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The scaling of metal-oxide-semiconductor (MOS) field-effect transistors (FETs) 

has continued for over four decades, providing device performance gains and 

considerable economic benefits. However, continuing this scaling trend is being impeded 

by the increase in dissipated power.  Considering the exponential increase of the number 

of transistors per unit area in high speed processors, the power dissipation has now 

become the major challenge for device scaling, and has led to tremendous research 

activity to mitigate this issue, and thereby extend device scaling limits. In such efforts, 

non-planar device structures, high mobility channel materials, and devices operating 

under different physics have been extensively investigated. Non-planar device geometries 

reduce short-channel effects by enhancing the electrostatic control over the channel. The 

devices using high mobility channel materials such as germanium (Ge), SiGe, and III-V 

can outperform Si MOSFETs in terms of switching speed.  Tunneling field-effect 

transistors use interband tunneling of carriers rather than thermal emission, and can 
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potentially realize low power devices by achieving subthreshold swings below the 

thermal limit of 60 mV/dec at room temperature.  

In this work, we examine two device options which can potentially provide high 

switching speed combined with reduced power, namely germanium nanowire (NW) 

field-effect transistors (FETs) and tunneling field-effect transistors (TFETs).  The devices 

use germanium (Ge) – silicon-germanium (SixGe1-x) core-shell nanowires (NWs) as 

channel material for the realization of the devices, synthesized using a ‘bottom-up’ 

growth process.  The device design and material choice are motivated by enhanced 

electrostatic control in the cylindrical geometry, high hole mobility, and lower bandgap 

by comparison to Si. We employ low energy ion implantation of boron and phosphorous 

to realize highly doped contact regions, which in turn provide efficient carrier injection.  

Our Ge-SixGe1-x core-shell NW FETs and NW TFETs were fabricated using a 

conventional CMOS process and their electrical properties were systematically 

characterized.  In addition, TCAD (Technology computer-aided design) simulation is also 

employed for the analysis of the devices.  
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Different from the ideal switch that turns ON and OFF instantly as shown in 

Figure 1-5(a), the switching in MOSFETs is fundamentally limited by the subthreshold 

swing (SS). The subthreshold swing is defined as the gate voltage needed to change the 

drain current by one order of magnitude, SS = -[d(logId)/dVg]
-1; Id is the drain current, 

and Vg is the gate voltage.  Thus, to realize high-speed and low-power devices, a small SS 

value is desirable.  Figure 1-5(c) shows the energy band profile of a conventional n-type 

MOSFET, illustrating carrier injection mechanisms affecting the SS values.  In 

MOSFETs, the conduction occurs by injection of electrons from source into the channel. 

The carrier distribution in the source, given by the product g(E)fe(E), where g(E) is the 

density of state and fe(E) is the Fermi distribution of electrons in the source, allows high 

energy electrons to be injected into the channel when a potential barrier is present (OFF 

state), as shown in Figure 1-5(c).  Indeed, the thermal broadening of the Fermi 

distribution limits the SS values to kT/qln(10) = 60 mV/dec at room temperature [Figure 

1-5(b)].  Due to this limit, the switching action close to the ideal switch can never be 

achieved in MOSFETs.  With the scaling of device, the SS and IOFF can be further 

increased due to short-channel effects [Figure 1-5(b) orange line].   
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1.3 FUTURE TRANSISTOR OPTIONS 

Previous section discussed the challenges for the continuing MOSFET scaling.  In 

attempts to overcome such challenges, several new approaches have been explored 

recently.  

 

1.3.1 Gate-all-around device structure 

Non-planar device structures have been proposed to provide better electrostatic 

control over the channel. As the device dimensions shrink, the planar MOSFETs are 

suffering from increased short-channel effects.  Thus, non-planar device structures, such 

as FinFETs (fin field-effect transistors), tri-gated FETs, -gated FETs and GAA FETs 

(gate-all-around field-effect transistors) have attracted much attentions to provide 

enhanced gate controls over the channel and thereby reduce the short-channel effects 

[Figure 1-7] [8-19].  Among device geometries, theoretical studies suggest that the GAA 

structure implemented with the reduced channel thickness can provide the most efficient 

gate control.[41, 42] Experimental results have also demonstrated greatly improved short-

channel device characteristics in GAA FETs, showing immunity to short-channel effects 

down to gate lengths of 30 nm [Figure 1-8] [17].    Thus, by employing GAA device 

geometry in MOSFETs, the device scaling can be extended without suffering from stand-

by power dissipation due to short-channel effects while maintaining the performance of 

the devices.   
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                                   1.2  

where is the logic gate delay, Qinv is the inversion charge density, CL is the load 

capacitance, VCC is the supply voltage, Lg is a MOSFET gate length, and Vt is the 

threshold voltage.  By coupling equation 1.1 and 1.2, the advantages incorporating high 

mobility channel material for MOSFETs can be identified as the increase in the drive 

current and the reduction in the gate delay.  Therefore, the high mobility channel 

materials, such as III-V compound semiconductors and germanium (Ge), have brought 

the attractions as channel materials for the deeply scaled MOSFETs, which can extend 

the device scaling trend without sacrificing the performance of the devices [20-23,47]. 
 

 

1.3.3 Tunneling field-effect transistors 

As discussed in Chapter 1.2, the scaling of MOSFETs has been stymied by the 

increase in dissipated passive power, which stems from short-channel effects with 

shrinking device dimensions. Therefore, the need for novel devices, which can potentially 

provide a reduced dissipation power at switching speeds comparable to Si MOSFETs 

looms increasingly large.  Tunneling field-effect transistors (TFETs) have gained 

significant attention as promising candidates to replace MOSFETs [48-56]. TFETs 

consist of gated p-i-n structures, e.g. a p-doped drain (source), an intrinsic channel, and 

an n-doped source (drain) [Figure 1-9(a)].  The carrier injection from the highly doped 

source into the channel relies on band-to-band tunneling (BTBT) at the reversed biased 

source-channel junction.  TFETs have been theoretically shown to exhibit a steep turn-

off, below the thermal limit of 60 mV/dec, and a sufficiently high ON-current 

comparable to that of Si MOSFETs, depending on the host semiconductor [48-50].  In 
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The carrier injection mechanism in a TFET differs from that of a FET.  Figure 1-

9(b) shows the energy band diagram along a TFET, consisting of a p-doped drain, an 

intrinsic channel, and an n-doped source, with the intrinsic segment being controlled by 

the gate bias.  The switching of this device depends on the modulation of the energy band 

in the intrinsic segment.  When the valence band in the channel is pulled above the 

conduction band at the source by applying a negative gate bias, the electric field at the 

source-channel junction becomes sufficiently high and holes are injected into the channel 

via BTBT.  Similarly, when the valence band in the channel is pulled down with a 

positive gate voltage, the tunneling barrier width at source-channel junction becomes 

wide and tunneling is prevented, although tunneling at the drain-channel junction may be 

enabled.  A key aspect of carrier injection in TFETs is that the high energy carriers in the 

source are prevented from tunneling at the source-channel junction [Figure 1-9(b)], 

effectively leading to a lower effective temperature of the carriers in the channel, and 

consequently an SS value below 60 mV/dec.   

 

1.4 GE-SIXGE1-X CORE-SHELL NANOWIRES FOR FIELD-EFFECT AND TUNNELING FIELD-
EFFECT TRANSISTORS 

In the previous chapter, possible device options to mitigate performance 

degradation and power dissipation problems entailed with the device scaling were 

introduced. To examine such options, Ge-SixGe1-x core-shell NWs are employed in this 

study, where Ge-SixGe1-x core-shell NWs consist of a Ge core and a SixGe1-x shell grown 

epitaxially on the Ge surface, described in more detail in Chapter 2.1.    

The Ge-SixGe1-x core-shell NWs provide a number of advantages to realize high 

performance NW FETs and TFETs.  First of all, thanks to NW’s cylindrical geometry, 

GAA device geometry can be easily implemented on a NW.  The efficient energy band 
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modulation of the channel using a gate bias is important for both NW FETs and TFETs. 

In FETs, it helps to minimize short-channel effects and OFF-state leakage currents, and 

thereby it enables further device scaling.  In TFETs, since the switching of the device 

relies on the modulation of energy band profile in an intrinsic channel, a strong gate 

coupling to the channel realizes higher ON-state current as well as better SS 

characteristics. Secondly, Ge has the highest hole drift mobility due to its low hole 

effective mass, which is especially advantageous property for deeply scaled high 

performance p-type MOSFETs. [Figure 1-10]   Thirdly, thanks to smaller bandgap of Ge 

(0.67 eV), higher BTBT currents by comparison to Si TFETs can be achieved in Ge-

based TFETs.  Lastly, by optimizing SixGe1-x shell thicknesses and compositions of the 

NWs and thereby enhancing hole confinement effects and strain effects, the channel 

mobility can be further increased. 

 

Ge Si GaAs InP InAs InSb
0

500

1000

1500

2000

 

 

 

H
ol

e 
m

ob
ili

ty
 (

cm
2
/V

s)

 

Figure 1-10: Hole mobility of the group IV semiconductors and group III-V compound 
semiconductors. 
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In addition to above mentioned physical advantages over Si, there are also several 

advantages in device fabrication aspects. Most of all, Ge is a CMOS compatible material. 

Thus, the fabrication technologies developed for Si can also be applied for Ge.   

Moreover, since Ge can be easily integrated on Si substrates [57, 58], a cylindrical 

channel similar to a NW can even be fabricated by “top-down” process [19].  Lastly, low 

thermal budget process can be easily employed for the dopant activation [59, 60], 

relieving thermal requirements for contemporary high- metal gate process [61].  

Therefore, Ge-SixGe1-x core-shell NWs are the promising channel material to 

realize both high performance NW FETs and NW TFETs. 

 

1.5 CHAPTER ORGANIZATION  

This chapter briefly presented the historical trend of the CMOS device scaling and 

entailing problems, such as performance degradation and stand-by power dissipation. To 

alleviate these problems and continue the scaling trend, the device structure providing an 

enhanced electrostatic control over the channel, high mobility channel materials, and 

TFETs were proposed as possible options to examine. In this research, Ge-SixGe1-x core-

shell NWs are employed for the realization of high performance NW FETs and TFETs 

thanks to their structural and physical advantages. Chapter 2 will present the growth of 

Ge-SixGe1-x core-shell NWs and the electrical characteristics of the doped NWs realized 

by low energy ion implantation.  In Chapter 3, the fabrication of high performance of Ge-

SixGe1-x core-shell NW FETs with highly doped source and drain will be presented, 

where the NW FETs are fabricated using a conventional CMOS process. The scaling 

properties of the devices will be presented and further investigated with TCAD 
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simulation. Chapter 4 will present the fabrication and electrical characteristics of Ge-

SixGe1-x core-shell NW TFETs, consisting of a gated p-i-n structure. In addition, 

enhanced performance of NW TFETs by employing flash-assisted rapid thermal process 

will be presented. Chapter 5 will summarize the findings of this research and provide 

suggestions for future work.  
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CHAPTER 2 

Growth and doping of germanium nanowires 

The discussion in the Chapter 1 demonstrated the scaling trend of MOSFETs and 

explained the needs for new materials, device structures, and physics to continue the 

device scaling.  As one of the candidates, Ge-SixGe1-x core-shell NWs have gained 

interests because the gate-all-around (GAA) device geometry can be easily realized in 

NWs, where better electrostatic control over the channel than any other device geometry 

can be achieved. In addition, Ge’s high hole mobility makes them a favorable platform to 

realize high performance field-effect transistors (FETs). Furthermore, Ge’s lower 

bandgap by comparison to Si is an attractive property for the realization of tunneling 

field-effect transistors (TFETs). With these reasons as noted in the Chapter 1, Ge-SixGe1-x 

core-shell NWs is considered as a promising material for the study of both FETs and 

TFETs.  However, the biggest challenge to employ the NWs for both FETs and TFETs is 

an ability to reliably dope the NWs. For instance, high doping concentration up to 1020 

cm-3 is necessary for the efficient carrier injection from the metal contact to a NW, which 

is a basic requirement for the high performance NW FETs. Also, doping a NW with 

different polarities of dopants is required to realize gated p-i-n TFETs.  Therefore, two 

prerequisites for this study are to establish the growth process of high quality Ge-SixGe1-x 

core-shell NWs and reliable NWs doping techniques 

In this chapter, the growth process of Ge-SixGe1-x core-shell NWs will be first 

introduced, followed by NW-doping using low energy ion implantation is then described. 

Specifically, the NW-doping with low energy boron- and phosphorus-implantation is 

investigated for different activation temperatures and ion doses.  
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2.1 GROWTH OF GE-SIXGE1-X CORE-SHELL  NANOWIRES 

Ge-SixGe1-x core-shell NWs were grown on Si (111) substrate in a chemical vapor 

deposition (CVD) chamber via the vapor-liquid-soild (VLS) growth mechanism. The 

growth process of Ge-SixGe1-x core-shell nanowires is outlined in Figure 2-1. Si (111) 

substrate is first cleaned with diluted hydrofludic (HF) acid (1:50 = HF:H2O) to remove 

the native oxide layer on a wafer, followed by 1 nm of Au deposition using e-beam 

evaporator. Then, the substrate is transferred to load in CVD chamber. The wafer is 

annealed in the growth chamber at a substrate temperature of 350 ˚C in H2 ambient, 

which forms droplet from the pre-deposited Au film. Then, the Ge core is first grown at a 

total pressure of 5 Torr and at the wafer temperature of 285 ˚C using 60 SCCM (cubic 

centimeter per minute at STP) GeH4 (10 % diluted in He). The SixGe1-x shell is grown in 

the same chamber in ultrahigh vacuum. This is done by rerouting the gas flow through a 

turbo pump, then coflowing 7 SCCM of SiH4 with 60 SCCM of GeH4 at a growth 

chamber temperature of 400 ˚C, which results in the epitaxial growth of SixGe1-x shell on 

the Ge-core. The Si and Ge content can be tuned by changing the SiH4 and GeH4 partial 

pressure during the shell growth process, realizing the band engineered core-shell NW 

heterostructure.  Figure 2-2(a) shows as-grown Ge-SixGe1-x core-shell NWs on a Si (111) 

substrate. To verify the shell thickness and the content of SixGe1-x shell, transmission 

electron microscopy and energy dispersive X-ray spectroscopy were used [Figure 2-2 (b), 

(c)]. The SixGe1-x shell has a thickness of ~ 4 nm and an approximate Si content of x = 

0.3. The role of the SixGe1-x shell is two-fold. First, it acts as a passivation layer for the 

Ge surface, which is known to have a high density of interface traps in contact with a 

dielectric. Secondly, thanks to a positive band offset between SixGe1-x and Ge valence 

band, it serves as a barrier and confines the holes in the Ge core. In particular, we chose a 
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For lightly doped semiconductor in Fig. 2-4(a), the current flows by thermionic 

emission of carriers, where the electrons thermally excited over the barrier. As a result, 

the potential barrier prevents efficient carrier transports between the two materials, which 

cause significant degradation in device performance. For a substrate with a medium level 

doping concentration, electrons are thermally excited to an energy level where the tunnel 

barrier is sufficiently thin for the tunneling. [Fig. 2-4(b)]  For a highly doped substrate 

shown in Fig. 2-4(c), the electron tunneling between the metal and semiconductor can 

easily occur thanks to narrow tunnel barrier and thereby realizes low contact resistance.  

Therefore, the ability dope the semiconductor nanowires up to very high level (1020 cm-3) 

in controllable manners is the most crucial challenge to employ the NWs for device 

applications. 

 

2.2.2 Nanowire dopoing techniques 

As discussed in the previous section, the doping of semiconductor is the essential 

requirement to enable efficient carrier injection from the metal to semiconductor. The 

NW-doping in this research is important in two aspects.  First, doping the NWs up to very 

high level realizes the low contact resistance between the metal and a semiconductor 

nanowire as well as eliminate ambipolar behavior, and thereby high performance NW 

FETs can be realized. Secondly, for the realization of high performance NW TFETs, 

consisting of a gated p-i-n structure, the highly doped NW in the source region is also 

important to form a thinner tunnel junction between the source (n+ or p+) and the 

intrinsic channel junction, which increases BTBT currents. In addition, the ambipolar 

behavior can be controlled by the precise modulation of the drain doping concentration. 
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However, NW-doping is not trivial as bulk substrate doping due to NW’s reduced 

dimensions.  

To dope NWs, several doping methods have been investigated.  In situ doping of 

Ge NWs, grown using the vapor-liquid-solid (VLS) mechanism, can be achieved by co-

flowing dopant gases, e.g. B2H6 or PH3, along with the growth precursors.  While high 

doping levels can be realized using this approach, the dopant atoms are primarily 

incorporated either via conformal NW growth (B2H6) or through the NW surface (PH3) 

rather than Au catalyst [67, 68].  This results in the entire NW being doped, with a doping 

concentration proportional to the exposure to the doping agent.  Moreover, due to the 

nature of the in situ doping mechanism, axial doping modulation, or uniform doping 

concentrations are difficult to achieve. 

Semiconductor doping using ion implantation, on the other hand, is a widely 

employed technique in semiconductor device manufacturing, as it allows for precise 

control of the doping level and depth, and uniform doping concentration.  However, 

semiconductor NW doping using ion implantation is much more difficult with respect to 

planar, bulk devices, due to ion beam-induced damage and the resulting NW 

amorphization.  While in the case of bulk substrates, high energy ion bombardment may 

cause an amorphization of the semiconductor crystal structure, the amorphized region can 

be recrystallized by a subsequent process with the bulk crystal structure underneath the 

amorphous layer serving as a template for crystal regrowth.  The recrystallization of 

semiconductor NW after ion implantation may not always be possible however, if the 

entire NW body is amorphized during the ion implantation. For instance, Fig. 2-5(a) is 

the transmission electron micrograph (TEM) of a Ge-SixGe1-x core-shell NW, 

phosphorus-implanted (ion energy: 6 keV, dose: 1015 cm-2) at a normal incidence with 

respect to the NW surface.  
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It clearly shows that the boundary (white colored dashed line) between the amorphized 

region and the pristine region of the NW. In this case, the NW is not fully-amorphized 

and the amorphized section of the NW was recrystallized by thermal annealing at 600 ˚C 

for 3 min, using the pristine NW region as a template for NW recrystallization.  [Figure 

2-5(b)]        

 

2.3 DOPING OF GE-SIXGE1-X CORE-SHELL NWS USING LOW ENERGY ION IMPLANTATION 

Among the available NW-doping techniques, ion implantation is the appropriate 

approach to achieve precise axial doping modulation along the NWs, which is an 

essential requirement to implement high performance NW-based FETs and TFETs.    

Although the ion implantation conditions for planar Ge substrates have been well 

established, using the ion implantation for Ge NW doping has never been investigated. In 

addition, it is not trivial due to NW’s reduced dimensions as noted previously, 

necessitating more careful determination of NW doping conditions. Thus, it is important 

to carefully decide the parameters such as ion energy, ion dose, and activation conditions 

for the doping of Ge-SixGe1-x core-shell NWs. In this chapter, the doping of Ge-SixGe1-x 

core-shell NWs using either boron- or phosphorus-implantation is described in detail. 

 

2.3.1 TRIM simulation 

The two important parameters which characterize the ion range are the ion 

implantation energy and dose. The ion implantation energy determines the projection and 

straggle of implanted atoms, while the ion implantation dose determines the implanted 

dopant level in a target substrate. As discussed in the Chapter 2.2.2, due to the small 

diameters of NWs, these parameters should be more carefully decided by comparison to 
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bulk substrates since the excessive implantation energy and dose can cause 

amorphization of the entire NW body.  
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Figure 2-6: Peak projection range of boron and phosphorus in a Ge substrate as a 
function of ion energy (TRIM simulation). 

 To determine the implantation energy of the ions, the TRIM (the Transport of 

Ions in Matter) simulation was employed, which calculates the distribution of implanted 

ions in a solid and is known to provide very accurate as-implanted dopant profile in a 2D 

substrate [69].    In the simulations, ions were implanted at a normal incidence with 

respect to the Ge/HfO2/Si substrate, where the Ge layer and the HfO2/Si represents a Ge 

NW and a substrate served as a back-gate, respectively.  The Ge layer thickness was 

chosen as 40 nm, which is the average diameter of NWs used in the study.  By varying 

the implant energy for each dopant in TRIM simulation, the projection range (RP) was 

extracted. Figure 2-6 shows the peak projection range of both boron (B) and phosphorus 

(P) atoms for different ion energies. The desired peak-projection range of dopants was 

around 10 ~ 15 nm in order to prevent the amorphization of the entire NW body and also 
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NW, where the relatively large dopants loss is expected in a NW by comparison to a 

planar substrate.  

2.3.2 Fabrication of back-gated Ge-SixGe1-x core-shell NW FETs 

To electrically probe the doping concentrations in Ge-SixGe1-x core-shell NWs, 

back-gated NW FETs were fabricated. The fabrication process of a back-gated NW FET 

is described in Figure 2-9. Table 2-1 describes the details of fabrication processes.  First, 

the Si (111) substrate having as-grown Ge NWs was cleaved into small pieces, and one 

piece was suspended in an ethanol solution and sonicated at low power for 10 s to prevent 

mechanical damage on NWs. Afterwards, the NW solution is spin onto a dielectric 

substrate, consisting of a 10nm-thick HfO2 layer grown onto an n-type Si wafer, where it 

has predefined alignment markers to locate the NWs. [Figure 2-9 (b)]  The samples were 

subsequently implanted with either boron or phosphorus.  For B-doped NWs, the B-

implant doses were varied from 1014 to 1015 cm-2, at fixed ion implant energy, 3 keV. B-

implanted NWs on a HfO2/Si substrate were then activated using a conventional rapid 

thermal process (RTP) at 400 to 650 ˚C for 5 min in N2 ambient. On the other hand, for 

P-doped NWs, P-implant doses were varied from 5 × 1014 to 2 × 1015 cm-2
 at the energy 

of 6 keV, followed by RTP at 400 to 600 ˚C for 5 min in N2 ambient. Next, the positions 

of NWs having a length longer than 4 m, required for multi-terminal patterning, were 

determined using scanning electron microscopy (SEM). Then, multi-terminal contacts 

along the NW were defined by e-beam lithography (EBL). The channel length (L), the 

space between adjacent metal contacts was set at 500 nm for all the devices.  Finally, the 

EBL patterned samples were dipped in diluted HF (1:50 = HF:H2O) for 15s to remove 

native oxide on the NWs, a 100 nm of Ni was deposited using e-beam evaporator, and 

then lift-off was done in acetone which is boiled in water bath at 55 ˚C. The contact 
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Table 2-1: Device fabrication process flow of back-gated NWFETs  

1. Immersion of a cleaved NW wafer piece in an ethanol solution 

2. Low power sonication for 10 s to detach as-grown NWs from the Si substrate 

3. Spin on a HfO2(10nm)/ Si (n) substrate with pre-defined alignment markers at 

    rpm, 1000~1500.  

4. Boron implant (Energy: 3 keV, Doses: 1014, 5×1014, and 1015 cm-2) 

    Phosphorus implant (Energy: 6 keV, Dose: 5×1014,1015, and 2×1015 cm-2) 

5. Boron dopant activation ( 400 ~650 ˚C for 5 min in N2 ambient) 

    Phosphorus dopant activation  (400 ~600 ˚C for 5 min in N2 ambient) 

6. E-beam lithography to define multi-terminal contacts along a NW 

7. Diluted HF dip (1:50=HF:H2O) for 15s, followed by Ni (100 nm) evaporation 

    and lift-off. 

   

2.3.3 Calculation of capacitance 

 The gate-to-channel capacitance values are necessary for the calculation of 

mobility and doping concentration in a NW. However, due to the reduced dimensions of 

the NWs, direct measurements of capacitances are difficult. Thus, we used the Sentaurus 

Technology computer-aided design (TCAD) simulation (Synopsis®) for the calculation of 

gate-to-channel capacitance. Figure 2-10 shows the device structure used for the 

capacitance calculation, consisting of a Ge core, a 4 nm thick Si0.3Ge0.7 shell, and a HfO2 

(10 nm)/ Si (n+) substrate. Here, Si substrate was served as a back-gate electrode. By 

applying a negative voltage, holes are first equally induced both in the Ge core and 

SixGe1-x shell. As the applied back-gate voltage is further decreased, holes populating in 
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(Ansoft Q3D Extractor®) to crosscheck capacitance values of doped NWs extracted using 

Sentaurus TCAD simulation.  
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Figure 2-11: Total hole density vs. gate voltage. The total hole density is the sum of the 
hole density in the NW core and shell. 
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Figure 2-12: Capacitance vs. NW diameter (d) for each nanowire doping condition 
(intrinsic, highly doped and metallic NW condition). The capacitances were 
calculated using CL = e·(dp/dVg).   Blue triangles represent the capacitance 
values calculated using finite element method (Ansoft Q3D Extractor®) by 
assuming a metallic NW.  
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Figure 2-14(a) data shows one example of 4-point current-voltage characteristic 

measured on B-implanted NWs, for three different implant doses, and at a back gate bias 

Vbg=0 V.  All devices underwent a 5 min 600 C RTP post-implantation to activate the B 

dopants.  These data show a linear current voltage relation, corresponding to a high NW 

conductance, roughly proportional to the implant dose.  The data indicate the NWs are 

doped, and that the ion beam-induced damage does not amorphize the NWs for the 

implant doses used here.  In Figure 2-14(b), we show the Id vs V4p at different Vbg 

values, varied from -1.0 to 1.0 V with a step size of 0.5 V.  The conductance dependence 

on Vbg is used to extract the carrier mobility and doping concentration in the devices.  
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Figure 2-14: (a) Id vs V4p data measured for NWs implanted with different B doses. The 
data show a conductance increase with the implant dose. (b) Id vs V4p 
measured at different Vbg values for a B-implanted NW with a dose of 1014 
cm-2[70] [Sample:Ge52AB001~B003] 
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One key parameter in this study is the doping concentration, and its dependence 

on the implant dose.  In order to extract the doping concentrations of our B-implanted 

Ge-SixGe1-x core-shell NWs, the following model was employed.  The NW conductance 

G is related to the doping concentration per unit length (pL), and carrier mobility () by 

the relation 1 LepG L  ; e is the electron charge. The carrier concentration per unit 

length depends, in turn, on the gate bias Vbg, via )( 1
0,

 eCVpp LbgLL , where CL is 

the back-gate to NW capacitance per unit length, pL,0 is the carrier concentration at Vbg=0. 

Therefore, the device transconductance ( bgdVdG / ) is related to the carrier mobility via 

1/  LCdVdG Lbg  .  From the measured gate-dependent 4-point conductance value, as 

shown in Figure 2-14(b), the transconductance is first calculated and then extract the 

carrier mobility using )/(1
bgL dVdGCL   . The gate-to-channel capacitance values (CL) 

calculated in the previous section has been applied to calculate the carrier mobility. The 

measured mobility typically ranges from 40 to 100 cm2/Vs in these devices.   

Once the carrier mobility is calculated for each device, the active p-dopant 

concentration (p) per unit volume of our Ge-SixGe1-x core-shell NWs is determined using 

  ep , where the conductivity  is related to the measured conductance via 

1 SLG ; S is the cross-sectional area of NW measured from scanning electron 

microscope (SEM) data.  To investigate the p  dependence on activation temperature (T), 

the B-implanted NWs were annealed at T=400, 500, 600, and 650 C for 5min, in an N2 

ambient.  The p vs T data extracted from over eighty devices implanted at different doses 

is summarized in Figure 2-15(a).  These data do not indicate a discernable trend of the 

average doping concentration with increasing T, although the maximum doping 

concentration does increase slightly with T.   
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In order to estimate the fraction of implanted B atoms that become active, in 

Figure 2-15(b) the active dopant concentration per unit area p2D for each device is plotted 

as a function of the areal implant dose.  Assuming the NW is cylindrical, the areal and 

volume dopant concentrations are related by )4/(2 dpp D  .   Figure 2-15(b) data show 

that the fraction of active implanted B atoms is typically around 15-25%, with a 

maximum of 80% for some devices.  Due to their small footprint, NW to NW variations 

of implanted B atoms can be expected in our Ge- SixGe1-x NWs, which in turn can cause 

the relatively wide distribution of Dp2  shown in Figure 2-15(b).   
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Figure 2-15:  (a) Activated dopant concentration (p) vs the activation temperature (T) for 
different implant doses. (b) Activated dopant dose per unit area (p2D) vs the 
implant dose. These data show that roughly 15%-25% of the implanted ions 
are active dopants in the NWs [70]. [Sample: Ge52A_B001~B011] 

A few conclusions are apparent from the Figure 2-15 data.  First, the doping 

concentration is rather insensitive to the annealing temperature. This observation is 

consistent with previous reports for B-implanted Ge substrates and can be explained by a 
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relatively fast defect removal or regrowth velocity above 400 C in bulk Ge [59, 60].  

Second, the doping concentration of Figure 2-15 are comparable or larger that the 

reported solid solubility, ~5 × 1018 cm-3, of B in bulk Ge [71]. 

In Figure 2-16, the doping concentration is plotted as a function of mobility for 

the different implant doses and activation temperatures. Although implant doses above 5 

× 1014 cm-2 follows general doping density vs mobility relation, the distribution from 

implant dose at 1014 cm-2 are discontinued from the two higher implant doses. They are 

distributed at lower mobility region than expected. The reason for this deviation is still 

unclear, but we speculate that the reduced mobility values at a dose of 1014 cm-2 may be 

related to existing interface traps, and a certain level of implant dose might be required to 

suppress the impact of pre-existing interface traps.  
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Figure 2-16: Doping concentration (p) vs mobility () for different implant doses and 
activation temperatures. These data show that implant doses above 5 × 1014 

cm-2 follow the general relation between doping density vs mobility.  
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Figure 2-18: Activated dopant dose per unit area vs nanowire diameter (d) for each ion 
implant dose, demonstrating higher dopant loss due to lateral straggle for the 
NWs with smaller diameters.  

The data in Figure 2-15 clearly show the wide p-distribution, which can be in part 

related to diameter dependent dopant loss due to lateral dopant straggle in NWs.  To 

corroborate this possibility, 2D SRIM simulation was employed [72]. In the simulation, 

the NW, having the same Si0.3Ge0.7 shell thickness (4 nm) with different Ge core 

diameters, were B-implanted at the same energy of 3 keV.  Figure 2-17(a) shows the 

implanted-B distributions in NWs, demonstrating the relative dopant levels in NWs and 

peak projection ranges for each diameter.   The results in Figure 2-17(b) clearly show 

higher dopant loss in the smaller NW diameters. The dopant loss due to lateral dopant 

straggle becomes more severe for NWs with smaller diameter since dopants can be more 

easily escaped from the NW surface during the implantation process. Figure 2-18 shows 
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the experimentally observed the activated dopant dose per unit area as a function of 

NW’s diameter for each activation temperature and implant dose. Clearly, higher dopant 

loss is observed in NWs with small diameters, which is consistent with the general trend 

shown in Figure 2-17. 

2.3.5 Electrical characterization of phosphorus doped Ge-SixGe1-x core-shell 
nanowires 

Electrical characteristics of phosphorus-doped NWs were measured using the 

same method explained in Chapter 2.3.4.    After dispersing Ge-SixGe1-x core-shell NWs 

on a SiO2 (30 nm)/Si (n+) substrate, the NWs were implanted with phosphorus at the 

energy of 6 keV with a dose of 5 × 1014, 1015, and 2 × 1015 cm-2, respectively. NWs were 

then RTP-annealed at different temperatures, 400 ~600 ˚C for 5 min. It was observed that  
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Figure 2-19: Representative current vs voltage characteristics of phosphorus doped NWs 
(P dose: 1015 cm-2, RTP: 400 ˚C for 5 min) (a) Id-Vd characteristics of a 
back-gated NW FET measured using a 2-point configuration for different 
gate voltages, Vbg = -2.0 ~ 2.0 V. Non-linear characteristics were observed 
at low drain bias condition. (b) Id-Vd characteristics of a back-gated NW 
FET measured in a 4-point configuration for different gate voltages, Vbg = -
2.0 ~ 2.0 V. Gate dependence was very weak for all devices, consistent with 
high doping level.  
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the dielectric (SiO2) thickness should be thicker than 20 nm to prevent severe oxide 
leakage current due to ion implant damage.  

Figure 2-19 shows the two-point and four-point current vs voltage characteristics 

of P-doped NWs (Implantation dose:1015 cm-2, Activation: 400 ˚C for 5 min in N2 

ambient), where Vbg is biased from -2.0 to 2.0 V with a step of 1.0 V. Two observations 

are clear from the data in Figure 2-19. First, the two-point current-voltage characteristics 

shows a non-linear region at low drain bias, which indicates the presence of a barrier for 

electron injection [Figure 2-19(a)]  Secondly, the conductance does not change with the 

gate bias, which may indicate that the NWs are highly doped. Thus, in this study we can 

only extract the NW-resistivities and the metal-to-NW contact resistances, using 2-point 

and 4-point current-voltage characteristics, but cannot investigate of the NW-doping 

concentration.  
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Figure 2-20: Resistivities () vs the activation temperature (T) for different P-implant 
doses. [Index: Ge48P002,P004,P009,P010,P011] 
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Figure 2-21: Resistivities () vs NW’s diameters for different P-implant doses, activated 
at 600˚C. 

Figure 2-20 summarizes the resistivities of P-doped NWs for different dopant 

activation temperatures and implant doses. Unlike the B-implanted NWs shown in Figure 

2-15, the data in Figure 2-20 clearly show the high activation temperature results in lower 

resistivities. The resistivity values at a P-dose of 1015 cm-2 decrease as the activation 

temperature increases, and the lowest  value is observed at 600 ˚C.  However, for an 

implant dose of 2 × 1015 cm-2, the resistivities are increased slightly as the activation 

temperature increases from 450 to 600 ˚C.  We suspect that the high P-dose, 2×1015 cm-2, 

may have caused more defects and segregation of non-active dopants in NWs, which in 

turn increase the resisitivities of NWs.  Thus, while the total number of implanted 

dopants in a NW may be increased at higher doses, the electrically active dopants level 

may not be increased accordingly.  Interestingly, at an activation temperature of 600 ˚C 
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activation lower nanowire resistivities were obtained from NWs implanted at a dose of 

5×1014 cm-2 vs. 2×1015 cm-2, suggesting that the optimum P-implant dose level is located 

between the two doses. Lastly, the resitivities of P-doped NW activated at 600˚C were 

plotted as a function of NW’s diameters for different P-implant doses [Figure 2-21]. In 

general, the resistivities values do not show the diameter dependence.  

 

2.3.6 Ni-nanowire contact resistances in doped Ge-SixGe1-x core-shell NWs 

Two important parameters evaluating the interface contacts between a 

semiconductor and a metal are contact resistance (Rc) and specific contact resistance 

(cThe contact resistance is given by c/A, where A is the area of active contact. Since 

the current does not always uniformly flow in a contact area, a transmission line model 

(TLM) is typically employed to model the current flow and to determine active contact 

area (A). Using the TLM, the relation between contact resistance and specific contact 

resistance in a NW can be derived [73]. 

Figure 2-22 (a) shows the TLM describing electron transport at the metal-

semiconductor NW interface; W is the metal contact width, r is the radius of the NW, c 

is the specific contact resistance at the metal/NW interface, I(x) is the current through a 

NW, v0 is the voltage drop between a metal contact and semiconductor NW (x = W), and 

V(x) is the voltage drop between x and x = W in a NW.  The differential resistance at a 

NW/Ni interface along a length dx is given by c/ (rdx), assuming that Ni contact covers 

only the upper section of a NW since the bottom half section is screened from the metal 

deposition. [Figure 2-22 (b)]  

The voltage and current along the NW can be described by the following relations 
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Using 2.9, the relation between Rc and c can be obtained as following: 
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Using equation 2.10, the metal (Ni) to NW specific contact resistances for both 

boron- and phosphorus-doped NWs were extracted.  Table 2-2 summarizes the NW 

resistivities (s), contact resistances (Rc), and specific contact resistances (c) of B- and 

P-implanted NWs at different doses and dopant activation temperatures. Boron-doped 

NWs show lower contact resistances and specific contact resistances by comparison to P-

doped NWs implanted at the same dose. In addition, the c values did not change much 

with the activation temperature. For B-implant doses above 5 ×1014 cm-2, very low Rc and 

c values were achieved, where the Rc values between the Ni and a Ge-SixGe1-x core-shell 

NW are 300    200 , corresponding to c values of 1.1  10-9  2.2  10-10 cm2.  On 

the other hand, in P-doped NWs, the Rc and c values were generally higher than those of 

B-doped NWs. Besides, higher thermal budget and implant dose, compared with the B-

doping, are necessary to obtain the s below 10-2 Ω·cm, and the extracted c values were 

fluctuated more with the activation temperature for a given implant dose.  Here, the 

lowest average c value, 9.7±9.5 × 10-9 Ω·cm-2, was observed at 500 ˚C at a dose of 1015 

cm-2 while the lowest average s value was found at 600 ˚C at the same dose. Unlike the 

B-implant dose, the P-implant dose of 5×1014 cm-2 was not sufficient to obtain the low c 

and s. Whereas, at a P-implant dose of 2×1015 cm-2, c and s values were sharply 

increased compared with those from an implant dose of 1015 cm-2, which may be due to 

the implant-induced defect generation and segregation of the excessive dopants at the 

high implant dose as noted previously. 
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Table 2-2: Ion-implanted NW resistivities and NW-to-Ni contact resistances   

Activation  
Temperature 

(˚C) 

Dopant, Dose 
(cm-2) 

Resistivity  
  (Ω∙cm) 

Contact 
resistance 

(Ω) 

Specific  
contact resistance  

(Ω·cm-2) 

400 

B, 1015 2.9±0.6 × 10-3 330±41 12±1.8× 10-10 

B, 5×1014 4.9±0.5 × 10-3 480±90 16±5.2 × 10-10 

B, 1014 30±12 × 10-3 1900±1480 4.9±3.8 × 10-8 

P, 1015 20±4 × 10-3 6300±2100 5.4±3.7 × 10-8 

450 
P, 2×1015 17±5 × 10-3 9800±4900 1.7±0.6 × 10-7 

 
 

500 

 

B, 1015 3.0±0.4 × 10-3 168±14 4.0±1.3 × 10-10 

B, 5×1014 5.4±0.8 × 10-3 243±73 5.2±2.4 × 10-10 

B, 1014 35±6.5 × 10-3 3400±2900 2.3±2.0 × 10-8 

P, 1015 6.3±2.2 × 10-3 1050±760 9.7±9.5 × 10-9 

600 
 

B, 1015 2.7±0.5 × 10-3 220±130 7.6±6.8 × 10-10 

B, 5×1014 4.6±0.5 × 10-3 270±110 3.9±1.2 × 10-10 

B, 1014 38±6.2 × 10-3 3600±2800 2.0±1.8 × 10-8 

P, 2×1015 30 ±10 × 10-3 12000±5300 1.4±0.8 × 10-7 

P, 1015 5.6± 0.7 × 10-3 2200±1400 2.4±1.3 × 10-8 

P, 5×1014 25± 8 × 10-3 14000±2900 2.2±1.8 × 10-7 

650 
B, 1015 3.7±0.9 × 10-3 280±120 1.3±1.1 × 10-9 

B, 5×1014 7.2±2.0 × 10-3 260±280 8.1±7.8 × 10-10 
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2.4 SUMMARY 

In Chapter 2, we described the growth of Ge-SixGe1-x core-shell NWs using a 

combination of VLS Ge NW growth and UHV CVD SiGe growth, The boron- and 

phosphorus-doping of the NWs using low energy ion implantation were systematically 

investigated. The data show the successful doping of Ge-SixGe1-x core-shell NWs using 

ion implantation, both for boron and phosphorus. A B-doping concentration as high as 2 

1020 cm-3 was achieved using ion implantation, with specific contact resistances as low as 

4 × 10-10 ·cm2. Similarly low channel resistances and contact resistances were also 

observed in P-doped NWs. Based on these results, high performance NW FETs and NW 

TFETs can be fabricated by employing conventional CMOS processes, as we describe in 

the following chapter. 
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CHAPTER 3 

High Performance Germanium Nanowire Field-effect Transistors 

Ge-SixGe1-x core-shell NWs are the promising channel material for aggressively 

scaled FETs as discussed in Chapter 1. Most of all, gate-all-around device (GAA) 

geometry can be easily implemented along a NW due to its cylindrical structure, 

providing enhanced electrostatic control over the channel. In addition, thanks to Ge’s 

higher hole mobility compared with other major group IV semiconductors and group III-

V compound semiconductors, high performance p-type MOSFETs can be realized using 

the NWs. Despite the potential advantages that the Ge-SixGe1-x core-shell NWs provide, 

the performance of the device will still be limited by the Schottky barrier at the metal-

semiconductor interface when the metal is directly deposited on the source/drain regions 

of the NW. Moreover, ambipolar device characteristics are often observed in such 

devices [31]. Thus, a key to obtain the high performance NW FETs is the ability to highly 

dope the source and drain regions of the NW FETs. In the previous chapter, the NW-

doping was successfully demonstrated using low energy ion implantation, where the B-

doping concentration up to 1020 cm-2 was obtained in the NWs. Based on this finding, 

high performance Ge-SixGe1-x core-shell NW FETs can be realized by utilizing CMOS 

fabrication process. 

This chapter begins with describing the fabrication processes of -shaped gate 

Ge-SixGe1-x core-shell NW FETs with highly doped S/D, followed by investigations of 

the improved electrical characteristics by comparison to undoped S/D NW FETs. Using 

the high performance Ge-SixGe1-x core-shell NW FETs with different gate lengths, the 

scaling properties of the devices are scrutinized. In addition, TCAD simulation 

(Synopsis®) was employed to better understand the observed experimental results. 
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Lastly, the device characteristics were also demonstrated for the NW FETs with different 

SixGe1-x shell compositions.   

3.1 FABRICATION PROCESS OF -SHAPED GATE GE-SIXGE1-X CORE-SHELL NW FETS 

The fabrication process flow of -shaped Ge-SixGe1-x core-shell NW FETs is 

outlined in the Figure 3-1 and Table 3-1. After nanowire growth, the wafer was cleaved 

into small pieces using a diamond scriber. A wafer piece (~ 1cm ×1cm) with the NWs on 

it was suspended in an ethanol solution and then sonicated for 10 s and then dispersed on 

a substrate consisting of a 10 nm thick HfO2 (10 nm) layer grown on a Si (100 n-type) 

substrate, which can serve as back-gate [Figure 3-1(a)]. The NWs on the substrate was 

clean with a 2% HF solution for 20 s and DI water for 20 s for 2 cycles. Right after 

cleaning steps, the gate oxide, a 9 nm-thick HfO2, is deposited by atomic layer deposition 

(ALD) at 250 ˚C [Figure 3-1(b)]. The equivalent oxide thickness (EOT) was ~3.9 nm, 

verified by capacitance-voltage measurement on planar capacitors processed in parallel 

with the device. The gate electrode was patterned by EBL, followed by 120 nm of 

tantalum nitride (TaN) deposition. After lift-off, the device was clean with O2 plasma for 

10 s (50 W) to remove PMMA residues. The HfO2 layer on S/D regions was etched by 

diluted HF (3 %). Next, using the self-aligned process, B-implanted at the energy of 3 

keV and with a dose of 1015 cm-2, and rotating 360 ˚ with 32 ˚ tilt during the ion 

implantation, which results in highly doped NW on S/D region outside the TaN metal 

gate. [Figure 3-1(c)]  The devices were then annealed at 600 ˚C for 5 min in an N2 

ambient to activate dopants as well as remove implant-induced crystal damage in NWs. 

Subsequently the S/D contacts were defined by EBL again, followed by 100 nm of Ni 

deposition and lift-off. To improve contact on S/D, one minute contact anneal at 300 ˚C 
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Figure 3-3: Electrical characteristics of a Ge-SixGe1-x core-shell NW FET with undoped 
S/D, and with a channel length Lg = 720 nm. (a) Id vs Vd data measured at 
different Vg values. (b) Id vs Vg data measured at different Vd values. The 
data in both panels were measured at two back-gate biases: Vbg =0 V 
(square, black symbols) and Vbg = -1.5 V (round, red symbols). 
[Ge52AF002,F008] [92] 
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Figure 3-3(b) data show the transfer characteristics (Id-Vg) for two values of Vbg. Here, 

ON-state (ION) and OFF-state (IOFF) are defined as the drain current measured at Vd  = Vcc 

= -1.0 V, and at top-gate biases Vg  = VT  + 0.7Vcc (ON-state) and Voff = VT - 0.3Vcc (OFF-

state) respectively; VT represents the threshold voltage of the device, defined by linearly 

extrapolating Id vs Vg, measured at Vd = -0.05 V, to zero Id.   

Two observations are apparent from the data of Figure 3-3. First, the ON current 

is very low at Vbg = 0 V. The device shows a maximum current of 120 nA at Vd =Vg = -

2.0 V, and an ON current ION = 40 nA, corresponding ON/OFF current ratio equal to 20 

at Vbg= 0 V.  The low ION is largely due to the resistance of the NW sections not covered 

by the top-gate, which acts as a series resistance (Rext), combined with the metal to NW 

contact resistance (Rc) at the S/D.  The measured channel resistance (Rm) is the sum of Rc, 

Rext, and the top-gated channel resistance (Rch).  In order to roughly estimate the fraction 

of Rc and Rext in Rm, Rch is calculated by assuming a typical mobility () value of ~ 80 

cm2/Vs, determined by a 4-point gate dependent measurement on the same intrinsic Ge-

SixGe1-x core-shell NWs.   The expected value of Rch at Vg = -1.0 V, using 
1])([  tgoxgch VVCLR  is ~46 k; Cox represents the NW capacitance per unit length. 

For this estimate, the capacitance value, Cox = 1.56 nF/m, was calculated using a finite 

element method.  On the other hand, the extracted Rm value at Vg = -1.0 V is 6.2 M. 

Obviously, the intrinsic channel resistance is very small by comparison to the contact and 

series resistance. Thus, the performance of this NW FET is primarily degraded by the 

contact and series resistances.  

Second, the device performance can be significantly changed by applying a back-

gate bias.  A negative Vbg value increases the hole concentration in the NW sections not 

covered by the top-gate, thereby reducing Rc and Rext.  The data of Figure 3-3 show a ten-

fold increase in ON current for Vbg = -1.5 V compared to Vbg = 0 V, and a corresponding 
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increase in ON/OFF current ratio to 130.  The subthreshold slope (SS), defined as 
1

10 ]/)(log[  gd dVIdSS  at Vd = -0.05 V, decreases from 420 mV/dec for Vbg = 0 V, to 

360 mV/dec for Vbg = -1.5 V.   The overall performance enhancement is primarily due to 

reduced Rext and Rc with applied Vbg, resulting in an increase in Id.
  This confirms that the 

performance of NW FETs with undoped S/D is significantly limited by the contact and 

series resistances.   

Figure 3-4(a) shows the output (main panel) and transfer (inset) characteristics for 

a NW FET, where S/D regions were B-doped using low (3 keV) energy ion implantation, 

at a dose of 1  1015 cm-2.  The NW diameter is 36 nm, and the device dimensions are Lg 

= 720 nm and Ls = 850 nm.  Based on these data, the estimated value of external 

resistance, Rext + Rc, for the NW FET with B-doped S/D of Figure 3-4(a) is 21.7  1.8 k. 

The NW FET with doped S/D of Figure 3-4(a) shows a maximum current Imax = 11 A 

measured at Vg = -2.0 V, and a subthreshold slope, SS = 270 mV/dec.  The SS value is 

relatively high compared to the thermal limit of 60mV/dec, and could stem from a high 

interface trap density.  The ON-current has a value ION = 2 A at Vd = -1.0 V, 

corresponding to an ON/OFF ratio of ~200. For comparison, in Figure 3-4(b), the output 

(main panel) and subthreshold (inset) characteristics for the NW FET with undoped S/D 

at Vbg = 0 V is shown, examined in Figure 3-3.  Note that the two devices of Figure 3-4 

have similar Lg and Ls dimensions.  Compared with the undoped S/D NW FET of Figure 

3-4(b), the Imax of the top-gated device with B-doped S/D is two orders of magnitude 

larger, and the ON/OFF ratio shows a ten-fold increase.  Clearly, the device performance 

is enhanced after S/D B-doping.  The device resistance Rm, measured at Vg = -1.0 V in the 

linear (small Vd) regime is 130 k.   
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Figure 3-4:  Electrical characteristics of a Ge-SixGe1-x core-shell NW FET with undoped 
S/D, and with a channel length Lg = 720 nm. (a) Id vs Vd data measured at 
different Vg values. (b) Id vs Vg data measured at different Vd values. The 
data in both panels were measured at two back-gate biases: Vbg =0 V 
(square, black symbols) and Vbg = -1.5 V (round, red symbols). [92] 
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Using Rm = Rc + Rext + Rch along with estimates for Rc and Rext, Rch is estimated to be 

~108 k. Thus, Rc and Rext are small relative to Rch, and the operation of Ge-SixGe1-xNW-

FET is now primarily limited by Rch rather than Rc and Rext.  The corresponding effective 

mobility, extracted using the calculated gate capacitance per unit length of Cox = 0.95 

nF/m, is eff  = 60 cm2/Vs.    

In summary, dual-gated Ge-SixGe1-x core-shell NW FETs with highly doped 

source and drain show enhanced performance with respect to NW FETs with undoped 

S/D, thanks to reduced series and contact resistances, combined with efficient carrier 

injection from the doped S/D.  

 

 

3.3 SCALING PROPERTIES OF GE-SIXGE1-X CORE-SHELL NW FETS 

To further investigate the electronic properties, as well as prospect the potential 

device applications of Ge-SixGe1-x core-shell NWs, the device performance as a function 

of gate channel length needs to be systematically investigated. 

To probe the scaling properties of Ge-SixGe1-x core-shell NW FETs, NW FETs 

with different channel lengths from 300 nm to 1 m were fabricated. Based on the results 

in Chapter 2.2.4, in the B-doped S/D regions, we expect the a doping concentration of 

1019 ~ 1020 cm-3, a NW resistivity of 2.6 × 10-3 ± 1.9 × 10-4 ·cm, and a Ni-NW specific 

contact resistivity of 1.1 × 10-9 ± 2.2 × 10-10 ·cm2, corresponding to contact resistances 

of 300 ± 200  Thus, the performance of NW FETs is not limited by external resistance 

components.  



 59

3.3.1 Electrical characteristics 

To characterize the devices, the output characteristics (Id-Vd) and transfer characteristics 

(Id-Vg) of NW FETs were measured. Figure 3-5 shows output and transfer characteristics 

of Ge-SixGe1-x core-shell NW FETs with different channel lengths (Lg), from 300 nm to 1 

m. The diameters of NWs in these NW FETs are in the similar range, i.e., d = 52 ± 4 

nm. On the right axis of output characteristics, the drain current normalized to the NW’s 

diameter are shown to facilitate the comparison of device characteristics between the 

devices. One apparent from the data in Figure 3-5 is that the maximum attainable Id and 

transconductance values proportionally increase with the decreasing Lg.  As Lg scales 

from 1 m to 300 nm, the maximum Id measured at Vd = Vg = -2.0 V increases to 12, 22, 

and 45 m, corresponding to the normalized currents of 240, 420, and 800 ·m-1.  

The transfer characteristics measured at Vd = -1.0 V shows peak transconductance of 6.1, 

11.5, and 19.6 S for each channel length Lg = 1m, 500nm, and 300 nm. Gate leakage 

currents in all measurement were below 10 pA. 
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Figure 3-5:  Electrical characteristics of a Ge-SixGe1-x core-shell NW FET at different 
gate lengths (a) Lg = 1 m d = 48 nm (b) Lg = 500 nm d = 49 nm (c) Lg = 
300 nm d = 55 nm. In each panel, the left-side (right-side) graphs show Id – 
Vd ( Id-Vg) characteristics. The axis on the right side of output characteristics 
show Id normalized to the NW diameter (d). [Ge52AF010] [93] 
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3.3.2 Effective mobility  

Effective mobility of Ge-SixGe1-x core-shell NW FETs can be calculated using the 

relation, 

௘௙௙ߤ ൌ 	
௘௙௙൫ൌܮ ௚ܮ െ ൯ܮ∆

ܴ௖௛ܥ௢௫ห ௚ܸ െ ௧ܸห
																																																											3.1 

,where eff is an effective mobility, Leff is an effective channel length, the difference 

between the gate length (Lg) and the channel length reduction (L), Rch is an intrinsic 

channel resistance, and Cox is the top-gate capacitance per unit length. Thus, the Leff, Rch, 

and Cox values needs to be determined to calculate the effective mobility.  

First, to obtain Rch and Leff values, the resistances between the source and the 

drain (Rm) are measured for different gate overdrive voltages |Vg –Vt|, from 0.5 V to 2.0 

V, as a function of the gate channel lengths as shown in Figure 3-6(a). The measured 

resistance (Rm) is the sum of Rch and the external series resistance (RSD), and it can be 

expressed by the following relation,  

ܴ௠ ൌ 	 ௗܸ

ௗܫ
ൌ ܴ௖௛ ൅ ܴௌ஽ ൌ 	

௘௙௙ሺൌܮ ௚ܮ െ ሻܮ∆
|௢௫ܥ௘௙௙ߤ ௚ܸ െ ௧ܸ|

൅ ܴௌ஽																																							3.2 

For these measurements the low Vd = -0.05 V was applied, ensuring device operation in 

the linear region.  The Rm values at different gate channel lengths for the each gate 

overdrive voltage are fitted with linear lines and these lines are intersecting at one point, 

where Rm = RSD = 12.7 k for Lg = L= 43 nm can be obtained as shown in Figure 3-

6(a). Thus, by subtracting RSD from Rm and L from Lg, Rch and Leff can be determined. 

Here, RSD is the sum of the metal-NW contact resistance (Rc) and the extension resistance 

(Rext) of Ls which is a highly-doped but not gated section of the NW [Figure 3-6(b)]. We 

note that high RSD value stems mainly from Rext, estimated as ~ 11 k using Table 2.2 

Thus, the performance of the NW FETs can be further improved by reducing Ls.  
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dielectric / TaN metal stack corresponding to the actual device. The valence band offset 

between Si0.3Ge0.7 and Ge interface was 0.05 eV in the simulation.  Applying a negative 

gate bias initially induces holes in the Ge core, and at sufficiently large gate bias holes 

start to populate in the Si0.3Ge0.7 shell.  Figure 3-7(b) data show an example of hole 

densities in the core and shell calculated for a Ge-Si0.3Ge0.7 core-shell with a 50 nm 

diameter and a 4 nm–thick shell.  The total hole density per unit length (p) in a Ge-

SixGe1-x NW for a given gate voltage is calculated by summing the carrier density both in 

the shell and the core of a NW [Figure 3-7(b)].  The carrier concentration in NW is then 

obtained using Q = e p= Cox |Vg-Vt|, where e is the electron charge and Vt is a threshold 

voltage. Total capacitance per unit length is extracted using Cox = e (dp/dVg).  Figure 3-

7(c) summarizes the results of the -shaped gate capacitances (Cox) for different NW 

diameters.  

Finally, by inserting the Rch, Leff, and Cox values into the equation 3.1, the intrinsic 

carrier mobility in Ge-SixGe1-x core-shell NW FETs can be extracted. Figure 3-8 shows 

the eff values as a function of |Vg – Vt|. The results in the Figure 3-8 show that the peak 

mobility values ranges from 100 to 180 cm2∙(V∙s)-1, which are threefold higher than 

those of the reported Si p-MOSFETs with HfO2 gate dielectric [74]. 
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from recently reported planar Ge pMOSFETs, realized on Ge-on-Si substrate or Ge-on-

insulator (GeOI) substrate [75-80]. The gate lengths of Ge pMOSFETs are demonstrated 

down to 60 nm, whereas those of Ge-SixGe1-x core-shell NW FETs are shown from 1 m 

to 300 nm. In addition, the equivalent oxide thickness (EOT) of the reported devices 

ranges from 1.4 ~1.9, while that of the NW FETs is ~3.9. We also note that the supply 

voltages of some devices are Vcc = -1.2 V [76, 78, 79].   
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Figure 3-9: ON-OFF characteristics of the Ge-SixGe1-x core-shell NW FETs along with 
planar Ge pMOSFETs. The ON-OFF characteristics of the NWFETs are 
comparable or better than those of most recent Ge pMOSFETs [75-80]. ON-
currents in the NW FETs can be further increased by the device scaling. The 
ON-OFF characteristics of the NW FETs was determined using the VCC = -
1.0 V. 
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Figure 3-10: Transfer characteristics of the Ge pMOSFET measured at the source (black) 
and the drain (red). A large difference between Id and Is is originated the 
reverse-based diode leakage current between the drain (p+) and the substrate 
(n) [79].   

As a result, higher ON-state currents were demonstrated in Ge pMOSFETs by 

comparison to the NW FETs [Figure 3-9]. However, ON-currents in our devices will be 

further increased by reducing the device dimensions. For similar gate lengths, the ON-

OFF characteristics of NW FETs are comparable or better than those of Ge pMOSFETs. 

Lastly, we note that the OFF-currents of the Ge pMOSFETs fabricated on Ge-on-Si 

substrates were measured at the source due to high leakage current at the drain-substrate 

junction, which results in underestimation of OFF-currents [Figure 3-10] [75, 77, 78, 80]. 

The main source of the leakage current is reverse biased diode leakage currents at the 

drain (p+)/substrate (n) junction, where the drain is negatively biased and substrate is 

grounded. By comparison, ON-OFF characteristics of Ge-SixGe1-x core-shell NW FETs 
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and Ge pMOSFETs fabricated on GeOI, where the body is isolated by the oxide layer 

underneath, were all measured from the drain currents (Id).  

Next, to estimate the switching speed in our devices, we employ the intrinsic gate 

delay , which is defined as CV/I, where C is the gate capacitance, V = Vcc = -1.0 V, 

and I = ION. Figure 3-11 shows the relation between  and the ION/IOFF ratio of Ge-SixGe1-

x core-shell NW FETs along with previously reported data from Ge-Si core-shell NW 

FETs and Ge pMOSFETs [36, 77, 80].  Here we define a window of VON - VOFF = Vcc = -

1 V along the Vg axis to determine ION and IOFF.  
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Figure 3-11: Intrinsic gate delay () versus ION/IOFF ratio for different Lg values along 
with Ge-Si core-shell NW FETs [36] and Ge pMOSFETs [77, 80] data from 
the literatures. The gate delay of our Ge-SixGe1-x core-shell NW FETs is 
expected to further minimized with the gate length scaling.    
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The data in Figure 3-11 illustrates the tradeoff between ION/IOFF and , meaning that CV/I 

improves with the reducing ION/IOFF by increasing ON-state current at higher gate 

overdrive, while sacrificing the significant increase in IOFF current. The ION/IOFF ratio of 

the NW FETs reaches a maximum of up to 104, which is a ten-fold higher value than 

previous results in Ge-Si core-shell NW FETs [36] and is similar to the values in Ge 

MOSFETs whose ION/IOFF was measured at the source [77, 80].  The intrinsic delay of 

our devices reduces with the gate length scaling and the devices with the same channel 

length have almost identical  versus ION/IOFF data. The intrinsic delay of the Ge-SixGe1-x 

core-shell NW FETs will be further reduced with the device scaling.   

 

3.3.4 Short-channel effects  

The subthreshold slopes (SS), defined as SS = -[d(logId)/dVg]
-1, for different 

channel lengths are shown in Figure 3-12.  These data show SS values ranging from 150 

to 190 mVdec-1.  The measured SS values are higher than the thermal limit of 60 

mVdec-1 at room temperature, a finding that can be attributed to a finite trap density at 

the dielectric-semiconductor interface. To roughly estimate the density of interface traps 

(Dit) in Ge-SixGe1-x NW FETs, SS data measured for a l m channel length device is 

fitted with the equation, SS = (2.3kBT/e)∙[1+ Cit/Cox)], where Cit is a trap capacitance per 

unit length and e is the electron charge. Here, since the NW channel is nominally 

undoped, the depletion capacitance can be neglected.  Thus, by inserting the Cox value for 

a NW with a diameter of 45 nm, the trap capacitance can be obtained as Cit = 1500 

aF/m. Using the relation, Cit = e·Dit, the estimated Dit was 6.6 × 1012
 cm-2V-1, which can 

explain the relatively high SS in these devices.  
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Figure 3-12: Subthreshold swing (SS) versus effective gate length. The SS values are 
generally high and slightly increase with the device scaling. 

 In addition, the drain induced barrier lowering (DIBL) and threshold voltages 

were also measured for devices with different channel lengths.[Fig. 3-13 and 3-14]   In 

general, DIBL increases with the device scaling, demonstrating that short channel effect 

starts to emerge at the gate length below 300 nm. The threshold voltages are also slightly 

rolled off as the gate length shrinks as shown in Figure 3-14.  Therefore, the fabrication 

process should be further optimized to improve the device performance, by reducing the 

non-gated the source and drain region (Ls), optimizing doping conditions, as well as by 

improving the dielectric quality. 



 71

200 400 600 800 1000
0

40

80

120

160

 

 

D
IB

L 
(m

V
/V

)

L
g
 (nm)

 

Figure 3-13: DIBL of Ge-SixGe1-x core-shell NWFETs as a function of the channel length 
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Figure 3-14: Threshold voltage vs. the gate lengths. Slight Vt shift with the device scaling  
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3.3.5 TCAD simulation results 

The electrical characteristics and analyses of Ge-SixGe1-x core-shell NW FETs in 

Chapter 3.3 show DIBL and high substhreshold swing (SS), which further increase with 

the gate length scaling, causing poor short-channel device characteristics. One minor 

reason for degraded device characteristics at the short channel length may be due to high 

dielectric constant of Ge (Ge =16.0). For example, the electric flux (Df) at the interface 

between the gate oxide and the semiconductor channel in a MOSFET is given by Df = 

oxox = GeGe in Ge MOSFETs, while by Df = oxox = SiSi in Si MOSFETs (Si=11.9).  

Thus, for the same Df, the electric field strength in Ge (EGe) would be smaller than that in 

Si (ESi) for the same. This implies that the gate electrostatic control in Ge devices would 

be less effective compared with Si devices and more prone to shor-channel effects. Next, 

the electrical characteristics of the devices in Chapter 3.3 show clear indications of gate-

induced-barrier-lowering (GIDL) and high Dit, and they may have affected on the device 

performance.  Thus, the roles of these factors on the device performance need to be better 

understood. In order to gain insight on the role of GIDL and Dit, the electrical 

characteristics of Ge-SixGe1-x core-shell NW FETs were investigated using Sentaurus 

TCAD simulation (Synopsis®). Figure 3-15(a) shows the device structure used for the 

simulations and Fig. 3-15(b) shows the cross section of the device. The device structure 

used in the simulation is a gate-all-around (GAA) device geometry, where the Ge core 

has a diameter of 44 nm, the Si0.4Ge0.6 shell has a thickness of 5 nm, and SiO2 gate 

dielectric has a 5 nm.  Similar to the NW used for the experiment, the channel is undoped 

and the S/D, shaded regions in Fig 3-15(b), has the same B-doping concentration of 1020 

cm-3.  
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low bandgap is a main reason for high OFF-state leakage currents as demonstrated in the 

simulation. In conclusion, the GIDL effects clearly increase IOFF but it does not degrade 

the SS and the DIBL of the device.   
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Figure 3-16: The Id-Vg characteristics of Ge-SixGe1-x core-shell NWFET with Lg = 300 
nm. Black (■): transfer characteristics without band-to-band tunneling 
(BTBT) model, Red (●): transfer characteristics including BTBT model in 
the simulation).   

Next, the transfer characteristics of the device were investigated at different gate 

lengths (Lg). To examine the gate length scaling effects, device structures and device 

physics in the simulation were kept in the same conditions and the gate length is only 

varied.  In addition, the traps were ignored in the simulation. For gate lengths above 300 

nm, DIBL and SS values are not changed even if the ON-current proportionally deceases 

with the gate length increase. Thus, we focus here on devices with Lg below 300 nm. 

Figure 3-17 show the transfer characteristics (Id-Vg) of the Ge-SiGe core-shell NW FETs, 

calculated at different Vd = -0.05 V and -1.0 V for Lg = 300, 250, and 200 nm. As the gate 
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length scales down, the DIBL is clearly observed at 200 nm, where it is increased from 6 

mV/V to 76 mV/V. Below the gate length 200 nm, the channel potential modulation is 

obviously affected by the drain biases, where the drain current is controlled not only by 

the gate voltage, but also by the drain voltage. Thus, a potential barrier between the 

source and the channel is further decreased at high Vd = -1.0, leading to an increased drain 

current.  Simulation results show the similar trend compared to the experimental results 

where DIBL starts to increase from the channel length below 300 nm.  The increasing 

DIBL in the device causes the increase of SS from 62 mV/dec to 76 mV/dec as well.  In 

conclusion, as the gate length scales down, it causes DIBL, which in turn degrades the SS 

of the device.   
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Figure 3-17: The Id-Vg characteristics of Ge-SixGe1-x core-shell NWFETs for different 
gate lengths from 300 nm to 200 nm. 
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 Lastly, the impact of interface traps on the device performance was investigated. 

To examine the impact of interface traps on the device performance, the same device 

structure as shown in Fig. 3-15 and device physics which include BTBT model were 

employed in the simulations, while the interface trap density (Dit) and the gate lengths 

were varied.  In the simulation, the uniform Dit was assumed over the bandgap and four 

different Dit values, 0, 1012, 5×1012, and 1013 cm-2V-1, were used to demonstrate their 

impact on the device performance.  Figure 3-18 shows the transfer characteristics of the 

NW FET with Lg = 300 nm for different interface trap densities. The obvious observation 

from Fig.3-18 is that the SS and DIBL of the NW FETs are clearly affected by the 

increase of Dit. For example, the SS value is close to 60 mV/dec and DIBL is negligible at 

Dit = 0, whereas SS and DIBL are greatly increased as Dit approaches to 1013 cm-2V-1. The 

data in Figure 3-19 summarize the simulated (a) DIBL and (b) SS as a function of the 

gate lengths for different Dit values, plotted along with the experimental data of Ge-

SixGe1-x core-shell NW FETs shown in Fig 3-12 and Fig. 3-13. It shows that both SS and 

DIBL are moved to the higher level with the increase of Dit value, which are further 

degraded with the gate length scaling. The results clearly demonstrate that high Dit value 

is the main cause for relatively high SS values and DIBL observed in Chapter 3.3.4. The 

interface trap in MOSFETs works as a series capacitance with a gate capacitance, it 

prevents an efficient electrostatic control over the channel, and thereby short-channel 

effects can be more easily observed with the gate length scaling. Therefore, interface 

density of states should be minimized as possible in order to improve the performance of 

the devices and extend the device scaling. 
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Figure 3-18: Impact of density of interface trap (Dit) on the performance of Ge-SixGe1-x 
core-shell NWFETs with the gate length of 300 nm. 
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Figure 3-19: (a) DIBL vs. gate length for different interface trap level (Dit) (b) 
Subthreshold swing (SS) vs. gate length for different Dit.   
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3.4 PERFORMANCE DEPENDENCE ON SIGE SHELL CONTENTS 

One of the main roles of SixGe1-x shell in our NWs is to enhance the channel 

mobility in the NW FETs by confining the holes in the Ge core.  Due to the valence band 

offset existing between the Ge core and the SixGe1-x shell in the NWs, determined by the 

relative content of Si and Ge in the shell, hole confinement is expected in the Ge core. 

Thereby, the channel mobility can be improved by reduced the scattering from the 

impurities and surface roughness on a NW surface. In order to demonstrate the device 

performance dependence on the SixGe1-x shell compositions, the NW FETs were 

fabricated using the Ge-SixGe1-x core-shell NWs with different shell compositions, x = 

0.5 and 0.7, having the same SixGe1-x shell thickness, 3 nm.  The valence band offset 

between the Ge core and SixGe1-x shell is 0.15 eV for x =0.5 and 0.29 eV for x =0.7, 

determined by Sentaurus TCAD simulation. The valence band offset of the Ge-Si0.7Ge0.3 

core-shell NW is a twofold higher than that of the Ge-Si0.5Ge0.5 core-shell NW and 

thereby higher hole confinement is expected in the Ge core.   Using these NWs, two NW 

FETs were fabricated by employing the same process described in Chapter 3.1. To 

minimize the fabrication process dependent device performance variation, two devices 

were fabricated in parallel.  

 To investigate the devices characteristics, the output characteristics (Id-Vd) and 

transfer characteristics (Id-Vg) were measured at different temperatures from 300 K to 77 

K.  Figure 3-20 (a) and (b) show the electrical characteristics of a Ge-Si0.5Ge0.5 core-shell 

NW FET with Lg = 1550 nm and d = 45 nm, whereas Figure 3-20 (c) and (d) show those 

of a Ge-Si0.7Ge0.3 core-shell NW FET with Lg = 1550 nm and d = 37 nm. Figure 3-20 (a) 

and (c) present the temperature dependent Id-Vd characteristics of each device and the 

drain current data normalized to the NW diameter (d) are shown on the right axis of the 

Id-Vd graphs to facilitate a comparison of the device characteristics. Figure 3-20 (b) and 
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Figure 3-21: (a) Threshold voltage vs. temperature (T) (●) (b) Subthreshold swing (SS) 
vs. T.  [Ge-Si0.5Ge0.5 core-shell NW FET (■), Ge-Si0.7Ge0.3 NW FET] 

 

Figure 3-21 shows the threshold voltage (Vt) and subthreshold swing (SS) as a 

function of temperature for both NW FETs with Si0.5Ge0.5 shell and Si0.7Ge0.3 shell. The 

Vt of the NW FET at each temperature was defined by linearly extrapolating Id versus Vg, 

measured at Vd = -0.05, to zero Id. The Vt of Si0.7Ge0.3 shell device is 0.98 V at 300 K, 

which is higher than that of Si0.5Ge0.5 shell device, Vt = 0.29 V. As T is lowered from 300 

K to 77 K, the Vt of the device is shifted to 0.4 V (Si0.7Ge0.3 shell) and -0.32 V (Si0.5Ge0.5 

shell) [Fig. 3-21(a)]. The SS values of the NW FETs at 300 K are 246 mV/dec (Si0.5Ge0.5 

shell) and 236 mV/dec (Si0.7Ge0.3 shell), and they decrease linearly with T.  Similar SS 

values were observed in both devices over the temperature range that the devices were 

characterized. The relatively high SS values in both devices by comparison to the data 

shown in Fig. 3-12 can be attributed to the inferior the gate oxide quality along with high 
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interface trap density on the NW surface. Using SS = 2.3·(kT/q)·(1+eDit/Cox), where Cox 

is calculated with Sentaurus simulation, Dit values of each device were estimated. The 

estimated Dit value of the Ge-Si0.5Ge0.5 core-shell NW FET is ~1.3×1013
 V

-1cm-2 and that 

of Ge-Si0.7Ge0.3 core-shell NW FET is ~1.2×1013
 V-1cm-2. Similar Dit values of both 

devices indicate that both NWs have a similar interface quality for the gate oxide 

deposition. Thus, the impact of Dit on device performance, as demonstrated in Chapter 

3.3.5, may also be similar in both NW FETs.  

In Figure 3-22, the ION and IOFF current of the NW FETs are plotted for different 

temperatures. The Id on y-axis is normalized to the NW’s diameters. Using Id-Vg graph 

shown in Figure 3-20, we define the ION as the measured Id at a gate bias VON = Vt + 

(2/3)Vcc and the IOFF as the measured Id at VOFF = Vt – (1/3)Vcc for Vcc = -2.0 V; the drain 

bias in both cases is Vd = -1.0 V. The ON-current of the Ge-Si0.7Ge0.3 core-shell NW FET 

is 270 A/m at 300K which is approximately two times higher than that of Ge-Si0.5Ge0.5 

core-shell NW FET, 154 A/m. As temperature is decreased from 300 K to 77K, ION 

increases by 80 % (482 A/m) and 34 % (207 A/m), respectively for the NW FET 

with Si0.7Ge0.3 shell and Si0.5Ge0.5 shell.  On the other hand, OFF-currents of both devices 

show more obvious temperature dependence, demonstrating about three orders of 

magnitude lower IOFF at 77 K by comparison to IOFF at 300 K. The IOFF values of the NW 

FETs with Si0.7Ge0.3 shell are higher than those with Si0.5Ge0.5 shell over all the 

temperatures. Figure 3-23 shows ON-OFF current ratio of both devices from 300K to 

77K. The results show that the ON-OFF current ratio increases as temperature is lowered 

from 300 K to 77 K, mainly due to IOFF reduction at low temperature. The higher ON-

OFF current ratio of the NW FET with Si0.5Ge0.5 shell by comparison to that with 

Si0.7Ge0.3 shell is resulted from its lower IOFF value. 



 82

50 100 150 200 250 300
10-6

10-4

10-2

100

102

 

 

Si
0.5

Ge
0.5

(I
OFF

)

Si
0.5

Ge
0.5

(I
ON

)

Si
0.7

Ge
0.3

 (I
OFF

)

Si
0.7

Ge
0.3

 (I
ON

)

I d(
A

/
m

)

T(K)

V
d
 = -1.0V

I
ON

@V
t
-1.33

I
OFF

@V
t
+0.67 

 

Figure 3-22: ION & IOFF vs. Temperature (T). The Id is normalized to the diameter (d) of 
the NWs. The ION values of the NW FET with Si0.7Ge0.3 shell are 
approximately two times higher than that of the NW FET with Si0.5Ge0.5 
shell. The IOFF values are also higher for the NW FET with Si0.7Ge0.3 shell.   
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Figure 3-23: ON-OFF current ratio vs. temperature (T). The NW FET with Si0.5Ge0.5 shell 
shows higher ON-OFF current ratio. 
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To better understand OFF-current generation mechanism, Arrhenius plots of IOFF 

are presented in Fig. 3-24 for (a) the linear region (Vd = -50 mV) and the (b) saturation 

(Vd = -1.0V). In the linear region (Vd = -50mV) shown in Fig. 3-24(a), the activation 

energies (EA) of the devices are ~0.17 eV for Si0.5Ge0.5 shell and ~0.1 eV for Si0.7Ge0.3 

shell. Again, the activation energy at higher drain bias (Vd = -1.0 V) is ~0.12 eV for the 

NW FET with Si0.5Ge0.5 shell and ~0.11 eV for the device with Si0.7Ge0.3 shell. Such 

activation energies, which are lower than a half of the Ge’s bandgap, indicate that the 

OFF currents in both NW FETs are attributed to trap-assisted tunneling (TAT) or band-

to-band tunneling (BTBT) [84]. In the Ge-Si0.5Ge0.5 core-shell NW FET, the EA is 

reduced from 0.17 at Vd = -50 mV to 0.12 at Vd = -1.0 V as BTBT is being more 

dominant at high Vd.  Interestingly, in the Ge-Si0.7Ge0.3 core-shell NW FET, the EA values 

at both Vd do not show much difference.  

A main finding is summarized in Figure 3-25, where the peak effective mobilities 

(eff) of both devices are plotted as a function of temperature (T). Using Table 2.2, the 

external resistance (RSD) is first subtracted from the total resistance (Rm) to obtain the 

channel resistance (Rch) by the relation, Rch = Rm - RSD. The RSD of the Ge-Si0.5Ge0.5 core-

shell NW FET is ~11 k, having an ungated channel length (Ls) of 560 nm, while that of 

Ge-Si0.7Ge0.3 core-shell NW FET is ~16 k with Ls = 640 nm. Then, using the equation 

3.1, the effective mobilities of the devices are calculated at each temperature. The eff of 

the Ge-Si0.7Ge0.3 core-shell NW FET is ~280 cm2/V·s at 300 K, which is a twofold higher 

current than that of the Ge-Si0.5Ge0.5 core-shell NW FET, 140 cm2/V·s. With reducing 

temperature to 77 K, the mobility goes up to 217 and 610 cm2/V·s, respectively for the 

NW FET with Si0.5Ge0.5 shell and Si0.7Ge0.3 shell. In the Ge-Si0.5Ge0.5 core-shell NW 

FET, the mobility is saturated at T below 150 K, indicating the impurity scattering limited 

eff at low temperature in the device.  
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Figure 3-24: Arrhenius plot of IOFF measured from 300K to150K at (a) Vd = -0.05 V and 
(b) Vd = -1.0 V. Low activation energies of both devices indicate that the 
IOFF current are attributed to BTBT or TAT of carriers.  
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Figure 3-25: Peak mobility versus temperature plot of the NW FETs with Si0.5Ge0.5 (■) 
and Si0.7Ge0.3 (●) shell. At 77 K, the NW FET with Si0.7Ge0.3 shell 
demonstrates about three times higher mobility by comparison to the NW 
FET with Si0.5Ge0.5 shell. 
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On the other hand, the mobility of Ge-Si0.7Ge0.3 core-shell NW FET is continuously 

increased down to T = 77 K.  In conclusion, higher mobility was demonstrated in the Ge-

Si0.7Ge0.3 core-shell NW FET compared with the Ge-Si0.5Ge0.5 core-shell NW FET, which 

is resulted from enhanced hole confinement in the Ge-core thanks to higher band offset 

(0.29 eV) between the Ge core and the Si0.7Ge0.3 shell, leading to reduced scattering from 

the oxide-SiGe shell interface.   

 

3.5 SUMMARY 

In this chapter, the fabrication process of Ge-SixGe1-x core-shell NW FETs with 

highly doped source and drain was demonstrated by employing a conventional CMOS 

process, where the highly doped S/D were realized by low energy boron ion implantation. 

The performances of these devices, namely ON-current and ON/OFF ratio, were 

improved by comparison to undoped S/D NW FETs, showing two orders of magnitude 

higher drive currents and a ten-fold increase in ON/OFF ratio. To substantiate the 

characteristics of high performance Ge-SixGe1-x core-shell NW FETs, scaling properties 

of the devices were systematically investigated using the NW FETs with different 

channel lengths, which allowed to extract key device parameters, such as intrinsic 

channel resistance, carrier mobility, effective channel lengths, and external contact 

resistance, as well as to benchmark the device switching speed and ON/OFF current ratio. 

The results show that the mobilities of these devices are a three-fold higher than Si 

MOSFETs with high- dielectrics, and ON/OFF characteristics are comparable to or 

excelling the most recent planar Ge MOSFETs.  TCAD simulation was also employed to 

better understand the performance degradation factors in the devices, indicating that high 

interface trap density in the devices is responsible for the performance degradation. 
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Lastly, the enhanced mobility due to hole confinement was demonstrated by engineering 

SixGe1-x shell composition.  
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CHAPTER 4 

Germanium Nanowire Tunneling Field-effect Transistors 

 

In Chapter 3, the high performance Ge-SixGe1-x core-shell NW FETs with highly 

doped source/drain were fabricated and their scaling properties were systematically 

investigated, which demonstrated higher hole mobility by comparison to a planar Si 

MOSFETs with a HfO2 gate dielectric.   By employing high mobility channel materials 

for MOSFETs, the scaling of devices may be further extended, but eventually it be 

stymied by the increase in dissipated passive power with reducing the device dimensions, 

which stems from short-channel effects. Therefore, the need for novel devices, which can 

potentially provide a reduced dissipated power at switching speeds comparable to Si 

MOS devices looms increasingly large. As discussed in the Chapter 1, TFETs consists of 

gated p-i-n structure and the carrier injection from the source to the channel relies on 

band-to-band tunneling (BTBT) at the reversed-biased source-channel junction.  Since it 

relies on BTBT rather than the thermal broadening of Fermi distribution, subthreshold 

swing below 60 mV/dec can be potentially realized at room temperature [48-50].  To 

date, subthreshold swing below 60 mV/dec have been observed in TFETs using Si as the 

host semiconductor.  However, the ON-currents in these devices are still very low to be 

applied for digital logic applications, which is mainly due to relatively high bandgap of 

Si.  In this aspect, Ge-SixGe1-x core-shell NWs can provide two potential advantages.   

First, the lower band-gap of Ge (0.67 eV) compared with Si (1.12 eV) allows for higher 

tunneling currents, by comparison to Si-based TFETs. Secondly, the -shape gate 

geometry used here provides an enhanced electrostatic control of the channel by 

comparison to a planar device geometry, which in turn increases the BTBT current.   
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This chapter begins with a brief description of the fabrication process of NW 

TFETs. The electrical characteristics of NW TFETs are systematically investigated, 

including temperature dependent measurement. The role of dopant diffusion and 

activation is described, and their impact on the device performance is also studied. 

Finally, the improved device performance using flash-assisted rapid thermal process is 

reported. 

 

4.1 FABRICATION PROCESS OF GE-SIXGE1-X CORE-SHELL NW TFETS 

The fabrication process of NW TFETs is illustrated in the Figure 4-1(a). The 

device fabrication process is similar to that of the NW FETs except that the source and 

drain are implanted with different polarity of dopants.   After growth, the NWs are 

harvested in an ethanol solution, and dispersed on a HfO2 (10 nm)/Si (n-type) substrate. 

A 5.5 nm – thick HfAlOx top dielectric is deposited by atomic layer deposition (ALD) on 

the dispersed NW.  The equivalent oxide thickness of deposited gate oxide was ~2.4 nm, 

evinced by capacitance-voltage measurement on planar capacitors processed in parallel 

with the device.  The gate pattern is defined by e-beam lithography (EBL), TaN (tantalum 

nitride) deposition, and lift-off.  The HfAlOx dielectric on S/D region is then etched in 

diluted HF (~ 2%). [Fig. 4-1(c)]  In order to realize the source and drain contacts with 

different polarities, phosphorous and boron were ion implanted at low energy, 

respectively. In particular, polymethyl-methacrylate (PMMA) positive resist was used as 

an ion implant mask. [Fig. 4-1(d)]  The source of NW TFETs is implanted at normal 

incidence with phosphorus, at an energy of 6 keV, with a dose of 1015 cm-2, while the 

drain contact is masked with PMMA.   
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Next, the NW TFET drain contact is boron-implanted at the energy of 3 keV, at a normal 

incidence with respect to the substrate, with different doses, 1 × 1014, 5 × 1014, and 1 × 

1015 cm-2. The dopants were then activated using a 450 C anneal for 5 min in N2 

ambient, using rapid thermal process (RTP).  The ion implant induced NW crystal 

damage is removed by activation anneal thanks to Ge’s fast regrowth and defect removal.   

Lastly, the S/D metal contacts are patterned by EBL, Ni deposition (100 nm), and lift-off.  

A low temperature (200 C), 1 min contact anneal finalizes the device fabrication process 

[Fig. 4-1(e)].  Table I summarizes the NW resistivities and the metal (Ni) to NW contact 

resistances, determined using four-terminals, back-gate dependent resistivity 

measurement on NWs uniformly implanted with the same doses, and following a similar 

activation anneal as the NW TFET devices. 
 
 

Table 4-1:  Ion implanted NW Resistivities and NW-to-Ni contact resistances 

Dopant, 
Dose (cm-2) 

Resistivity 
(Ω∙cm) 

Contact 
resistance (Ω) 

Specific contact 
resistance (Ω·cm-2) 

B, 1015 3.0±0.4 × 10-3 168±14 4.0±1.3 × 10-10 

B, 5×1014 5.4±0.8 × 10-3 243±73 5.2±2.4 × 10-10 

B, 1014 35±6.5 × 10-3 3400±2900 2.3±2.0 × 10-8 

P, 1015 6.3±2.2 × 10-3 1050±760 9.7±9.5 × 10-9 
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4.2 ELECTRICAL CHARACTERISTICS OFGE-SIXGE1-X CORE-SHELL NW TFETS 

 

4.2.1 Principle of NW TFET operation 

The fabricated Ge-SixGe1-x core-shell NW TFETs consist of gated p-i-n structures, e.g., a 

P-doped source, an intrinsic channel, and a B-doped drain. To demonstrate the operation 

principle of the NW TFETs, the energy band profiles along a nanowire axis for both 

OFF- and ON-state of the device was generated using TCAD simulation. The channel is 

made of Ge, having Lg of 150 nm with a diameter of 40 nm. The gate oxide (SiO2) 

thickness was 3 nm.   In the simulation, the source is doped with a P-doping 

concentration of 1020 cm-3, the channel is an intrinsic region, the drain is doped with B-

doping concentration of 1018, 1019, and 1020 cm-3.   In OFF-state (equilibrium condition), 

the valence band in the channel is below the conduction band of the source, the carriers 

cannot tunnel from source to the channel, where the intrinsic channel region acts as a 

tunneling barrier [Figure 4-2(top)].   On the other hand, when a gate voltage is negatively 

biased to Vg
 = -0.5 V, such that the valence band in the channel is pulled above the 

conduction band in the source, holes can be injected into the channel via band-to-band 

tunneling (BTBT) and a tunneling current will start to flow for a given negative drain 

voltage, Vd = -0.01 V [Figure 4-2(bottom)].  In Figure 4-3 (bottom), low drain Vd = -0.01 

V is chosen to highlight the energy band modulation using the gate bias.  Here only 

carriers within window contribute to the tunneling currents. The ON-currents can be 

increased by thinning the source-channel junction with more negative gate voltages. 
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4.2.2 Diode characteristics 

Figure 4-3 shows the gated p-i-n diode characteristics of a representative NW 

TFET, having a diameter d = 36 nm and channel length Lg = 600 nm. The source (n+) 

and drain (p+) region of this NW TFET were ion-implanted with phosphorus and boron 

at a dose 1015 cm-2, respectively. Figure 4-3 shows Id vs. Vd data measured from -2.0 V to 

2.0 V at constant Vg values, from 0 to -3.0 V.  In forward bias (Vd > 0V), where the drain 

(p+) is positively biased at different Vg from 0 V to -3.0 V, our device works as a typical 

gated p-i-n diode.  The maximum current in forward bias region is ~20 A, 

corresponding ~550 A/m (normalized to the NW’s diameter), and show little 

dependence on Vg. This high drive current confirms that dopants in S/D regions of NW 

FETs are well activated, and low S/D contact resistances are achieved.  

Using the data of Table I, the estimated external source and drain resistance is 

~20 k in this device.  The data in the forward bias region can be fitted with a diode 

equation, ]1)[exp( 
nkT

qV
II d

o , where Io is the reverse bias saturation current, q is the 

electron charge, n is the ideality factor, k is Boltzmann constant, and T is temperature. 

The ideality factor of this diode is approximately ~ 1.8, indicating that recombination in 

the channel dominates the diode forward current.  In the reverse bias region (Vd < 0) the 

current is controlled by carrier BTBT at the source-channel junction.  The increase of Id 

with Vg in reverse bias region is consistent with BTBT through a tunneling barrier that is 

thinned at an increased Vg.  The device characteristics in the tunneling regime were 

further investigated using the NW TFET of Figure 4-3.   

 



 94

-2 -1 0 1 2
10-12

10-11

10-10

10-9

10-8

10-7

10-6

10-5

10-4

Forward Bias

-1.0V

0V

 -2.0V

 

 

I d(
A

)

V
d
(V)

V
g
 = -3.0 V

Reverse Bias

 

Figure 4-3:  Diode characteristics of a Ge-SixGe1-x core-shell NW TFET: The Id -Vd 
characteristics of a NW TFET, with Lg = 600 nm, and d = 36 nm, on a log-
lin scale. The phosphorous and boron implant doses are (P : 1015cm-2, B : 
1015 cm-2).  Recombination dominates the current in forward bias, while 
BTBT dominates the current in reverse bias. [94] 

 

4.2.3 Output and transfer characteristics 

The NW TFET used for the diode characterization in Chapter 4.2.2 is further 

investigated as a field-effect transistor.  Figure 4-4(a) shows Id vs. Vg at different Vd 

values, and Fig. 4-4(b) shows Id vs. Vd at different Vg values.  In Figure 4-4(a), Vg was 

swept from -3.5 V to 1.0 V at constant Vd = -1.0, -1.5, and -2.0 V.  Figure 4-4(a) data 

show a maximum attainable Id of ~ 5 m (normalized to the NW diameter), a value 

comparable or higher to that of Si-based TFETs [52-54].  Figure 4-4(a) data also reveals 

ambipolar behavior, a finding explained by the high doping level of the S and D which 
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are implanted with a 1015 cm-2 dose.  The drain current at negative (positive) Vg stems 

from BTBT at the source (drain) - channel junction.  The subthreshold slope of this 

device is 370 mV/dec for all Vd values.  The relatively high SS value is attributed to 

interface traps, as well as a graded doping profile at the source-channel tunneling 

junction, induced by lateral straggle of dopants during ion implantation and diffusion 

during the dopant activation anneal.  Figure 4-4(b) shows the output characteristics of this 

device. The Id vs. Vd data shows saturation, similar to MOSFETs, with a Vg dependent 

saturation current.  The saturation voltage has a linear dependence on Vg for a gate 

overdrive larger than 1.0V.  However, Id shows an exponential increase at small Vd until 

it reaches the saturation [Fig. 4-4(b)], a behavior attributed to the gate induced barrier 

thinning at the non-abrupt source-channel junction.  While the data of Fig. 4-4(b) probes 

the NW TFET as a p-FET, the output characteristics of the same NW TFET used as an n-

FET, namely with the boron-doped contact as source, are similar to the data of Fig. 4-

4(b).   

The electrical characterization of a NW TFET in Fig. 4-4 demonstrates that our 

device is successfully working as a TFET and it drives comparable or higher current than 

Si TFETs. However, considering Ge’s low bandgap by comparison to Si, the current level 

is still not very high as theoretically expected one [81]. Low drain current can be induced 

by either non-abrupt junction profile or non-sufficient dopant activation in the source. 

Abrupt junction profile enables a sharper energy band profile and high active dopant 

level in the source make a thinner source-channel profile, which will result in higher 

BTBT current.  The thermal process that we employed for the dopant activation, in 

particular for P in the source, may not be sufficient for high activation of implanted P 

dopants and have caused non negligible dopant diffusion, forming a non-abrupt source-

channel energy profile [82, 83].  
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Figure 4-4:  Electrical characteristics of a Ge-SixGe1-x core-shell NW TFET:  (a) 
Transfer characteristics ( Id - Vg ) of a  NW TFET with Lg = 600 nm, and d = 
36 nm, and (P : 1015cm-2, B : 1015 cm-2) implant doses. (b) The output 
characteristics ( Id - Vd ) measured for the same device. [94] 
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Therefore, the NW TFET performance can be improved, namely higher ON-current and 

lower SS values, by realizing abrupt tunneling junction along with a better gate control. 

 

4.2.4 Suppression of ambipolar behavior 

The ambipolar behavior of Figure 4-4(a) data is undesirable for logic gates 

implementation. To mitigate this issue, NW TFETs with asymmetric source-drain doping 

concentrations were fabricated and investigated. The NW TFET drain-regions were 

implanted with boron at an implant energy of 3 keV, with different doses 1 × 1014, 5 × 

1014, and 1 × 1015 cm-2. The average boron doping concentrations corresponding to these 

implant doses are 2.2 × 1018, 1.7 × 1019, and 5.1 × 1019 cm-3, respectively.  The NW 

TFET source-regions were implanted with phosphorus at an implant energy of 6 keV, 

with a constant dose of 1 × 1015 cm-2.  The devices used in this measurement have similar 

dimensions, with Lg = 600 nm and d = 39 ± 5 nm.  Figure 4-5 (a) shows Id-Vg 

characteristics of these NW TFETs measured for different drain voltages, Vd = -1.0 and -

2.0 V.  The main finding of Figure 4-5(a) data is that the ambipolar behavior can be 

suppressed by reducing the drain doping concentration.  Indeed, the devices with a drain 

B-implant dose of 1014 cm-2 show unipolar behavior. At higher B-implant doses, namely 

5 × 1014 and 1 × 1015cm-2, the drain-channel junction becomes sufficiently thin to allow 

for BTBT, resulting in ambipolar device behavior.  We note that NW TFETs with 

reduced drain doping concentration show subthreshold slopes larger than those with high 

drain doping.  For example, at a drain implant dose of 1015 cm-2, the SS values range 

between 350-450 mV/dec, while for a drain implant dose of 1014 cm-2, the SS values 

range between 500 – 700 mV/dec. A possible explanation for this observation is the 

increased source and drain external resistance. 
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Figure 4-5:  (a) Id – Vg characteristics of Ge-SixGe1-x core-shell NW TFETs at different 
drain implant doses. As the drain B-implant dose decreases from 1015 to 1014 
cm-2, the ambipolar behavior is suppressed.  The source of these devices is 
implanted with a phosphorus dose of 1015 cm-2.  (b) Energy band profiles for 
different drain concentrations, showing that the drain-channel junction 
becomes wider as the doping concentration decreases, which in turn 
prevents BTBT of electrons from the drain.  (Lg = 300 nm, d = 40 nm, tox = 3 
nm) 
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To explain the suppression of electron tunneling on a drain-channel junction in 

Fig. 4-5(a), TCAD simulation was used to generate the energy band profile for different 

drain B-doping concentrations [Figure 4-5(b)]. The channel material is Ge with Lg = 300 

nm, d = 40 nm, and tox = 3 nm. The source P-doping concentration is 1020 cm-3 and the 

drain B-doping concentration is varied from 1018 to 1020 cm-3, based on the experimental 

results.  To illustrate the tunneling barrier width on a drain-channel junction, the gate is 

positively biased at Vg = 0.5 V for Vd = -1.5 V.  Figure 4-5(b) shows that decreasing the 

drain B-doping concentration results in a wider tunneling barrier at the drain-channel 

junction, which prevents electron tunneling into the channel as experimentally 

demonstrated in Fig. 4-5(a).   

 

4.2.5 Temperature dependent device characteristics 

To substantiate that BTBT is the main carrier injection mechanism in Ge-SixGe1-x 

core-shell NW TFETs, the device characteristics were investigated as a function of 

temperature [Figure 4-6], and also channel length.  Figure 4-6(a) shows the transfer 

characteristics of a NWTFET with (P: 1015 cm-2, B: 1015 cm-2) source and drain doping, 

measured at different temperatures (T) from 300 K down to 77 K.  These data show that 

the device characteristics do not change significantly with temperature.  Figure 4-6(b) 

shows the SS values measured as a function of T for the NW TFET of Fig. 4-6(a) and a 

conventional Ge-SixGe1-x NW FET, with highly B-doped S/D and similar dimensions (Lg 

= 600 nm, d = 38 nm).  For NW TFETs, the measured SS values change little with T 

down to 77 K. As BTBT does not depend on temperature, the insensitivity to temperature 

of the SS values measured in NW TFETs is consistent with the BTBT as the dominant 

carrier injection mechanism.  On the other hand the SS value of the NW FET decreases 
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linearly with T, a trend that contrasts that of the NW TFETs, but expected for a 

conventional FET dominated by carrier injection over a potential barrier. 

 

 

Figure 4-6:  Device characteristics measured at different temperatures. a. NW TFET Id - 
Vg characteristics measured at different temperatures.    b. SS vs. T for a NW 
TFET (squares), compared to that of a conventional NW FET (circles).[94]    
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 In addition, it is also noted here that the device characteristics are insensitive to 

channel length, for Lg values between 580 nm and 1100 nm, a finding which indicates 

that the carrier injection, not drift, determines the device performance, and is also 

consistent with BTBT-dominated injection.  The linear temperature dependence provides 

a method to estimate the density of interface traps (Dit) in the NW FET devices.  Using 

SS = 2.3·(kT/q)·(1+eDit/Cox), where Cox is the gate dielectric capacitance, calculated self-

consistently using Sentaurus simulations [Chapter 3.3.2], an interface trap density was 

extracted as Dit = 1.2×1013 cm-2V-1.  Since both NW FETs and NW TFETs examined 

here have similar gate stacks, a similarly large Dit is expected in the NW TFET devices.  

The interface traps have a two-fold impact on the TFET device performance: on one hand 

they reduce the gate control of the channel as in a conventional FET, and because the 

band profile in the channel is intimately connected with the BTBT at the source, the large 

Dit also impacts the carrier injection efficiency.    
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Figure 4-7:  Activation energy extracted from the leakage floor of a NW TFET (B:1015 
cm-2 P:1015 cm-2) using Arrhenius plot.  
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Lastly, the activation energy of the NW TFET was extracted, using Arrhenius plot 

as shown in Figure 4-7. The leakage floors were measured at Vd = -0.05 V for different 

temperatures.  The extracted activation energy is 0.018 eV, which demonstrates that 

leakage currents in this device are mainly determined by the onset of electron tunneling 

rather than a trap-assisted tunneling or p-i-n diode leakage [84, 85]. 

 

4.3 DIFFUSION OF BORON AND PHOSPHORUS IN GERMANIUM 

In the Chapter 4.2, the performance of Ge-SixGe1-x core-shell NW TFETs was 

demonstrated.  Even if these devices show higher BTBT currents by comparison to Si-

based TFETs, however, the ON-currents still remain relatively low by comparison to 

conventional FETs, consistent with reports in other semiconductors. The performance 

degradation in Ge-SixGe1-x core-shell NW TFETs can possibly be caused by a graded 

dopant profile at the source-channel junction due to lateral straggle and diffusion of 

dopants. It prevents to maximize the lateral abruptness of the junction profile and result 

in low BTBT currents.   Thus, the diffusion of boron and phosphorus atoms in Ge should 

be better understood.   

Previously, the as-implanted and post activation profiles of boron and phosphorus 

atoms in a planar Ge substrate have been reported [82-83, 86-87].  Figure 4-8(a) shows 

that boron profiles in Ge for different annealing temperatures [86]. It clearly shows that 

dopant profiles do not change with annealing temperatures, which is consistent with the 

results shown in Chapter 2.3.4.  The direct cause for the slow diffusion of boron atoms in 

Ge is still unclear, but it has been suggested that ion implantation-induced defects are 

paired with implanted boron atoms, which have high binding energies and leave the B 

atoms immobile [86-87]. The report shows that the diffusion of B is negligible up to 850 
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˚C. On the other hand, implanted-phosphorus profiles in Ge rapidly change with the 

temperatures as shown in Figure 4-8(b).  This fast diffusion of P in Ge is usually 

explained by the dopant-vacancy-pair model [88, 89].  The reaction of ionized P+ on 

substitutional sites with a vacancy with a doubly charge V2- generates negative dopant-

vacancy pair (PV)-:  (PV)-  = P+ + V2-, where direct diffusion of P+ is negligible and the 

dominant diffusion is mediated by (PV)-,  enabling the indirect diffusion of P+.   In 

addition, a diffusion coefficient of P in Ge follows the equation, Deff(n) = D(ni)∙(n/ni)
2. 

The equation is known as the concentration dependent diffusion equation, where Deff(n) is 

an effective diffusion coefficient, D(ni) is a diffusion coefficient at intrinsic carrier 

concentration, and n is the electrical concentration. Thus, as the impurity concentration 

increases, the effective diffusion coefficient increases with a quadratic dependence, 

resulting in fast diffusion of dopants in Ge.  

As a result, for a given thermal budget applied for the dopant activation in NW 

TFETs, the diffusion of B in the drain is negligible, however, that of P in the source could 

be sufficiently large, resulting in a graded source-channel junction profile which in turn 

degrades the efficient BTBT from the source to the channel. Therefore, a thermal process 

providing enough active carriers with a minimal diffusion of P in Ge should be 

considered.  
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Figure 4-8:  Profile of implanted dopants in Ge substrate (a) Profiles of boron implanted 
at the energy of 6 keV with a dose of 1015 cm-2, and annealed at 400˚C and 
600˚C for 1 min [86] (b) Profiles of phosphorus implanted at the energy of 
60 keV with a dose of 1015 cm-2, and annealed at 400, 500, and 600˚C for 30 
min [82]. It is noted that as-implanted dopant profile is the same as the one 
of 400 ˚C  
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4.4 FLASH-ASSISTED RAPID THERMAL PROCESS 

The data in Figure 4-8(b) showed the fast diffusion of P atoms in Ge, 

demonstrating close temperature dependence.  Thus, to minimize diffusions of P during 

the thermal process, it is important to determine the minimum thermal budget required 

for the dopant activation and defect removal. By lowering the applied thermal budget, the 

diffusion of P atoms in Ge can be reduced, but the electrically active dopant level will 

also be lowered.  Therefore, it is desirable to use a thermal process which minimizes the 

diffusion of implanted dopants while generating high doping concentrations of 

electrically active donors.  

As the scaling of CMOS devices continues, there has been a rise in interest in 

advanced annealing techniques forming ultra-shallow junctions and realizing very high 

concentration of electrically active dopants to overcome short-channel effects as well as 

mobility reductions due to parasitic resistance. Flash-assisted rapid thermal process 

(fRTP) has been proposed as an alternate technique to realize both diffusionless junctions 

and high active doping concentration [90, 91] Figure 4-9 is a schematic drawing of the 

typical flash lamp setup and Figure 4-10 describes the general time-temperature profile of 

a fRTP. It first heats up to an intermediate temperature (Ti), where the diffusion can be 

ignored, by using a continuous arc lamp under the wafer to heat the bulk wafer similarly 

to a conventional RTP. Once it reaches Ti, then an additional power is delivered to the 

device side of the wafer using a high-energy flash lamp for only few milliseconds. 

During the flash anneal step, only a thin section of the top-side wafer is heated so that 

rapid heating or cooling of the devices on a wafer can be achieved by radiation and 

thermal conduction to the bulk. Therefore, it enables to form diffusionless junction as 

well as higher dopant activation.  
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Figure 4-10:   Time vs temperature profile of an fRTP process, consisting of bulk heating, 
flash heating, and rapid cooling steps. 

 

4.5 DOPANT ACTIVATION OF P-IMPLANTED NANOWIRES USING FLASH-ASSISTED RAPID 

THERMAL PROCESS  

In Chapter 4.4, the general fRTP process flow and potential advantages using it 

for the dopant activation in NW TFETs were introduced.  To determine the optimum 

fRTP temperature for dopant activation in Ge-SixGe1-x core-shell NW TFETs, the 

resistivity () values in phosphorus-implanted NWs were investigated at different 

activation anneal temperatures, as shown in Figure 4-11. Here, the focus was on the 

phosphorous (P) activation because of its higher diffusivity, and higher (>500 C) 

temperatures required for activation. By comparison, boron activation is insensitive to 

temperature above 400 C and its diffusion in Ge is negligible as discussed in Chapter 

4.3. The device fabrication process is described in Chapter 2.3.2. 
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Table 4-2:  P-implanted NW resistivities and NW-to-Ni contact resistances 

Dopant, 
Dose (cm-2) 

Activation  
Temperature 

(˚C) 

Resistivity  
  (Ω∙cm) 

Contact 
resistance 

(Ω) 

Specific  
contact resistance 

(Ω·cm-2) 
 
 
 
 
 
 

P, 1015 

RTP, 500  
(5 min) 

6.3±2.2 × 10-3 1050±760 9.7±9.5× 10-9 

fRTP, 600 23±7.3 × 10-3 2450±890 7.9±6.0× 10-8 

fRTP, 700 
17±4.0 × 10-3 1950±660 4.2±2.0 × 10-8 

fRTP, 750 13±4.2 × 10-3 3040±103
0 

13±8.0 × 10-8 

fRTP, 800 
7.9±2.2 × 10-3 300±190 2.9±2.3 × 10-9 

fRTP, 850 6.3±1.4 × 10-3 260±200 2.5±2.1 × 10-9 

fRTP, 900 3.9±0.4 × 10-3 520±210 3.1±1.1 × 10-9 

 

First, Ge-SixGe1-x core-shell NWs are dispersed on a SiO2 (28nm) / Si (p+) substrate and 

ion-implanted with P at the energy of 6 keV with a dose of 1015 cm-2.  The dopants are 

then activated using fRTP at temperatures from 600 ˚C to 900 ˚C.  Figure 4-11(a) shows 

the applied thermal profiles at each activation temperature.   The thermal process consists 

of an intermediate temperature anneal, which allows for full recystallization of the 

implanted region with minimal dopant diffusion, followed by a 1 ms anneal at the 

nominal fRTP temperature for the activation of implanted dopants.  For fRTP 

temperatures between 600 ˚C and 800 ˚C, the intermediate temperature of 400 ˚C is 

reached in 2 min.  For fRTP at 850 ˚C and 900 ˚C, the intermediate temperatures of 450 

˚C and 500 ˚C are reached in 25s and 20s, respectively. The recrystallization of the 

implanted region is completed in a few seconds at these temperatures []. Next, the  

values were determined by four-point measurements on multi-terminal devices with Ni 

contacts, where the current (I) flows from S to D, and V1 and V2 are used to probe the 
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voltage drop along the NW the devices as described in Chapter 2.3.4 [Fig. 4-11(b) 

(inset)].  

Figure 4-11(b) summarizes the  values of P-implanted Ge-SixGe1-x core-shell 

NWs for different flash anneal temperatures and Table 4-2 summarizes the metal (Ni) to 

NW specific contact resistances for each flash temperature.   For comparison, the 

resistivities of P-implanted Ge-SixGe1-x core-shell NWs from the Table 2-2 were also 

plotted in Fig 4-11(b), where dopants are activated by a conventional RTP at 500 ˚C for 5 

min, a condition typically used for P activation.  It shows that the resistivity of P-

implanted NWs, fRTP-activated at 900 ˚C, is 3.9±0.4×10-3 ∙cm with the Ni-NW 

specific contact resistivity of 3.1±1.1×10-9 ∙cm-2 and contact resistance of 520±210 . 

On the other hand, the resistivity of P-implanted NWs, RTP-activated at 500 ˚C for 5 

min, is 6.3±2.2×10-3 ∙cm with the Ni-NW specific contact resistivity of 9.7±9.5 × 10-9 

∙cm-2, corresponding to contact resistances of 1050±760 These results clearly show 

that fRTP provides a higher dopant activation level in NWs, compared with RTP.   

 

 

4.6 ENHANCED PERFORMANCE OF GE-SIXGE1-X CORE-SHELL NW TFETS USING FLASH-
ASSISTED RAPID THERMAL PROCESS 

Two Ge-SixGe1-x core-shell NW TFETs were fabricated using the same process 

shown in Chapter 4.1. The source of both NW TFETs were P-implanted with a dose of 

1015 cm-2 at the energy of 6 keV while the drain regions were B-implanted with a dose of 

1014 or 1015 cm-2 at the energy of 3 keV. The dopants in the S/D regions of NW TFETs 

were then fRTP activated at 900 ˚C, a temperature chosen according to Figure 4-11(b) 

data.   
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Figure 4-12:  Diode characteristics of Ge-SixGe1-x core-shell NW TFETs: The Id -
Vd characteristics of NW TFETs on a log-lin scale, measured at Vg = -2.0V. The 
red (black) solid line represents a fRTP- (RTP-) activated NW TFET.  The 
phosphorous and boron implant doses are the same in both devices (P : 1015cm-2, 
B : 1015 cm-2).  Recombination dominates the current in forward bias, while 
BTBT dominates the current in reverse bias. 

 

Figure 4-12 shows the p-i-n diode characteristics of two representative NW 

TFETs, where the red solid line represents the fRTP-activated NW TFET and the black 

solid line represents the RTP-activated NW TFET shown in Figure 4-3, having a 

diameter of d = 42 nm and d = 36 nm, respectively. The source (n+) and drain (p+) 

regions of both NW TFETs were ion-implanted with phosphorus and boron at a dose of 

1015 cm-2. Figure 4-12 shows Id vs. Vd data measured from -2.0 V to 1.0 V at constant Vg 

= -2.0 V.  In forward bias (Vd > 0V), where the drain (p+) is positively biased, the 

currents for the fRTP-activated device at Vd = 1.0 V is ~405 A/m which is 

approximately three times higher than that of the RTP-activated device, ~140 A/m. In 
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the reverse bias region (Vd < 0) where the current is controlled by carrier BTBT at the 

source-channel junction, the fRTP-activated NW TFET shows at least one order of 

magnitude higher current compared with the RTP-activated device.  This result clearly 

demonstrates the better dopant activation realized by fRTP. 

The device characteristics of NW TFETs were further investigated in the reversed 

biased regions. Figure 4-13 shows the output (Id – Vd) and transfer (Id – Vg) characteristics 

of the fRTP-activated Ge-SixGe1-x core-shell NW TFETs. To compare the enhanced 

performance using fRTP, the data of the RTP-activated NW TFETs shown in Figure 4-4 

and 4-5 were plotted together. Here, the solid lines (red) and the dotted lines (black) 

represent the electrical characteristics of NW TFETs, having the same S/D-doping 

condition, activated by fRTP and RTP, respectively.  The data in Figure 4-13(a) and (b) 

show the electrical characteristics of NW TFETs with asymmetric S (P: 1015 cm-2) and D 

(B: 1014 cm-2) doping. The NW diameters (d) in these devices are 45 nm.  The right y-

axis of the Id -Vd graph shows the Id values normalized by d.  The maximum current of the 

fRTP-assisted TFET at Vd = -3.0 V, Vg = -3.0 V is ~28 m, approximately one order 

of magnitude higher current than the ~2 m of a similar, RTP-activated TFET.  

Figure 4-13(b) shows the Id-Vg characteristics of NW TFETs.  Both devices show 

unipolar behavior thanks to a lower D-doping (B: 1014 cm-2), which results in a wider 

tunnel barrier at the drain-channel junction.  An improved SS value from 560 mV/dec 

(RTP) to 440 mV/dec (fRTP) is also observed. 
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assisted devices are -1.5 V and -1.68 V, respectively.   The decrease of SS value, from 

360 to 320 mV/dec, was also observed, which is consistent with the observations of Fig. 

4-13(a), (b).  The electrical characteristics of Fig. 4-13(d) show ambipolar behavior, 

expected as the drain-channel junction becomes sufficiently thin for BTBT.  The slightly 

lower Id values for the devices of Fig. 4-13(c), (d), by comparison to Fig. 4-13(a), (b) data 

stem from the difference in gate overdrive voltage (|Vg-Vt|).   For the same gate overdrive 

of 1.0 V at Vd = -2.0V, the drain currents for an unipolar and ambipolar (fRTP-assisted) 

are ~ 8 A/m and ~10 A/m, respectively. 

 Lastly, the results show that while the fRTP does provide an improvement in the 

TFET ON-current, the SS values remain relatively high and negatively impact the 

ON/OFF ratio, a finding attributed to interface traps in the gate stack.  The interface traps 

have two adverse effects on the TFET device performance.  First, they reduce the gate 

control of the channel, as the interface trap states add a series component to the dielectric 

capacitance.  Secondly, because the BTBT at the source depends on the longitudinal 

electric field in the channel, the reduced gate control of the channel translates into a 

reduced carrier injection.  
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4.7 SUMMARY 

In this chapter, the fabrication process and the performance of Ge-SixGe1-x core-

shell NW TFETs were demonstrated. The NW TFETs were fabricated by using a 

conventional CMOS process, employing low energy ion implantation to dope the S/D 

with different polarities of dopant. The diode characteristics of NW FETs were first 

investigated and the results confirmed the formation of gated p-i-n diode structure and 

proper dopant activation both in the source and drain. The device characteristics of NW 

TFETs were carefully investigated, including temperature dependent device 

characterization, which indicates that the main carrier injection mechanism in NW TFETs 

is BTBT. In addition, the ambipolar behavior was successfully suppressed by lowering 

the drain B-doping concentrations, widening the tunneling barrier at the drain-channel 

junction.  To improve the performance of NW TFETs, the fRTP was employed for the 

activation of dopants in the source and drain. Thanks to fRTP, the ON-state current in 

NW TFET was increased about one order of magnitude by comparison to RTP-activated 

NW TFETs. The maximum current level in the NW FETs is one of the highest up to date 

among TFETs. However, the SS values of the device are still relatively high, attributing 

to the high interface trap density. Thus, to further enhance the device performance, it is 

necessary to improve the interface quality between the NW and the gate oxide.   
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CHAPTER 5 

Summary and Future works 

 

5.1 THESIS SUMMARY 

The scaling of MOSFETs has been stymied by the increased power dissipation 

and performance loss due to short channel effects. In order to mitigate the problems and 

extend the device scaling, numerous investigations have been made in these days.  In this 

effort, this thesis mainly focused on fabrication and characterization of high performance 

Ge-SixGe1-x core-shell NW FETs and NW TFETs, based on optimized NW-doping 

technique using ion implantation.  

 In Chapter 1, the scaling trend of MOSFETs was briefly reviewed and the 

challenges of device scaling were addressed. The non-planar geometries, high mobility 

channel materials, and TFETs were suggested as alternate options to replace planar Si 

MOSFETs. As a channel material to examine such device options, the advantages of Ge-

SixGe1-x core-shell nanowires were explained, where GAA device geometry can be easily 

achieved on a NW and Ge’s high hole mobility and low bandgap are also suitable to 

realize high performance FETs and TFETs.    

In Chapter 2, we describe the growth of Ge-SixGe1-x core-shell NWs, using a 

combination of VLS Ge NW growth and UHV CVD SiGe growth. The boron- and 

phosphorus-doping of the NWs using low energy ion implantation were systematically 

investigated. The analysis of the grown NWs demonstrates the successful epitaxial Ge-

SixGe1-x core-shell NWs growth and unveiled the thicknesses and compositions of the Ge 

core and the SixGe1-x shell. To realize high performance NW FETs or TFETs using the 

grown NWs, however, one essential requirement is to establish reliable NW-doping 
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techniques. Among the available NW-doping methods, ion implantation was the suitable 

way to realize such devices since it provides the most accurate doping modulation along a 

NW compared with other approaches. Thus, using the grown NWs, ion implantation and 

dopant activation conditions were optimized for both boron and phosphorus. Here, a key 

to successful NW-doping was to determine the proper ion energies and doses, not fully-

amorphizing the entire NW body. The results showed that successful NW-doping using 

boron and phosphorus ion implantation, exhibiting a doping concentration as high as 2  

1020 cm-3 with specific contact resistances as low as 4 10-10 cm2 in the B-doped NWs. 

Similarly low channel resistances and contact resistances in the P-doped NWs. However, 

relatively high NW resistivities and a NW-Ni contact resistance were observed in P-

doped NWs, which is attributed to high trap density near the conduction band in Ge. In 

addition, the activation of B-implanted NWs was insensitive to the temperature above 

400 ˚C, while P activations depend more on the applied activation temperatures. These 

finding paved the way to realize NW-based FETs and TFETs using conventional CMOS 

process.  

In Chapter 3, the fabrication process of Ge-SixGe1-x core-shell NW FETs with 

highly doped source and drain was demonstrated, where the highly doped S/D were 

realized by low energy boron ion implantation. The performances of these devices, 

namely ON-current and ON/OFF ratio, were improved by comparison to undoped S/D 

NW FETs, showing two orders of magnitude higher drive currents and a ten-fold increase 

in ON/OFF ratio. To substantiate the characteristics of high performance Ge-SixGe1-x 

core-shell NW FETs, scaling properties of the devices were systematically investigated 

using the NW FETs with different channel lengths, which allow to extract key device 

parameters, such as intrinsic channel resistance, carrier mobility, effective channel 

lengths, and external contact resistance, as well as to benchmark the device switching 
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speed and ON/OFF current ratio. The results show that the mobilities of these devices are 

a three-fold higher than Si MOSFETs with high- dielectrics, and ON/OFF 

characteristics are comparable to or excelling the most recent planar Ge MOSFETs.  

TCAD simulation was also employed to better understand the performance degradation 

factors in the devices, indicating that high interface trap density in the devices is 

responsible for the performance degradation. Lastly, the role of SixGe1-x shell composition 

on device performance was investigated. 

 In Chapter 4, the fabrication process and the performance of Ge-SixGe1-x core-

shell NW TFETs were demonstrated. The NW TFETs were fabricated by using the 

similar process used for the NW FET fabrication, employing low energy ion implantation 

to dope the S/D with different polarities of dopants. The diode characteristics of NW 

FETs were first investigated and the results confirmed the formation of gated p-i-n diode 

structure and proper dopant activation both in the source and drain. The device 

characteristics of NW TFETs were carefully investigated, including temperature 

dependent device characterization, which indicates that the main carrier injection 

mechanism in NW TFETs is BTBT. In addition, the ambipolar behavior was successfully 

suppressed by lowering the drain B-doping concentrations, widening the tunneling barrier 

at the drain-channel junction.  To improve the performance of NW TFETs, the fRTP was 

employed for the activation of dopants in the source and drain. Thanks to fRTP, the ON-

state current in NW TFET was increased about one order of magnitude by comparison to 

RTP-activated NW TFETs. The maximum current level in the NW FETs is one of the 

highest up to date. However, the SS values of the device are still relatively high, 

attributing to the high interface trap density. Thus, to further enhance the device 

performance, it is necessary to improve the interface quality between the NW and the 

gate oxide.   
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5.2 SUGGESTION FOR FUTURE WORK 

One common performance degradation factor in both Ge-SixGe1-x core-shell NW 

FETs and NW TFETs is high density of interface traps between a NW surface and gate 

dielectric. High Dit degrades the SS characteristics and DIBL in the NW FETs, and it also 

worsens ON-current and the SS in the NW TFETs. Therefore, better passivation process 

for Ge-SixGe1-x core-shell NW should be further investigated.  

Second, smaller NW diameters need to be employed to further scale down NW 

FETs and to improve NW TFET performances. In NW FETs, a thinner NW body 

thickness enhances the gate electrostatic control over the channel and thereby extends 

device scaling limits by suppressing the short channel effects. In NW TFETs, it helps to 

strongly couple the gate to the channel (Cox ≈ Cinv), improve the energy band profile 

modulation in the intrinsic NW segment, and increases BTBT currents. 

Third, the C-V measurement techniques on an individual nanowire need to be 

established. Due to the reduced dimensions of NWs, Cox was calculated using TCAD 

simulation, which may overestimate or underestimate the actual capacitance values.    

The direct measurement of gate capacitance will allow to more accurately extract 

transistor performance factors such as intrinsic delay and mobility.  

Fourth, the SixGe1-x shell thickness and composition are needed to be optimized. 

In Chapter 3.5, the mobilities of the NW FETs were changed closely with the SixGe1-x 

shell composition. Thus, by optimizing SixGe1-x shell, high mobility channel material can 

be engineered to realize high performance the NW FETs. In addition, the engineering of 

SixGe1-x shell is also important to minimize defects generation due to lattice mismatch as 

well as improve interface quality for the gate oxide deposition.   

Lastly, NW doping methods should be further explored to provide sharper 

junction profiles. They will help to improve ON-currents of NW TFET and extend the 
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scaling of NW FETs. Besides, different NW-doping method other than ion implantation 

may also be necessary to dope NWs with extremely small diameters.  
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