of signals, 

which was considered a standard step in GWAS of common variants, is not trivial when the risk allele 

frequency drops. In fact, when the variant is very rare outside the population being studied, very large 

sample sizes are required to provide sufficient power for replication. Alternatively, one could assess the 

findings in an independent, sufficiently large sample selected from the same population – but if this sample 

doesn’t exists, one may have to recollect, genotype and phenotype samples for each phenotype of interest. 

This is impractical considering the cost and time required. Therefore other factors have to be considered to 

evaluate if findings are genuine, for example examining consistency of association at other variants 

according to linkage disequilibrium patterns, use of more stringent significance levels, evaluation of 

robustness of estimates with statistical resampling methods, or integration of functional data. 

Genetic studies in isolates also present disadvantages: in fact extended linkage disequilibrium (LD) may 

limit the resolution of the association signal and make it difficult to identify the causal variant in associated 

loci. This phenomenon is even more relevant when the variant is rare, as the haplotype where the rare 

allele arose is usually young and underwent very few recombination events.  We showed that association 

signals may encompass large regions, even 4-5Mb. In such cases, trans-ethnic analyses and integration of 

functional data is required to dissect the association curve, as the LD would not be disrupted within the 

same population unless the sample size can be increased dramatically. Isolated populations are also limited 

in the number of rare variants that can be assessed for association. In fact, variants that were not present 

in the initial pool of founder haplotypes or that were lost in subsequent generations are absent in present-

day chromosomes.  

We have described in details the results obtained in Sardinia when coupling whole-genome sequencing and 

genotyping data from the same population with genotype imputation. We then described in the last 
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Chapter similar ongoing efforts and illustrate results reported to date, including recent findings from the 

Genome of the Netherlands Project, the UK10K consortium and the deCode group. The finding clearly 

demonstrate that population-specific reference panel enhanche genetic discoveries also in open 

populations. We expect more discoveries as integration of sequencing data will be the norm in all existing 

GWAS cohorts and meta-analyses.  

Within the SardiNIA study, several steps are currently ongoing or can be made to improve the efficiency of 

the panel. While more individuals are been sequenced to further expand the spectrum of rare variations 

assessable, variant calling for short insertions and deletions have been incorporated in the standard 

pipeline for sequencing analysis to be consequently imputed in the GWAS cohort and analyzed against the 

existing phenotypes. Published GWAS in the cohort were indeed strictly limited to SNPs detected in the 

Sardinian sequenced genomes and all other types of variants were assessed only by imputation with 1000 

Genomes. Future improvements of the pipeline could incorporate algorithms to call other types of 

structural variants. Finally, owing to the family design of the sequenced samples, de novo mutations could, 

in principle, be identified. It has been shown that the rate of de novo mutations over the genome is highly 

dependent on father’s age at conception and therefore it could be related to diseases such as 

schizophrenia and autisms [Kong A, et al, Rate of de novo mutations and the importance of father's age to 

disease risk. Nature 2012]. The impact of de-novo mutations in other common diseases and in complex 

traits variation is still largely unexplored and sequencing in large family studies can finally shed lights on it. 

In the Sardinian sequencing effort, the average coverage (4x) is lower than what is reported for other 

whole-genome sequencing studies that investigated de novo events, as the Genomes of the Netherlands 

Project (13x) or deCode (30x), therefore appropriate modifications have to be found to adapt the statistical 

modeling to the specific study design. For example, the homogeneity of the population and the presence of 

more structured families rather than trios (more generations or more sibs in a family) can bring in 

additional information on haplotype definition and can facilitate the discrimination of Mendelian 

inconsistencies from sequencing errors and de novo mutations.  

The cost of whole-genome sequencing will probably drop in the next years until a point where sequencing 

will replace genotyping arrays. Meanwhile, genotype imputation will play a crucial role in genetic studies. In 

fact, with the need of more samples and the implementation of biobanks we are likely to scale sample size 

of quantitative traits GWAS to a factor of 100. Sooner than the drop in sequencing cost, several hundreds of 

thousands or even millions of samples will be available from the same country, genotyped with GWAS 

arrays and to be imputed with population-specific panels or large scale community resources for 

imputation (for example the Haplotype Reference Consortium). Collaborations across centers and research 

groups within and across countries will be essential for efficient use and implementation of biobanks.  

Because not only the GWAS data sets but also reference panels are going to increase in size, special efforts 

are being made in improving current methodological approaches for imputation that cannot feasibly scale 

to very large samples. For example, in a preliminary overview of minimac version 4, computational time 

required to impute large chromosomes scales from days to minutes for panels of current size, making 

feasible its application to reference panels with 100,000s of samples [Sayantan Das, ASHG 2015, PgmNr 

1278: Minimac4: A next generation Imputation Tool for Mega Reference Panels.]  

Future improvements are expected not only from the genetic level. Advances in technologies have made it 

possible to measure at fine-scale many components of a human body, from count of specific immune cells 

to expression of genes in a variety of tissues, to small-molecule metabolite profiling, only to name a few. 

GWAS studies are therefore starting to assess biological mechanisms in addition to classical biomarkers. 
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From the phenotypic perspective, biobanks will provide a centralized database of many possibly 

measurable clinical and biochemical features of the same individual, and there is need to fully use those 

data. While most of the GWAS studies have so far searched for genetic association in a two dimensional 

space (one phenotype versus genotype), we envisage that more power in complex traits mapping will come 

from changing standardly used statistical methods to assess variations in a multidimensional system, and 

therefore looking for association of a genotype with multiple phenotypes at the same time, or multiple 

genotypes with one phenotype, or a combination of those.  
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Appendix  

 

Chapters 2-7 are based on academic, peer-reviewed publications. Supplementary Information files for each 

chapther are available online, as indicated below.  

Supplementary Files for Chapter 2 can be downloaded from: 

http://journals.plos.org/plosgenetics/article?id=10.1371/journal.pgen.1002198#s5 

 

Supplementary Files for Chapter 3 can be downloaded from: 

http://www.nature.com/ejhg/journal/v23/n7/suppinfo/ejhg2014216s1.html 

 

Supplementary Files for Chapter 4 can be downloaded from: 

http://www.sciencedirect.com/science/article/pii/S0092867413010726 

 

Supplementary Files for Chapter 5 can be downloaded from: 

http://www.nature.com/ng/journal/v47/n11/full/ng.3368.html#supplementary-information 

 

Supplementary Files for Chapter 6 can be downloaded from: 

http://www.nature.com/ng/journal/v47/n11/full/ng.3307.html#supplementary-information 

 

Supplementary Files for Chapter 7 can be downloaded from: 

http://www.nature.com/ng/journal/v47/n11/full/ng.3403.html#supplementary-information 
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Summary 

 

 

Genome-wide association studies (GWASs) have initiated an era of gene discoveries characterized by 

findings that are robust and reproducible in independent studies. They were firstly implemented around 

ten years ago with methods and technology available at the time; technology and statistical methods have 

continued to improve by modeling needs and supporting challenges highlighted by the approach and 

results.  

The first GWASs assessed ~100,000–2,000,000 common single nucleotide polymorphisms (SNPs) 

characterized with genotyping arrays or imputed with genotype imputation, an approach to statistically 

infer variants that are not directly genotyped. For this purpose, GWASs have intensively used data from the 

HapMap Project, which consisted on a reference set of 270 individuals characterized for ~2 million common 

polymorphisms (HapMap phase II). The use of HapMap in genotype imputation has been mostly replaced 

now with the 1000 Genomes reference set. This panel consists of ~2500 individuals for whom the full 

spectrum of variation in a genome (SNPs, indels or structural changes) have been characterized with next-

generation sequencing machines. Currently, GWASs can assess millions of common and rare variants by 

direct whole-genome sequencing or, again, by genotype imputation. Notably, it was unclear until recently 

whether the genotype imputation approach would have been efficient to infer rare genotypes and 

therefore whether novel variants discovered with sequences in reference sets would have been effectively 

assessable. In fact, the genotype imputation approach is based on the idea that shared stretches of 

chromosomes can be found even in unrelated individuals, so that each persons’ pair of haplotypes can be 

reconstructed as a mosaic of small pieces of haplotypes from a reference set. Therefore, the accuracy of 

haplotype reconstruction depends – among many parameters – on the frequency of the variant that is 

going to be predicted: the rarer is the variant, the harder is to predict it, because less similar haplotypes 

would be found. Consequently, the imputation accuracy for rare sites is expected to work well only with 

large reference panels (>1,000), which became available only recently. Accuracy will also be more precise if 

the population is highly homogeneous and the individuals in the reference set are genetically close to the 

population itself, because the haplotype where the rare variant lies can be selected from the panel with 

less ambiguity. The logical next step after early studies was therefore to create large population-specific 

reference panels to efficiently analyze rare sites in GWAS. Creating this set requires an investment in 

money, time and personnel, therefore it is important to evaluate the cost to benefit ratio before generating 

this massive amount of genomic data. In Chapter 1, we give a brief overview of the genotype imputation 

approach and how GWAS have used this tool to impute common and rare variations; we describe the 

limitations of the approach and provide a brief overview on current studies that have included a 

population-specific panel in their study design to efficiently assess rare variants. In Chapter 2, we described 

our work that aimed to evaluate the benefits of a population-specific reference panel in Sardinians. We 

carried out an experiment in a worst case scenario: we sequenced, by Sanger, a reduced number of 

individuals (256 samples) and focused on exons of a handful set of loci known to be associated with low-

density lipoprotein cholesterol (LDL-C) levels. We assessed whether benefits in imputation using 

population-specific haplotypes could be translated in benefits in detecting traits-associated rare and low 

frequent variants even at known loci for a well-studied phenotype. The study revealed that genotype 

imputation performed with a moderate size reference panel could already be useful, in an isolate, to 

impute functionally interesting rare variants. Thereafter, we undertook large scale whole-genome 
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sequencing to create a Sardinian-specific reference panel for imputation that would maximize genetic 

information; in Chapter 3 we evaluated its performance compared to other public resources. We showed 

that a population-specific panel confers a remarkably higher gain in accuracy in Sardinians, especially at low 

frequency and rare variants, compared to other studies with a similar design (number and coverage of 

sequenced samples, scaffold of baseline genotypes and number of samples to be imputed). We also 

showed that in the Sardinian isolate and with the specific reference panel, very accurate genome 

reconstruction can be made even from sparser genetic maps, such as MetaboChip and Human Exome 

arrays.  

While the primary quantifiable outcome of genotype imputation is accuracy, the efficiency of the approach 

is concrete when the application results in enhanced gene discoveries. In the past years, there have been a 

few examples of genetic studies that were empowered by the use of a sequencing-based population-

specific reference panel for imputation, which highlighted variants that have changed in frequency in the 

population being studied and that would not have been well imputed with generic reference panels. 

Chapters 4-7 include four of those studies, where GWAS carried out in the SardiNIA cohort were enhanced 

by the Sardinian-specific reference panel created with whole-genome sequencing of up to 2,120 Sardinians 

(Chapters 4-7). In Chapter 4, in a GWAS that used a combination of MetaboChip and ImmunoChip SNP 

arrays as a framework for imputation, we identified 23 independent variants of which 20 were imputed. 

This was striking because the two arrays led to very poor imputation quality when using other European 

reference panels. In Chapter 5, a parallel comparison of a series of GWAS performed using either the 

Sardinian reference panel or the latest release of 1000Genomes (phase 3) revealed four novel loci for lipid 

levels and blood inflammatory markers that would have not being identified without the Sardinian 

sequencing panel. Similarly, in Chapter 6 and 7, we identified novel loci associated with hemoglobin 

subtypes levels and height variation by means of this specific imputation reference set. Altogether, those 

studies indicate that isolates are an ideal setting to study rare variants in GWAS when an appropriate 

design is used. In fact, most of the novel signals we identified were more frequent in Sardinians than in 

other European populations, demonstrating that isolation and genetic drift confer an intrinsic enhanced 

power for association of rare variants. Still, this advantage can be lost if a population-specific reference 

panel is not used for imputation because many of the detected loci were not detectable with public 

reference sets.  

Genetic drift may increase frequency of certain variants not only in isolates but also in small geographical 

area of open-populations. Therefore, population-specific reference panels could lead to better results 

compared to, or in combination with, the 1000 Genomes data in non-isolates. In Chapter 8 we described 

current ongoing efforts in other isolates and in open populations that have set up their own reference 

panel by whole-genome sequencing a subset of individuals, including the Genome of the Netherlands 

Project, the UK10K Consortium and the deCode group. Novel associations at rare and less frequent variants 

were detected for complex traits and diseases by those studies; a few times the variant was specific of the 

population being studied, as observed in Sardinia. This final observation came with a consequence. 

Replication of association findings in independent cohorts, considered a standard step in the era of 

common variants GWAS, is not always possible when the frequency drops. Other factors have to be 

considered to evaluate if findings are genuine, for example examining consistency of association at other 

variants according to linkage disequilibrium patterns, use of more stringent significance levels, evaluation 

of robustness of estimates with statistical resampling methods, or integration of functional data.  

The cost of whole-genome sequencing will probably drop in the next years until a point where sequencing 

will replace genotyping arrays. Meanwhile, genotype imputation will play a crucial role in genetic studies. 
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Sample size of both GWAS studies and reference panels are going to increase; changes in the algorithm 

underlying the genotype imputation are being proposed to allow the approach to scale with the complexity 

of the data. In Chapter 9, we discuss future prospects of GWAS and their evolution in the near future.  
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Samenvatting 

(translation service provided by Elsevier’s Webshop)  

 

Genoom-breed associatieonderzoek (GWAS) initieerde een tijdperk van genontdekkingen, gekarakteriseerd 

door robuuste en reproduceerbare bevindingen in onafhankelijke onderzoeken. Deze werden rond tien jaar 

geleden voor het eerst geïmplementeerd met de destijds beschikbare methoden en technologieën. De 

technologieën en de statistische methoden ontwikkelden zich verder door modellering van de behoeften 

en het ondersteunen van de uitdagingen die de aanpak en de resultaten opleverde.  

De eerste GWAS beoordeelden ~100.000-2.000.000 vaak voorkomende, enkele nucleotide polymorfismen 

(single nucleotide polymorphisms, SNP’s), gekarakteriseerd door genotypische scala’s of genotype-

toerekening, een aanpak om statistisch varianten af te leiden die niet direct gegenotypeerd zijn. Met dit 

doel maakten GWAS’en intensief gebruik van gegevens uit het HapMap Project, dat bestond uit een 

referentieset van 270 personen die gekarakteriseerd werden voor ~2 miljoen vaak voorkomende 

polymorfismen (HapMap-fase II). Het gebruik van HapMap bij genotype-toerekening is nu veelal vervangen 

door de 1000 Genomes-referentieset. Het panel bestaat uit ~2.500 personen, waarvan het gehele 

variatiespectrum in een genoom (SNP’s, indels en structurele veranderingen) gekarakteriseerd is met 

sequentiemachines van de volgende generatie. Op dit moment kunnen GWAS’en miljoenen vaak en zelden 

voorkomende varianten beoordelen door rechtstreekse sequentie van het gehele genoom of, opnieuw, 

door genotype-toerekening. Het is opmerkelijk dat het tot voor kort onduidelijk was of de aanpak van 

genotype-toerekening om zelden voorkomende genotypen af te leiden werkzaam zou zijn, en dus of nieuw 

ontdekte varianten met sequenties in referentiesets effectief te beoordelen zouden zijn. De aanpak van 

genotype-toerekening is daadwerkelijk gebaseerd op het idee dat gedeelde chromosoomreeksen zelfs in 

niet-gerelateerde personen gevonden kunnen worden, zodat het haplotypenpaar van elke persoon 

gereconstrueerd kan worden tot een mozaïek van kleine stukjes haplotypen uit een referentieset. Daarom 

is de nauwkeurigheid van haplotype-reconstructie (naast vele andere parameters) afhankelijk van de 

frequentie van de variant die zal worden voorspeld: hoe meer zelden de variant, hoe moeilijker de 

voorspelling, omdat er minder vergelijkbare haplotypen zouden worden gevonden. Als gevolg daarvan 

wordt verwacht dat de nauwkeurigheid van de toerekening aan zelden voorkomende varianten alleen goed 

zal werken met grote referentiepanels (>1.000), die pas kortgeleden beschikbaar werden. De 

nauwkeurigheid zal ook toenemen als de populatie grotendeels homogeen is en de personen in de 

referentieset genetisch dichtbij de populatie zelf liggen, omdat het haplotype met de zelden voorkomende 

variant met minder dubbelzinnigheid geselecteerd kan worden uit het panel. De logische vervolgstap na de 

vroege onderzoeken was dan ook de samenstelling van grote populatiespecifieke referentiepanels om 

zelden voorkomende varianten werkzaam te analyseren met GWAS. Het creëren van deze set vereist een 

investering in geld, tijd en personeel en het is dan ook belangrijk om een kosten-batenanalyse uit te voeren 

alvorens deze enorme hoeveelheid genomische gegevens te genereren. In Hoofdstuk 1 geven we een kort 

overzicht van de aanpak van genotype-toerekening en de wijze waarop GWAS dit hulpmiddel gebruikte bij 

het toerekenen van vaak en zelden voorkomende variaties. We beschrijven de beperkingen van de aanpak 

en bieden een kort overzicht van huidige onderzoeken die in hun onderzoeksontwerp een 

populatiespecifiek panel gebruiken om zelden voorkomende varianten werkzaam te beoordelen. In 

Hoofdstuk 2 beschrijven we ons werk dat gericht was op het evalueren van de voordelen van een 

populatiespecifiek referentiepanel bij Sardijnen. We voerden een experiment uit met een worst case 

scenario: we sequentieerden, naar Sanger, een gereduceerd aantal personen (256 monsters) en richtten 
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ons op exonen van een handvol sets met loci die gekend geassocieerd waren aan low-density-

lipoproteïnecholesterol (LDL-C). We beoordeelden of voordelen van toerekening door middel van 

populatiespecifieke haplotypen vertaald konden worden in voordelen voor het detecteren van 

factorgeassocieerde, zelden voorkomende en laagfrequente varianten, zelfs in gekende loci, voor een goed 

onderzocht fenotype. Het onderzoek toonde aan dat genotype-toerekening in een referentiepanel van 

gemiddelde omvang al nuttig kan zijn, in een isolaat, voor het toerekenen van functioneel interessante, 

zelden voorkomende varianten. Daarna ondernamen we grootschalige sequentie van complete genomen 

om een Sardijns-specifiek referentiepanel voor toerekening samen te stellen, dat genetische informatie zou 

maximaliseren. In Hoofdstuk 3 beoordeelden we de prestaties in vergelijking met andere openbare 

bronnen. We toonden aan dat een populatiespecifiek panel een aanzienlijk grotere winst in 

nauwkeurigheid oplevert bij Sardijnen, vooral bij lage frequentie- en zelden voorkomende varianten, in 

vergelijking met andere onderzoeken met een vergelijkbaar ontwerp (aantal en dekking van 

gesequentieerde monsters, staffels van genotypen aan de baseline en aantal toe te rekenen monsters). We 

toonden ook aan dat in het Sardijnse isolaat en met het specifieke referentiepanel zeer nauwkeurige 

genoomreconstructie kan worden uitgevoerd, zelfs op basis van spaarzamere genetische kaarten als 

MetaboChip- en Human Exome-scala’s.  

Hoewel het primair kwantificeerbare resultaat van genotype-toerekening de nauwkeurigheid is, is de 

werkzaamheid van de aanpak concreet als de toepassing tot genetische ontdekkingen leidt. In de afgelopen 

jaren waren er een aantal voorbeelden van genetische onderzoeken die werden ondersteund door het 

gebruik van een sequentiegebaseerd, populatiespecifiek referentiepanel voor toerekening en varianten 

aantoonden die in frequentie wijzigden in de onderzochte populatie en niet goed toegerekend zouden zijn 

bij generische referentiepanels. De hoofdstukken 4 t/m 7 bevatten vier van deze onderzoeken, waarbij het 

in het Sardiniëcohort uitgevoerde GWAS versterkt werd door het Sardijns-specifieke referentiepanel, 

gecreëerd met sequentie van complete genomen van tot 2.120 Sardijnen (Hoofdstuk 4-7). In Hoofdstuk 4 

identificeerden we 23 onafhankelijke varianten in een GWAS die een combinatie van MetaboChip en 

ImmunoChip SNP-scala’s gebruikte als toerekeningskader, waarvan 20 werden toegerekend. Dit was 

opvallend, omdat de twee scala’s tot zeer matige toerekeningskwaliteit leidden in andere Europese 

referentiepanels. In Hoofdstuk 5 toonde een parallelvergelijking van een reeks uitgevoerde GWAS in ofwel 

het Sardijnse referentiepanel, ofwel de laatste uitgave van 1000 Genomes (fase 3) vier nieuwe loci aan voor 

lipideniveaus en inflammatoire bloedmarkers, die niet geïdentificeerd zouden zijn zonder het Sardijnse 

sequentiepanel. Op vergelijkbare wijze identificeerden we in Hoofdstuk 6 en 7 nieuwe loci geassocieerd 

aan hemaglobinesubtypeniveaus en lengtevariatie in deze specifiek toegerekende referentieset. Samen 

tonen deze onderzoeken aan dat isolaten een ideale setting vormen voor onderzoek naar zelden 

voorkomende varianten in GWAS, bij gebruik van een passend ontwerp. De meeste nieuwe signalen die we 

identificeerden, kwamen daadwerkelijk frequenter voor bij Sardijnen dan in andere Europese populaties, 

wat aantoont dat isolatie en genetische drift een intrinsiek versterkt onderscheidend vermogen oplevert 

voor associatie van zelden voorkomende varianten. Dit voordeel kan echter teniet worden gedaan als er 

geen populatiespecifiek referentiepanel wordt gebruikt voor toerekening, omdat vele van de 

gedetecteerde loci niet detecteerbaar waren met openbare referentiesets.  

Door genetische drift kan de frequentie van bepaalde varianten niet alleen in isolaten toenemen, maar ook 

in kleine geografische gebieden met open populaties. Daarom kunnen populatiespecifieke referentiepanels 

bij non-isolaten in vergelijking of in combinatie met de 1000 Genomes-gegevens tot betere resultaten 

leiden. In Hoofdstuk 8 beschreven we de inspanningen die op dit moment gaande zijn in andere isolaten en 

in open populaties die een eigen referentiepanel creëerden door sequentie van complete genomen in een 
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personensubgroep, waaronder het Genoom van Nederland, het UK10K Consortium en de deCode-groep. In 

die onderzoeken werden bij zelden voorkomende en laagfrequente varianten nieuwe associaties voor 

complexe factoren en aandoeningen gedetecteerd. Een aantal keren was de variant specifiek voor de 

onderzochte populatie, zoals geobserveerd in Sardinië. Deze laatste observatie leverde een consequentie 

op. Replicatie van geassocieerde bevindingen in onafhankelijke cohorten, beschouwd als een normale stap 

in het tijdperk van GWAS bij vaak voorkomende varianten, is niet altijd mogelijk als de frequentie afneemt. 

Er dienen andere factoren in ogenschouw te worden genomen om te evalueren of bevindingen echt zijn, 

bijvoorbeeld het onderzoeken van de consistentie van associatie met andere varianten met betrekking tot 

koppeling van disequilibriumpatronen, het gebruik van stringentere significantieniveaus, evaluatie van 

robuustheid van schattingen met statistische herbemonsteringsmethoden of integratie van functionele 

gegevens.  

De kosten van sequentie van complete genomen zullen in de komende jaren wellicht afnemen tot een punt 

waarop sequentie de plek inneemt van genotypische scala’s. In de tussentijd zal genotype-toerekening een 

cruciale rol spelen in genetisch onderzoek. De steekproefgrootte van zowel GWAS als referentiepanels zal 

toenemen; er worden veranderingen voorgesteld voor het onderliggende algoritme voor genotype-

toerekening om de aanpak voor schaalbaarheid van de complexiteit van gegevens mogelijk te maken. In 

Hoofdstuk 9 bespreken we toekomstmogelijkheden van GWAS en de evolutie ervan in de nabije toekomst.  
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