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Computing Exact Rational Offsets of
Quadratic Triangular B ezier Surface Patches

Bohumir Bastl, Bert Juttlet!, Jifi Kosinka and Miroslav Lavicka

 University of West Bohemia, Faculty of Applied SciencespBement of Mathematics,
Univerzitni 8, 301 00 Plzen, Czech Republic
t Johannes Kepler University, Institute of Applied Geometry
Altenberger Str. 69, 4040 Linz, Austria

Abstract Minkowski Sums” [13]. More recently, offset computation of
NURBS surfaces and of solids bounded by them has been stud-

The offset surfaces to non-developable quadratic trimmg@ézier ied in the paper series [14, 15, 16]. A qualitative and quatite

patches are rational surfaces. In this paper we give a directf of comparison of offset surface approximation techniquesdvisrg

this result and formulate an algorithm for computing theapaeteriza- in [17]. Curve and surface modification in order to avoid loca

tion of the offsets. Based on the observation that quadtagingular self-intersection is discussed in [18], and the detectiuah ia-

patches are capable of producifig smooth surfaces, we use this algomoval of self-intersections of offset curves and surfagsstieen

rithm to generate rational approximations to offset sur$acf general addressed in [19].

free—form surfaces.

Keywords: Quadratic Bézier triangular surface patchasjnsr sur- 1.2 Exact rational offsets

faces, convolution surfaces, offsets. . .
On the other hand, offsets to certain special classes ofsurv

and surfaces adméxactrational representations. In the curve
case, this class contains the family of Pythagorean Hoggra
(PH) curves [20]. The construction and analysis of PH curves

Offsetting is one of the fundamental operations in Compuﬂe?'ve made substantial progress during the last years [28)2]

Aided Design. In the case of general free—<form NURBS Curv%%proximating gen_eral free—fc_)rm curves with PH curves, sine
and surfaces, an exact rational parametric representatitre multannetlouiy ot?:]amls ﬁf{)iprox;n:ﬁtmr;fs 0{ th? offsetr Cm
offsets as NURBS is not available, and approximate tecmqggﬂ:reenty\,/va ) SOnguoztaiiz ?he fznc:ilsif e{;l«a?cf1 (F))ffszts to IIHE; P
for computation and interrogation of offsets are therefmeded. ntway. . y
: . . approximation to the given curve.
Even in the case of planaurves this leads to important and

challenging computational problems. A substantial amaint In the surface case, the situation is less well understond. |
publications addressing them exists .see e.g. the suryeRRt principle, the class of Pythagorean Normal vector (PN)ae$

. [22, 23] could play the role of PH curves. However, the exist-
cent papers include [2, 3]. ing constructions face serious difficulties when applieduo-
faces containing parabolic points. This is due to the faat th
1.1 Approximate offsets these constructions mostly rely on dual representatiohgrev

i ) a surface is seen as the envelope of its tangent planes, and th
Computational techniques for offsirfaceshave been surveyed, ;o olic points generally correspond to singularitiethefdual
first in [4] and later in [5]. An algorithm for approximatiorf 0 ¢, faces [24].
offset surfaces by bicubic patches is proposed in [6]. L& A gifferent special class of surfaces with exact rationtets
ious general—purposg sur_face_z fitting techniques were@ppi a5 peen introduced in [25, 26]. They were called LN surfases
offset surface approximation in [7, 8, 9]. Error bounds f@ff 0 6y nossess a Linear field of Normal vectors. They even pesse

sets of free-form surfaces and its use for creating refinPa®BP | 41ional convolution surfaces with general rational stefa
imations is discussed in [10]. Offset computation via lesed

evolution has been proposed in [11]. An offset approximmatio ) )
strategy based on knot removal is described in [12]. In 19993 Approximate vs. exact techniques
a special issue of CAD was devoted to “Offsets, Sweeps

1 Introduction

& Fije approximate techniques for offset surfaces are nowlwide
1Corresponding author. E-maibert . juett!er @ku. at, phone/fax: U_SEd n CAD syst_ems. Ther are capable_ of dealing with most
+43 732 2468 9178 / 29162, Homepagew. ag. j ku. at . situations appearing in engineering practice. Nevertiseleie




feel that it is worthwhile to investigate also exact techuas, i.e., class of LN surfaces. First, this was shown in [36] in a more
surfaces with exact rational offset surfaces, due to tHevahg general framework, using the classification of quadraticlpes
reasons. and Grobner basis computations. Later, another appraach t
First, methods of exact geometric computation, which eridhis result, which relies on the analysis of Cremona tramséo
nated in Computational Geometry, have also become a topitiams, has been presented in [37]. Following the latter aagin,
the CAD community recently [27, 28]. They provide a mathihe computation of the rational offset parameterizati@ugiires
ematically rigorous way to deal with degenerate situatmmd eigenvalue computations, in order to identify the fundaralen
they eliminate problems caused by rounding errors. In tAfgep points of certain Cremona transformations.
we provide an exact approach to offset surfaces, which fits in In the present paper we show that the rational parameteriza-
this framework. tions of the offset surfaces can be computed simply by airajyz
Second, if more than one offset surface is needed, then &g-x 2 system of linear equations, whose solutions can be ex-
proximate techniques for offsets have to approximate etisbto pressed explicitly with the help of Cramer’s rule. We uses thi
separately. The approximate offsets may not be consistent, fact to formulate an algorithm for offset computation. Irau-
they may not have constant distance to each other. If sigfalee we analyze the behavior of the method at parabolic poihts
with exact rational offsets are used, then at most one apprdie surface.
mation step is needed, namely in order to transfer the genera
surface into the form providing exact rational offsets, Qction The remainder of the paper is organized as follows. The skcon
5 of this paper. All offset surfaces are then available irsetb section recalls some basic facts concerning quadratihesatc
form, without needing further approximation steps. Section 3 discusses convolutions of quadratic patchesottitkr
Third, in order to be successful, approximation techniqees rational surfaces. Offsets are a special case, where tlmdec
quire the detection and elimination of self-intersectiand sin- surface is a sphere. In Section 4 we describe the algoritim fo
gularities of the offset surface prior to the approximatwn- parameterizing offset surfaces. It consists of three s{@psub-
cess. This is a challenging problem, due to the complicawidision along parabolic lines, (2) covering the Gauss ielaga
geometric nature of the singularities and self-intersesti If suitable spherical patch and (3) offsetting and trimmingcti®n
surfaces with exact rational offsets are used, then the fiase 5 demonstrates how the method can be applied to general free-
face can be approximated first. The detection and eliminatfo form surfaces, via approximation with quadratic splineaafy
self-intersections can then be obtained by applying sigitalyo- we conclude the paper.
rithms to the exact rational representation of the offseases.
The detection and elimination of self-intersections isii¢dilt) .. .
surface-surface intersection problem for rational sw$acRe- 2 Preliminaries

cently, suitable algorithms have been studied extensivetiie . . o o
frame of the European project GAIAYIsee [29]. We recall basic properties of quadratic triangular Bépiiches

Fourth, the use of surfaces with exact rational offsetswlip (Quadratic patches). In particular we analyze the distidluof
construct valid BRep models for thin free-form objects (e Parabolic and singular points.
of constant thickness. If approximate offsets are usecaust
then special care has to be taken in order to avoid variatén2.1 Quadratic patches
the thickness or even intersections of the boundary susfdemr

surfaces with exact rational offsets, this is automatyogillaran- A quadratic patch is defined by a Bernstein-Bezier reptasen

tion
teed.
a(u,v,w) = Z Pijk B} 1 (u, v, w) (1)

L 17, k=20

1.4 Quadratic triangular patches ith=2
. . L w'&th the bivariate Bernstein polynomials of degree 2,

Polynomial triangular Bézier surface patches of degree
(qugdratic patches for short), which are special instarfes Bf_jk(www) = 'uivjwk:7 )
Steiner surfaces, are the simplest class of free-form sesfa = iljlk!

Their geometric properties have been studied in variousipulvhereu, v, w > 0 andu 4 v + w = 1. For the remainder of the
cations [30, 31, 32]. Among other results, a complete affiag-c paper, we setv = 1 — u — v. The parameters, v vary within a
sification is available. Despite being relatively simpleadratic certain domain trianglé. ¢ R2.
patches are capable of producifi§y smooth spline surfaces rep- The coefficientp; ;;, are called the control points. Sometimes
resenting general free-form shapes. Indeed, Powell-S&3h it will be more convenient to use the power basis representat
macro elements (see [33, 34, 35]), which consist of 6 quedrat
patches each, are uniquely determined by first order Hedatte
at the vertices of a triangle, and the collection of PS elamewith coefficient vectors;; = (a;j1, aij2, aij3) - Where
forms aC* spline surface.

As observed recently, the offset surfaces of quadratichestc

2 2
a(u,v) = agou” + ajruv + agev” + ajou + ag1v + age, (3)

azy = P200 — 2P101 + Poo2,

are rational surfaces [36, 37], since these surfaces bétotip a1 = 2poo2 + 2P110 — 2P101 — 2Po11, 4)
02 = Poo2 — 2Po11 + Po20, @00 = Poog,
2ywwy. si ntef. no/ | ST.GAI A ajp = 2p101 — 2P002, Aao1 = 2Po11 — 2P002-



Table 1: Affine classes of quadratic patches, their reallpdi@curves (RPC) and rational reparameterizations.

Classification Parabolic points and singularities Reparameterization

Type normal form numerator of (8) | types of RPC singularities u= v =

() (u,v,u? 4+ 02) T 1 none none —f—ﬂi _26_53

(ii) (u,v,u? —v2)T 1 none none = —4L
(iii) (u+ v,u?,v2)T uv 2 parabolas (0,0) -4 —5
(iv) (u,u? + v,02)T v 1 parabola none —2% —f—gg

(v) (u, uv,v?)T v2 straight line (0,0) % —&

(vi) (u, uv,u® +v) " 1 none none —% ﬁlﬁg%
(vii) (u, u? — v2,uv) " u? +v? none (0,0) _4%§fﬁzi —45515:%%
Vii)) || (uv+u,u?0?)T u?v iosfrlsggé (0,-1),(0,0) i | —mom
() || (w+u+v,u?0?)T | wv(uto+1) | 3parabolas | (~1,0),(0,0),(0,~1) | —ZH0Z20 | B2
(X) (wv,u + v2,u2)T uB double ray (0,0) ﬁ%%gzﬁg —%
i) || (wo —v,u+02,u2)T || w((u—1)%+20%) | 1 parabola (1,0) G| L)

We assume that not all coefficients of the quadratic polyatsniwhereS? is the unit sphere, has singular points at the parabolic
vanish,(azo, a11,a02) # O3xs3, as the surface degenerates intooints of the surface, cf. [38]. These points can be found by
plane otherwise. solving

As our offset algorithm uses Gauss images of quadratic (N -a,,)(N-ay,) — (N-a,)*>=0. (8)
patches, we exclude all developable surfaces from our deresi
tions. The Gauss image of developable quadratic patchende
erates into curves, and a different analysis is therefoeel@e.
Also, there exist developable quadratic patches with radiomal
offsets.

For later use we recall the affine classification of no
developable quadratic patches [32]. The canonical reptase
tions of the 11 classes (i)—(xi) of non-developable quackty
parameterized surfaces are listed in Table 1, second colu
Fig. 1 shows several examples. The four remaining classes
included in Table 1) are parabolic cylinders (with thrededi

ent parameterizations) and a quadratic cone. See [32] foe mg The set of parabolic points on the surfac_e IS a collection of
details. planar curves — parabolas and (parts of) straight lines tyifes

of real parabolic curves (RPC) can be found in Table 1, col-
. . umn 4. For instance, in the case of surface (viii), the twaigtrt
2.2 Unit normals and parabolic curves lines (u,v) = (£,0) and (u,v) = (0,t) in the parameter do-
and let main, which parameterize the zero set of the numerator ¢b(8)

t € R, correspond to the parabolic curv@st?, 0) (a parabola)

a,, a, anday,, a.,, a,, be its first and second partial deriva* 9 X
tives. Points where the cross prodagtx a, vanishes are called@d(0; 0,°) (a doubly traced ray) on the surface, respectively.

singular points of.. Except for them, the normal vectors Some of the parabolic curves are double rays (cf. (viii) and
(x) in Table 1). Nevertheless, as the normal directions agk w

n(u,v) = a, X a, (5) defined along these rays (up to isolated points), they doauste
any problems in our offset algorithm.
Still, with the classification of the surfaces of intereshand,
N(u,v) = Ay X Ay (6) another issue has to be addressed. The unit normal mapping
l[au x a,|] maps all points with associated parallel normals into alsing

he numerator of the left-hand side of (8), which is a polyrem

f degree< 3, is (without constant factors) shown in Table 1,
third column. The numerator always factors over the complex
field into at most three linear polynomials. The real zerg sét
ﬁhese polynomials contain the parameter value®) that cor-
respond to parabolic points on the surfaces. Consequéindy,
(up to three) parabolic curves are images of straight lindhe

ameter domain of each canonical surface (i)—(xi). Tads f

Eﬁys an important role in our offset parameterization athom,

s it facilitates a simple subdivision of the parameter dama

Consider a quadratic patetfu, v) for (u,v) € A C R?

and the unit normal vectors

point at the unit sphere. We investigate the points with pingg-
erty on the canonical surfaces (i)—(xi).
N:A —S%  (u,v) — N(u,v), (7)  Letg = (g1,92,93) " be an arbitrary (but constant) non-zero

are defined everywhere. The unit normal mapping



-1 -1-1 -1-1 \ -1-1 -1
-1 [ 1 -1 1 -1 1 -1 1

(iv) (iii) (ix) )

Figure 1. Examples of quadratically parameterized susfttee numbering corresponds to Table 1) along with their
real parabolic curves (blue), singular points (red) ande@ased parametric domains (bottom row). The grey region is
the “standard triangle” with vertice®, 0), (1,0), (0, 1).

vector. Then all points of the surfaegu, v) with associated As a consequence of Lemma 1 one can conclude that when-

normals parallel tg satisfy ever two parabolic curves on a (canonical) surface touchter-i
T sect each other, the intersection point has to be a singaiat.p
g x (au x a,) = (0,0,0) " (9  The parameter values of the singular points are providedlin ¢

umn 5 of Table 1. Consequently, quadratic Bézier triangéas

Using standard identities this condition can be rewritten a . . ;
have up to three isolated singular points.

(g . av)au - (g . au)av = (Oa 07 O)T (10)
Except for the singular points af(u, v) we obtain 3 Convolutions of quadratic patches
g-a, =0, g-a,=0. (11)

After introducing convolutions of general surfaces, itlviie
We arrive at a system of two equations. For instance, for $feown that non-developable quadratic patches possesSR€
canonical surface (iii) the system (11) reads property”, which means that they admit rational convoluorr-
faces with any rational surface [36].
g1+ 2g3v =0, g1+ 2g2u=0. (12)

By solving this system for constant coordinates of the nerez 3,1 Convolution surfaces

vectorg one finds exactly the two real parabolic curves lying

on the surface, see Table 1. By solving the corresponding dyallowing [39, 26] we define the concept of the convolution su
tem (11) in all 11 canonical cases one can show that the seta6€ of two given surfaces.

points with associated parallel normals is exactly the sasitbe

set of points spanned by the parabolic curves of each camonRefinition 2 Let A and B be smooth surfaces iR®. Thecon-
surface. We summarize this observation in the following volution surface C' = A x B is defined as

Lemma 1 If one restricts the quadratic patch to regular non— C={a+blacAbec Banda(a) || 3(b)} (14)
parabolic points, then the unit normal mapping ’ ’

LAk * wherea(a) andj3(b) are the tangent planes of and B at points
N: A= N(AY), (13) a € Aandb € B. The pointsa, b are calledcorresponding
where/A\* is the restricted parameter domain, is bijective. points.



Remark 3 Convolution surfaces are invariant with respect 8.3 General reparameterization formula

affine transformations. In the case of arbitrary surfatesmd B,

there is generally no one-to-one correspondence betwees c??o far, the analygu_s Of_ the_convc_)lunons of quadra_t|c pa.tt_:‘ee
sponding points. ied on the classification listed in Table 1. In this sectioa w

provide a simpler alternative proof, which is based on aatlire
The convolution surfacd « B of two smooth surface patchegomputation. We obtain a simple general formula for comguti

A andB, where we assume both Gauss maps to be bijective, €@Avolution surfaces of quadratic patches.

be computed as follows. Let be parameterized by(u, v) and . .

B byb(s, t) over the parametric domaifis, v) € D4 C R? and Th_eordem 6f C(;Z‘Z'der gbn%nl-)de\éelol_pa;ble quadratically parame-

(s,t) € Dp C R? (and we assume that both parameterizatioWsrlze surfaced described by (3). Le

are rational). To find corresponding points/tind B, we have D= (d;), D"=(d%), D’=(d}), where (20)

to construct a reparameterization Dg — D 4

2a20; Q11 ai; 010
= dii = U —
(u,v) (991(57t)a502(8at))7 (15) v ai1j 2a02j 1j 2a02j ao1;
which is defined for a certain domaiE)B C Dgp, with (21)
the property that the tangent planega) and §(b) at Y = a0i  2020i . i,j=1,2,3.
a(pi(s,t), p2(s,t)) € Aandb(s,t) € B are parallel. Then, the @o1j G114

parametric representation of the convolution surfdce A x B Consider the normal vector
is
~ ng :nB(Sat) = (ﬁl(sat)vﬂ2(87t)aﬁ3(87t))—r (22)
c(s,t) = a(pi(s,t),pa(s,t)) + b(s,t), (s,t) € Dg. (16)
_ . at the pointb(s, t) of the surfaceB. The tangent planes of the
Using the coordinates; (u, v) and; (s, t) of the tangent planessyrfacesA and B at the pointsa(u(s,t),v(s,t)) and b(s, t),
where
0 = aO(ua ’U) + al(ua ’U).’L’ + Oéz(u, ’U)y + Oég(u, ’U)Z, (17)
Tru Tv
0 = PBo(s,t) + Bi(s,t)x + Ba(s, t)y + Bs(s, 1)z (18) u(s,t) = npD'np (s, t) = npD'np (23)
’ n-Dng ’ ’ ntDng ’
. .. B B
of A andB, respectively, the condition for parallel tangent planes
is are parallel.

aj(u,0) = A-Bi(s,8), AZ 0, j=1,23 (A9) 5t ara non-singular point ofl, the tangent plane is parallel
After computing), v andv from the system of polynomial equato the tangent plane tB atb(s, t) if and only if
tions (19), we obtain the reparameterization Though both
a(u,v) andb(s, t) are parameterized rationally, rationality of a, -np = (2azu +a11v +ajg) - np
andc(s, t) is generally not guaranteed because neither nor a, -ng = (ajju+ 2apv +ap;) - npg
A can be expressed explicitly in the general case.

(24)

oo

This system of linear equations far, v can be solved using

. 's rule, leadi
3.2 GRC property of the canonical surfaces Cramers rule, leading to

aj;-ng ajp-ng ajg-np 2agy-np

Given a surfacé(s, t) with tangent planes (18), one can com-
pute the reparameterizatignfor each of the canonical surfaces

in Table 1. The results are reported in the last two columtisief % =
table. As convolutions are invariant under affine transfations,

we have the following result.

Theorem 4 The convolution surfaces of non-developabfg@Writing these formulas gives the more compact form (23).

quadratic polynomial surfaces with arbitrary rational $aces
are again rational.

2ag2-np ag;-Np ag;'np aj;-ng
, v= . (25)

2a9'np aj;-np

2agp'np ai;-np

aj;-np 2ape-ng aj;-ng 2apz-np

Remark 7 The formula (23) can be used for all quadratically
parameterized surfaces, except for developable ones. \Howe

Proof. The rational reparameterizations for all eleven clasd8§Se were excluded in Section 2. 3

of non-developable quadratically parameterized surfavd® ~ Parabolic cylinders have the property that the mabixs a
are included in Table 1 — see the last two columns3, ifs, ¢), Z€ro matrix, i.e., the denominator vanishes fomal. Similarly,
B2(s,t) ands(s, t) are rational then the associated convoluti&??th matriceD™ andD" are zero matrices in the case of a cone,

surfaces obviously possess a rational parameterizatgn (I -€-» We obtain, = v = O for all ns.

Corollary 5 The offset surfaces of non-developable quadraﬁ(?mark 8 If the denominator in (23) is not identically equal to
patches are always rational. zero, there can exist nonzero vectais such that this denomi-

nator vanishes. In this case, a regular poinBokith the normal
Indeed, offset surfaces are obtained as convolutions wittctornp has no corresponding point on the quadratically pa-
spheres, and spheres have rational parameterizations. rameterized surfacd.



Remark 9 Finally we study regular points ofi with normal 1. Subdividing the domain. We subdivide the given quadratic
vectorsn4 suchthang || np andn;DnB = 0. Hence, patch A with the parameterizatioa along its parabolic
curves, which cause singularities in the Gauss image. Up
to seven subpatches with parameterizatinare obtained

2a00 N4 Al -Ng
=0. (26) in this step.

n,Dny =

aj;-ny 2ap2 -ngy

2. Covering the Gauss image. We generate a covering patch
B with rational parameterizatiob of the corresponding
Gauss image 082. Depending on the mutual position of
parabolic curves oa and the subpatches, the Gauss image
of each subpatch is chosen as a spherical triangle or a spher-
ical biangle, which is then represented as a rational Bézie
patch.

This is equivalent to the condition (8) characterizing pate
points on the surfacd, as

Ayy = 2a20a Ayy = A11, QAuy = 2aqs. (27)

Parabolic curves of quadratically parameterized surfé®esnd
the problems they may cause were discussed in Section 2 — see

Table 1 and Lemma 1 for more details. 3. Parameterizing the offset and trimming. With the helef t

_ i . convolution formula (28) we compute the rational offsets
Remark 9 motivates us to define the skbf all admissible C; = A, * (d B) at the distancd. The offset surface o

normal vectorsof the quadratic polynomial surfaw_parame- is then given as a collection of offsets to all subpatches
terized by (3) over the paramgtrlc domdiry. It consists of _aII along with exact domain descriptions.
non—zero multiples of the unit normal vectors of the quadrat

patchA at regular and non—parabolic points. Remark 11 Instead of computing an adapted parameterization

} ) ) of the sphere in step 2, one may also work with a “generic” ra-
Corollary 10 Consider any rational surface patch with the (jona| parameterization of the unit sphere. However, ireotd
domainDp. We assume that the domain is chosen such that lain a sensible distribution of the parametric speed, et f
normal vectors ofB are contained in the sel of admissible hat it is more appropriate to use an adapted patch coveiing t
normal vectors. Gauss image. Moreover, this approach leads to regular garam

The convolution surface of the surface pa#8hwith a non- terizations even if parabolic points are present. This wadt

developable quadratic patci(u, v) described by (3) has the ra-pe the case when using a “generic” spherical parametesizati
tional parameterization

T T A deta_iled description_of the 3 steps follows. Each of them is

c(s,t) = a(‘“BT ns ‘“BT nB) +b(s, 1), (28) summarized by an algorithm.
npDng  ngDnpg

whereng(s, t) = by(s, t) x by(s, t) andD, D*, D are defined 4.1 Subdividing the domain

in (20). . : . .
(20) Recall that the preimages of parabolic curves are linesdmpth

rameter domain and that singular points were excluded.
Let P be the set of all preimages of parabolic points 4n

4 Parameterizing the offsets T .
WO cases may arise.

We describe an algorithm for computing an exact rationaledff ;- P Nint(A) = 0. As no line of P intersectsnt(A) in this

surface of a non-developable quadratic patch (3) over tap-tr case, no subdivision is required. See Figure 2, upper row,
gular domainA. Throughout this section we assume that the ¢, typical mutual positions oP andA.

domain triangle is the standard triangle obtainecdfog [0, 1]

andv € [0,1 — u]. 2. PNint(A) # (. In this case we subdivide the domain
Clearly, the untrimmed one-sided offsetadfu, v) at a certain along the lines of? which intersecint(2). The resulting
distanced is expressed parametrically as triangulation ofAA has to satisfy that no subtriangle contains
any preimages of parabolic points as inner points (see Fig-
aq(u,v) = a(u,v) + dN(u,v). (29) ure 2, lower row). Two up to seven new subtriangles are

. L ) obtained in this case.
However, this expression is generally not rational, dueht® t

presence of a square root in the denominatoNof Therefore  Algorithm 1 subdivides a quadratic triangular Bézier jatc

we choose a different approach. given bya so that the interior of\ does not contain any preim-
Our offset construction is related to the computation oftoen ages of parabolic points aA. After the subdivision, each sub-

lution surfaces. In particular, we choose the surf@aes suitable patch is reparameterized, such that its parameter domagais

patch on a sphere with the radidsentered at the origin. For-the standard trianglé..

mula (28) can then be used for the computation of rationakdff The following two examples demonstrate the algorithm. We

surfaces of non-developable quadratic Bézier patches. shall use them throughout Section 4, in order to illustrae t
The computation is organized in three algorithms. three steps of the offsetting algorithm.



The patcha has no singular points. According to Table 1, the set
— of preimages of parabolic poinf® of a consists of one straight

line containing one side af. Even though no subdivision is re-

quired in this case, the presence of preimages of parabumilitsp

in A will be taken into account, in order to obtain a regular pa-

rameterization of the offset surface.

4.2 Covering the Gauss image

) In order to keep the notation simple, we denote witanda any
: one of the subpatches created by the first step and its gicadrat

parameterization, respectively.

The Gauss imagg(a), which is a subset of the unit sphég

is obtained by collecting all unit normals of the patchAlong
_ _ - ) with its reflected versior-I'(a), it represents all admissible unit
Figure 2: Typical mutual positions @7 (blue lines) and™  ormals of A. If we use onlyI'(a), then the result of the offset
(gray triangles) for case 1 (upper row) and case 2 UOWeraIgorithm is a one-sided offset surface.

row). Singular points are shown in red. A suitable triangu-  pepending on the output of Algorithm 1, we have to distin-
lation of A is indicated by the dashed lines. guish two cases:

- — - 1. The setP of all preimages of parabolic points of does
Algorithm 1 Subdivides a patch along parabolic curves not contain any side of. In this casel'(a) is a spherical

Input: Quadratic patchd with parameterizatioa overA. triangle, which is bounded by the normals along the patch
Output: Set of quadratic triangular patches without inner  poyundary (see Fig. 5 (top left)).

parabolic points.

1: P < preimages of parabolic points oh 2. P contains one side of. As mentioned in Section 2, all

2. if P Nint(A) # 0 then points lying on the same parabolic curve have parallel as-
3 SubdivideA into subpatches; along parabolic curves.  sociated normals. Thus, the whole side/obelonging to

4: {a;} < parameterizations of triangular subpatctigs P is mapped on one point. Hend&(a) is a spherical bian-

S return {a;} gle and it is bounded by the normals along the two non-
6. else parabolic patch boundaries (see Fig. 5 (top right)).

7: return a

8: end if In order to generate the covering patch, it is conveniensto u

a stereographic projectionr, with the pole z = (z1, 22, 23) T,
which maps the points of the unit sphere into the plane
Example 1Consider the patch (see Fig. 3 (a))

1 Ty z2-X =0, (33)
a(u,v) = (§Gu?—u(To+3)—52v+v-3)),
%(3u2 +2u(v —4) +5), which is the equator plane parallel to the tangent plang2of
2= (=240 + u(27 — Tv) + 1102 — 8v — 3))T atz. This mapping defines a one-to-one correspondence between
_ _ _ points of sphere (except for the patg and points of the plane
with the domainA. Its control points are 74, See Fig. 4. The point = (x,9,2)" € S? has the image
& = 0,(x) € 7, given by
{{1,0,0},{1/2,2/5,1/5},1{0,1,0}, (30)
{9/10,1/5,7/10},{5/6,1,—7/15},{1,1,—1/5}}. PR X —z (34)
= R~
Using (8) we compute the preimages of parabolic points, “x
) The inversion of the stereographic projectign’ is
64u® + (1660 + 9)u? + 2 (56v? — 82v — 473) u+ (31) graphic projection
+200° — 186v2 — 1562v — 1081 = 0. 2(¢ — z) -
X =2z T+E € (35)

The polynomial (31) factors into three terms correspondong
three real lines (see Fig. 3 (b)). The pateltontains neither 11,4 stereographic imagg, (I'(a)) will be denoted by.

parabolic nor singular points ovéx. No subdivision is needed. For each subpatch generated by Algorithm 1 we compute a
Example 2Next we consider the canonical surface (iv) restrictegvering patch of the Gauss image. The procedure is summa-

to A, see Table 1 and Fig. 3 (c), rized in Algorithm 2.
. As before we distinguish two cases:Il(a) is a triangle, and
a(u,v) = (u,u® +0v,0%) , (u,0) € A. (32) 2.T'(a)is a biangle or$?.



(@) (b) (d)

Figure 3: Quadratic triangular Bézier patches: Exampla)aGd Example 2 (c). Preimages of parabolic points (blue
lines) and singular points (red) of the patches given in Eplart (b) and Example 2 (d) oveék (gray triangles).
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Figure 5: Covering the Gauss image of Examples 1 (left) amight). Top: Gauss image (blue) and covering patch
(with orange boundaries). Bottom: Stereographic imdgeso,(I'(a)) of the Gauss image (gray) and circumscribed
triangle (left) resp. biangle (right).

Case 1: Triangular Gauss image. First we choose a suitablepolez = (0,0,1)" and obtain the curved triangle shown in the
pole of the stereographic projection. The Gauss imB@e bottom of this figure. After generating a circumscribedrtgke
should be contained in the opposite hemisphere of the pole. &nd parameterizing it as a linear Bézier triangle, we afimyin-
instance, one may take the opposite unit normal of the parameverse stereographic projection. This gives the rationatigatic
center point (obtained far = v = %) of the patch. If the patch is patchB coveringl'(a).

sufficiently small (which can always be achieved by subdingd

the patch), then this guarant.ees the dgsired result. . Case 2: Biangular Gauss image. One of the boundaries of

Applying the stereographic projection to the Gauss image W@, a1ch consists of parabolic points, and the unit noraialsg
obtain a curved triangl€ which is contained in the unit cir—thiS boundary are constant. This gives one of the two vetite
cle. We choose a bounding trianglewith straight line bound- ¢, boundaries, which will be called tsingularvertex.
aries and parameterize it as a linear Bézier patch. Using the iNMn this case we choose a different approach. Our plan is to
verse stereographic projection (35) we obtain a rationadletic ¢yeT(a) by a triangular rational patcE overA which degen-
Bézier patchi covering the Gauss imaga). erates into a biangle, by collapsing one of the three boueslar

_ _ ~ We require that the corresponding singular point(s) cpoad

Example 1. The Gauss image is shown as the blue regionti the unit normal along the parabolic patch boundary. As we
Fig. 5, top left. We use the stereographic projectigrwith the wiill see later, it enables us to obtain a regular paramettoa

3The computation of a ‘best’ bounding triangle is a non-afiyiroblem. For of the offset surface. ) o
the sake of brevity we do not go into details. We choose the poteof the stereographic projection, as the




Algorithm 3 Convolution and trimming
Input: Quadratic patchA with parameterizatiora, rational
patchB C S? with parameterizatiob, offsetting distance.

Output: Rational offset surface ol at distancel and trimmed
parameter domain.

: {up, v} < subgEq. (23),np = Numerato(b))

: ¢« a(up,vp)+d-b

n««— a, X a,

m < number of edges df(a)

:foralli=1,...,mdo

{C,} < parameterizations of normal cone, Eq. (38)

{f:} < implicit equations of the normal cone

Choose correct sign of.

{gi} — SUb$fi7 ($7 Y, Z) = b(S, t))

: end for

:De —A{(s,t) e A gi(s,8) >0,i=1,...,m}

:return {(c, D¢)}

Figure 4: Stereographic projection.

©ONOoOOARODNR
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o

Algorithm 2 Determines a covering patch Bfa) onS?

Input: PatchA with parameterization overA.
Output: Rational quadratic triangular patéhcoveringl'(a).

=
N

1: P « preimages of parabolic points df

2: if PN Ais not a line segmerthen {I'(a) is a trianglg o . .

3 z « suitable pole for the stereographic projectign 4.3 Parameterization and trimming

4 Q —0,('(a)) _ We consider a patcH with the quadratic parameterizatiarand

5; Q qrcumscnbed triangle df the corresponding spherical pathwith the quadratic rational
6: else{I'(a) is a bianglg parameterizatiom, both generated by algorithms 1 and 2. We
7 z « singular point of'(a) compute the parametric representatioof the convolution sur-

8: Q —0,(l(a)) faceC' of A anddB, where the offsetting distanckis used to

9: Q « circumscribed angle d® scale the spherical patch. We also identify the exact pamme
10: end if R domainD. (“trimming”). Algorithm 3 summarizes this step.

11: B« o, 1)

12: b « rational Bezier description o8 First step: Convolution. Since the points and the associated
13: reurn {b} unit normals of the spherical patéhcoincide, we substitute the

numerators ob, denoted byb,, = b,,(s,t), forng in Eq. (23).
This leads to the reparameterization
singular vertex of*(a). ThenQ = 0,(I'(a)) is a curved angle
with the vertex at the image of the non-singular vertex of the b) Db,
bianglel'(a). b (s ) = b,/ Db, ’
We construct an anglé, which contains? and shares the
vertex with it. Next we describé) as a rational linear Bézier
triangle overA with two vertices at infinity. Finally, we project
ﬁ bgck to the sp.herﬁ2 by using the invgrse stereogra}phic pro- c(s,t) = alup(s, 1), v(s, 1)) + db(s, t). (37)
jection (35). This leads to the quadratic patBhcovering the
bianglel’(a) with the singular point at the image of the parabolighis gives a rational triangular surface patch of degreao.
line of a. Indeed, the degree df, is 2, the degree ofup, v, } is 4 and
the degree of reparameterized surfagey,, v,) is 8. We add
Example 2. In this casel(a) is the biangle oi$2, see Fig. 5, b(s,t) of degree 2 which implies that the degree:a$ less than

top right. The singular point i€0,0,1)T. We choose the pole®" €dual to 10.

z = (0,0,1)" and apply the associated stereographic projection

o,. This gives the imagé€l. A circumscribed anglé) can be Examples. We applied the convolution step to the two exam-

described as the rational linear Bézier triangle ples. The results are shown in Figure 6. In addition, we Vizea
the situation in theuwv parameter domain. Thev values ob-

¢ —s+ 1 2 tained from the reparameterization formula (36) fert) € A

1—s_—t1—s—1t /5 — 1) ; generate curved triangles (shown by the red curves) cangain
the standard triangle (grey) in thewuw plane.

where(s, t) € A. Projecting it back to the sphere we obtain the In Example 1, the offset surface is a rational triangulazige

rational quadratic patck coveringl'(a). surface patch of degree 10. In Example 2, the degree of thetoff

surface is reduced to 8. This is due to the fact that we chose
“4Again, the computation of a ‘best’ bounding angle is a nariarproblem.  the normal corresponding to the parabolic point as the cerfite

b/ Db,

EEp 39

vp(s,t) =

whereD, D* andD? are defined in (20). The convolution sur-
face describing the offset of the patdhat distancel is

(s, 1)(s.1)) = (




Figure 6: Input triangular Bézier patches (yellow) witmgolution surfaces (red) and exact offset surfaces (pink) a
the situation in theiw—plane (bottom right) for Examples 1 (left) and 2 (right).

the stereographic projection, and the bounda#yt = 1 of the at the parametric center poifito, yo0,20) = n(3, 3) satisfies
domain ofb corresponds to this line. Therefore, the numeratofgzo, yo, 20) > 0,
and denominators in (37) contain the common fa¢tos- ¢ — Then we substitute the parametric representdiient) of the
1)2, which can be eliminated. The resulting parameterizasorspherical patctB into these implicit equations. Again it is suffi-
regular for all(s, t) € A. cient to substitute the numerators, provided that the démetor

is positive for(s,t) € A. This leads to quartic bivariate polyno-

Second step: Trimming. Finally we are to find the exact paraMials gi(s, t), i = 1,...,m, which characterize the boundaries
metric domain for the offset surface. Since the paichwhich Of De. If we assume that the Gauss imagf) is contained in
covers the Gauss imag@&a), is generally “bigger” thai'(a), it ONne hemisphere, then the parametric domaif o

may also contain points with norma}l vectors which do not cor-  p _ {(s,t) €At gis, ) >0,i=1,...,m}. (39)
respond to normals of the patch givanover /A. Hence, the

offset surface: in (37) overA is also bigger than the exact Off'Example 1. Theimplicit equations of the three quadratic cones

set surface, and we need to restrict the parameter domaim t?a%) which are spanned by the boundary normal vectors are
appropriate subse?d,.

The boundary ofD. is closely related to the boundary of the f(z,y, z) = 252%4+510y2—69722+53822—480y 2,
Gauss imagé'(a), i.e., to the normal vectors along the bound- f,(xz,y, z) = 17224+80yx—12022—48y%—19122+158y2,
ary curves oh. Using the unit normal vectors along the bound- 7, (2. 4, 2) = 6522+2yz—21922—36y2—222+158y2.
ary curvesa(0,v), a(u, 0), a(u, 1 — u), we construct the cones

spanned by them, After substitu'ging the qovering pa}tcb(s,t) into thes_e_ equa-
tions, we obtain 3 quartic polynomiajg(s, t) characterizing the
Ci(p,q) = qn(0,p), boundaries o). The domainD, is shown in Fig. 7, left. This

Cs(p,q) = gn(p,0), (38) domain corresponds to the exact offset surface, which igisho

as the pink surface patch in Fig. 6, left.
C3(p7q) = qn(pal_p)a

where(p,q) € [0,1] x R. If T'(a) is a spherical biangle, theExampI_e 2. The implicit equations of the two quadratic cones
normal cone which corresponds to the parabolic boundamecut38) which are spanned by the boundary normal vectors are
degenerates into a line. Then it suffices to consider onlydhe filz,y,2) = (40)
maining normal cones. Let € {2, 3} be the number of normal 2
cones. folz,y,2) = y°+xz+2yz.

For each of the normal cones we generate an implicit equatifter substituting the covering patdi(s, ¢) into these equations,
filz,y,z) = 0,7 = 1,...,m, with the help of a suitable im-we obtain a quadratic and a quartic polynorgi&k, t) character-
plicitization technique, see e.g. [40, 41]. Since thesees@re izing the boundaries ab.. The domainD. is shown in Fig. 7,
quadratic ones, the implicit equation has at most degred/e right. This domain corresponds to the exact offset surfabéh
choose the signs of these polynomials such that the unitaorim shown as the pink surface patch in Fig. 6, right.
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and approximate it by a quadratic spline defined over a partit
of the form shown in Fig. 8 withn = n = 3. This leads to a
piecewise quadratic surface consisting of 36 trianguléchs.

0.8 0.8

os 05 The maximum distance error is equal to 2.1% of the diameter of
the bounding box.
o o4 For each of these patches we parameterize the offset ssirface

as described in the previous section. Despite the fact teat t
original surface contains parabolic points, all 36 patabfethe
approximation quadratic spline surface have a triangukuss
image, i.e., they do not contain any parabolic points. Na-add
Figure 7: The domain®, (grey) in Example 1 (left) and tional subdivisions of the parameter domains are needech Ea
Example 2 (right) of the exact offset surfaces, and the stanof the two Figures 9a,b shows the approximation of the sarfac
dard triangles) (blue). by a quadratic spline surface (red) and two offset surfageis (
low and cyan) for different values of the offset distancethe
second example, a very small distance was used, leadingei® th
surfaces that are very close, but perfectly parallel.

0.2 0.4 0.6 0.8 1 0.2 0.4 0.6 0.8 1

Example 4. We consider the SIMPLESWEEP surface, which
has been used before as a benchmark example in the European
project GAIA 1l [29, 44] (data courtesy of think3). In ordey t
obtain well-defined offsets, we restricted the parametenalo
slightly in order to exclude the singular point. Again, weegx-
imate it by a quadratic spline defined over a partition of tierf
shown in Fig. 8 withm = n = 3. This leads to a piecewise
guadratic surface consisting of 36 triangular patches. maxei-
mum distance error is equal to 1.03% of the maximum diameter
Figure 8: The triangulation of the unit square of typé of the bounding box.
(m = 6,n = 4). For each of these patches we parameterize the offset ssirface
as described in the previous section. 24 patches have tieng
Gauss images and do not have to be subdivided. The remain-
ing 12 patches have to be subdivided along the parabolis,line
o L. . which produces 32 subpatches with biangular and 12 subgmtch
%ﬁgg’ tl?leocrl(;ijrs t?g;;gr?;g gflfa;(]a?tlijrllagr iiﬁeor dsgomé:izmm‘frs with triangular Gauss images. Figure 9c shows the approxima

' tion of the surface by a quadratic spline surface and theefthn

faces, piecewise quadratic surfaces have to be used. Wblbrgnd souter” offset surfaces.

describe a method for approximating general surfaces epie This is a rather challenging example, since some of these

wise quadratic ones and apply the combined method (appr%)gfches are fairly close to the developable case. Still wear
mation plus offsetting) to two examples.

Given a quadrangular patek(x, v) with parameter domain pable of producing reasonable and exact parameterizatfahs

[0, 1]2, we consider a triangulation of the domain of tyh&, see offset surfaces. We demonstrate this for the quadratichpaaic

[42, 43]. A triangulation of this type is obtained from a regu10, which is among the “most developable” ones. The Gauss im-

lar grid by adding both systems of diagonals, see Figure &. fpe'’s almost degenerated into a curve, see Fig. 10a. Iriienc

: : : . . o in order to obtain an exact parameterization of the off$etyf-
dimension of the spline spaceof piecewise quadratic” func- fices to use a single bounding triangle. However, this woivd
tions over this triangulation is equal ton + 2)(n + 2) — 1, 9 9 ge. ' g

wherem, n are the numbers of rows and columns. A piecewiaepargmeterization of the offset with a very small_domgirtefaf
quadrati,c approximatiog(u, v) of the given patck can be ob- f’nmmmg). Therefore we cqvered the stereogr'aph|c prm;ec;tf
tained by minimizing the Ie:';\st—squares error the Gauss image by four triangles. The resulting domainsiare
sualized in Fig. 10b. The original patch, the offset and the f
1 rl ) ) covering patches (visualized as black and blue trianguéshres,
/0 /0 [ (u, v) = q(u, 0)||” dudv — érelg}; (41) which are images of regular triangulations of the paramdder
main) are shown in Fig. 10c.
The solution to this least-squares problem is found by agla
linear system of equations. The integrals are replaced bhenu
ical integration.

5 Offsets of general surfaces

Remark 12 The method described in this paper can be imple-
mented in exact arithmetic. If the input is given by rationam-
bers, then the technique used in Case 1 produces output ishich

Example 3. We consider the graph of the function again given by numbers from this field. The method used for the
1 4 3 biangular patch, however, may require a field extensionrd&he
flu,v) = 5 cos(zum) cos(-vm) (42) fore, the use of a triangular covering patch may be preferain|
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() (b)

Figure 9: Quadratic approximation (red) of the graph swfat(42) (a,b) and of the SIMPLESWEEP surface (c),
along with two offset surfaces (yellow and cyan).

0.9 0.8 0.8,
F
0. 6| 0. 6|
0.8 0.4 0.4
E ()
0.2] 0.2 “\\«“
A N\ )
0.7 0.2 0.4 0.6 0.8 1 0.2 0.4 0.6 0.8 1 \
1 1 B\
D 0.8 0.8
0.6
C 0.6 0. 6|
B 0.4 0.4
] -0.55-0.5-0.45-0.4-0.35 0.2 0.2
A 0.2 0.4 0.6 0.8 1 0.2 0.4 0.6 0.8 1
(@) (b) (©)

Figure 10: The offset of the almost developable patch no.ftBeoquadratic approximation of the SIMPLESWEEP
surface (c), the parameter domains of the four coveringhgat¢b), and the stereographic projection of the Gauss
image with four covering triangles ABC, BCD, CDE, CEF (a).

an implementation in exact arithmetic, even though it gsies cial attention was paid to the trimming of the parameter doma

gularly parameterized offsets for surfaces with biang@auss and to the treatment of parabolic patch boundaries. In the la

images. ter case we were able to obtain a regular parameterizatitireof
offset surface with lower degree. It was shown that appraxém
offsets of general free-form surfaces can be obtained \peoap

6 Conclusion imation by bivariate quadratic splines.

We have shown that the offset surfaces to non—developahf&nowledgments. B. Bastl and M. Lavitka were supported
quadra‘[ic patches admit rational parameterizations_ é'lms by Research Plan MSM 4977751301. B. Juttler and J. Kosinka
rameterizations were constructed by expressing the cotions Were supported through project no. P17387-N12 of the Aarstri
of quadratic patches with spheres using the formulas ptegém Science Fund (FWF). A major part of this work was done during
Theorem 6. These formulas are obtained by expressing the salvisit of M. Lavicka and B. Bastl at the Institut of Appli&gie-
tions of a2 x 2 linear system with Cramer’s rule. Consequentigmetry, JKU, Linz in February 2007. The authors would like to
neither Grobner basis computations, as in [36], nor eigierey thank the anonymous referees for their comments.
computations, as proposed in [37], are needed in order towpar
eterize the offset surfaces quadratic patches.

In order to obtain a sensible parameterization of the offset
face, we used a suitable covering patch of the Gauss image. Sp
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