

 University of Groningen

Bundle-Centric Visualization of Compound Digraphs
Telea, A. ; Ersoy, O.

Published in:
Proceedings ASCI

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Early version, also known as pre-print

Publication date:
2010

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Telea, A., & Ersoy, O. (2010). Bundle-Centric Visualization of Compound Digraphs. In Proceedings ASCI

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license.
More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-
amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 04-06-2022

https://research.rug.nl/en/publications/5f80f305-5a62-4456-a6fc-2e6ae77454d0

Bundle-Centric Visualization of Compound Digraphs

A. Telea O. Ersoy

Johann Bernoulli Institute,
University of Groningen, The Netherlands

Keywords: software visualization, graph visualization, edge-bundling layouts, hierarchical edge clustering, graph
splatting, shape skeletonization

Abstract

We present a new approach aimed at understand-
ing the structure of connections in edge-bundling lay-
outs. We combine the advantages of edge bundles with
a bundle-centric simplified visual representation of a
graph’s structure. For this, we first compute a hierar-
chical edge clustering of a given graph layout which
groups similar edges together. Next, we render clus-
ters at a user-selected level of detail using a new image-
based technique that combines distance-based splatting
and shape skeletonization. The overall result displays a
given graph as a small set of overlapping shaded edge
bundles. Luminance, saturation, hue, and shading en-
code edge density, edge types, and edge similarity. Fi-
nally, we add brushing and a new type of semantic lens
to help navigation where local structures overlap. We
illustrate the proposed method on several real-world
graph datasets.

1 Introduction

Graphs are used to represent entity-relationship
datasets in many application areas, such as network
analysis, software understanding, life sciences, and the
world wide web. Many visualization methods exist for
large graphs, such as scalable node-link diagrams, ma-
trix plots [24], and combinations of the two [10]. Node-
link diagrams are often considered more intuitive, and
are arguably the most popular [9].

However, node-link layouts can produce significant
visual clutter, which shows up as overlapping edges or
nodes. Clutter impairs tasks such as finding the nodes
that a given edge (or edge set) connect, and at a higher
level, understanding the coarse-scale graph structure.

Several approaches exist to reduce clutter in graph
visualizations for the above, and similar, tasks. First,
the graph can be simplified prior to visualization, e.g. by
extracting structures such as spanning trees or strongly
connected components. Secondly, the layout of nodes
and/or edges can be adjusted. Both methods can be ap-
plied globally, based on clutter estimation metrics, or
locally, based e.g. on user interaction [29, 28].

When node positions encode information, they

should not be changed. Also, clutter is related most of-
ten to edge crossings [18, 11]. Recent research targets
clutter reduction and structure emphasis by geometri-
cally grouping, or bundling, edges that follow close
paths. Edge-bundling layouts (EBLs) exist for general
graphs [6, 13, 17], circular layouts [8], hierarchical di-
graphs [12], and parallel coordinates [16, 30]

In this paper, we approach the goal of visualizing the
coarse-scale structure of an EBL and clarifying edge
clutter caused by bundle overlaps. Given a bundling
layout, which we do not change, we hierarchically clus-
ter edges seen as similar from the viewpoint of the lay-
out and, optionally, underlying attribute data. Next, we
construct simple shapes that encode both geometric at-
tributes of clusters (form, position, topology) and un-
derlying edge data (spatial density and attributes). We
render these shapes with an image-based technique that
maps their attributes to shading and color on one or
more scales. While keeping EBL advantages, our sim-
plified visualization clarifies coarse-scale bundle over-
laps by explicitly drawing each bundle as a separate
shape, and assists the task of finding nodes connected
by a bundle. The simplification level is user controlled.
Finally, we add interaction to further clarify overlaps in
desired areas and to offer details on demand.

This paper is structured as follows. Section 2 re-
views related methods. Section 3 details our technique.
Section 4 presents several results. Section 5 discusses
our proposal. Section 6 concludes the paper with future
work directions.

2 Related work

Reducing edge clutter can be approached by different
types of methods, as follows.
1. Edge bundling layouts (EBLs) spatially group edges
ei ∈ E for a graph G(V,E) using a metric d(ei,e j) that
models closeness in either graph space, layout space,
or both. Edges ei = {pi j}N

j=1, where N = |ei|, are dis-
cretized into points pi j which are positioned so as to
minimize d. In hierarchical edge bundles (HEBs) d re-
flects closeness of edge end-nodes in a hierarchy asso-
ciated with G [12]. In force-directed bundling (FDB),
d models geometric proximity of edge points pi j, and
is minimized by a self-organizing approach [13]. Flow

maps hierarchically cluster nodes and edges in a flow
graph and yield bundles that emphasize source-sink
routes [17]. Geometry-based edge bundling groups
edges using a control mesh generated by edge cluster-
ing [6]. Parallel coordinates use a metric d that encodes
curvature and geometric distance to bundle edges [30].

Overall, EBLs trade clutter for overlap. Similar
edges are routed close to, or atop of, each other, so less
individual edges may be visible. Coarse graph struc-
ture becomes visible, but visually disambiguating close
or overlapping bundles, i.e. seeing nodes these connect,
can be hard [8, 14]. Bundles are typically implicit: it
is hard to exactly say which are the main bundles in an
EBL and what sub-graphs these relate, since bundles do
not have a distinct visual identity.
2. Image-based techniques avoid edge clutter by not
explicitly rendering edges. Graph splatting convolves
nodes and (optionally) edges of a node-link layout with
a Gaussian filter [26] into a height or intensity map.
Dense edge regions, which can cause clutter in node-
link renderings, show up as compact high-value splats.
The filter width controls the scale at which overlap is
perceived. However producing simplified views, splat-
ting makes it hard to follow edges. Also, the filter
width needs careful tuning to avoid creating discon-
nected, thus misleading, splats.

Shaded cushions are effective for showing hierar-
chies, and have been used for rectangular and Voronoi
treemaps [27, 4] and icicle plots and edge bundles [22].
However, we are not aware of cushions and EBL com-
binations for more general graphs.
3. Graph simplification techniques replace sub-
structures by simpler ones, or wholly eliminate them, if
not essential for the task at hand [1, 3, 25]. This reduces
overlap and also emphasizes the overall graph structure.
Graph clustering identifies similar sub-structures which
can next be simplified. Simplification is not restricted
to a unique hierarchy. For example, GrouseFlocks al-
lows users to interactively explore a set of alternative
hierarchical simplifications on large graphs, as well as
adapt the simplification level, or ’cut’ in the hierarchy,
dynamically to parts of the graph [2]. A recent review
of clustering techniques is given in [20]. In this paper,
we use edge clustering, a subclass of graph clustering,
to identify and separate edge bundles. However, we do
not explicitly simplify the input graph.

3 Method

We aim to simplify a bundled edge visualization by
emphasizing the coarse-level bundle structure to help
users to visually trace such bundles to the nodes they
connect. For this, we make bundles a first-class vi-
sualization object using splatting and shaded cushions,
hence the name of our method: Image-Based Edge Bun-
dles (IBEB). We use a six-step approach, as follows (see
also Fig. 1).

1. We apply a given edge bundling layout (Sec. 3.1).

2. We explicitly group laid out edges into a cluster
hierarchy, using a distance that reflects edge posi-
tions and data attributes (Sec. 3.2).

3. We choose a set of clusters from the hierarchy at a
user-selected level of detail. For each cluster, we
create a compact shape around its edges (Sec. 3.3).

4. For each shape, we construct a cushion-like
shading profile that also encodes data attributes
(Sec. 3.4).

5. We render all shapes in a suitable order to mini-
mize occlusion (Sec. 3.5).

6. We add a new semantic lens method to help visual
exploration (Sec. 3.6).

These steps are detailed next.

3.1 Layout

We start with an edge bundling layout L : G→ R2

for the input graph G(V,E). The next steps (Sec. 3.2
and further) are fully independent from this layout. The
only assumptions made are that

1. each edge ei ∈ E is mapped to a set of points pi j ∈
R2; different edges can have different amounts of
points;

2. the layout does create edge bundles;

As an example, we use the HEB layout [12]. Yet, we use
absolutely no hierarchical information beyond the lay-
out. Other bundling layouts can be readily used (Sec. 4).

3.2 Clustering

As a pre-processing step to produce our simplified
visualization, we explicitly group related edges. Each
edge e = {p j}|e|j=1 is modeled as a feature vector v =

{x1,y1, . . . ,xN ,yN , t1, . . . , tT} ∈R2N+T . The first 2N ele-
ments of v are regularly sampled points along the poly-
line {p j}. N should be large enough to capture complex
edge shapes. N ∈ [50,100] gives good results on differ-
ent EBLs and datasets, in line with [13, 12, 8]. Some
layouts do not encode semantic edge similarity into po-
sitions (assumption 2, Sec. 3.1): The HEB groups edges
solely on their ends’ hierarchy position; the FDB uses
solely edge points’ positions. In some cases, e.g. visu-
alizing a software system graph, we want to distinguish
edge types (e.g. inheritance, call, uses) [14]. To sepa-
rate edges of different types t ∈ N, we add v2N+1 = t.
Multiple type dimensions can be encoded in t1, . . . , tT ,
although so far we have used a single type component
(T = 1).

Next, we cluster all edges ei with a well-known clus-
tering framework for gene data [15]. Intuitively, we
replace genes by our vectors v. We have tested sev-
eral algorithms: Hierarchical bottom-up agglomerative
(HBA) using full, centroid, single, and average linkage;
and k-means clustering, both with Euclidean and statis-
tical correlation (Pearson, Spearman’s rank, Kendall’s
τ) distances. HBA with average or full linkage and

input

graph

edge bundle layout L clusters Ci splats Si shaded images Ii interaction

Figure 1: Image-based edge bundle (IBEB) visualization pipeline

Euclidean distance d(v,w) = ∑
N+T
i=1 ‖vi−wi‖2 give the

best results, i.e. clusters with edges being close both
geometrically and type-wise. To keep edges of differ-
ent types separated, we bias t j ∈ v with a large value
k = maxe,e′∈E ∑

N
i=1 d(e,e′). Similar techniques are used

to handle gene components with different semantics,
which also allows users to set weights to the different
feature vector components [15].

HBA delivers a dendrogram T = {C} with the edge
set E as leaves and distances d(C) decreasing from
root to leaves. We now select a partition P = {Ci}
of E so that

⋂
Ci,C j∈P = � and

⋃
Ci∈P = E. For ex-

ample, a similarity-based P contains all clusters with
a d(C) < duser below a user-given value. Larger duser
values give more numerous, and more similar, clusters.
Smaller duser values give less, more dissimilar, clusters.
Other methods can be used, e.g. select P for a given
cluster count.

We stress that the clustering method choice is not the
core of this paper, but only a tool to create explicit edge
groups. Any clustering can be used, as long as it groups
edges logically related from an application viewpoint
and spatially close. Also, it is very important to note
that our partition is just a single level, or ’cut’, in the
graph, which we subsequently visualize.

3.3 Shape construction

Given a user-selected partition P (Sec. 3.2), we now
construct a shape to visualize each edge set C = {ei} ∈
P. Due to bundling and clustering, edges E typically
follow a small set of directions (paths). We use splat-
ting to show bundles in a compact way (Fig. 3). We
convolve each edge e ∈C with a kernel k which linearly
decreases from a maximum K to zero at a distance δ

from the edge, and accumulate results, similar to [26].
For this, we sample k in a 64x64 pixels alpha texture and
additively blend textured polygons along all pi ∈ e ∈C
(GL_SRC_ALPHA, GL_ONE). We tried both radial and
linear profiles for k (Fig. 3 bottom-right). Radial profiles
are splatted centered at pi. Linear profiles are splatted
on two polygon strips built by offsetting edge segments
pi pi+1 in vertex normal directions ni,−ni with δ, like
stream ribbons in flow visualization. Linear profiles are
better: they allow freely choosing the edge resolution
(number of pi) and splat size δ, while these values must
be carefully tuned for radial profiles to avoid splatting
gaps.

Splatting yields an edge density D(x) =

∑p∈e,e∈C k(p − x) (Fig. 2 b). Next, we threshold

D to obtain a binary shape I (Fig. 2 c)

I(x) =
{

1, D(x)≥ τ

0, D(x)< τ
(1)

For illustration simplicity, Fig. 2 shows a single cluster
(the tree root). In practice, we create one shape Ii for
each cluster Ci in the user-selected partition P. Each
Ii is, by construction, compact, and surrounds the edge
bundle(s) in Ci, with a maximal offset δ(K− τ)/K. In
practice, we always set τ = 0.7K and K = 0.2. δ is user-
controlled, ranging between 1% and 5% of the viewport
(see Sec. 3.4).

Additionally, we modulate δ to thin shapes half-way
between their ends. For this, we use, at each point pi, i∈
[1,N], a value δi = δ

(
ε

∣∣∣ i−N/2
N/2

∣∣∣+1− ε

)
, i.e. shrink

shapes from δ at their ends to (1− ε)δ in the middle.
Good values for ε range around 0.5, which was used for
the examples in this paper. Shrinking reduces bundle
overlaps, as we shall see next in Sec. 3.5.

Figure 3: Splatting algorithm details

3.4 Shading

For each binary image I created from clustered edge
bundles, we now create a shaded shape that compactly
conveys the underlying bundle structure. Following the
original bundle metaphor, we want to encode several as-
pects in a shape:

• bundling: The shape should suggest the branching
structure of a set of bundled curves in a simplified
way;
• structure: Finer-level groups of edges, or even in-

dividual edges, should be visible;
• density: High edge-density regions should be vis-

ible. These are cues for strong couplings, relevant
to many applications;
• data: The shape should be able to encode bundle

attributes, e.g. edge types.

a) edge layout b) splatted image c) binary shape

Figure 2: Shape construction. Edge bundles (a) are splatted into a density image (b), next thresholded into a binary shape (c).

For this, we generalize rectangular shaded cushions [27]
to our more complex shapes I, as follows. We compute
the skeleton Sk(I) of each shape I. Sk(I) is a 1D struc-
ture locally centered with respect to the shape’s bound-
ary ∂I

Sk(I)= {x∈ I|∃p∈ ∂I,q∈ ∂I, p 6= q,‖x− p‖= ‖x−q‖}

Next, we compute a shading profile

H =
1
2

[
min

(
DT (∂I)
DT (Sk)

,1
)
+max

(
1− DT (Sk)

DT (∂I)
,0
)]
(2)

where DT (∂I) and DT (Sk) are the distance transforms
of the boundary ∂I and skeleton Sk respectively. We
compute both DT and Sk using the implementation de-
scribed in [23]. For any shape topology or geometry,
H smoothly varies between 0 on ∂I and 1 on Sk(I), as
shown for a different application in [19]. Figure 4 b,c
show Sk and H (the latter on a blue-to-red colormap) of
the shape given by splatting Fig. 4 a.

We now set the hue, saturation, value, and trans-
parency h,s,v,a at each pixel of I using the profile H,
splatting density D (Sec. 3.3), and edge types, follow-
ing the aims listed earlier in this section. We set v=Hα,
with α = 0.5. This darkens shapes close to their border
and brightens them close to the skeleton. The factor 0.5
smooths out H (Eqn. 2), creating a look akin to classical
shaded cushions [27]. Next, we map edge types to hue
h. Two options were explored: each shape has a dif-
ferent hue, or hues map edge types. The second option
is relevant when clusters contain only same-type edges
(Sec. 3.2). Finally, we use s and a to create different
visual styles (Table 1).

The convex style renders opaque shapes dark and sat-
urated at the border and bright and white in the mid-
dle (Fig. 4 d). In contrast to Phong shading H as a
true height signal, as in [27, 5], this style emphasizes
the skeletal structure (branching pattern). We see now
the effect of the splat size δ (Sec. 3.3). Higher values
yield thicker, simpler shapes (Fig. 4 d). Smaller values
yield thinner shapes with individual edges better visible
(Fig. 4 e). We can further emphasize a bundle’s branch-
ing structure by using max[0,(H−Hmin)/(1−Hmin)] in-
stead of H in Table 1. H’s isolines continuously change
from the shape’s boundary to its skeleton, being halfway
at H = 0.5 (see Fig. 4 c and [19]). Hmin = 0.5 yields
shapes which are thinner and also further emphasize the
bundle structure, as in Fig. 4 f.

Style s a
Convex 1-H 1
Density-luminance 1−HD 1
Density-saturation HD 1
Cores H 1−H3

Outline 0 1−HD

Table 1: Shape shading styles (see Secs. 3.4,3.5)

The last four shading styles in Table 1 are effective
when visualizing several clusters, as discussed next.

3.5 Rendering

For a given clustering partition P, we now render one
shape I for each cluster in back to front order, i.e. sorted
on shape size (foreground pixel count |I|). Placing small
shapes in front of larger ones reduces occlusions and
makes small bundles visible. Figure 5 illustrates this.
Image (a) shows a dependency graph of 419 nodes and
988 relations extracted from a C# software system, laid
out with the HEB. Nodes are .NET assemblies, pack-
ages, classes, and methods. Several bundles show up,
but it is hard to determine (even with interaction) which
subsystems they connect. Overlaps make it hard to visu-
ally follow a bundle end-to-end. Image (b) shows the re-
sult of our method, on a level-of-detail with 18 clusters,
using the convex style (Sec. 3.4). For illustration only,
clusters were given different random hues from a hand-
crafted colormap. Using a gray rather than white back-
ground emphasizes the coarse-scale bundles. Image (c)
shows the density-luminance style (Table 1). Bright-
ness emphasizes clusters with many edges. Figure 5 d
serves the same goal, but uses saturation: High-density
areas are colorful, low-density areas are gray. Image
(d) shows the cores style. Areas close to bundle skele-
tons are opaque, the rest is transparent. This reduces
overlaps and stresses graph structural aspects, similar in
aims to the opacity bands in clustered parallel coordi-
nates [7].

Figure 5 f shows the outline style. Here, we modulate
alpha, to create transparent outlined tubes (Table 1). To
reduce clutter caused by transparency, we use grayscale
images. Although less salient than the previous styles,
outlines are an useful visual cue of overall structure, es-
pecially when combined with interaction techniques.

Finally, we explored the possibility to add more vi-
sual detail to a bundle. For a user-chosen level dmin and

a) edge layout b) shape I and skeleton Sk c) height profile H

d) convex shading

(large splat size)

e) convex shading

(small splat size)

f) convex shading

(thin shapes)

Figure 4: Shading pipeline (Sec. 3.4). Edges in a cluster (a) and their binary shape I and skeleton Sk (b) and shading profile H
(c). Convex shading with shape thickness as function of the splat size (d,e) and shading profile thresholding (f)

partition P = {C}, we first compute H as in Sec. 3.4.
Next, we re-partition C (Sec. 3.2) for a higher d′min =
µdmin, where µ = 1.2 gives good results. Third, we
add the profiles H ′ of each C′ in its refined partition
P′i , scaled to a lower range [0,h], to the coarse-scale
Hi. We normalize the result H + ∑C′∈P′ hH ′ and use
it for shading (Sec. 3.4). Finer-scale bundles create lu-
minance ridges within their parent clusters. From dis-
cussions with the users, we noted that bi-level images
are perceived as more suggestive than single-level ones,
as the second level acts as a detail texture suggesting
the bundled edges, and also eliminate the undesired lu-
minance peaks created by skeleton branches reaching to
the corners of the bundle shapes (compare Figs. 5 (c)
and (e)). However, our thin and long shapes preclude
adding more levels to actually show bundle hierarchies
like e.g. in cushion treemaps.

3.6 Interaction
By construction, EBLs favor edge overlaps (Sec. 2),

so occlusion cannot be fully avoided. We alleviate this
by several interaction techniques. First, we use classical
brushing to render pixel-thin edges in the shape under
the mouse. This shows the nodes linked by a given bun-
dle, even if only a small part of the bundle is visible.
Clicking on a shape brings it to front, sends it to back,
or hides it. This helps bringing bundles of interest into
focus.

We add a new interaction tool to further explore over-
lapping bundles: the digging lens. Given a focus point x
(the mouse pointer), and a pixel p within the lens radius
R, ‖p− x‖ < R, we upper threshold the profiles H(p)

with Hmin = t[1− (‖p− x‖/R)2
] for all visible shapes,

where t = 0.8 gives the maximal thinning in the lens
center. This smoothly shrinks shapes closer to the lens
center, along the idea shown in Fig. 4 f (Sec. 3.4). We
set the shapes’ saturation to 1 in the lens and 0 out-
side. As the lens moves, shapes inside it get thinner
(thus have less overlap) and also colorful (thus easy to
focus on without distraction from outside shapes). As
the user moves the mouse inside the lens, we automat-
ically bring to front the shapes touched by the mouse.
Figure 6 shows the digging lens. At the thin circle lo-
cation (a), we see bundle overlaps. This cue triggers
further exploration. For example, we want to see what
is behind the blue bundle (A, inset). Activating the lens
(by pressing Control) shows eight clusters, made dis-
tinct by shrinking and coloring (b). Moving the mouse
over e.g. the red bundle (B, see inset) brings it to front,
so we now see that it connects the node groups N1,N2
and N3 (c). The entire process takes a few seconds and
requires one key and one mouse click. Although use-
ful, the digging lens cannot fully handle all possible
overlaps: Where long bundles of same thickness over-
lap nearly completely, the lens will shrink them equally,
and thus not reveal the hidden bundles. The lens is ef-
fective in places where bundles overlap but have slightly
different directions and/or thicknesses.

4 Results
Figure 7 shows the IBEB applied to the software de-

pendency graph from Sec. 3.5. As a use-case, we con-
sider analyzing type usage, i.e. inheriting from a class or
using its type (functionality) in client code. This is one

a) b) c)

d) e) f)

Figure 5: Rendering styles: convex shapes (b), density-luminance (c), density-saturation (d), bi-level (e), and outlines (f).

A B

N
1

N
2

N
3

Figure 6: The digging lens is used to interactively explore areas where shapes overlap. Insets show zoomed-in details.

of the hardest kinds of dependencies to refactor in soft-
ware. To analyze different coupling types, we first use
the HEB with type-colored edges (calls=yellow, class
member reads/writes=blue, type usage=red) (Fig. 7 a).
We see a thick red bundle that links subsystems A and
B. However, without iterative node selection, we cannot
see which parts of A connect to which parts of B. Also,
edge color blending makes it hard to see edge types at
overlaps (arrow in the figure).

Next, we use the IBEB with convex shading and bi-
level rendering (Fig. 7 b). Clusters contain only same-
type edges (Sec. 3.2) and are colored on this type. We
see now that member read/write relations form local-
ized bundles not extending across classes (small light
blue bumps, see e.g. the light blue arrow in (b)). This is
a good sign for information hiding. Also, two red bun-
dles appear. With two clicks, we bring these to front (b).
We now see two separate subsystems in A connected to
two separate subsystems in B. For illustration, we click
on one of the two bundles (A1B1) and change its color
to blue (Fig. 7 c). We have now split the original red
bundle into two relation sets: A1B1 and A2B2. Fig. 7 d

shows further insight in the clustering: all bundles col-
ored with different hues and overlaid with the actual
pixel-thin edges. Albeit brief for space limitations, this
example illustrates one main point: Classical edge bun-
dles, like HEB, effectively show coarse-scale subsys-
tem connections, but do not expose the finer-scale cou-
pling structure within bundles. IBEB further reveals this
structure, by showing where actual edges that ’enter’ the
bundle will ’exit’.

To further understand the IBEB strong and weak
points, we performed a formative user study. Twenty 3rd

year CS students at the Univ. of Groningen, the Nether-
lands, were given the IBEB implemented atop of a soft-
ware analysis tool using the HEB [21]. The tool imports
dependency graphs (inheritance, class field usage, func-
tion calls, and containment hierarchy) from Visual C++,
.NET/C#, and Java. The C# software discussed earlier
was provided by the tool developers as an interesting
use-case. Participants were asked to find dependencies
between several indicated modules; list the four most
important call and field usage paths in the system; and
comment on the overall system modularity. Search, fil-

a) d)b) c)

A

B

A

B
1

A
1

A
2

B
2B

calls member

uses

type

uses

Figure 7: Software dependency graph exploration with IBEB (see Sec. 4)

ter, and node selection (available in the original tool)
were disabled, so the tasks had to be completed mainly
focusing on edges. One week was given to familiarize
with the tool (which has a detailed manual) and execute
the tasks. Effective usage time was 5 to 8 hours. The
images in Fig. 7 come from this study.

Besides the actual answers, the following points
were mentioned by all users (except two who did not
complete the study):

• Classical HEB is very effective when (a) there are
few bundle overlaps, or (b) one does not need to
visually determine which parts of a large bundle
go to which specific node groups;

• Although overlap exists, IBEB reveals several end-
to-end (node-to-node) coarse-scale bundles which
are not visible with classical HEB;

• The digging lens is effective in locally unraveling
occluded bundles at a location of interest;

• The IBEB has an ’organic’ look which is pleasing
and invites exploration.

Overall, the IBEB combines the advantages of HEB
with an easier understanding of dense bundles. In the
traditional HEB, a thick, dense, bundle is seen as such
but one cannot directly see whether there is finer-level
structure, e.g. the bundle actually consists of several
sub-bundles which connect different node groups, like
in Fig. 7. This can be done by a trial-and-error selec-
tion of individual nodes to see if their edges indeed pass
through the bundle of interest. Such selection is eas-
ily done in the HEB, but harder in layouts that draw
nodes as small points, e.g. the FDB. In contrast, IBEB
makes bundles explicitly, and individually, visible, so
users can easier relate bundles to the nodes they con-
nect. The fact that IBEB shows less fine-scale detail
than the HEB does not seem to be a major problem, as
individual edges are mainly explored once one has de-
cided which few node(s) one wants to inspect. When
this is known, both the HEB and IBEB are equally ef-
fective - in IBEB, brushing over a node and/or bundle
highlights its edges, drawn as individual lines, just like
in the HEB. For the several selection and brushing fea-
tures we support, we refer to [21].

Our users also mentioned several desirable addi-
tions. First, although shading and back-to-front ren-
dering were seen as effective, overlaps still exist. The
digging lens helps to analyze overlaps, but only locally.

Secondly, edge direction cues are required. We tried
several methods for this, e.g. luminance or saturation
modulation of our bundle shapes, but this was found to
darken images too much. Further work in this area is
needed.

5 Discussion

We next discuss some technical aspects of our
method.
Performance: We ran the IBEB, implemented in C++
and OpenGL 1.1, on several systems running Windows
Vista/XP, 1.5 to 3.5 GHz, and 2 GB to 4 GB RAM. The
clustering used [15] handles 10 to 20K edges in under
0.1 seconds. Splatting, shading, rendering, and inter-
action (OpenGL-based) run in real-time on consumer
graphics cards.
Visual metaphor: The IBEB convex rendering style re-
sembles the shaded edge bundles in illustrative paral-
lel coordinates (IPC) [16], with some differences. Our
shapes have a much higher variability, depending on the
EBL used. We use hierarchical agglomerative cluster-
ing, while IPC uses k-means. We use skeletons in shad-
ing to emphasize the bundles’ branching structure, to re-
duce overlaps (shrink shapes globally or locally by the
digging lens), and for the cores rendering style. IPC
uses different shapes and a shading style that mainly
emphasizes line density.
Scalability: The IBEB’s main limitation is visual scal-
ability. Using 10 to 30 shapes shows the coarse graph
structure. More shapes create too many overlaps. How-
ever, we aim to provide a simplified view, not a full-
blown replacement for bundled edges.

Acknowledgements

We are grateful to Dennie Reniers and Lucian Voinea
for the code of the SolidSX tool [21], datasets, and
use-cases, and to Danny Holten for the force-directed
bundling layout data (Sec. 4) and many insightful com-
ments.

6 Conclusions

We have presented an image-based simplified visual-
ization for edge bundles (IBEB). Given a layout that cre-
ates spatially close edge bundles, we visualize bundles
using shaded overlapping compact shapes. We reduce

the visual complexity of classical bundle visualizations,
emphasize coarse-scale structure, and help navigating
from bundles to the connected nodes. We make bundle
overlaps explicit, and add interaction to locally disam-
biguate these. Level-of-detail techniques help to select
the visualization granularity and further explore over-
laps.

Many extensions are possible. Different shading and
edge clustering strategies can be used to address addi-
tional use cases, e.g. emphasize connections of particu-
lar types and/or topologies in a graph. New techniques
can be designed to convey additional edge data such as
direction or metrics atop of our metaphor. Finally, the
IBEB can be extended to other fields, such as flow or
tensor visualization. We plan to explore these avenues
in future work.

References

[1] J. Abello, F. van Ham, and N. Krishnan. ASK-
graphview: A large scale graph visualization sys-
tem. IEEE TVCG, 12(5):872–880, 2006.

[2] D. Archambault, T. Munzner, and D. Auber.
GrouseFlocks: Steerable exploration of graph hi-
erarchy space. IEEE TVCG, 14(4):900–913, 2008.

[3] D. Auber, Y. Chricota, F. Jourdan, and G. Melan-
con. Multiscale visualization of small world net-
works. In Proc. IEEE InfoVis, pages 75–81, 2003.

[4] M. Balzer, O. Deussen, and C. Lewerentz. Voronoi
treemaps for the visualization of software metrics.
In Proc. ACM SOFTVIS, pages 165–172, 2005.

[5] D. Bruls, C. Huizing, and J. J. van Wijk. Squarified
treemaps. In Proc. IEEE VisSym, pages 33–42,
2000.

[6] W. Cui, H. Zhou, H. Qu, P. Wong, and X. Li.
Geometry-based edge clustering for graph visual-
ization. IEEE TVCG, 14(6):1277–1284, 2008.

[7] Y. Fua, O. Ward, and E. Rundensteiner. Hierar-
chical parallel coordinates for exploration of large
datasets. In Proc. IEEE Visualization, pages 43–
50, 1999.

[8] W. Gansner and Y. Koren. Improved circular lay-
outs. In Proc. GD, pages 386–398. Springer, 2006.

[9] M. Ghoniem, J. D. Fekete, and P. Castagnola.
A comparison of the readability of graphs using
node-link and matrix-based representations. In
Proc. IEEE InfoVis, pages 17–24, 2004.

[10] N. Henry and J. D. Fekete. NodeTrix: A hy-
brid visualization of social networks. IEEE TVCG,
13(6):1302–1309, 2007.

[11] I. Herman, G. Melancon, and S. Marshall. Graph
visualization and navigation in information visual-
ization: a survey. IEEE TVCG, 6(1):24–43, 2000.

[12] D. Holten. Hierarchical edge bundles: visual-
ization of adjacency relations in hierarchical data.
IEEE TVCG, pages 741–748, 2006.

[13] D. Holten and J. J. van Wijk. Force-directed
bundling for graph visualization. Comp. Graph.
Forum, 28(3):983–990, 2009.

[14] H. Hoogendorp, O. Ersoy, D. Reniers, and
A. Telea. Extraction and visualization of call de-
pendencies for large C/C+ code bases: A compar-
ative study. In Proc. IEEE VISSOFT, pages 45–53,
2009.

[15] M. D. Hoon, S. Imoto, J. Nolan, and S. Miyano.
Open source clustering software. Bioinformatics,
20(9):1453–1454, 2004.

[16] K. McDonnell and K. Mueller. Illustrative parallel
coordinates. Comp. Graph. Forum, 27(3):1031–
1038, 2008.

[17] D. Phan, L. Xiao, R. Yer, P. Hanrahan, and
T. Winograd. Flow map layout. In Proc. IEEE
InfoVis, pages 219–224, 2005.

[18] H. Purchase. Which aesthetic has the greatest ef-
fect on human understanding? In Proc. GD, pages
248–261, 1997.

[19] M. Rumpf and A. Telea. A continuous skele-
tonization method based on level sets. In Proc.
IEEE VisSym, pages 151–160, 2002.

[20] S. Schaeffer. Graph clustering. Comp. Sci. Review,
1:27–64, 2007.

[21] SolidSource. SolidSX software explorer, 2009.
www.solidsourceit.com/products/SolidSX-
source-code-dependency-analysis.html.

[22] A. Telea and D. Auber. Code Flows: visualizing
structural evolution of source code. Comp. Graph.
Forum, 27(3):831–838, 2008.

[23] A. Telea and J. J. van Wijk. An augmented fast
marching method for computing skeletons and
centerlines. In Proc. IEEE VisSym, pages 251–
258, 2002.

[24] F. van Ham. Using multilevel call matrices in large
software projects. In Proc. IEEE InfoVis, pages
227–232, 2003.

[25] F. van Ham and M. Wattenberg. Centrality based
visualization of small world graphs. Comp. Graph.
Forum, 27(3):975–982, 2008.

[26] R. van Liere and W. de Leeuw. Graphsplatting:
Visualizing graphs as continuous fields. IEEE
TVCG, pages 206–212, 2003.

[27] J. J. van Wijk and H. van de Wetering. Cushion
treemaps: Visualization of hierarchical informa-
tion. In Proc. IEEE InfoVis, pages 73–80, 1999.

[28] N. Wong and S. Carpendale. Using edge plucking
for interactive graph exploration. In Proc. IEEE
InfoVis (poster comp.), pages 51–52, 2005.

[29] N. Wong, S. Carpendale, and S. Greenberg. Edge-
Lens: An interactive method for managing edge
congestion in graphs. In Proc. IEEE InfoVis, pages
51–58, 2003.

[30] H. Zhou, X. Yuan, H. Qu, W. Cui, and B. Chen.
Visual clustering in parallel coordinates. Comp.
Graph. Forum, 27(3):1047–1054, 2008.

