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NUCLEAR β DECAY WITH LORENTZ VIOLATION

J.P. NOORDMANS,∗ H.W. WILSCHUT, and R.G.E. TIMMERMANS

KVI, University of Groningen

Zernikelaan 25, NL-9747 AA Groningen, The Netherlands
∗E-mail: J.P.Noordmans@rug.nl

We consider the possibility of Lorentz-invariance violation in weak-decay pro-

cesses. We present a general approach that entails modifying the W -boson

propagator by adding a Lorentz-violating tensor to it. We describe the effects

of Lorentz violation on nuclear β decay in this scenario. In particular we show

the expression for a first-forbidden transition with a spin change of two. Us-

ing data from an old experiment on the rotational invariance of yttrium-90,

we derive several bounds on the Lorentz-violating parameters of the order of

10−6-10−8.

1. Introduction

There has been considerable scientific interest in the possibility of the viola-

tion of Lorentz symmetry, in the context of searches for a theory of quantum

gravity. Its phenomenological consequences have been studied extensively,

in particular in the context of the Standard-Model Extension (SME).1 Ex-

tensive experimental efforts have been made to bound the coefficients in all

sectors of the SME.2

Missing in these efforts is the study of weak decay. Until recently, there

were, to our knowledge, only two dedicated experiments that addressed ro-

tational invariance violation in β decay.3,4 This effort is now supplemented

by an experiment at KVI.5

Theoretically, the issue of calculating cross sections and decay rates is

also far from settled, although some amount of work has already gone into

this.6

We started a joint experimental and theoretical effort at KVI, addressing

the issue of Lorentz violation in nuclear β decay. We incorporate Lorentz

violation in weak decay by modifying the gauge boson propagator to

〈

Wµ+(p)W ν−(−p)
〉

=
−i(gµν + χµν)

M2
W

, (1)

http://arxiv.org/abs/1308.5829v2
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where gµν is the usual Minkowski metric and χµν a general complex (possi-

bly momentum-dependent) tensor, that parametrizes the Lorentz violation.

What we miss in this way are mainly kinematic properties of the external

particles (see Ref. 7 for more discussion).

2. β-decay transitions and forbiddenness

β-decay transitions are classified by the spin change from parent to daughter

nucleus (∆I) and the parities of the parent and daughter nuclei, denoted

by πi and πf , respectively.

One distinguishes different β-decay transitions also by their forbidden-

ness, or the degree of suppression of the quantum mechanical amplitude

that describes the process. This suppression is determined by factors of

three small quantities: R/λ, vN and αZ, which are the ratio of the nuclear

radius and the de Broglie wavelength of the leptons, the velocity of the

decaying nucleon in units of c, and the fine-structure constant times the

charge of the daughter nucleus, respectively. Factors of R/λ come from the

leptons carrying away orbital angular momentum (corresponding to higher

order terms in the multipole expansion of the lepton wavefunctions). The

quantities vN and αZ originate from relativistic and Coulomb effects, re-

spectively.

If we assume these three quantities to vanish, we limit ourselves to so-

called allowed β-decay transitions. The leptons do not carry away orbital

angular momentum in this case. Consequently, the total angular momentum

of the lepton pair can be either zero or one. In the Lorentz-symmetric

case this translates directly into the selection rules for allowed β decay,

which can have spin change zero or one while the relative parity must

be πiπf = +1. With Lorentz violation this connection is not that direct

anymore, as explained later.

When allowing for factors of R/λ, vN and αZ, the leptons can carry

off orbital angular momentum and the total angular momentum of the

lepton pair can be J = 0, 1, 2, . . ., which allows for a larger spin change in

the transition, as well as the possibility of a relative parity of πiπf = −1.

For a complete classification of transitions and their forbiddenness in the

Lorentz-symmetric and Lorentz-violating cases, see Ref. 8.

3. The effects of Lorentz violation

Using the propagator in Eq. (1), we have calculated the rate of general

β-decay transitions. The expression for allowed β decay can be found in
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Ref. 7, and the one for forbidden transitions can be found in Ref. 9.

In Refs. 8 and 9 we found that there is a relative enhancement of Lorentz-

violating effects in transitions with ∆I ≥ 2 by a factor of αZ/pR. From the

very schematic expression

(1,σ)µhadron(gµν + χµν)(1,σ)
ν
lepton , (2)

that shows the hadron and lepton current, connected by the W -boson prop-

agator, we see that the effect of the tensor χµν is to connect the singlet and

triplet parts of the lepton and hadron current in an unconventional way.

For example the spacetime part of χµν connects the triplet of the hadron

current to the singlet of the lepton current. This means that there can be

a unit of spin change in the nucleus, while the lepton pair does not carry

off the corresponding unit of angular momentum. This is the cause of the

enhancement factor that occurs in some Lorentz-violating terms of the am-

plitude of transitions with ∆I ≥ 2. For a more elaborate discussion of this

effect, see Refs. 8 and 9.

4. Bounds on Lorentz violation

Using our results for a general β-decay transition we calculated the Lorentz-

violating transition rate of a first forbidden transition with ∆I = 2 and

πiπf = −1, dependent on the emission direction of the outgoing β particle.

It is given by

dλ

dΩdE
∝ R2

{

p2 + q2

+
αZ

pR

[

3

10

p3

E

(

χij
r p̂

ip̂j − 1
3
χ00
r

)

∓
1

2
p2χ̃l

ip̂
l ± p2χl0

r p̂
l

]

}

, (3)

where p, q, R are the β-particle momentum, the neutrino momentum and

the nuclear radius respectively, χ̃i = ǫijkχjk, Latin indices run over spa-

tial components only, the subscripts r, i denote real and imaginary parts

respectively, and the upper (lower) sign corresponds to β− (β+) decay. We

see the relative enhancement factor αZ/pR of the Lorentz-violating effects.

Using the expression in Eq. (3) we reanalyzed results from an experi-

ment published in 1976 and described in Ref. 3. The experiment was done

using a 10 Ci strontium-90 source, which decays to yttrium-90 and subse-

quently to zirconium-90. The relevant decay is the one from 90Y to 90Z,

which is a first-forbidden transition with ∆I = 2 and πiπf = −1. In the ex-

periment the source and the detector were mounted on a turntable, which
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rotated with a frequency of 0.75 Hz. Meanwhile the current of electrons

that originated from the source was measured. Using the data of 232 good

2-h runs, asymmetries were defined in terms of the emission direction of the

electrons. These asymmetries were fitted to distributions in sidereal time,

given by

δ = a0 + a1 sin(ωt+ φ1) + a2(2ωt+ φ2) . (4)

Bounds of the order of 10−8 were obtained on the constants a0, a1, and a2.

Using Eq. (3) we calculated the theoretical prediction for the asymmetries

defined in Ref. 3 and extracted the expressions for a0, a1, and a2 in terms

of χµν . In this way we were able to put the following bounds at a 95%

confidence level:9

|2X30
r − X̃3

i | < 2× 10−8 , (5a)

|3X33
r −X00

r | < 3× 10−6 , (5b)
[

(X12
r +X21

r )2 + (X22
r −X11

r )2
]1/2

< 1× 10−6 , (5c)
[

(X13
r +X31

r )2 + (X23
r +X32

r )2
]1/2

< 1× 10−6 , (5d)
[

(2X20
r − X̃2

i )
2 + (2X10

r − X̃1
i )

2
]1/2

< 4× 10−8 , (5e)

where the Lorentz-violating parameter Xµν is now given in the standard

Sun-centered intertial reference frame.2 These bounds are the best direct

bounds on the parameter χµν of which we are aware.
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