
Copyright

by

Wing-Chi Poon

2010

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UT Digital Repository

https://core.ac.uk/display/5187121?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

The Dissertation Committee for Wing-Chi Poon
certifies that this is the approved version of the following dissertation:

Real-Time Hierarchical Hypervisor

Committee:

Aloysius K. Mok, Supervisor

James Browne

Mike Dahlin

Greg Plaxton

Deji Chen

Real-Time Hierarchical Hypervisor

by

Wing-Chi Poon, BEng, MSc

DISSERTATION

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXAS AT AUSTIN

August 2010

Dedicated to God.

Acknowledgments

Glory to God in the highest, and thank God for His loving kindness. I

ventured into the journey for a PhD before I was saved by His grace, but ultimately

it is God who helped me to finish this race. His love endureth forever!

The road to a PhD has been a long one for me. Countless number of people

have helped me in the process. Without their support and encouragement, I would

not have completed the program. Just as the holy Bible puts it:“I returned, and saw

under the sun, that the race is not to the swift, nor the battleto the strong, neither

yet bread to the wise, nor yet riches to men of understanding,nor yet favor to men

of skill; but time and chance happeneth to them all” (Ecclesiastes 9:11, KJV) and

“I know that, whatsoever God doeth, it shall be forever: nothing can be put to it,

nor anything taken from it: and God doeth it, that men should fear before Him.”

(Ecclesiastes 3:14, KJV).

I would like to thank my parents for their up-bringing. They cared for my

academic success from a very early age, and set a good exampleof continuous

learning. They supported my quest to continue my higher education in United

States.

My advisor Prof. Aloysius K. Mok provided excellent guidance throughout

the process. He allowed great freedom to his students in our pursuit of intellectual

excellence. I would like to thank my committee members Prof.James Browne,

v

Prof. Mike Dahlin, Prof. Greg Plaxton and Dr. Deji Chen for their time and valu-

able input. I would like to thank my graduate advisors and graduate coordinators

for their help with the graduation process. I would like to thank people from my re-

search group Pak-Ho Chung, Xiang Feng, Yi Feng, Song Han, Zhenting He, Ruiqi

Hu, Raymond Lau, Chan-Gun Lee, Huiya Liu, Yanbin Liu, JianpingSong, Peiyu

Wang, Weirong Wang, Hung-Uk Woo, Jianliang Yi, Weijiang Yu and Xiuming Zhu

for their fruitful discussions. The former works of Xiang Feng and Zhenting He

were especially important towards building up this dissertation. I also had good

discussion with other people in my department who are not in the same research

group, including but not limited to Huiling Gong, Yan Li, Yi Li, Jia Liu, Yu Sun,

Yuk-Wah Wong, Hua Xiang, Xincheng Zhang, Jiandan Zhen. I would also like to

thank my roommates Junwei Huang and Rongfeng Shen during these years.

Part of the idea of the dissertation originated from my summer co-op at

AMD, when I had access to expertise in the x86 architecture. Kevin J. McGrath,

Ben Serebrin and Erich Boleyn had been especially helpful to mein my learning.

The dissertation could not be completed without the full support of my acting man-

ager and principal engineer Ole Agesen, my current manager Jerri-Ann Meyer, all

my colleagues in the monitor group and monitor verification group especially for

technical help from Ole Agesen, Jim Mattson and Ben Serebrin from the monitor

group, and Haoqiang Zheng and Carl Waldspurger from the vmkernel group. Alex

Gathwaite, Jeffrey Sheldon, Ross Knippel, Wei Xu and my officemate Michael Ho,

all from the monitor group, have also greatly encouraged me and/or shared some

of my workload while I worked on the dissertation. Some people from other teams

vi

also encouraged me in the process, including but not limitedto Limin Wang, Tony

Huang and Lisa Liu.

These years, I have enjoyed wonderful times with friends from church. They

gave me much support, encouragement and inspiration from time to time. I would

like to thank the guidance, patience and good example of the counsellors of Austin

Chinese Campus Christian Fellowship (ACCCF) Pastor Philip Hsu, Sylvia Hay,

Phil and Ruth Chang, Morgan and Yuning Lin, Shin-Tower and Lie-Ching Wang,

Hsing-Pang and Mei-Fang Wang, Charles and Esther Tang; the counsellors of Sili-

con Valley Christian Assembly (SVCA) Rainbow Fellowship Jamesand Julie Chen,

Pastors Hung-Chieh and Nancy Yu; and the counsellors of Stanford Campus Even-

gelical Fellowship (CEF) Sister Gan, Dr. Juan. Various people have also influenced

me in non-trivial ways.

The final months of my PhD began with Urbana 2009 mission conference

in St. Louis MO. People who are not listed above and greatly influenced me during

these months include Tin-Ying Hsu (ACCCF), Yi-Ju Hsiao (ACCCF), Kevin Tung

(ACCCF), Hsin-Yao Chen (ACCCF), Pastor and Mrs. James Liu (SVCA), Pastor

John Shou and Mrs. Esther Shou (SVCA), Han Hu (SVCA), Auntie Christine Yu

(SVCA) and Wenwei Zheng (CEF). I would like to thank Yang Li and Dandan

Wang, Lan Tang and Lina Zhang for their hospitality. Last butnot least, I would

also like to thank Daniel and Karen Evans for proof-reading my dissertation for

grammatical correctness.

vii

Real-Time Hierarchical Hypervisor

Publication No.

Wing-Chi Poon, Ph.D.

The University of Texas at Austin, 2010

Supervisor: Aloysius K. Mok

Both real-time virtualization and recursive virtualization are desirable prop-

erties of a virtual machine monitor (or hypervisor). Although the prospect for vir-

tualization and even recursive virtualization has become better as the PC hardware

becomes faster, the real-time systems community so far has not been able to reap

much benefits. This is because no existing virtualization mechanism can properly

support the stringent timing requirements needed by real-time systems. It is hard

to do real-time virtualization, and it is even harder to do itrecursively. In this dis-

sertation, we propose a framework whereby the hypervisor iscapable of running

real-time guests and participating in recursive virtualization. Such a hypervisor is

called a real-time hierarchical hypervisor.

We first look at virtualization of abstract resource types from the real-time

systems perspective. Unlike the previous work on recursivereal-time partition-

ing that assumes fully-preemptable resources, we concentrate on other and often

more practical types of scheduling constraints, especially the non-preemptive and

viii

limited-preemptive ones. Then we consider the current x86 architecture and ex-

plore the problems that need to be addressed for real-time recursive virtualization.

We drill down on the problem that affects timing properties the most, namely, the re-

cursive forwarding and delivery of interrupts, exceptionsand intercepts. We choose

the x86 architecture because it is popular and readily available, but it is by no means

the only architecture of choice for real-time recursive virtualization. We conclude

the research with an architecture-independent discussionon future possibilities in

real-time recursive virtualization.

ix

Table of Contents

Acknowledgments v

Abstract viii

List of Tables xv

List of Figures xvi

Chapter 1. Introduction 1
1.1 Abstract Resource Virtualization2

1.2 Time Sharing Fully Preemptable Resource3

1.2.1 The Bounded-Delay Resource Partition (BDRP) Model . . . 3

1.2.1.1 Task Level Scheduling 5

1.2.1.2 Recursive Resource Level Scheduling 6

1.3 The x86 Recursive Virtualization 7

Chapter 2. Non-Preemptive Robustness - Definition and Characteriza-
tion 9

2.1 Introduction . 9

2.1.1 Requirements Space - Periodic Task Set 11

2.1.2 Design - Priority Assignment 12

2.1.3 Requirement Change - Reduction in System Load 13

2.1.4 Robustness . 14

2.1.5 Preemptiveness vs Non-preemptiveness15

2.1.6 Some Definitions and Notations 15

2.1.7 Related Works . 16

2.2 Robustness of Preemptive Schedulers17

2.2.1 Preemptive Earliest-Deadline-First (PEDF) 18

2.2.2 Preemptive Fixed-Priority (PFP) 19

x

2.3 Loss of Robustness in Non-preemptive Schedulers 22

2.4 How Bad is the Non-Preemptive Robustness Problem23

2.5 Properties of Non-preemptive Anomaly 29

2.6 Miss Ratio . 35

2.7 Conclusion . 40

Chapter 3. Solutions to the Non-Preemptive Robustness Problem 41
3.1 Introduction . 41

3.1.1 Task Model . 43

3.1.2 Reduction in System Load Revisited 45

3.1.3 Robustness Revisited . 47

3.2 Related Work . 47

3.3 Properties of Non-Preemptive Robustness 48

3.3.1 Concrete Robustness and Non-Concrete Schedulability 49

3.3.2 Increase in Period / Minimum Separation (↑P) vs.
Decrease in Computation Time (↓C) 52

3.4 Common Non-Preemptive Schedulers 55

3.4.1 Discrete-Time, NPEDF Scheduler 55

3.4.2 Dense Time, NPEDF Scheduler 57

3.4.3 Discrete or Dense Time, NPFP Scheduler 59

3.5 Special Cases for Non-preemptive Robustness 62

3.5.1 Geometric Envelope Task Set 62

3.5.2 No-Blocking Test . 63

3.5.3 Necessary and Sufficient Condition of Robustness for Task
Set of Successively Divisible Period 65

3.6 Conclusion . 67

Chapter 4. Time Sharing Limited-Preemptable Resources and Mixed-
Type Resources 69

4.1 Introduction . 69

4.2 Robustness for Limited Preemption 70

4.3 Robustness on a Bounded Delay Resource Partition (BDRP)71

4.3.1 Preemptive Robustness on a Bounded Delay Resource Parti-
tion (BDRP) . 72

xi

4.3.1.1 Preemptive Earliest-Deadline-First (PEDF)72

4.3.1.2 Preemptive Fixed Priority (PFP) 74

4.3.2 Non-Preemptive Robustness on a Bounded Delay Resource
Partition (BDRP) . 76

4.4 Resource Level Scheduling with Aperiodic Tasks under Discrete Time 77

4.4.1 The Problem . 78

4.4.2 VMware ESX Server Case Study 79

4.4.3 A Parametric Delay Bound∆ Solution 80

4.4.4 Why Isn’t Parametric Granularity a Good Idea?81

4.5 Time Sharing Mixed Set of Resources 82

4.6 Conclusion . 82

Chapter 5. The x86 Hierarchical Hypervisor 84
5.1 Introduction . 84

5.1.1 Definition . 84

5.1.2 Related Works . 85

5.2 Why Recursive Virtualization? . 86

5.2.1 Debugging and Upgrading to New Hypervisor 86

5.2.2 Testing Hypervisor Management Software 87

5.2.3 Hardware Feature Prototyping 87

5.2.4 GENI Net . 88

5.2.5 Real-Time Resource Partitioning 88

5.3 Design Issues on the x86 Architecture88

5.3.1 Trap-and-Emulate vs. Paravirtualization 89

5.3.2 Processor Virtualization . 90

5.3.2.1 Time Multiplexing 90

5.3.2.2 Binary Translation 91

5.3.3 Memory Management . 92

5.3.3.1 Shadow GDT/LDT (for implementation without hard-
ware support) . 92

5.3.3.2 Shadow Page Tables (for implementation without
nested paging) . 93

5.3.3.3 Shadow Nested Page Tables (for implementation with
nested paging) . 95

xii

5.3.3.4 ASID Remapping (for implementation with hard-
ware support) . 98

5.3.4 I/O Subsystem Virtualization 98

5.4 Conclusion . 99

Chapter 6. Interrupt and Exception Forwarding in x86 Recursive Virtu-
alization 100

6.1 Introduction . 101

6.1.1 Motivation . 101

6.1.2 The Problem . 101

6.1.3 Our Contribution . 102

6.2 Design Issues . 102

6.2.1 Statically Determined Interrupt and Exception Handling Se-
quence . 102

6.2.2 Forward Propagation . 103

6.2.3 Reverse Propagation . 104

6.2.4 Performance Measurement Methodology 105

6.3 Implementation without Hardware Support 107

6.3.1 Processor Operating Modes 107

6.3.2 Hypervisor IDTs and Shadow IDTs 108

6.3.3 Forward Propagation . 109

6.3.4 Reverse Propagation . 111

6.3.5 Interrupt-Enable Flag RFLAGS.IF Shadowing 112

6.3.6 Running time Analysis . 113

6.4 Implementation with Hardware Support for Single-LevelHypervisor 116

6.4.1 Processor Operating Modes 116

6.4.2 Intercept Handling . 117

6.4.3 Running Time Analysis . 119

6.5 Possible Hardware Extensions to Support Recursive Intercept Delivery121

6.5.1 Hardware Intercept Delivery 121

6.5.1.1 Ancestor and Descendant Linked Lists 121

6.5.1.2 Intercept Redirect Bit 122

6.5.1.3 The Hardware Algorithm 122

xiii

6.5.1.4 Running Time Analysis 124

6.5.2 Avoid Avalanche of Intercepts Cascading down the Hierarchy 125

6.6 Conclusion . 126

Chapter 7. Conclusion 128
7.1 Future Work . 128

7.1.1 Architectural Constraints to Real-Time Recursive Virtualiza-
tion . 128

7.1.2 Principles for Adapting Any Architecture for Real-Time Re-
cursive Virtualization . 129

7.1.2.1 Make the architecture virtualizable 130

7.1.2.2 Make the architecture real-time capable 133

7.1.2.3 Make the architecture recursively virtualizable in a
real-time perspective 134

7.2 Conclusion . 134

Appendix 137

Appendix 1. Acronyms 138

Bibliography 145

Index 153

Vita 166

xiv

List of Tables

1.1 Abstract resources and their real-life examples 2

5.1 Combining nested page tables (i = 1, j > 1, k = j + 1 for par-
avirtual hierarchy;i ≥ 1, j = i + 1, k > j for trap-and-emulate
hierarchy) . 95

5.2 Mapping of combined nested page tables (i = 1, j > 1, k = j + 1
for paravirtual hierarchy;i ≥ 1, j = i + 1, k > j for trap-and-
emulate hierarchy; finally,g1P is the system physical addresssP) . 97

6.1 Characterization for AMD Istanbul (family 10h)† ALU instructions
include ADD, AND, CMP, OR, SUB, XOR, etc.‡ Round-trip world switch time
is measured as the combined time for aVMRUN instruction followed immediately
by a#VMEXIT event that is triggered by an intercepted#GP exception in the first
guest instruction.. 106

6.2 Shadow IDT and Hypervisor IDT Access Control Bits 108

xv

List of Figures

2.1 Tracking Relation . 10

2.2 Loss of Non-Preemptive Robustness under Decrease in Computa-
tion Time (Top=Before; Bottom=After) 23

2.3 Loss of Non-Preemptive Robustness under Increase in Period (Top=Before;
Bottom=After) . 24

2.4 Loss of Non-Preemptive Robustness under CPU Upgrade or CPU
Overclock (Top=Before; Bottom=After) 25

2.5 NPFP/RMA and NPEDF are not robust against decrease in a com-
putation time ofT1 . 26

2.6 NPFP/RMA and NPEDF are not robust against decrease in a com-
putation time ofT2 . 26

2.7 NPFP/RMA and NPEDF are not robust against an increase in pe-
riod of T1 . 27

2.8 NPFP/RMA and NPEDF are not robust against CPU upgrade,α < 1.0 27

2.9 Original task set is schedulable .28

2.10 C ′
2 = left: C2 −

1
2
δ, right: C2 − δ 28

2.11 C ′
2 = left: C2 − 11

2
δ, right: C2 − 2δ 28

2.12 C ′
2 = left: C2 − 21

2
δ, right: C2 − 3δ 29

2.13 C ′
2 = left: C2 − 31

2
δ, right: C2 − 4δ 29

2.14 First seven periods ofT1 in the example task set 35

3.1 Set relationship in our task model 44

3.2 Determination oft from task setT 50

3.3 Construction of task setT ′ . 50

3.4 Back toτ with arbitraryr′i . 51

3.5 Identification of time pointss′, r′ andt 53

6.1 Forward propagation . 103

6.2 Reverse propagation . 104

xvi

6.3 Reverse propagation without hardware-assisted virtualization takes
exponential time. 116

6.4 Reverse propagation with hardware-assisted virtualization also takes
exponential time. 120

6.5 Propagation with hardware extension takes linear time.. 125

xvii

Chapter 1

Introduction

The performance of computer systems has been growing exponentially ac-

cording to Moore’s Law. Most new servers have seen very low average utilization.

Hence it is more economical to consolidate different servers into one physical ma-

chine to reap the benefits of its increased performance. However, running multi-

ple servers in one physical system poses new security concerns. Another layer of

system software called virtual machine monitor or hypervisor is used between the

hardware and OS to provide isolation and fault containment.While the hypervi-

sor solves part of the problem, it does not deliver the full power of the underlying

hardware to its virtual machine partitions, hence real-time application may miss

the deadline when running inside a hypervisor. We propose a real-time hypervi-

sor that could be stacked up hierarchically to allow for arbitrarily complex security

constraints to be implemented.

There are two challenges to this research, one is to make the hypervisor

real-time capable, and the other is to make the hypervisor hierarchical capable.

Sections 1.1 and 1.2 give an introduction and related known results to the real-

time resource sharing problem. Chapters 2, 3 and 4 will cover our development

to the real-time resource sharing issue. Section 1.3 gives introduction and related

1

works on the hierarchical virtualization problem, whereaschapters 5 and chapter 6

will cover our development to the x86 hierarchical virtualization issue. Finally, we

conclude in chapter 7 with a summary of new results and a discussion of future

possibilities.

1.1 Abstract Resource Virtualization

Computing resources could be exclusively-owned, space-partitioned, time-

shared or software-emulated. Examples of each type of resource are shown in ta-

ble 1.1. We try to lay down a theoretical framework for the real-time aspects of

resource virtualization by abstracting all computing resources.

Exclusively Owned Space Partitioned Time Shared Software Emulated

Floppy Disk Drive
Memory CPU

Virtual Ethernet
Hard Disk Space Hard Disk Controller

Table 1.1: Abstract resources and their real-life examples

Exclusively-owned and space-partitioned resources do notpose any real-

time problems, because they are always available to their owner OS. Problems arise

with time-shared or software-emulated resources because they may lengthen the

critical path of execution and potentially induce a deadline miss which does not

exist if running on a dedicated resource.

Timing properties of software-emulated resources could beobtained from

Worst-Case Execution-Time (WCET) analysis. Puschner and Alan[43] have a de-

tailed review of the available literature in WCET analysis that could be utilized.

2

Virtualization of time-shared resources could be fully-preemptable (e.g. proces-

sor), limited-preemptable (e.g. packet-switched network) or non-preemptable (e.g.

printer).

Time sharing fully preemptiable resources has been well studied. We will

quote some selected definitions and key results from the Bounded-Delay Resource

Partition (BDRP) model in the next section. This related work is highly useful

in real-time recursive virtualization for all fully preemptable resources. We will

present our development on non-preemptable resources in the chapter 2 and chap-

ter 3, followed by limited-preemptable resources and othervariants in chapter 4.

1.2 Time Sharing Fully Preemptable Resource

Mok et. al. [37] [36] have developed a complete framework forpartitioning

fully-preemptable resources so that each partition is capable of running real-time

application. For the sake of easy reference, this section isa reproduction of their

key definitions and results.

1.2.1 The Bounded-Delay Resource Partition (BDRP) Model

In summary, each partition has two configurable parameters0 < α ≤ 1 and

∆ > 0. α is the percentage of time we want to assign the resource to thepartition,

and∆ is the maximum additional units of time a partition has to wait before it

receives its full allocationα(t2−t1) of the resource for any duration of time(t2−t1).

Based on this model, Feng et. al. has shown that any preemptivescheduling policy

that works with a given task set under the reduced resource availability (α of total),

3

with ∆ subtracted from all the deadlines, are guaranteed to continue to work on this

partition.

Definition 1. A Periodic Resource Partition Π is a tuple(Γ, P), whereΓ is an

array ofN time pairs{(S1, E1), (S2, E2), . . . , (SN , EN)} that satisfies(0 ≤ S1 <

E1 < S2 < E2 < . . . < SN < EN ≤ P) for someN ≥ 1, andP is the partition

period. The physical resource is available to a task set executing on this partition

only during time intervals(Si + j × P,Ei + j × P), where1 ≤ i ≤ N, j ≥ 0.

The above definition enumerates every time interval that is assigned to a

partition and is a general representation of periodic partitioning schemes, includ-

ing those that are generated dynamically by an on-line partition scheduler. We

will build onto this definition and arrive at a more useful onein terms of real-time

scheduling.

Definition 2. A Bounded Delay Resource Partition (BDRP) Π is a tuple(α, ∆)

whereα is the percentage of total time the resource is available to the partition and

∆ is called thePartition Delay, which is the largest time deviation of a partition

during any time interval with regards to a uniform uninterrupted allocate of the

resource.

Note that this definition defines a set of partitions because there are many

different partitions in the static partition model that maysatisfy this requirement. It

provides a starting point upon which other approaches of defining partitions will be

considered in sections 4.3.2 and 4.4.

4

Thus the problem of scheduling a number of task sets on a givenresource

could be split into two steps:

1. Scheduling of the given resource into BDRPs

2. Scheduling of one task set on each of these BDRPs

We call the first one resource level scheduling, and the second one task level

scheduling.

1.2.1.1 Task Level Scheduling

Theorem 3. Given a task setτ and a BDRPΠ = (α, λn), let Sn denote a valid

schedule ofτ on the normalized execution ofΠ, Sp the schedule ofτ on Partition

Π according to the same execution order and amount asSn. Also letλ denote the

largest amount of time such that any job onSn is completed at leastλ time before

its deadline.Sp is a valid schedule if and only ifλ ≥ λn.

In Theorem 3,λ defines the maximum allowable output jitter [8] forSn.

Therefore, informally, Theorem 3 could be written as: A taskset is schedulable on

a partition if the maximum allowable output jitter is no lessthan the partition delay.

Theorem 3 provides a practical way to schedule a task set on a partition.

If we could find a schedule on the normalized execution and thesmallestλ is no

less thanλn, we could use this schedule on the partition and be guaranteed that no

deadline will be missed on the partition. The schedule on thenormalized execu-

tion is the same as the traditional task schedule, for which there are many known

techniques.

5

1.2.1.2 Recursive Resource Level Scheduling

In recursive virtualization, a partition group is scheduled within another par-

tition. This is the more general problem of recursive resource level scheduling.

When we schedule a partition group on a dedicated resource, wecould consider the

dedicated resource as a partition withα = 1 and∆ = 0.

Theorem 4. A partition group{Πi(αi, ∆i)} (1 < i ≤ n) is schedulable on a

partition Π(α, ∆) if
∑n

i=1 αi ≤ α and∆i > ∆ for all i, (1 < i ≤ n).

Theorem 4 provides a method to determine the schedulabilityof scheduling

partitions (a partition group) on another partition. However, it does not explain how

to perform the actual scheduling since the infinite time slice scheme that is used in

the proof is impractical. Therefore, the question remains how to schedule partitions

using methods with finite context switch overhead.

Theorem 5. Given a partition group{Πi(αi, ∆i)} (1 < i ≤ n) to be scheduled on

a partition Π(α, ∆). Let Sn denote a scheduler of schedulingΠ′
i(αi/α, ∆i − ∆)

(1 < i ≤ n) on a dedicated resource with capacity of the same as the normalized

execution ofΠ. Also letSp denote the virtual timeSn scheduler of schedulingΠi

onΠ. ThenSp is valid if Sn is valid.

Theorem 5 justifies the observation that we may use essentially the same

algorithms of scheduling partitions on dedicated resources for hierarchical parti-

tioning by applying the virtual time scheduling scheme.

With the ability of scheduling a partition inside another partition, we could

build a hierarchy of resource partitions for fully-preemptable resources.

6

Chapter 2 continues with an anomaly we discovered in non-preemptive

scheduling. We call this the robustness problem. It is beingrigorously defined

and formally analyzed. Then in chapter 3, we propose necessary and sufficient con-

ditions to ensure non-preemptive robustness. Finally, this new result is combined

with the BDRP model in chapter 4, together with new lights on limited-preemptive

scheduling and other types of scheduling constraints.

1.3 The x86 Recursive Virtualization

The x86 architecture is chosen because it is popular and readily available.

The abstract theory in resource virtualization discussed in section 1.2, chapter 2,

chapter 3 and chapter 4 finds its application in a real-life scenario.

Before the advent of the Intel VT-x [27] and AMD SVM technology[4],

the x86 architecture is not known to be virtualizable [42] [44]. Known problems

include, but are not limited to, ring aliasing, ring compression, address space com-

pression, non-faulting access to privileged state, high overhead in interrupt virtual-

ization, and lack of access to processor hidden states.

The advent of hardware-assisted virtualization addressedthese issues [50]

but some of them would re-appear if we proceed to recursive virtualization. For

example, the hardware-assisted virtualization solved thering aliasing problem by

essentially creating an extra set of rings for the hypervisor, known as the root mode

operation. When we do recursive virtualization, the guest hypervisor has to be run

in non-root mode although it was designed to be run in root mode. Instead of ring

aliasing, we may call this mode aliasing problem. Basically,the outer hypervisor

7

has to trap all root mode operations and emulate them sacrificing performance.

Although the hardware-assisted virtualization is very handy to use, we do

not take it for granted as the only possible form of virtualization in our discussion.

In each aspect of recursive virtualization, we presented the case when hardware-

assisted virtualization is not available, when it is available, and when the hardware

could be extended to do better. Chapter 5 integrates the abstract theories of resource

virtualization in the context of the x86 architecture. Thenchapter 6 deals with one

specific problem that affects real-time workloads the most,namely, the recursive

forwarding and delivery of interrupts, exceptions and intercepts. These chapters

dive into a lot of the x86 technicalities. Readers are referred to appendix 1 for a list

of the acronyms used.

Finally, we give an architecture-independent view of how real-time recur-

sive virtualization might be achieved in chapter 7. This is useful in real-time recur-

sively virtualizing non-x86 architecture, or designing new architecture specifically

for use with real-time recursive virtualization.

8

Chapter 2

Non-Preemptive Robustness - Definition and
Characterization

Unlike preemptive scheduling policies, non-preemptive real-time schedul-

ing policies can exhibit anomalies even for the single-processor case. In particular,

a task set that is schedulable by a non-preemptive schedulermay become unschedu-

lable when the utilization of the task set decreases relative to the CPU speed, e.g.,

when a faster CPU is used to run the same task set. In this chapter, we define the

notion ofrobustnessto capture the essence of the scheduling anomaly on real-time

system performance. We shall show that it is difficult to testfor robustness in gen-

eral but it could still be characterized. In chapter 3, we shall derive necessary and

sufficient conditions for guaranteeing non-preemptive robustness.

2.1 Introduction

One problem in engineering large complex software systems is the sensitiv-

ity of a design to changes in the requirements. If we view eachstep of the design

process as a mapping from a requirement space to an (abstract) design space, the

sensitivity problem may be viewed as a relation. Let us call it the tracking relation

between adifference metricin the requirements space and a corresponding differ-

9

ence metric induced in the design space. These difference metrics are appropriately

defined to measure the magnitude of change within their respective space.

Some properties of the tracking relation are obviously desirable. For ex-

ample, it should preservelocality: differences confined to a locality in the require-

ments space should induce differences confined to a localityin the design space,

andscalability: a small difference in the requirements space should inducea small

difference in the design space.

Of course, how a difference metric is defined should reflect the aspect of re-

quirements captured under consideration. For example, thedifference metric meant

to capture locality in the requirements space may reflect thenumber of functional-

ities / components that are affected by a change in the requirement, and the differ-

ence metric meant to capture the scalability in the requirements space may reflect

the increase in system load in a requirements change. The idea of tracking relation

is illustrated in figure 2.1.

X
Y

X’

Y’

space
design
space

requirement

Want ||Y’−X’|| ~ ||Y−X||

Figure 2.1: Tracking Relation

10

In the following, we shall illustrate the tracking relationconcept by consid-

ering a specific aspect of real-time systems design, specifically, the relation between

a change in the real-time performance requirements and the schedulability of the de-

sign solution. Intuitively, if we make the real-time performance requirement of an

application less stringent, we should expect the design solution to require at most

the same amount of computing resources. A mapping from requirement to design

is robust if a less demanding requirement will not cause a performancefailure in

the design.

We believe that the notion of robustness will be important aslong as CPU

speed keeps on improving at a faster rate than memory I/O bandwidth (including

L1, L2 and L3 caches). This is because theworst-casecost of preempting a task

includes flushing caches, instruction pipelines and page tables all of which may

incur I/O operations. Therefore unless all real-time taskscan be kept in fast memory

all the time, the cost of preemption will be significant compared with task execution

time.

2.1.1 Requirements Space - Periodic Task Set

The requirements space is the set of periodic tasks. Aperiodic taskis char-

acterized by a pair:Ti = (Ci, Pi), where each service request ofTi requiresCi units

of CPU time to satisfy and two successive requests must be separated byPi time

units. SupposeM is a set ofn periodic tasks{(C1, P1), . . . , (Cn, Pn)} whereCi,

Pi are respectively the computation time and the period for periodic taskTi. The

first instance of all tasks inM arrive together at time0.

11

2.1.2 Design - Priority Assignment

A design is a (fixed or dynamic) priority assignment to the tasks in the peri-

odic task set. A Fixed-Priority (FP) scheduler or an Earliest-Deadline-First (EDF)

scheduler is used to schedule tasks inM . An FP scheduler always selects for ex-

ecution the task that has the highest priority. With Rate Monotonic Assignment

(RMA) of priority, taskTi having a higher priority than taskTj impliesPi ≤ Pj.

We shall adopt the convention for FP scheduler that taskTi is assigned a higher

priority than taskTj iff i < j. An EDF scheduler always selects for execution the

task whose deadline is the nearest, hence the task priorities for EDF scheduler are

dynamic, and change over time.

In this chapter, we talk about schedules for task setM that are produced by

a Preemptive FP (PFP) scheduler, Non-Preemptive FP with RMA priority (NPFP/

RMA) scheduler, Preemptive EDF (PEDF) scheduler and Non-Preemptive EDF

(NPEDF) scheduler. We call these schedules the PFP schedules, NPFP/RMA sched-

ules, PEDF schedules and NPEDF schedules respectively.

Preemptive Non-Preemptive

EDF PEDF NPEDF
FP PFP NPFP
/w RMA PFP/RMA NPFP/RMA

In general, FP/RMA and EDF produce different schedules (e.g.consider the

task set{(2, 3), (1, 5), (1, 8)}), but in order to save space, throughout the chapter,

counter-examples are carefully chosen so that both EDF and FP/RMA have the

same schedule.

12

A scheduler first computes an initial schedule or priority assignment based

on the requirements specification of each task either statically (computed offline)

or as part of the admission control process (computed online). Then a run-time

dispatcher selects task instances for execution based completely or partially on the

priority assignment information provided by the scheduler.

2.1.3 Requirement Change - Reduction in System Load

A (favorable) change in the requirements space is characterized by a reduc-

tion in system load, which is defined to be one or more of the following:

• Decrease in computation time of some task(s)

• Increase in period of some task(s)

• CPU upgrade, i.e. the use of a faster processor or CPU overclock

In particular, (3) is a special case of (1), where the computation time of all

tasks are decreased by the same ratio. Also, deletion of a task is also a special

case of (1) and (2), where the computation time becomes0 and period becomes∞.

Note that we do not talk about scaling up resource nor increased workload in this

dissertation (this is because in most of our target applications, e.g., mission critical

embedded systems, an upgrade is often forced by the need for additional system

functionality, and at best, you end up with the same if not greater system load).

We denote the task set after reduction in system load byM ′, and its con-

stituent tasksT ′
i = (C ′

i, P
′
i), obeying the relationsC ′

i ≤ Ci andP ′
i ≥ Pi, with at

least one inequality over all tasks being strictly less than(<).

13

There are two possibilities for reduction in system load, advertised and un-

advertised. An advertised reduction in system load for a task means the actual

values of(C ′
i, P

′
i) are made known to the run-time dispatcher prior to the arrival of

the first instance of the task. Unadvertised reduction meansthe run-time dispatcher

is never informed of any such changes. If the system load reduction is advertised,

the scheduler could spend some time computing the optimal schedule; but the un-

advertised ones are more common and do more harm. The unadvertised increase in

period also represents a transitional model from periodic task to sporadic task.

2.1.4 Robustness

When there is a reduction in system load, we would normally expect the

same design to work. In other words, a priority assignment that results in a task set

being schedulable should preserve schedulability under reduction in system load.

We say that a priority assignment is robust if schedulability is preserved in any

reduction of system load. Robustness depends on the scheduling policy and type of

timing constraints imposed on the system.

One of the hard problems in maintaining real-time systems requirements in

mobile computing is to keep track of the impact of resource usage on the applica-

tions. Due to power consideration, CPU in mobile computing isoften clocked at a

range of frequencies, and adjusted at run time according to need. Often times, it is

not sufficient to keep track of only the upper bounds on resource usage, since some

requirements such as jitter are also sensitive to the lower bounds and the resource

scheduling algorithm employed.

14

2.1.5 Preemptiveness vs Non-preemptiveness

Because of the NP-completeness of non-preemptive deadline scheduling [28],

most extant work is about preemptive scheduling. However, non-preemptive schedul-

ing is worth studying for a number of reasons, especially forresources that are

inherently non-preemptable or when preemption cost is high.

Nowadays, processors are much faster, so jobs are much shorter. As proces-

sors are more pipelined, context switch overheads become relatively high. We want

to resort to non-preemptive policies in an attempt to cut down this context switch

overhead.

Also, in communication networks, synchronization and packet header pro-

cessing overhead is relatively large. In order to deliver most of the available band-

width to the end-user, batch processing of packets and messages is favored, thus

limiting preemption.

Moreover, in open systems environment like mobile computing, we want

non-interference among partitions, and jobs should not be preempted by other par-

titions. So it also necessitates the use of non-preemptive schedules.

2.1.6 Some Definitions and Notations

Thepth instance of a taskTi is denoted byT p
i . Supposer is the request for

T p
i that occurs at timet in a schedules. Then the response time ofr is defined to be

t′− t wheret′ is the time at whichr is satisfied by the completion ofT p
i in s. Given

a priority assignment, a task is schedulable if and only if all of its requests have

15

response time no bigger than its period in the schedule. A task set is schedulable if

every task in the set is schedulable.

A taskTi has no outstanding computation at timet if all the requests forTi

that arrived beforet were satisfied by timet. A task setM does not have outstanding

computation at timet if all the tasks insideM have no outstanding computation at

time t. Time0 is the time of the first request arrival, so by definition, it isa time of

no outstanding computation.

2.1.7 Related Works

Scheduling anomalies have been known since [24]. Previous results pertain

mostly to multiprocessor and list scheduling anomalies. The results reported in

this dissertation pertain to real-time uniprocessor scheduling. The multiprocessor

anomaly reported in previous work depends on processor assignment anomaly and

do not apply to the uniprocessor case.

As far as we know, the definition of robustness in the sense of freedom

from anomalies was first proposed by Mok in an invited lectureat both the NSF/

ARO/CNR-Italy Workshop on Modelling Software System Structures and the 7th

International Conference on Real-Time Computing Systems and Applications in

2000 (http://www.informatik.uni-trier.de/∼ley/db/conf/rtcsa/rtcsa2000.html). This

and the next chapters contains results that answer some openproblems proposed by

Mok.

In [12], Buttazzo used Cyclical Asynchronous Buffers to avoid blocking

on shared resources to avoid anomalies. However, the use of their approach is

16

mainly limited to control applications, e.g. sensory acquisition task, because in

their model, messages could be lost or read more than once. Their Rate Adaptation

scheme works for processor overload, not reduced system load. In [10], Brandt et

al showed that PEDF scheduling is anomaly-free. In [46], Shaeta al showed that

RMA scheduling is anomaly-free under load reduction. Introduction to the general

area includes [32], [47], [29] and [33]. Other related worksinclude [28] and [52].

2.2 Robustness of Preemptive Schedulers

The schedulability problem for preemptive schedulers was first discussed in

Liu & Layland [32]. We shall assume that time is discrete and all timing parameters

are integers. Only slight modification is needed for the discussion below to apply

to continuous time.

In each of the following sections, we are going to consider decrease in com-

putation time and increase in period separately. In particular, we also highlight re-

duction in system load due to CPU upgrade, which is just a special case of decrease

in computation time.

For the sake of clarity in proofs, we define an intermediate task setM ′′,

whose constituent tasksT ′′
i = (C ′

i, Pi) have the same periodPi as the original task

setTi (hence the same priorities no matter if we use FP/RMA or EDF), yet with the

decreased computation timeC ′
i as inT ′.

A scheduling policy which is robust separately under both decrease in com-

putation time and increase in period is also robust under anyreduction in system

17

load, because any reduction in system load could be represented as a combination

of these two factors. Given that a task setM is schedulable under the policy con-

cerned, the intermediate task setM ′′ is also schedulable because the policy is robust

under decrease in computation time. GivenM ′′ is schedulable, our target task set

M ′ is also schedulable because the policy is robust under increase in period. Hence

by transitivity, schedulability is preserved by this scheduling policy when system

load is reduced fromM to M ′.

2.2.1 Preemptive Earliest-Deadline-First (PEDF)

By the Liu & Layland Model [32], a task set is schedulable by PEDF

scheduling policy iff
∑n

j=1
Cj

Pj
≤ 1

For decrease in computation time of some taskCk by δ (1 ≤ k ≤ n, δ > 0),

n
∑

j=1

C ′
j

P ′
j

=

(

n
∑

j=1

Cj

Pj

)

−
δ

Pk

<
n

∑

j=1

Cj

Pj

≤ 1

For increase in period of some taskPk by δ (1 ≤ k ≤ n, δ > 0),

n
∑

j=1

C ′
j

P ′
j

=

(

n
∑

j=1

Cj

Pj

)

−

(

Ck

Pk

−
Ck

Pk + δ

)

<
n

∑

j=1

Cj

Pj

≤ 1

(Note that this proof assumes that job priorities may changeafter period increase

when the deadlines cross).

For CPU upgrade, where we reduce the computation time of all tasks by the

same proportionα (0 < α < 1),

n
∑

j=1

C ′
j

P ′
j

=
n

∑

j=1

(1 − α) · Cj

Pj

<

n
∑

j=1

Cj

Pj

≤ 1

18

Under any reduction in system load, the utilization factor

n
∑

j=1

C ′
j

P ′
j

<
n

∑

j=1

Cj

Pj

≤ 1

remains smaller than1. Hence the task set remains schedulable under PEDF schedul-

ing policy. In order words, the PEDF scheduling policy is robust. (Note that this

proof assumes that job priorities may change after period increase when the dead-

lines cross).

2.2.2 Preemptive Fixed-Priority (PFP)

By the Liu & Layland Model [32], a task set is schedulable by thePFP

scheduling policy iff

∀i(1 ≤ i ≤ n),∃ti ∈ (0, Pi],
i

∑

j=1

Cj ·

⌈

ti
Pj

⌉

≤ ti

Since the task setM is schedulable at first, we have a set of valuest1, t2, . . . ,

tn satisfying the above inequality. After reduction in systemload, we want to find

t′1, t′2, . . . , t′n satisfying:

∀i(1 ≤ i ≤ n), t′i ∈ (0, P ′
i] ∧

i
∑

j=1

C ′
j ·

⌈

t′i
P ′

j

⌉

≤ t′i

For decrease in computation time of some taskCk by δ (1 ≤ k ≤ n, δ > 0),

then∀i (k ≤ i ≤ n, otherwise taskTk has no effect on the summation, which is

19

only to i), we taket′i = ti ∈ (0, Pi] = (0, P ′
i]

i
∑

j=1

C ′
j ·

⌈

t′i
P ′

j

⌉

=

(

i
∑

j=1

Cj ·

⌈

ti
Pj

⌉

)

− δ ·

⌈

ti
Pk

⌉

<

i
∑

j=1

Cj ·

⌈

ti
Pj

⌉

≤ ti

= t′i

For increase in period of some taskPk by δ (1 ≤ k ≤ n, δ > 0), we first

consider when job priorities do not change:∀i (k ≤ i ≤ n, otherwise taskTk has

no effect on the summation, which is only toi), taket′i = ti ∈ (0, Pi] ⊂ (0, P ′
i],

then

i
∑

j=1

C ′
j ·

⌈

t′i
P ′

j

⌉

=

(

i
∑

j=1

Cj ·

⌈

ti
Pj

⌉

)

− Ck ·

(⌈

ti
Pk

⌉

−

⌈

ti
Pk + δ

⌉)

<

i
∑

j=1

Cj ·

⌈

ti
Pj

⌉

≤ ti

= t′i

Hence in both cases, the inequality still holds.

If the period increase is advertised, we may change the RMA priorities ac-

cordingly. If it is unadvertised (which makes the periodic task begins to look like

a sporadic task), the RMA priorities remain unchanged. We have shown that PFP

is robust in general when priorities do not change, hence unadvertised PFP/RMA is

robust with respect to increase in period.

20

Consider next advertised PFP/RMA. If the deadlines do cross when the peri-

ods increase, we introduce a series of intermediate reducedtask setsM (0),M (1), . . . ,

M (m+1), whereM (0) = M , M (m+1) = M ′, andm is the number of swappings

needed for bubble sort to sort the task sets from their original priority arrangement

to the new one.

The intermediate reduced task sets are constructed as follows. Start with

M (i), M (i+1) is obtained by picking the taskT (i)
τ with the lowest final priority (in

M ′) whose periodP (i)
τ 6= P ′

τ and stretch it until either (1)P (i+1)
τ = P ′

τ or (2) it

hits the period of another taskT (i)
µ so thatP (i)

τ < P
(i+1)
τ = P

(i)
µ < P ′

τ , whichever

is earlier. Repeatedly pick a task this way and stretch its period until there are no

more such tasks to pick, then the resulting task set isM (i+1).

It is easy to show thatM (m+1) = M ′ based on an analogy with bubble sort.

When system load is reduced fromM (i) to M (i+1), task priorities are not changed,

so our previous proof holds. WithinM (i+1), swapping the priority of tasksT (i+1)
τ

andT
(i+1)
µ does not affect the schedulability of the task set because the periods of

these two tasks are the same, i.e.P
(i+1)
τ = P

(i+1)
µ . Continuing this way, we see that

M ′ remains schedulable for PFP/RMA even when the RMA priority changes after

reduction in system load.

CPU upgrade or overclock is a special case of decrease in computation time.

We provide the proof here for completeness. Here, the computation times of all

tasks are reduced by the same ratioα < 1. Taket′i = ti, then∀i(1 ≤ i ≤ n),

t′i = ti ∈ (0, Pi] = (0, P ′
i]

21

and

i
∑

j=1

C ′
j ·

⌈

t′i
P ′

j

⌉

=
i

∑

j=1

(1 − α) · Cj ·

⌈

ti
Pj

⌉

<
i

∑

j=1

Cj ·

⌈

ti
Pj

⌉

≤ ti

= t′i

In any case, there existst′i satisfying the inequality after reduction in system

load. Hence the task set remains schedulable under PFP scheduling policy. In other

words, the PFP scheduling policy is robust.

2.3 Loss of Robustness in Non-preemptive Schedulers

Neither NPEDF nor NPFP/RMA scheduling policy is robust. In general, an

anomaly may occur for any non-preemptive, eager scheduler which does not idle

the CPU as long as there is a ready task.

• Decrease in Computation Time: Task set{T1 = (3, 5), T2 = (2, 10), T3 =

(4, 20)} is schedulable by an NPFP/RMA or an NPEDF scheduler. But it

becomes unschedulable if we reduce the execution time ofT2 from 2 to 1.

(figure 2.2)

• Increase in Period: Task set{T1 = (1, 4), T2 = (3, 8), T3 = (6, 16)} is

schedulable by an NPFP/RMA or an NPEDF scheduler. But it becomes un-

schedulable if we increase the period ofT1 from 4 to 5. (figure 2.3)

22

T1

T2

T3

0

(3, 5)

(2, 10)

(4, 20)

10 155 20

T1

T2

T3

0

(3, 5)

(4, 20)

10 155 20

(1, 10)T1 misses deadline

Figure 2.2: Loss of Non-Preemptive Robustness under Decrease in Computation
Time (Top=Before; Bottom=After)

• CPU Upgrade or Overclock: Task set{T1 = (30, 50), T2 = (20, 100), T3 =

(40, 200)} is schedulable by an NPFP/RMA or an NPEDF scheduler. But it

becomes unschedulable if we reduce the execution times of all tasks by10%.

(figure 2.4)

Hence, the above counter-examples establish:

Theorem 6. Neither the NPFP/RMA scheduler nor the NPEDF scheduler is robust

with respect to any reduction in system load.

2.4 How Bad is the Non-Preemptive Robustness Problem

The robustness problem occurs regardless of the CPU utilization factor, re-

gardless of the number of different job sizes (length of job periods), and the problem

23

T1

T2

T3

0 5 10 15 16
T1 = (1, 4) T2 = (3, 8) T3 = (6, 16)

T1

T2

T3

0 5 10 15 16
T2 = (3, 8) T3 = (6, 16)

T1 misses deadline

T1 = (1, 5)

Figure 2.3: Loss of Non-Preemptive Robustness under Increase in Period
(Top=Before; Bottom=After)

could not be solved by testing a finite number of workload reduction cases.

Theorem 7. The loss of robustness for NPFP/RMA and NPEDF schedule exists

even when the utilization factor of the task set tends to zero.

Proof: A scenario suffices to demonstrate the fact here. For any given positive

numberǫ, we construct a task set whose utilization factorU < ǫ, yet neither NPFP/

RMA nor NPEDF schedule is robust on it.

Consider the task set{T1 = (C,P), T2 = T3 = (2P − 2C, kP)}, where

k ≥ 4 is an integer. The NPFP/RMA and NPEDF schedules are not robustfor this

task set under any reduction in system laod. In figures 2.5 2.62.7 2.8, it causesT1

to miss the deadline in the third period.

24

T1

T2

T3

0

(30, 50)

(20, 100)

(40, 200)

50 100 150 200

T1

T2

T3

0

(27, 50)

(18, 100)

(36, 200)

27 45 81 108 120

T1 misses deadline at time 100

Figure 2.4: Loss of Non-Preemptive Robustness under CPU Upgrade or CPU Over-
clock (Top=Before; Bottom=After)

For this parameterized task set, takek > max(4, 4
ǫ
) andP > (k−4)C

ǫk−4
, then

we have utilization factorU < ǫ. Hence whenǫ → 0, we havek → ∞ andP → ∞,

utilization factorU → 0, but taskT1 misses its deadline on the third period, so the

anomaly still exists even when the utilization factorU → 0.

Corollary 8. Restricting job sizes (length of job periods) to a selected set won’t

avoid anomalies as long as there are more than one job size.

Proof: The same example from theorem 7 shows that anomaly can occur

when there are as few as only two job sizes. Restricting job sizes to harmonics

won’t help either, as illustrated in the scenario above.

Moreover, testing cannot solve the anomaly problem becauseno testing can

detect all problems.

25

T1

T2

T3

2P 4P0 P 3P

T1 = (C − d, P) T2 = T3 = (2P − 2C, kP)

T1 misses deadline

Figure 2.5: NPFP/RMA and NPEDF are not robust against decrease in a computa-
tion time ofT1

T1

T2

T3

2P 4P0 P 3P

T1 = (C, P) T2 = (2P − 2C − d, kP)
T3 = (2P − 2C, kP)

T1 misses deadline

Figure 2.6: NPFP/RMA and NPEDF are not robust against decrease in a computa-
tion time ofT2

We will illustrate this with decrease in computation time. Agood testing

approach may go like this: For each task, try to decrease its computation time by a

fixed factorδ each time and see if the anomaly occurs. If no anomaly occurs at all

such testing points, we assume that the task set does not exhibit anomaly behavior

for the scheduling policy concerned.

However, for any real-valuedδ chosen, we can construct a task set such

that it remains schedulable at all the testing points but shows anomalies in-between

testing points:

26

T1

T2

T3

2P 4P0 P 3P

T2 = T3 = (2P − 2C, kP)T1 = (C, P + d)

T1 misses deadline

Figure 2.7: NPFP/RMA and NPEDF are not robust against an increase in period of
T1

T1

T2

T3

2P 4P0 P 3P

T1 = (aC, P) T2 = T3 = (2aP − 2aC, kP)

T1 misses deadline

Figure 2.8: NPFP/RMA and NPEDF are not robust against CPU upgrade,α < 1.0

T1 (2δ, P)
T2 (2P − 4δ, kP)
T3 (δ, kP)
T4 (P − δ, kP)
...

...
Tn (P − δ, kP)

whereP ≥ nδ and is an even multiple ofδ, integersk ≥ n andn ≥ 4. This task

set is schedulable by both NPFP/RMA and NPEDF scheduler (figure 2.9).

As shown in figures 2.10 to 2.13, whenever the computation time of T2 is

decreased by integral multiples ofδ, the task set remains schedulable, but it may not

be so when the computation time ofT2 is decreased by a non-integral multiple of

27

T1

T2

T3

T4

T5

T6

Figure 2.9: Original task set is schedulable

T1

T2

T5

T6

T3

T4

T1

T3

T4

T2

T5

T6

Figure 2.10:C ′
2 = left: C2 −

1
2
δ, right: C2 − δ

δ. In particular, the task set is not schedulable when the computation time ofT2 is

decreased by(m+ 1
2
)δ and(P

δ
−2+m+ 1

2
)δ, ∀m : 1 ≤ m ≤ n−3. Notice that even

though an anomaly may not occur when the change in requirements specification

tends to zero, it may still occur later.

Theorem 9. There can be an infinite number of regions where an anomaly occurs.

Proof: Consider the same parameterized task set we just constructed; for any

positive integerm, we can choosen = m + 3 to achieve2m number of anomalous

regions. Asm → ∞, n → ∞.

T1 misses deadline

T1

T2

T3

T4

T5

T6

T1

T2

T3

T4

T5

T6

Figure 2.11:C ′
2 = left: C2 − 11

2
δ, right: C2 − 2δ

28

T1 misses deadline

T1

T2

T3

T4

T6

T5

T1

T2

T3

T4

T5

T6

Figure 2.12:C ′
2 = left: C2 − 21

2
δ, right: C2 − 3δ

T1 misses deadline

T1

T2

T4

T5

T3

T6

T1

T2

T3

T5

T4

T6

Figure 2.13:C ′
2 = left: C2 − 31

2
δ, right: C2 − 4δ

2.5 Properties of Non-preemptive Anomaly

In order to tackle the problem of non-preemptive schedulingrobustness, we

first gather a set of useful properties of non-preemptive scheduling.

Lemma 10. For both NPFP/RMA and NPEDF, if the only kind of reduction in

system load allowed is decrease in computation time, then thelowest priority task

Tn will not miss its deadline.

Proof: We will show that all instances of the taskTn would start no later than

their respective start time in the original schedule.

Consider an arbitrary instanceT p
n of the taskTn. Let r be its request time,t

be its start time and lett′ be the latest time beforet with no outstanding computation.

Notice thatt′ remains a time of no outstanding computation under any decrease

in computation time, because no task execution could crosst′ under decrease in

29

computation time. Tasks beforet′ could not cross because their computation time

can only shrink but not expand to crosst′; tasks executed aftert′ cannot start earlier

than their request time so they cannot crosst′ too.

The number of requests for each task within the interval[t′, t) remains un-

changed under reduction in system load, because the period is not changed. After

reduction in system load, the total computation in the interval [t′, t) (excluding the

task instanceT p
n) is decreased, hence the CPU must be idle during some time in this

interval. Let the end of the last idle interval thus generated bet′′. If r ≤ t′′ < t,

thenT p
n starts earlier; otherwise, the total computation within the interval[t′′, t) is

not greater than before, soT p
n starts no later than before. HenceT p

n will not miss its

deadline.

For NPFP/RMA, observe that the start times of all instances ofthe lowest

priority taskTn in a task set is the same no matter if we use preemptive or non-

preemptive scheduling, it is natural to think that the critical instant of the lowest

priority taskTn also occurs when the request for all tasks align at the same time.

We will prove it formally in the following lemma. Note that this lemma is a study

of the non-preemptive scheduling in general, and has nothing to do with reduction

in system load.

Lemma 11. For NPFP/RMA, the lowest priority taskTn has the longest response

time when the request for all tasks align at the same time.

Proof: Suppose the contrary is true that the lowest priority taskTn has the

longest response time when the request for a certain task instanceT p
i is not aligned

30

with that ofT q
n . Let rp be the request time ofT p

i andrq be that ofT q
n . Without loss

of generality, letrp < rq (in the case that the start time ofT 1
i is later thanrq, we let

p = 0, andT 0
i be a dummy instance which has no outstanding computation during

its whole period). We consider the following cases:

If T p
i still has outstanding computation at timerq, or the CPU is busy be-

tween the completion time ofT p
i andrq, then we move the request time ofT q

n to

align withrp. Doing so would not change the start time nor completion timeof any

task, yet the response time forT q
n is increased, which is a contradiction.

Otherwise we consider the next instanceT p+1
i , and move its request time

to align withrq (and move all subsequent request times ofTi by the same amount

too). This way, the number of requests ofTi during the period ofT q
n is not less than

before, so the response time forT q
n is at least as much as before.

So, the lowest priority taskTn has the longest response time when the re-

quest for all tasks align at the same time.

If a task meets its deadline when it has the longest response time, then it

meets all deadlines. This is traditionally called the critical instant test.

Corollary 12. For NPFP/RMA, when the first request for all tasks arrive together,

if the only kind of reduction in system load allowed is increase in period, then the

lowest priority taskTn will not miss its deadline.

Proof: Special case 1:Tn is the only task whose period is increased, the

completion time for the first instance ofTn remains unchanged but its deadline is

extended, soTn would still pass its critical instant test. Special case 2: The period of

31

Tn remains unchanged, then during the first period ofTn, the number of requests for

higher priority tasks decreases (because some or all of their periods have increased),

so the response time forT 1
n is less than or equal to before, henceTn still meets the

critical instant test.

General case: The period ofTn and one or more other tasks are increased,

we consider an intermediate task set in which only the periodof Tn is increased. By

transitivity of the above two cases,Tn still passes its critical instant test. Hence in

any case,Tn will not miss its deadline.

Notice that the proof is true forTn even if the period of some other taskTx

increases to beyond that ofTn, i.e. P ′
x > P ′

n. Hence corollary 12 is valid for both

advertised and unadvertised period increase, or in other words, valid no matter if

the RMA priorities are re-adjusted accordingly or not after period increase.

Theorem 13. For NPFP/RMA, when the first request for all tasks arrive together,

after reduction in system load, the lowest priority taskTn in M never misses the

deadline.

Proof: After reduction in system load, the new task setM ′ = {(C ′
1, P

′
1),

(C ′
2, P

′
2), . . . (C ′

n, P
′
n)}. We consider an intermediate task setM ′′ = {(C ′

1, P1),

(C ′
2, P2), . . . (C ′

n, Pn)}. The lowest priority taskTn in M remains to be the lowest

priority task asT ′′
n in M ′′ because the periods are not changed. By lemma 10, the

lowest priority taskT ′′
n in M ′′ does not miss its deadlines. By corollary 12, taskT ′′

n

does not miss its deadlines inM ′ too even though it may or may not remain to be

32

the lowest priority task inM ′. Hence by transitivity, the lowest priority taskTn in

M never misses its deadline under reduction in system load.

Notice that the lowest priority task is not completely detached from the rest

of the task set. Removing it may leave the task set unscehdulable, e.g. deletingT3

from the task set:{T1 = (2, 8), T2 = (9, 14), T3 = (3, 28)} under NPFP/RMA

or NPEDF. Similarly, decreasing the load (or even removal) of the highest priority

task may also leave the task set unschedulable, e.g. removing T1 or reducing it to

(1, 20) from the task set:{T1 = (2, 20), T2 = (6, 20), T3 = (24, 80), T4 = (21, 80)}

under NPFP/RMA or NPEDF.

Theorem 14. For NPFP/RMA, when the first request for all tasks arrive together,

then after any reduction in system load, let the request timeof taskT ′
i ber′ and its

time of start of execution bes′: if all the tasks that get executed betweenr′ ands′

have priorities higher thani, then taskT ′pi does not miss its deadline.

Proof: Since all the tasks that get executed betweenr′ ands′ have priorities

higher thani, then we may consider taskT ′
i as the task of lowest priority during this

interval of time (by deleting all lower priority tasks, and for the remaining tasks,

counting only requests whose deadlines are afterr′). By lemma 11, taskT ′
i has the

longest response time when the request of all higher priority tasks arrive together at

r′, so we only need to consider the first request of taskT ′
i . By theorem 13, taskT ′

i

would not miss its deadline under any reduction in system load.

Theorem 15. For NPEDF, after any reduction in system load, let the requesttime

of taskT ′
i be r′ and its time of start of execution bes′: if all the tasks that get

33

executed betweenr′ ands′ have deadlines earlier than that ofT ′
i (i.e. with higher

dynamic priority), then taskT ′
i does not miss its deadline.

Proof: It is known that any task set that is schedulable by NPEDF is also

schedulable by PEDF. We have also proved that PEDF is robust against reduction

in system load. A property of PEDF is that betweenr′ ands′, only tasks whose

deadlines are earlier than that ofT ′
i get executed. By rearranging the PEDF exe-

cution order of task instances betweenr′ ands′ after reduction in system load, we

get the corresponding schedule for NPEDF (which may or may not cause deadline

miss for those higher priority tasks, but we are only concerned with taskT ′
i). This

task instance swapping keeps the start times′ of taskT ′
i . HenceT ′

i would not miss

its deadline.

Theorem 16. For both NPFP/RMA and NPEDF, assume the first request of all

tasks arrive together. If a certain instance of victim taskT
′p
v whose request time is

r′ misses its deadline after reduction in system load, then there exists an instance of

a culprit taskT
′q
c satisfying these properties:

• The culprit taskTc is of lower priority than the victim taskTv (For NPFP/

RMA, static priority meansv < c; for NPEDF, dynamic priority means the

deadline ofTc is later than that ofTv).

• The culprit taskT
′q
c is executing at timer′.

Proof: Suppose the contrary is true that all the task instances thatare executed

betweenr′ and the deadline miss are of (static or dynamic) priorities higher than

34

1.8(n−1)C 1.8(n−1)C 1.8(n−1)C 1.8(n−1)C

nC nC nC nC nC nC nC

Missed Missed

1.8nC
nC
0.2 0.6nC

−1.8C
0.4nC
+0.9C

0.6nC
+1.8C

Step 1 Step 2 Step 3

0.9C 0.9C 0.9C 0.9C

Figure 2.14: First seven periods ofT1 in the example task set

that of the victim taskTv, then by theorems 14 and 15, the victim task instance

T
′p
v would not miss its deadline, which is a contradiction. Hencean instance of the

culprit taskTc of lower (static or dynamic) priority must be executing betweenr′

and the deadline miss. Moreover, the culprit task must have started executing before

r′, otherwise by the time it starts execution, there is no outstanding computation for

all higher priority tasks including the victim taskTv, and the victim task would not

have missed the deadline. Hence the culprit task instanceT
′q
c must be executing at

time r′.

2.6 Miss Ratio

We will look at a CPU upgrade scenario where the miss ratio for NPFP/

RMA or NPEDF scheduler can be as high as1
2
. Miss ratio is defined for a task as

the number of task instances whose deadlines are missed overthe total number of

task instances initiated in that interval of time.

We assume that if a task instance is not yet started when it misses its dead-

35

line, it will never be started. If an executing task instancemisses its deadline, it does

not matter whether it is killed right away or allowed to go to completion. When the

run-time dispatcher picks a task instance for execution, the task is started even if the

remaining time to its deadline is insufficient for its advertised computation time.

Consider the following set of tasks:

Original After CPU upgrade
T1 (C, nC) ((1 − α)C, nC)
T2 (2(n − 1)C, 2knC) ((1 − α)2(n − 1)C, 2knC)
...

...
...

Tk+1 (2(n − 1)C, 2knC) ((1 − α)2(n − 1)C, 2knC)

whereC is the computation time ofT1, n is the ratio of period to computation

time of T1, k is the number of ‘long’ tasks,α is a measure of increase in CPU

performance. Figure 2.14 shows the first7 periods ofT1. Hereα is taken to be0.1,

i.e. the CPU becomes faster by10%. For ease of explanation, we group every two

periods into one step.

Consider the time left at the end of stepi,

time left = 2iαnC + (i − 1)(1 − α)C

Let k = i, the whole pattern repeats again when

time left = (1 − α)2(n − 1)C − nC

So we equate these two terms, and solve fori:

i =
n(1 − 2α) − (1 − α)

2αn + (1 − α)

36

Taking the limitn → ∞, i → 1−2α
2α

. At the end of stepi, thetotal number of

requests forT1 = 2i, thetotal number of requests missed= i − 1, so themiss ratio

= i−1
2i

. As α → 0, i → ∞, so themiss ratio→ 1
2
.

Notice that the worst case miss ratio happens whenα → 0, which may well

be the case of improperly handled clock jitters!

Theorem 17. A tight bound for the worst case miss ratio of NPEDF is1
2
.

Proof: We have already seen a scenario where the worst case miss ratio for

the NPEDF can be as high as1
2
. So we only need to show that this is also the upper

bound and the tightness follows. The intuitive observationis that there cannot be

two consecutive misses for any task.

Suppose the contrary is true that some tasks miss deadline consecutively.

Let Tv be thefirst task that misses its deadline consecutively in the execution.

By theorem 16, an instance of lower priority culprit taskT
′p
c1

must be exe-

cuting at the time the first missed request of the victim taskT ′
v arrives (c1 > v),

and an instance of lower priority culprit taskT
′q
c2

must be executing at the time the

second of the consecutive missed requests of the victim taskT ′
v arrives (c2 > v).

These two task instances must be the same instance of the sametask, i.e.

c1 = c2 and p = q, otherwise by the timeT
′q
c2

starts, there are no outstanding

computation forT ′
v so it won’t miss the first deadline. Notice that by our choice

of treating deadline miss,T ′
v would be started instead ofT

′q
c2

even if the remaining

time to deadline is insufficient for its required computation timeCv.

37

Hence a certain instance of the lower priority culprit taskT
′q
c must be exe-

cuting at the times the two consecutive missed requests of the victim taskT ′
v arrive

(c > v).

miss 1 miss 2
Tv

Tc

impossible: computation time for Tc is too long

But if T ′
c starts before the arrival time of the first missed request, and ends

after the arrival time of the second missed request, its computation time would be

longer than possible. First, we haveC ′
c > P ′

v, and for each taskTi, wherei < c,

2Pi − 2Ci ≥ Cc, hence2P ′
i ≥ 2Pi > 2Pi − 2Ci ≥ Cc ≥ C ′

c > P ′
v, so thatP

′

v

P ′

i

< 2,

i.e.
⌈

P ′

v

P ′

i

⌉

≤ 2. We will need this result at the last part of this proof.

Since the task set was originally schedulable before reduction in system

load, by construction, the longest possibleCc we can have is:

Cc ≤ 2Pv −

v
∑

i=1

Ci ·

⌊

2Pv

Pi

⌋

Notice that
⌊

2Pv

Pi

⌋

≥ 2 because∀i, 1 ≤ i ≤ v, Pi ≤ Pv. Hence when maximizing

Cc, at least two instances of each higher priority task get executed during any two

consecutive periods ofPv.

Tc

Tv

T1

Tv−1

...

Cc

38

Hence we have

C ′
c ≤ Cc ≤ 2Pv −

v
∑

i=1

Ci ·

⌊

2Pv

Pi

⌋

≤ 2Pv − 2
v

∑

i=1

Ci ≤ 2P ′
v − 2

v
∑

i=1

C ′
i

However, in order forT ′
c to cause two consecutive misses, its computation

timeC ′
c has to satisfy

C ′
c > 2P ′

v −
v

∑

i=1

C ′
i ·

⌈

P ′
v

P ′
i

⌉

≥ 2P ′
v − 2

v
∑

i=1

C ′
i ≥ 2Pv − 2

v
∑

i=1

Ci

miss 2
miss 1

Cc

...

Tv−1

T1

Tv

Tc

which is a contradiction. In the equation,
⌈

P ′

v

P ′

i

⌉

counts the maximum number

of deadlines of taskT ′
i that falls inside the second period of taskT ′

v in the graph.

So, there cannot be two consecutive misses for any task. Hence the miss

ratio is at most1
2
, and this is a tight bound for NPEDF scheduling policy.

Corollary 18. With NPEDF and our choice of treating deadline miss as in the

previous section, progress is guaranteed to all tasks in thetask set.

Proof: Since theorem 17 tells us that there could not be two consecutive

misses for any task, there must be progress in any two adjacent periods for any

task.

39

2.7 Conclusion

Non-preemptive scheduling is known to be NP-hard. Nevertheless, non-

preemptable resources account for most of the I/O resourcesof a computing system.

Therefore, a properly virtualizing non-preemptable resource is very important for

any hypervisor design. However, the problem of time sharingnon-preemptable re-

sources to achieve real-time properties is not fully resolved. Notably, non-preemptive

scheduling is subject to certain anomalies whereby a schedulable system may be-

come unschedulable when the total system load is reduced (asopposed to increased).

We say that a scheduling policy is robust for a task set if it preserves the

schedulability of the task set under reduction in system load. Both the PFP and

PEDF schedulers are robust, while none of the NPFP/RMA nor theNPEDF sched-

uler is robust, even for the single processor case. In general, schedulability condi-

tions do not necessarily guarantee robustness. Furthermore, a scheduling anomaly

may happen even when the utilization factor tends to zero, when there are as few as

only two job sizes in the task set, and when all the job sizes are harmonics. Testing

(or simulation) cannot solve the problem, because for any testing approach, there

exists a task set whose anomaly cannot be detected. There canbe an infinite number

of anomalous regions too. We then study the effect of the scheduling anomaly on

deadline misses. We proved that a tight bound for miss ratio is 1
2

under reduction in

system load for the NPEDF scheduler.

40

Chapter 3

Solutions to the Non-Preemptive Robustness Problem

A real-time scheduler is robust (sustainable) for a certaintask set if its

schedulability is preserved under lighter system load by the scheduler. The first

part of this chapter shows that non-preemptive robustness of a zero-concrete pe-

riodic task set against increase in period is sufficient to guarantee non-preemptive

robustness for all variants of the task set. This proof includes the corresponding

concrete or non-concrete periodic and sporadic task sets against any kind of reduc-

tion in system load.

Based on this result, the second part of this chapter gives thenecessary and

sufficient conditions for robustness for both Non-Preemptive fixed-priority (NPFP)

and Non-Preemptive earliest-deadline first (NPEDF) schedulers under both discrete

time and dense time assumption separately. We also look at some special cases

where simplication could be made.

3.1 Introduction

A major advance in real-time scheduling theory started by the seminal work

of Liu and Layland [32] has been based mostly on preemptive schedulers. In prac-

tice, however, non-preemptive schedulers have been widelyused in the avionics

41

industry and other safety-critical applications for various reasons such as ease of

testing for timing compliance and the minimization of context switching overhead.

In recent years, a new concern increasingly makes non-preemptive sched-

ulers attractive for use in real-time applications, namelythe difficulty in obtain-

ing accurate execution time bounds in modern processor architectures that exploit

heavy pipelining and caching techniques. The result is thatperformance analysis

has to be overly conservative in the choice of execution timenumbers in the case

where compliance to hard real-time constraints must be demonstrated to the certi-

fication authorities, or that a delicate tradeoff must be made between using more

optimistic execution time numbers and accepting the possibility of missing some

deadlines in the case of softer real-time constraints. Thischoice is increasingly

difficult to make as the variance in execution time can be a factor of 10 or higher

in modern computer architectures, especially where heavy context switching is in-

curred by preemptive schedulers. The end result is the loss of predictability in

real-time performance.

This situation is ameliorated by the use of non-preemptive schedulers for

which task interrupts are not allowed and the effect of caching on timing predictabil-

ity is easier to analyze and control. However, there is a price to pay for the use of

non-preemptive schedulers including weaker schedulability bounds and, less obvi-

ously, the loss of robustness against variation in resourceusage parameters [38], a

phenomenon that has also been referred to as sustainability[7]. Whereas the degra-

dation in schedulability bounds could be somewhat counter-balanced by a decrease

in the length of the blocking factor, the loss of robustness is a direct consequence of

42

non-preemption and complicates the testing and verifiability of real-time systems.

In this chapter, we present some general results in non-preemptive real-time

scheduling with respect to the issue of robustness. Chapter 2has shown that non-

preemptive schedulable task set may become unschedulable under reduction in sys-

tem load. A scheduler isrobustfor a certain task set if it preserves schedulability

under reduction in system load. We analyze the necessary andsufficient condi-

tions for robustness of the non-preemptive earliest deadline first (NPEDF) and non-

preemptive fixed priority (NPFP) schedulers for both periodic and sporadic task

models, both discrete and dense time models, and both concrete and non-concrete

task sets.

A preference for non-preemptive scheduling disciplines calls for formal in-

vestigation of the notion of robustness as we shall pursue inthis chapter. In fact,

many avionics applications already adopt at least limited non-preemption because

of data locking issues. It is commonly held that by introducing a blocking term

which is equal to the longest task, well known results such asthose in RMA analy-

sis can also be applied to non-preemptive priority schedulers, but as far as we know,

this has never been justified in open literature. Our resultsin the last part of this

chapter provide a formal justification for this “folk knowledge”.

3.1.1 Task Model

A periodic / sporadic taskis characterized by a pair:Ti = (Ci, Pi), where

each request for service ofTi requiresCi units of time and two successive requests

are separated byexactly(periodic) /at least(sporadic)Pi time units. Each request

43

results in atask instance. A periodic / sporadic task setis a set ofn periodic /

sporadic tasks(C1, P1), . . . , (Cn, Pn) whereCi, Pi are the computation time and

period / minimum separation respectively for taskTi.

If a task set has a fixed release time for the first instances of all its tasks, it

is called aconcrete task set, otherwise it is anon-concrete task set. A non-concrete

task set is a set of concrete task sets over all possible release times, i.e., arbitrary

release times for its first task instances. Azero-concrete task setis a special case of

concrete task set where the release times of all first task instances are at precisely

time 0. (See figure 3.1).

task
instance

(concrete)
task

non−concrete
task set

concrete
task set

zero−concrete
task set

Figure 3.1: Set relationship in our task model

The deadline for each task instance is assumed to be at the endof their

respective period or minimum separation. Time could bediscretewith a minimum

quantum, ordenseby taking on values over the set of real numbers.

We use the following abbreviation in this chapter: CP (concrete periodic),

CS (concrete sporadic), NCP (non-concrete periodic), NCS (non-concrete sporadic),

ZCP (zero-concrete periodic) and ZCS (zero-concrete sporadic).

44

We only consider non-preemptive eager schedulers. By non-preemptive, we

mean that a task instance must be allowed to go to completion uninterrupted once

it is selected for execution. Byeager scheduler(also callednon-idling or greedy

schedulerin some literature), we mean that the CPU must not be let idle whenever

there is any ready (released) task instances. In particular, we explore the properties

of a few eager schedulers like the Non-Preemptive Fixed-Priority (NPFP) scheduler

and the Non-Preemptive Earliest-Deadline-First (NPEDF) scheduler in this chapter.

An NPFP scheduler always selects for execution the task thathas the highest

priority. With Rate Monotonic Assignment (RMA) of priority, taskTi has a higher

priority than taskTj iff Pi ≤ Pj. For simplicity, we shall adopt the convention

for NPFP scheduler that taskTi is assigned a higher priority than taskTj iff i <

j. An NPEDF scheduler always selects for execution the task whose deadline is

the nearest, hence the priority assignment for NPEDF scheduler is dynamic, and

changes over time.

3.1.2 Reduction in System Load Revisited

The definition of robustness [39] is closely coupled with theconcept of re-

duction in system load. There are two basic components of reduction in system

load:

• decrease in computation time(↓C)

• increase in period(or minimum separation) (↑P)

45

Many common forms are special cases or a combination of the above two

components. For example,deletion of taskis a special case where the computation

time is decreased to0 and the period is increased to∞; CPU upgrade or overclock

is another special case where the computation times of all tasks are reduced by the

same factorα.

Blocking factor1 could also be thought of as a special case of↓C (by treat-

ing the blocking factor as a task with the highest priority inthe system). When a

scheduler is robust for a certain task set with blocking factor, it remains schedulable

when the blocking factor is reduced or removed.

A reduction in system load could beadvertised(run-time dispatcher knows

the exact amount of (decreased) computation time and (increased) period of all

task instances by the time it dispatches them), orunadvertised(run-time dispatcher

has no idea if a task instance would finish early once it is started, or if the next

task instance would arrive late once the previous one finishes). If the system load

reduction is advertised, the scheduler could spend some time computing the optimal

schedule; however, the unadvertised ones are more common and does more harm.

There are two kinds of↑P . (1)Restrictive↑P (usually happens when adver-

tised) means that all task instances have the same (increased) period thus keeping

its periodicity. (2)General↑P (usually happens when unadvertised) may leave the

different instances of the same task having their periods increased to a different ex-

1Blocking factoris a term that is used in non-preemptive scheduling analysisto capture the
maximum amount of time a released higher priority task has towait before it could start execution
due to another lower priority task that is executing and thatcannot be preempted.

46

tent. Restrictive↑P is a special case of the general↑P . The general↑P resembles

the definition of asporadic task, hence some known schedulability analysis results

of sporadic task set could be borrowed. In this regard, sporadic task sets could also

be considered as manifestations of the general↑P .

3.1.3 Robustness Revisited

A task set isrobustunder a certain scheduler if its schedulability is preserved

under reduction in system load. A scheduler isrobustif it is robust for all task sets.

Chapter 2 has shown that in non-preemptive scheduling, many schedulable task sets

become unschedulable under reduction in system load, i.e. they are not robust.

We call itgeneral robustnessif schedulability is preserved under any reduc-

tion in system load. We also talk about special robustness, e.g. schedulability is

preserved specifically under↑P . If a task set under a certain scheduler is robust

against both↑P and↓C, then by transitivity, it is also robust against any reduction

in system load, therefore qualifies for general robustness.

3.2 Related Work

Different words have been used in the literature to mean the same thing. For

example, the concept ofrobustnesswas coined asstability in Deogun et. al [17]

andsustainabilityin Baruah et. al. [7] [11]; the concept ofculprit taskwas coined

asusurper taskin Deogun et. al. [17].

However, some of the previous work assumed task models different than

ours. While we adopted the periodic and sporadic task models [32], Deogun et.

47

al. assumed exactly one task instance for each task, with fixed delay between the

finish time of the previous task instance and the release timeof the next instance.

We believe the periodic and sporadic task models are so widely deployed that their

non-preemptive robustness is worth studying. Also, they are not assuming eager

scheduler, whereas using an eager scheduler is important inour model because un-

der non-advertised reduction in system load, no scheduler has any fore-knowledge

to insert idle time in anticipation of unarrived task instances.

No previous work addresses the necessary and sufficient conditions for non-

preemptive robustness over the full spectrum of task modelsas does this chapter.

Burns and Baruah [7] [11] considered sustainability mainly for preemptive

schedulers. Their non-preemptive test requires determination of a minimumRi that

could be obtained by exhaustive search in discrete time but impossible with dense

time. Even with discrete time, our test has better running time.

Jeffay et. al. [28] provided a necessary and sufficient condition for schedu-

lability of CS, NCS and NCP tasks. Their results are very useful and inspiring, but

they are limited to the NPEDF scheduler under discrete time assumption. In this

chapter, we explore both the NPEDF and NPFP schedulers underboth discrete and

dense time assumptions.

3.3 Properties of Non-Preemptive Robustness

Chapter 2 gave some useful properties of non-preemptive robustness. Let

us explore more of these properties here. They lead to the conclusion that it is

48

sufficient to check for non-preemptive robustness by looking at just the ZCP task

set against↑P .

This section explores non-preemptive robustness in general without refer-

ence to any particular scheduler. We will add some famous non-preemptive sched-

ulers to the picture in section 3.4.

3.3.1 Concrete Robustness and Non-Concrete Schedulability

Jeffay et. al. [28] has shown that the non-preemptive schedulability condi-

tions of NCP task set is exactly the same as that of the NCS task set. In the next

theorem, we are going to show that the non-preemptive schedulability conditions in

this case are equivalent to its non-preemptive robustness conditions.

Theorem 19. Non-preemptive robustness of a CP/CS task set against↑P is equiv-

alent to non-preemptive schedulability of the corresponding NCS task set.

Proof: Let τ = {T1, T2, . . . , Tn} be a NCS task set with arbitrary release times

r′i, and whereTi = (Ci, Pi), for 1 ≤ i ≤ n. LetT = {(T1, r1), (T2, r2), . . . , (Tn, rn)}

be the corresponding CP/CS task set whereri is the release time for the first instance

of Ti.

(→) Given thatT is non-preemptively robust against↑Pi, we construct a

task setT ′ of increasedP ′
i as follows. Lett = max1≤i≤n(ri + Pi). (See figure 3.2).

For any values of release timesr′i (from task setτ), where1 ≤ i ≤ n, let

the release time of the second instances of thei-th task inT ′ bet + r′i. Afterwards,

all task requests inT ′
i assume the same pattern as in task setτ . (See figure 3.3).

49

r2 r1 r3r4r5 t

T2

T1

T3

T4

T5

Figure 3.2: Determination oft from task setT

T2

T1

T3

T4

T5

t+r1’
t+r3’

t+r5’
t+r2’

t+r4’

Figure 3.3: Construction of task setT ′

SinceT is non-preemptively robust, we conclude thatT ′ is non-preemptively

schedulable. By our construction, there is no outstanding computation at timet, so

the task set (whose release times arer′i) formed by chopping off the firstt units of

time from task setT ′
i is also non-preemptively schedulable. (See figure 3.4).

Since the derivation is valid for allr′i, the NCS task setτ is non-preemptively

schedulable. Therefore, non-preemptive robustness of CP/CStask set against↑P

implies non-preemptive schedulability of the corresponding NCS task set.

50

T2’

T1’

T3’

T4’

T5’

r5’ r3’ r1’ r2’ r4’

Figure 3.4: Back toτ with arbitraryr′i

(←) A CP/CS task setT ′ of ↑ P is itself an instance of the NCS task set

τ . Given thatτ is non-preemptively schedulable, we conclude thatT ′ is also non-

preemptively schedulable. Hence the original CP/CS task setT is non-preemptively

robust. Hence non-preemptive schedulability of NCS task setimplies non-preemptive

robustness of the corresponding CP/CS task set against↑P .

Corollary 20. The following statements are equivalent:

1. Non-preemptive robustness of CP task set against↑P

2. Non-preemptive robustness of CS task set against↑P

3. Non-preemptive robustness of NCP task set against↑P

4. Non-preemptive robustness of NCS task set against↑P

Proof: By theorem 19, items 1 and 2 are equivalent to non-preemptive NCS

schedulability (let’s call it item 0). When rephrased, non-preemptive robustness of

any instanceof a NCP task set against↑P (i.e., item 3) is equivalent to the same

51

item 0. The former becomes non-preemptive robustness of NCP task set against↑P

(item 3).

Finally, by the nature of a sporadic task set, item 4 is equivalent to its own

non-preemptive schedulability. We show this by contrapositivity: (→) If such a

sporadic task set (items 4) is not non-preemptively robust,then there exists a con-

crete instance of↑P that is non-preemptively unschedulable. This instance is itself

also a concrete instance of the original NCS task set. Thus theNCS task set is

non-preemptively unschedulable. (←) And anything that is unschedulable is auto-

matically not robust. By transitivity, all the above items 1 to 4 are equivalent to one

another.

Since non-preemptive robustness of periodic / sporadic task sets against↑P

does not depend on the first release times of each task, in whatfollows we only look

at ZCP task set, i.e. the release time of the first instances of all tasks are at time0.

The result is automatically applicable to all CP/CS/NCP/NCS task sets against↑P .

3.3.2 Increase in Period / Minimum Separation (↑P) vs.
Decrease in Computation Time (↓C)

↓C causes anomaly only when it creates a priority inversion. Weare going

to show in the next theorem that any such priority inversion could be simulated

by ↑P . If a task set is non-preemptively robust against↑P for a scheduler, then

any such priority inversion cannot result in anomaly, including those induced by

↓C. Hence the task set is also non-preemptively robust against↓C for the same

scheduler.

52

Theorem 21. Non-preemptive robustness of a CP/CS task set against↑P is suffi-

cient to guarantee non-preemptive robustness of the same task set against↓C.

Proof: Suppose the contrary is true that a CP/CS task setT = {(C1, P1),

(C2, P2), . . . , (Cn, Pn)} is non-preemptively robust against any↑ P : {(C1, P
′
1),

(C2, P
′
2), . . . , (Cn, P

′
n)} but misses its deadline for certain↓C: T ′ = {(C ′

1, P1),

(C ′
2, P2), . . . , (C ′

n, Pn)}. Let t be the time of the earliest deadline miss. LetT ′
v be

the task that misses its deadline at timet and letr′(= t−Pv) be the request time of

that task instance. LetT ′
c be the task executing at timer′ and lets′ be the start time

of that task instance. (See figure 3.5).

Tc’...

Tv’

s’ r’ t

Pv

Figure 3.5: Identification of time pointss′, r′ andt

Consider another CP task setT ′′ with the sameCi andPi but with the fol-

lowing release times. Let the release time of taskT ′′
c be at times′, and the release

time of all other tasks be at timer′. T ′′
c will start execution at times′ because it

is the only released task then. Betweenr′ andt, the total demand for computation

time is no less than inT ′, because there are now the maximum number of requests

for each task, and the computation time for each task is also restored toCi. Hence

if T ′
v misses its deadline att, then the task setT ′′ would also miss its deadline no

later than timet.

53

However, asT is non-preemptively robust against↑P , according to corol-

lary 20, T ′′ is non-preemptively schedulable as an instance of the NCP task set,

which is a contradiction. SoT must also be non-preemptively robust against↓C.

Corollary 22. Non-preemptive robustness of CP task set against↑ P (item 0) is

equivalent to the following general non-preemptive robustness:

1. Non-preemptive robustness of CP task set

2. Non-preemptive robustness of CS task set

3. Non-preemptive robustness of NCP task set

4. Non-preemptive robustness of NCS task set

Proof: This follows directly from corollary 20 and theorem 21. By theo-

rem 21, item 0 is equivalent to item 1. By corollary 20, item 0 isequivalent to non-

preemptive robustness of CS task set against↑P , which by theorem 21 is equivalent

to item 2.

This could be generalized to items 3 and 4 because the derivation above is

valid for any instanceof the NCP/NCS task set. So, non-preemptive robustness of

NCP task set against↑P is equivalent to item 3; and that non-preemptive robustness

of NCS task set against↑P is equivalent to item 4. Corollary 20 shows them to be

equivalent to item 0 too. Hence all the above items are equivalent to one another.

54

In what follows, we will consider the non-preemptive robustness of only the

ZCP task set against↑P , and the result automatically applies to all task sets against

both↑P and↓C.

3.4 Common Non-Preemptive Schedulers

Next, we derive necessary and sufficient conditions on task set to guaran-

tee its robustness for both NPEDF and NPFP under discrete time or dense time

separately.

3.4.1 Discrete-Time, NPEDF Scheduler

Jeffay et. al. [28] proposed a necessary and sufficient condition for NPEDF

schedulability of NCP task, NCS task and CS task. We want to provethat this is

also the necessary and sufficient condition for NPEDF robustness under discrete

time. A ZCP task is a special case of the CS task. For the sake of easy reference,

Jeffay et. al.’s NPEDF schedulability condition is specialized to the case of ZCS

task and reproduced here:

Theorem 23. (special case of theorem 4.1 in [28])Let T = {T1, T2, . . . , Tn},

whereTi = (Ci, Pi), be a set of ZCS tasks sorted in non-decreasing order by the

minimum separationPi (i.e. for any pair of tasksTi andTj, if i > j, thenPi ≥ Pj).

If T is schedulable, then

1.
∑n

i=1
Ci

Pi
≤ 1

2. ∀i, 1 < i ≤ n; ∀L, P1 < L < Pi :

55

L ≥ Ci +
i−1
∑

j=1

⌊

L − 1

Pj

⌋

· Cj

A direct application of the theorem does not establish robustness because

the ∀L term above expands under↑ P . It is easy to see why this condition is a

sufficient condition for NPEDF robustness of CP task set. We next prove that this

is also a necessary condition for ZCP task set.

Theorem 24.The condition in theorem 23 is also a necessary condition forNPEDF

robustness of ZCP task set against↑P .

Proof: Suppose the condition does not hold, we construct a task setT ′ of

reduced system load where there is a deadline miss. Lett = lcm(P1, P2, . . . , Pn)

is the least common multiple of all the periods. Consider whenthe release time of

the second instance of taskT ′
i is delayed to time2t− 1. By our construction2, there

is no outstanding computation at time2t − 1, so taskT ′
i begins execution at time

2t − 1. Consider the time interval from2t − 1 to 2t + L − 1. Since the second

condition does not hold, the total available time is less than the requested amount

of time, so there is a deadline miss no later than time2t + L − 1.

Now, consider the case where a reduction in system load is↓C. Both in-

equalities in Jeffay et. al.’s conditions continue to hold whenCi decreases. It means

that once the above schedulability conditions are met, it remains schedulable under

↓C. It also means that under↓C, a ZCP task set remains robust against↑P for

2With discrete time,Ci ≥ 1. With eager scheduler and all first task instances arrive at time 0,
there cannot be outstanding computation at time2t−1 when taskTi is taken out of the time interval
[t, 2t), otherwise the original task set would not have been schedulable.

56

NPEDF scheduler. Put it together, Jeffay et. al.’s schedulability condition in the-

orem 23 is exactly the necessary and sufficient conditions for NPEDF robustness

of ZCP task set if discrete time is adopted. (The same conclusion could also be

derived by applying theorem 21).

Alternatively, when translated to the terminology of this chapter, NPEDF

schedulability of ZCS task sets is equivalent to NPEDF robustness of ZCP task

sets, if the only kind of reduction in system load allowed is↑P . Hence if discrete

time and NPEDF scheduler are adopted, and the only kind of reduction in system

load allowed is↑P , then Jeffay et. al.’s necessary and sufficient condition for ZCS

schedulability is exactly the necessary and sufficient condition for ZCP robustness.

In fact, by corollary 22, we conclude that theorem 23 is also the necessary and

sufficient conditions for NPEDF robustness of CP/CS/NCP/NCS task sets.

The running time of this test isO(n2Pmax), wherePmax = max1≤i≤n Pi.

3.4.2 Dense Time, NPEDF Scheduler

Theorem 23 does not work for dense time because the clause∀L, P1 <

L < Pn makes it computationally intractable. Also,L − 1 in the numerator would

becomeL − δ for infinitesimally smallδ. This is in accordance with section 2.4

that testing cannot solve the anomaly problem because no testing can detect all

problems.

According to theorem 16 (theorem 11 of [39]), whenever thereis a deadline

miss, a culprit task could be identified. For easy reference,the theorem is repro-

duced as follows:

57

Definition 25. (reproduction of theorem 16)For both NPFP/RMA and NPEDF,

assume the first request of all tasks arrive together. If a certain instance of victim

taskT
′p
v whose request time isr′ misses a deadline after reduction in system load,

then there exists an instance of a culprit taskT
′q
c satisfying these properties:

• The culprit taskTc is of lower priority than the victim taskTv (For NPFP/

RMA, static priority meansv < c; for NPEDF, dynamic priority means dead-

line ofTc is later than that ofTv).

• The culprit taskT
′q
c is executing at timer′.

As implied directly from the definition, for NPEDF, the deadline miss (dead-

line of T
′p
v) must occur before the end of the period ofT

′q
c (deadline ofT

′q
c), assum-

ing relative deadlines are equal to periods.

Theorem 26. Let T = {T1, T2, . . . , Tn}, whereTi = (Ci, Pi), be a zero-concrete

task set ofn tasks scheduled by NPEDF. The task set is robust against↑ P iff

∀i, 1 ≤ i ≤ n, T remains schedulable during the interval[0, Pi] when taskTi is

given the highest absolute priority, with all other priorityassignment remaining

the same as EDF.

Proof: (←) If taskTi could ever be the culprit task, it would cause a deadline

miss withinPi time when being promoted to the highest priority. So if the task set

remains schedulable whenTi is promoted to the highest priority, thenTi cannot be

a culprit task. If no task could act as a culprit task, the taskset is robust for NPEDF.

58

(→) Suppose the condition does not hold for a certain taskTi in the task set,

i.e., taskTi causes deadline miss in taskTj when promoted to the highest priority,

we construct a scenario with↑P where the task set becomes unschedulable. Let

the first instances of all tasks start at time0. Let the second instances of all tasks

except taskTi start at time2Pmax while the second instance of taskTi start at time

2Pmax − δ for a sufficiently smallδ. By the time2Pmax − δ, there is no outstanding

computation, so taskTi is the only released task and it begins execution. Then all

tasks request at the maximum frequency. This causes taskTj to miss the deadline.

Hence it is also a necessary condition.

According to corollary 22, theorem 26 also holds for all of CP/CS/NCP/

NCS task sets and under all kinds of reduction in system load.

Since bothCi andPi remain the same when evaluating the condition above,

the number of steps in the evaluation is finite and computationally tractable. The

running time for this algorithm isO(Pmax

Cmin
· n log n), wherePmax = max1≤i≤n Pi

andCmin = min1≤i≤n Ci are the maximum period and minimum computation time

of all tasks in the task set respectively.Pmax

Cmin
is the maximum number of non-

preemptive scheduling events during each test. Each scheduling event involves one

priority queue operation which isO(log n) and the test is repeatedn times once for

each task in the task set.

3.4.3 Discrete or Dense Time, NPFP Scheduler

Let Pmax = max1≤i≤n Pi. When there is a priority inversion, letTc =

(Cc, Pc) be thepotentialculprit task that may cause a deadline miss to thepotential

59

victim taskTv = (Cv, Pv). Instead of checking for a deadline miss up toPc from

the priority inversion as in the case of NPEDF, we need to check up to 2Pc for

NPFP/RMA, and up to2Pmax for general NPFP.

Theorem 27. Let T = {T1, T2, . . . , Tn}, whereTi = (Ci, Pi), be a zero-concrete

task set ofn tasks schedulable by an NPFP scheduler with priority assignment w.

The following constitutes the necessary and sufficient condition for robustness:

∀i, 1 ≤ i ≤ n, τ remains non-preemptively schedulable during the interval[0 . . .

2Pmax] (or [0 . . . 2Pc] for NPFP/RMA) when taskTi is promoted to the highest pri-

ority, with all other priority assignments the same as inw.

Proof: According to theorem 21, we consider only↑ P . Since the culprit

task must be executing by the time the victim task is released, the time interval

between start of execution of culprit task instance to deadline miss of victim task

instance is less thanPv + Cc. For NPFP/RMA, we havePv < Pc andCc < Pc,

soPv + Cc < 2Pc and for general NPFP, we havePv ≤ Pmax andCc < Pmax, so

Pv + Cc < 2Pmax.

If task i could ever be a victim task, then it would have caused deadline miss

within a time interval of2Pmax for general NPFP and2Pi for NPFP/RMA when it

is promoted to the highest priority. If there is no deadline miss whenTi is promoted

to the highest priority, thenTi cannot be a culprit task. If none of the tasks could be

a culprit task, there could not be any deadline miss under reduction in system load,

hence the task set is robust.

60

On the contrary, if taski causes taskj to miss a deadline within the said

time interval when taski is promoted to the highest priority, we can construct a

task set of reduced system load in which taski is the culprit task and taskj is the

victim task that misses the deadline:

Let the first instances of all tasks start at the same time. Letthe second in-

stances of all tasks except taskTi start at time2Pmax while the second instance of

taskTi start at time2Pmax − δ, whereδ = 1 for discrete time andδ is a sufficiently

small value for dense time. By the time2Pmax − δ, there is no outstanding compu-

tation, so taskTi as the only released task is selected for execution. Then alltasks

request at their maximum frequency. This causesTj to miss its deadline. Hence it

is also a necessary condition.

According to corollary 22, theorem 27 also holds for all of CP/CS/NCP/

NCS task sets and under all kinds of reduction in system load.

The running time of this test isO(Pmax

Cmin
·n log n), wherePmax = max1≤i≤n Pi

andCmin = min1≤i≤n Ci are the maximum period and minimum computation time

among all tasks in the task set respectively.2Pmax

Cmin
is the maximum number of non-

preemptive scheduling events during the time period under test. Each scheduling

event involves a priority queue operation which isO(log n). The test is repeatedn

times over all tasks.

61

3.5 Special Cases for Non-preemptive Robustness

In order to not miss deadlines for non-preemptive real-timeapplication, it

is important to know the criteria for non-preemptive robustness. While a necessary

and sufficient condition is often too complicated to use, we present some sufficient

conditions with reasonable utilization bounds.

3.5.1 Geometric Envelope Task Set

When the sum of computation time of all tasks in the set do not exceed the

shortest period, the task set is obviously robust. The utilization factor for such a

task set could still be reasonably high. Consider the following parameterized task

set normalized toP1 = 1

T1

(

β1 ·
(

1 − 1
x

)

, 1
)

T2

(

β2 ·
(

1 − 1
x

)

· 1
x
, x

)

...
...

Ti

(

βi ·
(

1 − 1
x

)

· 1
xi−1 , x

i−1
)

...
...

wherex > 1 and∀i, 0 < βi ≤ 1. Let β = min(βi). We can see that:

∞
∑

i=1

Ci =
∞

∑

i=1

βi ·

(

1 −
1

x

)

·
1

xi−1

≤
∞

∑

i=1

(

1 −
1

x

)

·
1

xi−1

=
1 − 1

x

1 − 1
x

= 1 = P1

so the task set is robust against reduction in system load forNPFP/RMA and

62

NPEDF scheduling policies. The utilization factor

U =
∞

∑

i=1

Ci

Pi

=
∞

∑

i=1

βi ·
(

1 − 1
x

)

· 1
xi−1

xi−1

≥ β ·
∞

∑

i=1

(

1 − 1
x

)

· 1
xi−1

xi−1

≥ β ·
1 − 1

x

1 − 1
x2

= β ·
x2 − x

x2 − 1

= β ·
x

x + 1

Taking the limitx → 1, U → β · 1
2

and taking the limitx → ∞, U → β.

As an example, supposex = 2 andβ = 0.9, meaning that the anomaly-free task

set deviates from the geometric series envelope by at most 10%, then the utilization

factor can be as high as3
5
≤ U ≤ 2

3
.

3.5.2 No-Blocking Test

Theorem 28. Let an arbitrary taskTi within a task setM be schedulable under

NPFP/RMA. TaskTi remains schedulable under reduction in system load if

max
i+1≤r≤N

Cr ≤ Pi −

i
∑

j=1

Cj ·

⌈

Pi

Pj

⌉

If all tasks within the task setM remain schedulable under reduction in

system load, then NPFP/RMA is robust for this task setM under reduction in system

load.

Proof: Suppose the contrary is true that a certain miss occurs for taskTi after

reduction in system load. Let the request time and the deadline for the miss ber

63

andd respectively. There could be at most one lower priority taskbetweenr andd,

otherwise by the time the second lower priority task is scheduled to execute, there is

no outstanding computation forTi and hence it would not have missed the deadline.

Let t be the latest time no later thanr with no outstanding computation.

By theorem 16, there exists at least one culprit task betweent andd. Let the start

time of the latest culprit task betweenr andd be s. At time s, there could be no

outstanding computation for tasks 1 toi, sos < r otherwise the miss could not have

occurred.

Consider the time betweens andd. Except the culprit taskTc, the victim

taskTv is the lowest priority task betweens andd. So by lemma 11, the response

time ofTv is the longest when the requests of all the higher priority tasks are aligned

with s. After reduction in system load, the maximum amount of computation time

demanded betweens andd is:

C ′
c +

i
∑

j=1

C ′
j ·

⌈

d − s

P ′
j

⌉

≤ Cc +
i

∑

j=1

Cj ·

⌈

d − s

Pi

·
Pi

Pj

⌉

≤ Cc +
d − s

Pi

·
i

∑

j=1

Cj ·

⌈

Pi

Pj

⌉

<
d − s

Pi

·

(

max
i+1≤r≤N

Cr +
i

∑

j=1

Cj ·

⌈

Pi

Pj

⌉

)

≤
d − s

Pi

· Pi = d − s

The total required computation time is less than the available time, so there

64

could not be a deadline miss atd, which is a contradiction. Hence the task set

remains schedulable using NPFP/RMA under reduction in system load.

Note that this is a sufficient but not necessary condition.

3.5.3 Necessary and Sufficient Condition of Robustness for Task Set of Suc-
cessively Divisible Period

A task set withN tasks is said to exhibit successively divisible period if

∀i, j, 1 ≤ j ≤ i ≤ N,

⌊

Pi

Pj

⌋

=
Pi

Pj

=

⌈

Pi

Pj

⌉

A common example would be when the periods form a subset of thegeometric

series.

Theorem 29. Let an arbitrary taskTi within in task setM with successively divisi-

ble periods be schedulable under NPFP/RMA. A necessary and sufficient condition

for taskTi to remain schedulable under reduction in system load is

max
i+1≤r≤N

Cr ≤ Pi −

i
∑

j=1

Cj ·
Pi

Pj

If all tasks in the task setM remains schedulable under reduction in system load,

then NPFP/RMA is robust for this task set under reduction in system load.

Proof: Substituting the definition of successively divisible period that∀i, j :
⌈

Pi

Pj

⌉

= Pi

Pj
into theorem 28, we see that the above inequality is a sufficient condition

of robustness. So in what follows, we only need to prove that this is also a necessary

condition.

65

Suppose the inequality above does not hold, we have

∃i, r, 1 ≤ i < r ≤ N, Cr > Pi −
i

∑

j=1

Cj ·
Pi

Pj

and we want to construct a certain reduction in system load, where there is a dead-

line miss in some taskTj, where1 ≤ j ≤ i.

Let x = Pr. From time0 to 2x, there are two instances of taskTr. Consider

if we increase the period of taskTr from Pr to P ′
r = 2x − δ for some very smallδ.

Given thatδ is very small, we can conclude thatδ < Cr, so there could be

no outstanding computation for any task at time2x−δ after this reduction in system

load. Now, the task instanceT 2
r would start right at its request time2x − δ, while

requests for all other tasks arrive simultaneously at time2x.

From time2x to 2x + Pi, the exact amount of works that needs to be done

in order to avoid any deadline miss for tasksTj, 1 ≤ j ≤ i, would be greater than

the total available time

Cr +
i

∑

j=1

Cj ·
Pi

Pj

> Pi

HerePi represents a deadline for all tasksTj, where1 ≤ j ≤ i. The required

computation time is more that the total available time, so there must be one or more

deadline miss in the tasksTj, where1 ≤ j ≤ i. The situation is worse if there is

other culprit task or idling time during this period of time.

Hence the inequality is also a necessary condition of robustness. Putting

together, the inequality is a necessary and sufficient condition of robustness for task

set of successively divisible period.

66

3.6 Conclusion

The notion of robustness will become increasingly important as CPU speed

keeps on improving such that the temporal length of control tasks becomes rela-

tively short compared to the cost of context switching overhead which may incur

I/O actions and thus does not scale with CPU speed. The robustness problem is

particularly important to mobile computing because such devices are often clocked

at a range of frequencies, and adjusted at run time accordingto need. Hence it is not

sufficient to keep track of only the upper bound on resource usage. Our results in

non-preemptive robustness provides formal justification for the “folk knowledge”

that the use of the longest task in the blocking factor in RMA (preemptive priority

scheduling) analysis can also be used in non-preemptive schedulability analysis.

In this chapter, we prove that non-preemptive robustness ofa ZCP (zero-

concrete periodic) task set against increase in period (↑P) is sufficient to guarantee

robustness of the corresponding concrete or non-concrete,periodic or sporadic task

set against any kinds of reduction in system load.

Based on this result, we derived the necessary and sufficient conditions

of robustness for both Non-preemptive fixed-priority (NPFP) and non-preemptive

earliest-deadline-first (NPEDF) schedulers under both discrete time and dense time

assumptions separately. It has pseudo-polynomial runningtime and is potentially

practical for use in adaptive real-time systems where not only the timing parame-

ters but the task sets themselves may change at run time to adapt to environmental

conditions.

67

Besides the general necessary and sufficient conditions for non-preemptive

robustness, we also formulated a set of sufficient conditions for special cases, with

reasonable performance bounds. In particular, interesting properties could be de-

rived when the task set exhibits a property we called successively divisible periods.

68

Chapter 4

Time Sharing Limited-Preemptable Resources and
Mixed-Type Resources

In this chapter, we would like to examine the issue of robustness for hybrid

schedulers where task preemption is allowed in limited waysin order to strike a

balance between optimizing schedulability bounds and preserving robustness. This

can be done, for example, by restricting the frequency of task preemption by both

compilation methods and run-time enforcement mechanisms.

4.1 Introduction

Most real life examples do not fall entirely into fully preemptive nor fully

non-preemptive task models, but somewhere in-between. In sections 3.4.1 and

3.4.3, we already discussed the admission control for non-preemptive robustness

when time is discrete.

Under discrete time, events could only happen at certain time points, sep-

arated by integer multiples of a time quantumq. Without loss of generality, the

discussion in sections 3.4.1 and 3.4.3 assumedq = 1 clock cycle. We shall relax

the assumption in this chapter by adopting wall clock time instead of cycle time

and thereby allowing an arbitrary value forq. Scheduling decision, being a class of

69

events, is allowed to happen only on a subset of these time points.

Depending on the exact model where scheduling decisions areallowed to

be made, our scheduling analysis needs to be massaged to suitfor a variety of task

models. We are going to explore the robustness for some common cases in the this

chapter, including limited preemption, aperiodic tasks and mixed resource types.

4.2 Robustness for Limited Preemption

If we allow limited preemption, the performance can be much better. Lim-

ited preemption is characterized by a granularityg, which is the minimum number

of time units that a task, once scheduled, is allowed to run before it is allowed to be

preempted. Note thatg is an integer multiple of the time quantumq.

Theorem 30. If we allow limited preemption with a granularity ofg, then by adopt-

ing EDF scheduler, a task won’t miss its deadline by more thang − 1 time units

under reduction in system load.

Proof: Mok et. al. [35] have proved that if the utilization factorU ≤ 1, then

by adopting EDF scheduler with granularityg, no task would ever miss its deadline

by more thang − 1 time units. After reduction in system load, the utilizationfactor

becomes smaller, hence by the same argument, no task would miss its deadline by

more thang − 1 time units.

Corollary 31. If a task set is schedulable by the limited-preemptive EDF scheduler

wheng−1 time units are added to all the computation time of the tasks (or better, if

deadline is administered separately from period, thatg−1 time units are subtracted

70

from the deadline of all tasks), then no task would ever miss its deadline under

reduction in system load.

Proof: This follows directly from theorem 30.

4.3 Robustness on a Bounded Delay Resource Partition (BDRP)

In chapter 2 and 3, we discussed the preemptive and non-preemptive ro-

bustness problem on dedicated resource. In this section, weare going to apply the

robustness analysis on a BDRP that has been introduced in definition 2.

For the sake of easy reference, definition 2 is reproduced here:

Definition 32. A Bounded Delay Resource Partition (BDRP) Π is a tuple(α, ∆)

whereα is the percentage of total time the resource is available to the partition and

∆ is called thePartition Delay, which is the largest time deviation of a partition

during any time interval with regards to a uniform uninterrupted allocate of the

resource.

Consider task level scheduling (see section 1.2.1.1), we want to know if

schedulability is preserved under a reduction in system load when the task set is

scheduled on a BDRP instead of on a dedicated resource. Again, we consider the

two common schedulers Earliest Deadline First (EDF) and Fixed Priority (FP).

For a formal definition and analysis of reduction in system load, please refer

to sections 2.1.3 and 3.1.2. For a formal definition of robustness, please refer to

sections 2.1.4 and 3.1.3.

71

4.3.1 Preemptive Robustness on a Bounded Delay Resource Partition (BDRP)

A task setM = {(C1, P1), . . . , (Cn, Pn)} is schedulable on a BDRPΠ =

(α, ∆) by a certain scheduling policy if all task execution finishesat least∆ time

units before their respective deadlines.

4.3.1.1 Preemptive Earliest-Deadline-First (PEDF)

For the PEDF scheduling policy, finishing task execution before their re-

spective deadlines on a given BDRP means

∀i(1 ≤ i ≤ n),∃ti ∈ (0, Pi − ∆], Ci +
i−1
∑

j=1

ti · Cj

Pj

≤ α · ti

Since that task setM is schedulable on the BDRP, we have a set of values

t1, t2, . . . , tn satisfying the above inequality.

In addition to the criteria on∆ above, the task setM is schedulable with

PEDF on the BDRPΠ = (α, ∆) if the total utilization factor is not more than

available rate of the resourceα for the partition, i.e.U =
∑n

j=1
Cj

Pj
≤ α.

After reduction in system load, we want to make sure that the total utiliza-

tion factor remains less thanα of the partition, i.e.U =
∑n

j=1

C′

j

P ′

j

≤ α and that

there exists a set of valuest′1, t′2, . . . , t′n satisfying:

∀i(1 ≤ i ≤ n), t′i ∈ (0, P ′
i − ∆] ∧ C ′

i +
i−1
∑

j=1

t′i · C
′
j

P ′
j

≤ α · t′i

For decrease in computation time of a certain taskCk by δ (1 ≤ k ≤ n, δ >

72

0), the total utilization factor is less than before.
n

∑

j=1

C ′
j

P ′
j

=

(

n
∑

j=1

Cj

Pj

)

−
δ

Pk

<

n
∑

j=1

Cj

Pj

≤ α

We also need to look at the worst case response time. For taskTk, we taket′k =

tk ∈ (0, Pk − ∆] = (0, P ′
k − ∆], then

C ′
k +

k−1
∑

j=1

t′k · C
′
j

P ′
j

= Ck − δ +
k−1
∑

j=1

tk · Cj

Pj

< Ck +
k−1
∑

j=1

ti · Cj

Pj

≤ α · tk = α · t′k

and∀i (k < i ≤ n, otherwise ifi < k the response time of taskTi clearly remains

the same), we taket′i = ti ∈ (0, Pi − ∆] = (0, P ′
i − ∆], then

C ′
i +

i−1
∑

j=1

t′i · C
′
j

P ′
j

=

(

Ci +
i−1
∑

j=1

ti · Cj

Pj

)

−
ti · δ

Pk

< Ci +
i−1
∑

j=1

ti · Cj

Pj

≤ α · ti

= α · t′i

Hence PEDF is robust against decrease in task computation time on a given BDRP.

For increase in period of some taskPk by δ (1 ≤ k ≤ n, δ > 0), we first

consider when job priorities do not change. The total utilization factor is less than

before.
n

∑

j=1

C ′
j

P ′
j

=

(

n
∑

j=1

Cj

Pj

)

−

(

Ck

Pk

−
Ck

Pk + δ

)

<
n

∑

j=1

Cj

Pj

≤ α

We also need to look at the worst case response time. For taskTk, we taket′k =

tk ∈ (0, Pk − ∆] ⊂ (0, P ′
k − ∆], then

C ′
k +

k−1
∑

j=1

t′k · C
′
j

P ′
j

= Ck +
k−1
∑

j=1

tk · Cj

Pj

≤ α · tk = α · t′k

73

and∀i (k < i ≤ n, otherwise ifi < k the response time of taskTi clearly remains

the same), we taket′i = ti ∈ (0, Pi − ∆] ⊂ (0, P ′
i − ∆], then

C ′
i +

i−1
∑

j=1

t′i · C
′
j

P ′
j

=

(

Ci +
i−1
∑

j=1

ti · Cj

Pj

)

−

(

ti · Ck

Pk

−
ti · Ck

Pk + δ

)

< Ci +
i−1
∑

j=1

ti · Cj

Pj

≤ α · ti

= α · t′i

Hence PEDF is robust against increase in task period on a given BDRP, provided

that task priorities do not change.

Using the same construction as in section 2.2.2, it can be shown that PEDF is

also robust against increase in task period on a given BDRP whenthe task priorities

change accordingly.

In other words, PEDF scheduling policy is robust against anyreduction in

system load when applied on any given BDRP.

4.3.1.2 Preemptive Fixed Priority (PFP)

For the PFP scheduling policy, finishing task execution before their respec-

tive deadlines on a given BDRP means

∀i(1 ≤ i ≤ n),∃ti ∈ (0, Pi − ∆],
i

∑

j=1

Cj ·

⌈

ti
Pj

⌉

≤ α · ti

Since that task setM is schedulable on the BDRP, we have a set of values

t1, t2, . . . , tn satisfying the above inequality.

74

After reduction in system load, we want to find a set of valuest′1, t′2, . . . , t′n

satisfying:

∀i(1 ≤ i ≤ n), t′i ∈ (0, P ′
i − ∆] ∧

i
∑

j=1

C ′
j ·

⌈

t′i
P ′

j

⌉

≤ α · t′i

For decrease in computation time of a certain taskCk by δ (1 ≤ k ≤ n, δ >

0), then∀i (k ≤ i ≤ n, otherwise ifi < k the response time of taskTi clearly

remains the same), we taket′i = ti ∈ (0, Pi − ∆] = (0, P ′
i − ∆]

i
∑

j=1

C ′
j ·

⌈

t′i
P ′

j

⌉

=

(

i
∑

j=1

Cj ·

⌈

ti
Pj

⌉

)

− δ ·

⌈

ti
Pk

⌉

<
i

∑

j=1

Cj ·

⌈

ti
Pj

⌉

≤ α · ti

= α · t′i

Hence PFP is robust against decrease in task computation time on a given BDRP.

For increase in period of some taskPk by δ (1 ≤ k ≤ n, δ > 0), we first

consider when job priorities do not change:∀i (k ≤ i ≤ n, otherwise ifi < k the

response time of taskTi clearly remains the same), we taket′i = ti ∈ (0, Pi −∆] ⊂

(0, P ′
i − ∆], then

i
∑

j=1

C ′
j ·

⌈

t′i
P ′

j

⌉

=

(

i
∑

j=1

Cj ·

⌈

ti
Pj

⌉

)

− Ck ·

(⌈

ti
Pk

⌉

−

⌈

ti
Pk + δ

⌉)

<

i
∑

j=1

Cj ·

⌈

ti
Pj

⌉

≤ α · ti

= α · t′i

75

Hence PFP is robust against increase in task period on a givenBDRP, provided that

task priorities do not change.

Using the same construction as in section 2.2.2, it can be shown that PFP is

also robust against increase in task period on a given BDRP whenthe task priorities

change accordingly.

In other words, PFP scheduling policy is robust against any reduction in

system load when applied on any given BDRP.

4.3.2 Non-Preemptive Robustness on a Bounded Delay ResourcePartition
(BDRP)

Notice that when we assign a non-preemptive task to a BDRP, the non-

preemptive task may not always be running once it is scheduled for execution be-

cause the partition itself could be de-scheduled by the resource level scheduling

(section 1.2.1.2). In that case, once the partition is brought back for execution, the

non-preemptive task that has been running inside the partition picks up where it left

off and continues until completion (or another de-scheduling of the partition). The

task could still be treated as non-preemptive because it is aprerequisite that there

are no dependencies between different partitions in the system, so partitions could

be freely preempted even if the tasks running inside are in their respective critical

sections.

Non-preemptive Earliest Deadline First (NPEDF) and Non-preemptive Fixed

Priority (NPFP) schedulers are known to be not robust against reduction in system

load even on dedicated resources (see section 2.3. Hence they are also not robust on

76

BDRP. Instead of looking at how un-robust they are, we would instead determine

if the necessary and sufficient conditions given in sections3.4.1 and 3.4.3 could be

adapted for use on BDRP. We consider only discrete time with time quantumq in

this chapter.

We state without proof in this section the necessary and sufficient conditions

for non-preemptive robustness of concrete or non-concrete, periodic or sporadic

task sets using NPEDF on a BDRP.

Theorem 33. Let T = {T1, T2, . . . , Tn}, whereTi = (Ci, Pi), be a set of concrete

or non-concrete, periodic or sporadic tasks sorted in non-decreasing order of the

period or minimum separationPi (i.e. for any pair of tasksTi and Tj, if i > j,

thenPi ≥ Pj). If T is schedulable by NPEDF with time quantumq on a BDRP

Π = (α, ∆), then

1.
∑n

i=1
Ci

Pi
≤ α

2. ∀i, 1 < i ≤ n; ∀L, P1 < L < Pi :

α · L ≥ Ci +
i−1
∑

j=1

⌊

L − q

Pj

⌋

· Cj

4.4 Resource Level Scheduling with Aperiodic Tasks under Dis-
crete Time

Construction of BDRP by Mok et. al. [37] [36] was based on the periodic

task model. Up till now, this dissertation also assumed either the periodic task

77

model or the sporadic task model. We are going to show in this section that we may

as well construct BDRP with an aperiodic task model.

When task sets are aperiodic, we do not have the notion of period nor mini-

mum separation. Each task is equivalent to having only a single on-going instance

that needs to be scheduled and de-scheduled from time to time. Each aperidic task

is characterized by a percentageα of resource that the task demands, much like the

utilization factor in the periodic task model.

It is meaningless to talk about non-preemptive scheduling for aperiodic task

sets because each aperiodic task in the task set would go on forever. If time is

dense, we could have infinite time-slicing [32] so there is norobustness problem.

However, the robustness problem becomes interesting when we allow only limited

preemption by imposing the discrete time requirement.

4.4.1 The Problem

An aperiodic partition group consists ofn aperiodic partitions,{(Π1, Π2, . . . ,

Πn)} where each aperiodic partition is specified byΠi = (αi, ∆i). αi which is the

percentage of the resource demanded by partitioni, and∆i is the partition delay.

Let g be the scheduling granularity, which is an integer multipleof the time

quantumq. Scheduling decisions could only be made once everyg time units. We

will consider two cases, namely, wheng is a system-fixed constant, and wheng is

a variable that could be adjusted per resource.

Our goal is to find a way to partition the resource among a set ofaperiodic

78

tasks in discrete time with scheduling granularityg such that real-time application

could be run within each such partition.

Note that our partitionsΠi (1 ≤ i ≤ n) does not satisfy the definition of

Periodic Resource Partition (see definition 1) as developed by Mok et. al. [37] [36]

because ours are aperiodic. However, we still satisfy theirdefinition of a BDRP (see

definition 2) because the notion of BDRP does not intrinsicallyrequire the presence

of a constant and finite period.

The algorithm presented by Mok et. al. [37] [36] to compute the BDRPs

assumed the existence of a constant and finite period, therefore they adopted ex-

haustive search to find the optimal solution. We cannot use their offline exhaustive

search algorithm because our task model is aperiodic. We need to find an online

heuristic algorithm to compute the BDRPs with their∆ values good enough for

real-time workloads.

4.4.2 VMware ESX Server Case Study

The problem was motivated by the scheduling model in VMware ESX server.

A number of virtual CPUs (VCPU) are to be scheduled on a fixed number of phys-

ical CPUs (PCPU). Basically, a proportional share scheduler isimplemented as-

suming an aperiodic task model. The scheduler kicks in once every 50ms on every

PCPU to determine if the current VCPU should be preempted and another VCPU

should be selected for execution. Therefore this is a limited preemptive aperiodic

task model.

As a simplification, if all VMs in the system are uniprocessorVMs, then

79

VCPU migration between PCPUs are minimal and negligible. In this dissertation,

we only consider time sharing a single PCPU among many VCPUs. Wewant to be

able to reap the same real-time benefits with an aperiodic task model in the same

way as we did in periodic or sporadic task models in our previous discussion.

4.4.3 A Parametric Delay Bound∆ Solution

Given a partition group withn partitions{Πi = (αi, ∆i)} for 1 ≤ i ≤ n,

Mok et. al. [37] [36] have given a dynamic schedule whereas the partitions could

be computed using the Earliest Deadline First (EDF) scheduler if we consider each

partitionΠi as a periodic task(Ci, Pi) with Pi = ∆i

2(1−αi)
andCi = αiPi = αi∆i

2(1−αi)
.

In our limited preemptive model,Ci must be an integral multiple of the time

quantumq. Hence∃n, n ∈ Z
+, Ci = nq. We do the derivation onCi instead of

Pi becauseCi is a real quantity whereasPi is imaginary in our aperiodic model.

Re-arranging and solving for∆i, we have:

∆i =
2nq(1 − αi)

αi

We could adopt EDF on an imaginary deadlinePi for each partitioni when

we compute the partition schedule. Note that this imaginaryperiodPi does not have

to be an integral multiple ofq because it does not have a real manifestation in our

aperiodic model.

Pi =
∆i

2(1 − αi)
=

2nq(1 − αi)

2αi(1 − αi)
=

nq

αi

80

This solution keeps the resource demandαi of each partition intact, but

makes the partition delay∆i dependent upon the resource demand of the same

partitionαi as well as the time quantumq. Thus the partition delay∆i is no longer

a constant, and also no longer a parameter that could be freely specified by the user.

The only factor the user is still free to influence on the partition delay∆i is the

integern. The ability to attain high system utilization is retained becauseαi is kept

intact.

4.4.4 Why Isn’t Parametric Granularity a Good Idea?

One could argue that the situation could be further improvedif we make

the granularityg roughly inversely proportional to the resource demandα. This

way, within a certain operating range (limited by the time quantumq asg cannot

drop belowq), we could achieve BDRP with essentially the same parametersα and

∆ that are fully and independently specifiable by the user, thus not sacrificing any

performance.

However, this is not a good idea because it breaks VM isolation. Granular-

ity g is a parameter of the system whereasα and∆ are parameters of the partition.

There are many partitions in a system. If we make a system parameter dependent

upon the parameters of the (often changing) partitions running on the system, we

are breaking the isolation between the partitions. When we add or remove a par-

tition, or change the parameters of a partition, the behavior of other partitions are

also affected because the system parameterg that affects all partitions changes ac-

cordingly. This is undesirable for real-time systems.

81

4.5 Time Sharing Mixed Set of Resources

The realistic computing system contains some instances of all the above re-

source types, so it is important to be able to properly integrate the above paradigms

into a unified real-time resource scheduling framework.

Assume there is time quantumq in the system (which is realistic), periodic

and aperiodic partitions could be easily mixed because the imaginary periods de-

rived in the aperiodic partitions are compatible with thosereal periods from the

periodic partitions. They can be scheduled together with the same online Earliest

Deadline First (EDF) scheduler, provided that we treat the deadlines of periodic

partitions are half their respective periods. The divisionby 2 is to guarantee the

maximum separation of executions between two adjacent periods to be less than

the partition delay∆ requirement.

Real-time and non-realtime workloads could also be mixed by dedicating

a BDRP for non-realtime workloads. Thus failure or deadline miss from the non-

realtime workloads would not affect any other real-time workloads because they

isolated from each other by residing in different partitions.

4.6 Conclusion

All computing systems carry intrinsic minimum addressabletime quantum.

When this time quantum is significantly large, or when the nature of the workload

demands minimal interruption, we resort to using limited-preemptive scheduling.

The robustness of limited-preemptive scheduling discussed in this chapter com-

82

pletes the spectrum of real-time resource scheduling from fully-preemptable re-

sources to non-preemptable resources.

There are a variety of limited-preemptive scheduling. A periodic or sporadic

task set may allow preemption of any running task only if the task has been exe-

cuting for at least a specific number of time units. An aperiodic task set may have

its scheduling decision updated only at specific time pointsseparated from each

adjacent ones by a fixed time interval. The common theme in real-time limited pre-

emptive schedulability analysis is the presence of a delay bound. Schedulability by

common schedulers like Earliest Deadline First (EDF) or Fixed Priority (FP) is pre-

served in the limited-preemptive scenario if all task instances finish their execution

ahead of their respective deadlines by at least a certain number of time units equal

to the delay bound.

The delay bound concept is the same as the one in Bounded Delay Resource

Partition (BDRP), first introduced in chapter 1 for fully-preemptable resources.

This chapter generalizes the concept by adapting it to non-preemptive scheduling

and limited-preemptive scheduling as well. We looked at a specific case study of

VMware ESX server as an example of aperiodic limited-preemptive scheduling.

Together with the previous chapters on fully-preemptive scheduling (chap-

ter 1) and non-preemptive scheduling (chapters 2 and 3, thisdiscussion of limited-

preemptive scheduling completes the real-time schedulingpicture of all time-shared

resources. With all these pieces in place, they could be composed together for

scheduling mixed-type resources in the same system.

83

Chapter 5

The x86 Hierarchical Hypervisor

5.1 Introduction
5.1.1 Definition

A Virtual Machine (VM) is an abstraction of an execution environment

where system and/or application programs can be run. The piece of software that

provides this interface is called aVirtual Machine Monitor(VM Monitor) or hyper-

visor. There are many flavors of VM Monitors: some present a different machine

interface from that of the host (e.g. the Java Virtual Machine (JVM) [31]), others

provide an identical machine interface (e.g. VMware Workstation or ESX server).

Just as an OS abstracts the underlying hardware details to provide a software

interface for simultaneously running one or more application programs, a hypervi-

sor virtualizes the underlying hardware interface to provide (virtual) instances of

the hardware interface to simultaneously run one or more OSes. Inside a hypervi-

sor, each OS is run in a separate VM instance. In theory, a VM instance should be

able to run another copy of the hypervisor, resulting inrecursive virtualization. We

call a hypervisor participating in recursive virtualization ahierarchical hypervisor.

In theory, there could be an arbitrary number of hierarchical hypervisors participat-

ing in recursive virtualization between the actual hardware and the ultimate guest

OS.

84

We call the hypervisor that is the closest to the hardware thebottommost

level (level1), and the one that is the closest to the OS the topmost level (leveln).

For different OSes in the same system, the topmost level may reside at a numerically

different level number. From the point of view of leveli, level i − 1 is the parent

level, leveli + 1 is the next level or child level, all successive parents levels are

collectively called ancestor levels, and all successive children levels the descendant

levels.

5.1.2 Related Works

Machine virtualization has been studied for a long time [23]. Popek and

Goldberg [42] listed separate criteria for a machine architecture to be virtualiz-

able and recursively virtualizable at the system level. Specifically, the AMD/Intel

x86 CPU architecture has been shown to be not virtualizable [44] according to the

requirements. Despite that, a number of techniques have been used in various suc-

cessful attempts to virtualize the x86 architecture, notably by VMware and Xen.

VMware also has begun to support running VMware ESX server orWorkstation

inside another VMware ESX server or Workstation, but this islimited to only one

level of nesting. We explore arbitrarily nested virtualization in this dissertation.

The problem of recursive virtualization has been tackled invarious ways

before. Some adapted the machine-OS interface [30] [15] [25] while others tackled

the OS-application interface [19] [6] to make way for recursive virtualization. In

this dissertation, we base our hypervisor on unmodified x86 hardware, taking an

unmodified OS (e.g. Linux, Microsoft Windows) or “bare-metal” hypervisor as our

85

guest.

Both AMD [4] and Intel [27] introduced hardware support for virtualization.

Although the present hardware only supports a single level of virtualization, we

show in this dissertation that they are extensible to recursive virtualization. Adams

& Agesen published an analysis [1] comparing performance ofsingle-level virtu-

alization with and without hardware support. We do the analysis for multi-level

virtualization with and without hardware support.

5.2 Why Recursive Virtualization?

There are a number of scenarios for which we might need recursive virtual-

ization.

5.2.1 Debugging and Upgrading to New Hypervisor

A hypervisor could be used during the development of an OS to probe into

the machine state, capture and restore the machine state, etc. Similarly, it is also de-

sirable to have the aid of such a hypervisor in the development of new hypervisors.

A hypervisor to debug another hypervisor naturally means recursive virtualization.

When a hypervisor is upgraded, it is desirable to keep both theold and new

versions up and running for an extended period of time while guests are migrated,

so as to make sure that the new hypervisor performs correctly, or at least as well as

the old one. Recursive virtualization is needed if two versions of hypervisors must

be up and running simultaneously on a single host for comparison.

86

5.2.2 Testing Hypervisor Management Software

A specific example, encountered at VMware, is the need to testhypervi-

sor management software at a large scale. Large numbers of hypervisors must be

managed. Without recursive virtualization, this requiresan expensive setup with as

many hosts as hypervisors. With recursive virtualization,significant hardware cost

savings can be achieved by running multiple copies of VMwareESX servers within

another VMware ESX server or Workstation.

5.2.3 Hardware Feature Prototyping

The introduction of new hardware features is currently prototyped in simu-

lators, which are often slow, and do not simulate all hardware features (e.g. a sim-

ulator for the CPU may not simulate cache effects and hence ignores instructions

like WBINVD that invalidate the cache). If a new hardware feature is prototyped in

a hypervisor layer, real systems could be tested faster and the performance results

obtained may be more representative of the real system. If a hardware prototyping

hypervisor is able to run all present system programs including a hypervisor, it itself

has to support recursive virtualization.

Hardware features that can be prototyped this way include but are not lim-

ited to new instructions, more memory or processors, and enhancements to I/O

controller units.

87

5.2.4 GENI Net

The Global Environment for Network Innovations (GENI) [40]is a major

planned initiative of the US National Science Foundation tobuild open, large-scale,

realistic experimental facility for evaluating new network architecture. One of the

requirements of GENI is its sliceability, i.e. GENI must be able to be shared among

many researches running different experiments. Virtualization is at the heart of such

provision. Recursive virtualization allows for even greater flexibility (some exper-

iments are guaranteed greater access to high-cost resources) and better isolation

(experiments shall not interfere with each other).

5.2.5 Real-Time Resource Partitioning

In an open system environment, real-time resource partitioning must be per-

formed by local decisions and is therefore recursive by nature. If we can divide

resource into real-time capable partitions (see sections 1.2, 4.3 and 4.4), then the

division scheme should naturally be able to work recursively. Our next chapter

(chapter 6) deals with the real-time aspects of recursive virtualization by seeing if

the greatest timing-sensitive overhead, interrupt and exception forwarding, could

also be taken into account in recursive virtualization.

5.3 Design Issues on the x86 Architecture

There are two challenges to this research, one is to make the hypervisor

real-time capable, and the other is to make the hypervisor hierarchically capable.

This section explores how the hierarchical framework couldbe built with common

88

PC processors (the x86 architecture). Much of the results here could be extensible

to other processors including those in embedded systems.

Before we dive into details of how to recursively virtualize the processor,

the memory management, the interrupt/exception/intercept handling and the I/O

subsystem, we first look at two flavors of hierarchical hypervisor, namely, the trap-

and-emulate paradigm and the paravirtualization paradigm.

5.3.1 Trap-and-Emulate vs. Paravirtualization

There are many ways a hypervisor could be designed. Some takea trap-and-

emulate approach, others take a paravirtualization approach. The trap-and-emulate

approach is gradually replacing paravirtualization as hardware assisted virtualiza-

tion becomes more and more common. It allows the hypervisor to interoperate with

other hypervisors (developed by others or even developed inthe future).

In designing our algorithm for forwarding interrupts and exceptions, we

assume the trap-and-emulate approach. The paravirtual approach simply requires

some centralized bookkeeping to directly deliver the interrupts or exceptions to the

correct guest hypervisor. The problem is harder in the trap-and-emulate approach

because of the assumptions we make:

• The hypervisor has no way to tell whether it is running insideanother hyper-

visor or on top of real hardware (except possibly by timing analysis with the

aid of an external time source). Guests do not have any communication with

the parent hypervisor.

89

• The hypervisor does not assume anything about its guests. Itdoes not even

know whether its guests are OSes or hypervisors.

5.3.2 Processor Virtualization

The x86 architecture provides 4 rings of privileges. The OS kernel resides in

ring 0 which is the most privileged, while application programs run in ring 3 which

is the least privileged. Both AMD and Intel removed support for non-zero segment

base in their 64-bit mode. Intel further removed support forsegment limit checking

in 64-bit mode. Thus the only protection we could get is from paging. However,

paging does not distinguish between rings 0, 1 and 2 as they are collectively treated

as kernel mode. This is known as thering compressionproblem. For this reason

and for the sake of portability, we choose to stick to the use of only ring 0 (kernel

mode) and ring 3 (user mode) for all levels of the hypervisor in our design.

The challenge is to properly assign processor privilege to all levels of hy-

pervisor, the OS and application program and can still achieve isolation between

them. The hypervisor does this by properly shadowing the Global Descriptor Ta-

bles (GDT) and Local Descriptor Tables (LDT) of its guests.

5.3.2.1 Time Multiplexing

Real-time properties of each VM partition is guaranteed by adopting the

Bounded Delay Resource Partition (BDRP) scheme from section 1.2because CPU

is a fully preemptable resource. This scheme allows the CPU resource to be recur-

sively virtualizable in the real-time systems context.

90

The same real-time recursively virtualizable scheme has been shown in

sections 4.3.2 and 4.4 to be extensible to non-preemptive scheduling and limited-

preemptive aperiodic scheduling.

5.3.2.2 Binary Translation

Some x86 instructions have non-faulting access to privileged machine states,

others may incur excessive performance penalty to the hierarchical hypervisor while

propagating exceptions up and down the hierarchy. These instructions need to be

re-written with online binary translator for safe and efficient execution.

The binary translator needs to be just-in-time and translates only those guest

instructions that are about to be executed. Due to the complex control flow structure

in the x86 architecture, we cannot reliably tell ahead of time which instructions will

never get executed, and we cannot force control flow to alwaysrespect instruction

boundaries and never jump into the middle of an instruction.An online just-in-

time binary translator solves this issue by translating only those instructions that

are actually needed.

Following this line of thought, when we reach a control flow instruction,

we cannot predict which branch the program execution would take. The binary

translator stops translation and resumes guest execution of translated instruction

once we reach a control flow instruction in the original guestinstruction stream.

Binary translation is applied only to guest code that is intended to be run

in kernel mode. Application programs do not have direct access to the privileged

states, therefore could be allowed to execute directly without translation.

91

Problem arises with a binary translating of the binary translator. A hypervi-

sor cannot distinguish between the binary translator code and the translated code of

its guest. So from the point of view of a hypervisor, a guest doing binary transla-

tion is a self-modifying code. Binary translating a self-modifying code incurs heavy

performance penalty. It is not clear which performance penalty dominates, hierar-

chically binary translating self-modifying code, or propagating an exception up and

down the hierarchy. We will look at exception propagation across the hierarchy in

chapter 6.

5.3.3 Memory Management

Since non-zero segment base addresses is no longer supported in 64-bit

mode, and that paging is mandatory in 64-bit mode, much of thememory manage-

ment in hypervisor is done through paging. There is a separate shadow page table

per guest, which either supersets or is different from the page table the hypervisor

uses when it is running itself.

5.3.3.1 Shadow GDT/LDT (for implementation without hardwaresupport)

Address translation in x86 architecture starts with segmentation, which trans-

lates virtual address into linear address. This is accomplished by taking the segment

selector and indexing it into eith GDT or LDT to obtain the base, limit and permis-

sion flags for the segment. After limit check and permission check, the base is

added to the offset part of the virtual address to arrive at the linear address. Linear

address will be fed into paging, which is the next step in the x86 address translation.

92

For implementation without hardware support, since we choose to push all

hypervisors except the bottom-most one in user mode, we haveto shadow the GDT

and LDT that any guest hypervisor / OS creates by changing allof their descriptor

privilege levels (DPL) to ring 3. Hypervisor needs to add at least 2 entries to the

shadow GDT, one kernel code and the other kernel data for the hypervisor itself.

There must be enough spare entries in the guest GDT at every level in the hierarchy.

The distinction of the same entry being kernel mode in guest GDT/LDT and

user mode in shadow GDT/LDT is important for determining which level of hyper-

visor in the hierarchy should handle an interrupt or exception (see section 6.3.4 for

pseudo-code).

From the point of view of a hypervisor, there is one shadow GDT/LDT

per guest. It is necessary to switch shadow GDT/LDT for all ancestor levels of

hypervisors when a certain hypervisor in the hierarchy decides to switch guest. This

is accomplishing by all hypervisors intercepting any execution of LGDT instruction

at user mode.

5.3.3.2 Shadow Page Tables (for implementation without nested paging)

The next step of address translation in x86 architecture involves paging,

which translates the linear address to the physical address. For a virtualized guest,

the result of paging is called guest physical address, whichneeds to be further trans-

lated to become the system physical address, also known as the machine address.

When nested paging is not available, in order to control the memory access

of guest OS, hypervisor maintains its own page table on behalf of the guest OS.

93

Since this page table mirrors the contents of the page table that the guest OS builds,

it is called the shadow page table. Given a linear address, the hypervisor parses

the guest page table to determine the linear to guest physical address translation, at

the same time translating each guest physical address of thepage translation table

entry into its system physical address, and doing the same translation again at the

end to obtain the system physical address to be put into the leaf node entry that

corresponds to the linear address in the shadow page table for the guest.

The handling of#PF exceptions, which are essential to shadow page ta-

ble maintenance, requires reverse propagation, and is discussed in section 6.3.4.

Although different levels in the hierarchy may have different shadow page table

implementation, they should still be inter-operable by virtue of our exception and

interrupt handling framework.

The use of shadow page tables ensure that the memory regions allocated

to one guest is not reachable by any other guests. When hardware support is not

available, since the hypervisor is going to intercept all interrupts and exceptions, at

least the entry points of the hypervisor’s interrupt and exception handlers should be

reachable by the guest, but they should be write-protected.(Being in kernel mode,

the hypervisor’s handlers are free to change the page tablesso as to access the

rest of the handler code as well as the hypervisor’s protected data structures.) The

linear address region associated with memory mapped I/O could be marked as “not-

present” so that any read or write access to it becomes a#PF and properly emulated

by the hypervisor. When hardware support is available, none of the hypervisor-

exclusive memory region need to be visible in the guest linear address space (this

94

makes the hypervisor more secure), because the hypervisor’s page table (value of

CR3) is automatically swapped in upon#VMEXIT.

5.3.3.3 Shadow Nested Page Tables (for implementation withnested paging)

Nested paging is available on AMD RVI and Intel EPT. Without loss of

generality, we will use AMD’s terminology for the rest of this section.

When nested paging is available, two levels of page tables exist. The guest

page table (pointed to bygCR3) maps linear address into guest physical address,

then the nested page table (pointed to bynCR3) maps guest physical address into

system physical address. We consider two cases, whether we are running an im-

mediate guest (i.e. code from the next level), or we are running on behalf of our

immediate guest (i.e. code from the descendents of next level).

In the first case, we just create a nested page table (nCR3) that maps the

guest physical addresses to our allocated range of system physical addresses for the

guest, marking all memory-mapped I/O addresses as not-present. For maximum

security, the hypervisor’s own memory region should not be reachable from any

guest physical address in the nested page table.

level-i (Li) level-j (Lj) simulatedLi

VMRUN VMRUN VMRUN

Lk gCR3 Lk gCR3
Lj gCR3 → Lj nCR3 combined
Li nCR3 Li nCR3

Table 5.1: Combining nested page tables (i = 1, j > 1, k = j + 1 for paravirtual
hierarchy;i ≥ 1, j = i + 1, k > j for trap-and-emulate hierarchy)

95

In the second case, where we are running on behalf of our immediate guest

under nested paging, things are more complicated. Refer to table 5.1, the leveli

hypervisor is running a certain guest (at levelj), and a#VMEXIT occurs due to

guest’s attempt to executeVMRUN, at which point it replaces its own page table

(Lj gCR3) with a nested version (Lj nCR3). Now the correct address translation

sequence should beLk gCR3 → Lj nCR3 → Li nCR3. We need to combine two

of them because hardware facilitates only two levels of nested paging but not three.

I am going to explain why we should combine the bottom two and leave theLk

gCR3 alone.

In a paravirtual hierarchy, imagine when theLk(=j+1) guest is going to trig-

ger anotherVMRUN, itsLk(=j+1) gCR3 is going to be replaced. It takes less work to

combine something that won’t be changed (Li(=1) nCR3 andLj nCR3) as the hier-

archy grows deeper. For trap and emulate hierarchy, the simulatedLi VMRUNwould

be presented as theLj VMRUN to the parent level hypervisor as theVMRUN unfolds

across the hierarchy. In this case, although it doesn’t matter that much which two to

combine, it takes a lot less effort when the hypervisor has full knowledge and con-

trol to one of the page tables to combine (Li nCR3, which the hypervisor created

itself). In this case, the hypervisor doesn’t even have to createLi nCR3 at all but

just knowing the allocated memory base and limit for the current guest as well as

the range of memory addresses that correspond to memory-mapped I/O.

Table 5.2 shows the mapping of each level of page tables before and after

this combination exercise. The level-k guest page table (Lk gCR3) maps the guest

linear address (gV) to guest physical address of level-k (gkP), and so on, with level-

96

mapping

keep Lk gCR3 gV → gkP

combine Lj nCR3 gkP → gjP
Li nCR3 gjP → giP

result Li nCR3 gkP → giP

Table 5.2: Mapping of combined nested page tables (i = 1, j > 1, k = j + 1
for paravirtual hierarchy;i ≥ 1, j = i + 1, k > j for trap-and-emulate hierarchy;
finally, g1P is the system physical addresssP)

1 physical address (g1P) equivalent to the system physical address (sP). The way

combinedLi nCR3 is created is very much the same as the way a shadow page

table is created, except that we are creating the whole page table at once and cannot

opt for the virtual TLB alternative.

For each linear address (gkP), theLi hypervisor parses theLj nCR3 page

table, passing the guest physical address (gjP) of the page translation table entry to

theLi nCR3 page table before each read to obtain the host physical address (giP)

of the entry (which is equal to the system physical address ifi = 1), and then

passing the final guest physical address (gjP) translated into theLi nCR3 again to

obtain the final linear address to host physical address translation (gkP → giP). It

then creates the combinedLi page table using these translation. This is basically a

software implementation of nested page table walk.

If a certain address is marked not-present in either table, it is marked not-

present in the combined table. TheLj MTRR values are also parsed and reflected

in the corresponding PAT values in the combined page table. When combining the

Lj MTRR values,Lj nCR3 andLi nCR3 PAT values, the memory type combining

97

rules set forth by AMD and Intel’s documentation need to be observed.

5.3.3.4 ASID Remapping (for implementation with hardware support)

Hypervisor has to maintain a list of unused ASID numbers and amapping

of (guest ID, guest ASID)→ ASID. When it encounters a new guest ASID number,

it assigns the next unused ASID number and add to the mapping.When guest

issuesMOV CR3 or INVLPGA, it reassigns all entries corresponding to the guest

ID to new unused ASIDs. When there are not enough unused ASID, the hypervisor

issuesINVLPGA, recycles all ASID numbers to the unused list and start again.

This ASID remapping ensures correct TLB caching of page translations across the

hierarchy and among different guests, while at the same timetrying to reduce the

number of (costly) TLB flushes.

5.3.4 I/O Subsystem Virtualization

I/O subsystem virtualization consists of I/O access control and I/O schedul-

ing. Access control for CPU processes could be done by properly marking the

shadow or nested page table entries of the memory-mapped I/Oregion and prop-

erly setting up the I/O permission maps for individual I/O ports.

Access control for external device cannot be securely implemented without

the IOMMU (AMD) or VT-d (Intel). Take AMD as an example, for implementation

with hardware support, a Device Exclusion Vector (DEV) could be programmed to

achieve limited control but there is no guaranteed enforcement if IOMMU is not

involved. IOMMU provides the I/O page table for external devices. In the context

98

of recursive virtualization, the hypervisor needs to virtualize the IOMMU for its

guest, which means that it has to do shadow paging for I/O pagetables anyway,

because nested paging is not available with IOMMU.

I/O scheduling that preserves real-time properties of eachVM partition is

done by following the scheduling analysis of chapter 3, and in particular the non-

preemptive part because I/O subsystem is mostly non-preemptable in nature.

5.4 Conclusion

This chapter gives a brief introduction to recursive virtualization for the x86

architecture. Recursive virtualization is useful in a number of scenarios, for exam-

ple, when we debug and upgrade to a new hypervisor, when we test the hypervisor

management software and when we prototype new hardware features.

We briefly analyzed the recursive aspect of processor virtualization, mem-

ory management virtualization and I/O subsystem virtualization for the x86 archi-

tecture. For the real-time aspects of these virtualization, CPU is a fully-preemptable

resource, memory is a space-partitioned resource, I/O subsystem is a non-preemptable

resource. They have been dealt with in the previous chapters1, 2, 3 and 4.

A key aspect of real-time recursive virtualization has beendeliberately left

out in this chapter, namely, the recursive forwarding and delivery of interrupt, ex-

ceptions and intercepts. This topic directly affects the real-time timeliness of the

recursive virtualization, and is the main topic of our next chapter (chapter 6).

99

Chapter 6

Interrupt and Exception Forwarding in x86
Recursive Virtualization

Virtualization has been a key technology in enhancing interoperability and

in making systems more secure. However, the question remains whether virtual-

ization can be used in the context of real-time systems because of efficiency and

schedulability issues. This question is even more controversial when recursive vir-

tualization is considered.

In this chapter, we explore one of the biggest challenges of bringing recur-

sive virtualization to the real-time systems community, namely bounding the time

for interrupt and exception forwarding across the hierarchy of hypervisors. We

analyze the problem and propose non-paravirtualized algorithms in the context of

the x86 architecture, both with and without the latest hardware virtualization sup-

port. Though the performance is severely limited by the current hardware features,

we show that a simple hardware extension could speed up recursive interrupt and

exception delivery significantly.

100

6.1 Introduction

6.1.1 Motivation

Two important features of OS support for real-time applications are pre-

dictable, efficient interrupt handling and exception forwarding (in general, event

handling). In the context of virtualization, it is especially challenging to run a

hypervisor inside another hypervisor (known asrecursive virtualizationor nested

virtualization). Recursive virtualization is important for future system design (see

section 5.2), especially if we can provide real-time guarantees despite of the recur-

sive resource partitioning involved. This chapter concentrates on how to correctly

and efficiently support forwarding of interrupts and exceptions in recursive virtu-

alization in the context of the x86 architecture and to provide time bounds. We

shall suggest specific hardware support that is needed for anefficient solution after

analyzing why a purely software solution will likely fall short.

6.1.2 The Problem

A hypervisor needs to forward suitable interrupts and exceptions to its guest,

which could itself be another instance of the hypervisor. Inthe context of nesting

hardware-assisted virtualization, we also need to forwardsome of the intercepts to

the guest hypervisor.

When there are multiple levels of hypervisors in recursive virtualization, we

need a correct and efficient algorithm to forward these interrupts, exceptions and

intercepts to the hypervisor sitting at the correct level. We assume that each hyper-

visor is unaware of whether it sits directly on top of hardware, or within another

101

hypervisor. (Please see section 5.3.1 for more details on this assumption.)

The proposed algorithms need to provide performance guarantees suitable

for real-time analysis. We also restrict our discussion to the x86 architecture.

6.1.3 Our Contribution

In this chapter, we propose the concept offorward propagationandreverse

propagationfor interrupt / exception / intercept delivery in recursivevirtualization

in the context of the x86 architecture, and formulate distributed software algorithms

for both cases that come with and without hardware-assistedvirtualization supports.

The running time for each proposed algorithm is analyzed to provide a parameter-

ized bound for the worst-case execution time, and the analysis is verified with sim-

ulation. Finally, we propose a possible future hardware extension to improve the

performance.

6.2 Design Issues

6.2.1 Statically Determined Interrupt and Exception Handling Sequence

In recursive virtualization, we observe that the level which gets to handle

an exception or an interrupt is always well defined. Basically, if the exception or

interrupt is generated internally by software, it is handled top-down (from higher

to lower numerical level number); but if the exception or interrupt is generated

externally, it is handled bottom-up (from lower to higher numerical level number).

Specifically in the context of the x86 architecture, all fault-type (including

hidden page fault#PF in shadow paging), trap-type, abort-type exceptions (ex-

102

cept machine check exception#MC), all instruction intercepts, all I/O intercepts, all

software interrupts (INT) and processor shutdown (triple-fault) areinternal events;

while all non-maskable interrupts (NMI), system management interrupts (SMI),

maskable external interrupts (INTR), external processor initialization (INIT), ma-

chine check exception#MC and processor freeze (FERR) areexternal events1.

6.2.2 Forward Propagation

OS 2OS 1

Hypervisor 3

Hypervisor 1

Hypervisor 2
propagate

propagate

keyboard event

propagate

App 1 App 3

OS 3

clock event

propagate

propagate

App 2

Figure 6.1: Forward propagation

When a hypervisor receives an external event, it either consumes the event

itself, or needs to forward the event to the correct guest in the hierarchy. We call

this forward propagation. Refer to figure 6.1, and suppose the processor is currently

assigned to App 2 while the keyboard is assigned to App 1. Now,external timer

1An SMI could be caused by internally trapping I/O instructions, or asserted externally. Ideally,
we would like it to be handled top-down in the first case, and bottom-up in the second case.

Debug exceptions#DB is another special case. When the use of recursive virtualization is to
debug a new hypervisor or OS, the bottommost hypervisor may wish to own the exception together
with the debug registers, in which case the exception shouldbe handled bottom-up. In all other cases,
the hypervisor should leave the debug registers to its guests, and handle the exception top-down.

103

interrupts should be forwarded to OS 2 while at the same time external keyboard

interrupts should be delivered to App 1.

6.2.3 Reverse Propagation

OS 2 OS 3

trap

OS 1

App 1 App 3

trap

Hypervisor 3

Hypervisor 1

Hypervisor 2
propagate

propagate propagate

App 2

Figure 6.2: Reverse propagation

Internal events should be delivered in a top-down manner. However, without

hardware support, such events are always delivered to the bottommost hypervisor

first. Thus the hierarchy as a whole needs to simulate a top-down delivery of such

events. In figure 6.2, exceptions generated in App 1 should bedelivered to OS 1,

and those from OS 3 should first be triaged by hypervisor 3, as shown by the dotted

arrows. However, real exceptions travel according to the solid arrows, with hyper-

visors jointly executing a non-paravirtualized algorithmto forward each exception

back to its correct level.

Our non-paravirtualization requirement forbids the bottommost hypervisor

from intervening and acting as a proxy for all subsequent levels. It also mandates

that each hypervisor can make decisions based only on its ownstate, not the state of

104

its parent or children. Hence we need a “distributed” algorithm for the implemen-

tation of top-down delivery. We call thisreverse propagation.

As each intermediate hypervisor processes an event (both internal and ex-

ternal), it generates more (internal) events that are reverse propagated to the next

lower level hypervisor. This pattern continues until the bottommost hypervisor fi-

nally gets to process the event.

6.2.4 Performance Measurement Methodology

The performance of each proposed algorithm is first analyzedmathemati-

cally and then simulated empirically. Current hardware is not performant enough

for real implementation, so we verify the mathematical analysis with simulation.

The approximate number of clock cycles spent in interrupt / exception delivery is

graphed against the hypervisor level number for each of the proposed algorithms

(figures 6.3, 6.4 and 6.5). The mathematical analysis is shown as solid line whereas

the empirical measurements from simulation are shown as data points with error

bounds.

Both the mathematical analysis and the empirical simulationrequire some

data about the speed of certain hardware instructions (e.g.IRET) and events (e.g.

#GP exception). We obtained some of the numbers from AMD published data [3],

and have performed measurements to determine the rest. All measurements are

done on a 6-core 2200MHz SVM-enabled AMD Istanbul processor(Opteron 2427).

The numbers we obtained are recorded in table 6.1.

We re-purposed a custom OS (FrobOS, that VMware developed for VMM

105

of clock cycles AMD [3] FrobOS
ALU† mem reg/imm 4
ALU† reg reg/imm 1
BT mem imm 4
BT mem reg 7
CLI 3
#GP exception 120
INC reg 1
IRET 80 80
Jcc/JMPdisp 1
LIDT 36
MOV mem reg/imm 3
MOV reg reg/imm 1
MOV reg mem 3
MOV regSS 4
PUSHmem/reg/imm 3
PUSHF 5
VMLOAD 102
VMSAVE 59
(round-trip) World Switch‡ 794

Table 6.1: Characterization for AMD Istanbul (family 10h)† ALU instructions include
ADD, AND, CMP, OR, SUB, XOR, etc.‡ Round-trip world switch timeis measured as the com-
bined time for aVMRUN instruction followed immediately by a#VMEXIT event that is triggered by
an intercepted#GP exception in the first guest instruction.

testing) to measure the number of clock cycles these instructions or events take na-

tively in 64-bit long mode. This hardware characterizationtest is extended from the

same nanobenchmark used by Adams & Agesen [1]. Wherever our measurement

overlaps with AMD’s (e.g.IRET instruction), our results are in agreement with

AMD.

In the simulation, the algorithms are rewritten in assemblycode and then

implemented with each x86 instruction converted to a function that accumulates

106

the number of simulated clock cycles spent according to table 6.1. Instructions or

events that require reverse propagation are converted intorecursive function calls

that follow the actual propagation sequence while accumulating the simulated clock

cycles. Randomization is used when control flow depends on external factors.

We run the simulation 65536 times for each algorithm at nesting levels 1

to 5, and plot the minimum, average and maximum number of clock cycles spent,

overlaying the mathematical analysis result.

6.3 Implementation without Hardware Support

Even though both AMD and Intel currently offer hardware support for writ-

ing a hypervisor, it is still interesting and useful to look at implementation without

hardware support for the following reasons. Firstly, the current hardware support is

mainly for single-level hypervisors; many software techniques are still needed for

deeper nesting. Secondly, the current hardware support represents only one of the

many possible things the x86 hardware could do, so we do not wish to restrict our

discussion to the status quo.

6.3.1 Processor Operating Modes

When there is no hardware support for virtualization, we wantto preferen-

tially protect the hypervisor from its guests rather than the OS from its application

programs. So for simplicity, without affecting the validity of our results, we put the

hypervisor in ring 0 (kernel mode) and leave its guests including the OS in ring 3

(user mode). (The guest OS could still be protected from the application program

107

by a combination of other techniques like binary translation and proper memory

management, but those are outside the scope of this chapter). In recursive virtual-

ization, only the bottommost hypervisor enjoys ring 0 whileall other descendant

levels reside in ring 3. The hypervisor achieves this by properly shadowing the

Global Descriptor Tables (GDT) and Local Descriptor Tables(LDT) of its guests.

6.3.2 Hypervisor IDTs and Shadow IDTs

The hypervisor maintains its own Interrupt Descriptor Table (IDT), which

is called thehypervisor IDT. In general, it also maintains ashadow IDTfor each of

its guests.

In the shadow IDTs, any exception or interrupt that the hypervisor does not

wish to meddle with is directly forwarded to the guest; otherwise the IDT entry

points to the hypervisor’s own handler.

64-bit shadow 32-bit shadow 32/64
retain install retain install hyper
guest new guest new visor

gateDPL keep 3 keep 3 3
CS.DPL 3 0 3 0 0
CS.C 0 0 1 1 0

Table 6.2: Shadow IDT and Hypervisor IDT Access Control Bits

Table 6.2 shows the access control bits that should be set foreach entry in

the shadow IDT and hypervisor IDT. Owing to our simplicationin the choice of

processor operating modes for the hypervisor and the guest,we pick conforming

code segment in 32-bit protected mode and non-conforming code segment in 64-

108

bit long mode. This decision gives us uniformity in saving and restoring the stack

pointerSS:RSP. 2 In section 6.3.3, we will explain the use of the code segment’s

Descriptor Privilege LevelCS.DPL to decide when we should stop forwarding.

6.3.3 Forward Propagation

The discussion in this section refers to the pseudo-codeforward pro-

pagation(). The reader is referred to inline sub-routinepropagate to-

guest() in section 6.3.5.

Forward propagation does not propagate events beyond the level where ex-

2When an interrupt occurs in 64-bit long mode, the stack segment and stack pointerSS:RSP
are always pushed onto the stack, thus interrupt forwardingacross the hypervisor hierarchy could
be done seamlessly, and we allow non-conforming code segments so that the processor’s Current
Privilege Level (CPL) changes to0 at the bottommost hypervisor and3 in all its descendant levels.

When an interrupt goes to a 32-bit protected mode handler, thestack pointerSS:RSP may
or may not be pushed depending on whether there is aCPL change or a switch from the virtual-
8086 mode. In recursive virtualization, we want to control exactly when thisSS:RSP is pushed,
otherwise the correct stack frame does not get properly restored after the interrupt is serviced and
control returns to the application program.

For guests in virtual-8086 mode, the stack pointerSS:RSP and many other segment registers
are pushed when the bottommost hypervisor’s shadow interrupt handler is called. They remain in the
stack until the top-level hypervisor either forwards the event to the virtual-8086 guest’s handler, or
consumes the event and returns to the virtual-8086 guest. Thus as long as we forward all interrupts in
the TSS Interrupt Redirection Bitmap of the virtual-8086 guest, we are fine. (We want virtual mode
extensionCR4.VME = 1 because we still need the I/O Redirection Bitmap andEFLAGS.VIF)

For guests in protected mode, the stack segment and stack pointerSS:RSP are pushed when
the bottommost hypervisor’s shadow interrupt handler is called (CPL changes from3 to 0). CPU
tries to pop them when the event is forwarded to level2 handler (CPL changes from0 to 3), which
is not where it should get popped. When the top-level hypervisor either forwards the event to the
guest handler or consumes the event and returns control to the guest,SS:RSP are not restored when
they should be (CPL remains at3). Here we use conforming code segments in shadow IDT to force
theCPL to stay the same across the hierarchy. When the bottommost level hypervisor services the
interrupt, it raises exception to its own hypervisor IDT, which is the only place whereCPL changes.
Thus when the interrupt is forwarded across the hierarchy, we do not have to worry about saving and
restoringSS:RSP.

109

01 forward propagation() {
02 cli
03 if (event is solely for me) {
04 consume the event
05 } else { // guest needs this event
06 if (event needs processing) {
07 preprocess the event
08 }
09 if (saved CS.DPL=0 in shadow GDT) or
10 (shadow RFLAGS.IF=0) {
11 add event to guest pending INTRs
12 } else if (guest in INTR shadow) {
13 set RFLAGS.TF on stack frame
14 add event to guest pending INTRs
15 } else inline propagate to guest()
16 }
17 iret
18 }

ecution was interrupted, so that the guest does not see any code segment (CS) de-

scriptor that it does not recognize. This is checked by indexing CS from the in-

terrupt stack frame into the shadow GDT of the current guest.If the entry has a

Descriptor Privilege Level (DPL) = 0, current level code was interrupted, so the

guest should wait until the current level finishes executionbefore it receives this

event. In this case, the event is inserted into the (sorted) list of guest pending inter-

rupts according to interrupt priority levels (IPL). These pending interrupts are taken

immediately when the current level finishes execution and passes control onto its

guest, see the pseudo-code and explanation ofpropagate to guest() in sec-

tion 6.3.5.

Forward propagation should also observe the provision of interrupt shadow

(line 12), where interrupt delivery is temporarily disabled before the completion of

the next instruction. If the guest is currently in interruptshadow (e.g. just after

110

executing the instructionsSTI orMOV SS), the hypervisor sets the trap flag so that

control returns to the hypervisor immediately after the interrupt shadow, at which

point the hypervisor can safely propagate the pending interrupts.

6.3.4 Reverse Propagation

01 reverse propagation() {
02 cli
03 if (saved CS.DPL=0 in shadow GDT) or
04 (saved CS.DPL=0 in guest GDT) {
05 lidt hypervisor IDT
06 call actual handler
07 lidt shadow IDT
08 } else inline propagate to guest()
09 iret
10 }

The discussion in this section refers to the pseudo-codereverse pro-

pagation(). The reader is referred to inline sub-routinepropagate to-

guest() in section 6.3.5).

A hypervisor handles the exception or interrupt if the eventis triggered by

itself (applicable to bottommost level hypervisor only), or if the event occurs at

precisely the next level (i.e. in the kernel of its immediateguest). TheCS pushed

onto the stack should have aDPL= 3 in the shadow GDT andDPL= 0 in the guest

GDT for the latter case. IfDPL = 3 in both the shadow and guest GDT, the event

occurs in one of the descendant levels of the guest, hence should be forwarded to

the guest.

Consider a general protection fault (#GP) as an example of an event that re-

quires reverse propagation. When the actual handler at leveli is invoked, it is going

111

to generate another#GP which could be (reverse) propagated to leveli − 1. The

use of return-from-interrupt instructionIRET to call the guest handler unwraps tail

recursion and eliminates the need for the hypervisor’s interrupt handling routines to

bere-entrant, on the premise that the hypervisor’s interrupt routine cannot fault.

6.3.5 Interrupt-Enable Flag RFLAGS.IF Shadowing

If any level other than the bottommost level hypervisor executes an instruc-

tion that may change the state of interrupt-enable flagRFLAGS.IF (e.g. CLI/

STI/IRET instructions), it causes#GP exception which is reverse propagated (ex-

cept for virtual-8086 mode where shadowing ofEFLAGS.IF is done in hardware).

Upon receiving this exception, the parent hypervisor sets,clears or returns a copy

of RFLAGS.IF bit (called shadowRFLAGS.IF) for its guest.

For both forward and reverse propagation, when the event is propagated to

its next level guest, the hypervisor sets its ownRFLAGS.IF bit to enable exter-

nal interrupt. Referring to the pseudo-code forpropagate to guest(), any

pending interrupts (from forward propagation, see section6.3.3) are checked and

propagated to the guest at this moment too.

From the point of view of a hypervisor (at any level), the net effect is that

no guest can grab a processor forever and prevent the hypervisor scheduler (which

hooks onto timer interrupt and I/O events, etc) from running. This guarantees that

no guest can steal allocated CPU time from other guests and adversely affect the

availability of processor resources to other guests.

112

01 inline propagate to guest() {
02 // Sets up the IRET frame for caller
03 clear RFLAGS.TF on stack frame
04 if (guest in virtual-8086 mode) {
05 push saved EFLAGS to saved SS:SP
06 push saved CS:IP to saved SS:SP
07 saved SP := saved SP - 4
08 saved EFLAGS.IF := 1
09 saved CS:IP := guest handler’s
10 if (guest has pending INTRs) {
11 saved EFLAGS.VIP := 1
12 }
13 } else if (64-bit mode) {
14 push current SS:RSP
15 push current RFLAGS(IF:=1)
16 push guest handler’s CS:RIP
17 forall (guest pending INTRs) {
18 push current SS:RSP
19 push current RFLAGS(IF:=1)
20 push pending handler’s CS:RIP
21 }
22 } else { // protected mode
23 push current RFLAGS(IF:=1)
24 push guest handler’s CS:RIP
25 forall (guest pending INTRs) {
26 push current RFLAGS(IF:=1)
27 push pending handler’s CS:RIP
28 }
29 }
30 }

6.3.6 Running time Analysis

Let us analyze the time it takes to propagate an interrupt or exception. The

actual time to service the interrupt or exception does not affect the effectiveness of

the propagation.

For the bottommost hypervisor, the running times for both forward propa-

gation and reverse propagation without hardware-assistedvirtualization support are

dominated by the time it takes to raise each interrupt / exception tINT , and the time

113

it takes for each interrupt returnIRET instructiontIRET , assuming for simplicity

that all required memory to propagate the interrupt or exception is pinned so we do

not have page fault#PF exceptions adding further costs and complexity.

For higher-level hypervisors, some privileged instructions in the propaga-

tion itself require reverse propagation, which adds dramatically to the total running

time as the number of levels nest deeper.

We make the following simplification according to the worst case scenario:

• Although we disabled interrupt (CLI) for the bottommost hypervisor dur-

ing propagation, we cannot prevent non-maskable interruptNMI and system

management interruptSMI from occurring. We are not considering effects

from NMI andSMI in this analysis. Interested readers could add them to the

final worst-case total cost.

• Except for the bottommost hypervisor, interrupts are actually enabled in hard-

ware during propagation. External interrupts could occur.They are forward

propagated and queued as pending at the appropriate level. It adds to the la-

tency of the original propagation but does not increase the total time overhead

spent to propagate that many number of interrupts and exceptions. In fact, the

worse total time occurs when there are no other guest pendinginterrupts each

time we executepropagate to guest(), so that each interrupt has to be

propagated by itself and no piggyback optimization can be done. Thus we

can omit lines 17-21 and 25-28 ofpropagate to guest() in the analy-

sis. We assume the frequency of external interrupts to befINTR.

114

• We calculate only the time it takes to propagate an interruptto the handler

in the appropriate level, and the time to return to the interrupted instruction,

i.e. the round-trip time to a null handler. The handler itself may invoke other

privileged calls that require reverse propagation, but those are beyond the

scope of this analysis.

Let T f
n andT r

n be the times it takes to forward propagate and reverse prop-

agate an interrupt / exception to leveln respectively. Obviously,T f
1 ≈ T r

1 ≈

2(tINT + tIRET). The constant2 is due to the extra logic in lines 5-7 ofreverse

propagation() (or line 4 inforward propagation()) to get the current

privilege levelCPL correct (see the discussion on conforming code segment in sec-

tion 6.3.2).

For propagate to guest(), lines 15 and 23 require reverse propa-

gation. Each time this subroutine is called, the worst case running time is ap-

proximatelyT r
n−1. For forward propagation(), lines 2, 17 require reverse

propagation. The worst case occurs when lines 2, 15 and 17 areexecuted. For

reverse propagation(), lines 2, 5, 7 and 9 require reverse propagation. So

T f
n ≈ T r

n ≈ 4T r
n−1 = 4n−12(tINT + tIRET).

From table 6.1,tINT + tIRET = 120 + 80 = 200 cycles. The equation is

graphed as solid line in figure 6.3, overlaid with simulationresult as data points

with uncertainty range.

The mathematical analysis closely matches but slightly underestimates that

from the simulation. This is because the mathematical analysis considers only the

115

102

103

104

105

 1 2 3 4 5

nu
m

be
r

of
 c

lo
ck

 c
yc

le
s

(T
n)

hypervisor level number (n)

Tn = 200 * 2 * 4n-1

Reverse Propagation (simulation)

Figure 6.3: Reverse propagation without hardware-assistedvirtualization takes ex-
ponential time.

key steps that take up the largest number of clock cycles, andignores others.

6.4 Implementation with Hardware Support for Single-Level Hy-
pervisor

AMD has Secure Virtual Machine (SVM, also known as AMD Pacifica

Technology) while Intel has Virtual Machine Extension (VMX, also known as Van-

derpool Technology x86, or VT-x). They provide direct hardware support for a

single-level hypervisor.

6.4.1 Processor Operating Modes

With hardware-assisted virtualization, the hypervisor and the OS both reside

in ring 0 (kernel mode) while the application program is in ring 3 (user mode).

116

In recursive virtualization, all hypervisors and OSes are in ring 0, and only the

application program is in ring 3. Thus, thering aliasingproblem is slightly different

from the case without hardware supports.

6.4.2 Intercept Handling

Instead of relying mainly on#GP exception, a hypervisor using hardware

support can specify precisely which events to intercept in theVMCB Control Block

or VMX Controls in VMCS. An intercepted event results in#VMEXIT, which is

handled by the code immediately after theVMRUN (for AMD) or the instruction

specified in theVMCS when invokingVMLAUNCH/VMRESUME instruction (for In-

tel). The guest is not restarted until the hypervisor executesVMRUN or VMRESUME

again.

We could extend this architecture to recursive virtualization in two ways. In

the first approach, paravirtualization would call for an omnipotent bottom-level hy-

pervisor that does all the work and keeps track of all state information for all levels.

However, we prefer the second approach, where each hypervisor takes care of only

its next level (i.e. immediate guests). According to section 6.2.1, any event is either

forward propagated or reverse propagated across the hierarchy (see figure 6.2). Here

we present the pseudo-code for reverse propagation.reverse propagation-

svm() is for AMD’s SVM Architecture. The corresponding one for Intel’s VMX

Architecture, and the ones for forward propagation under both architectures are

very similar.

gVMCB/gVMCS is the guest VMCB/VMCS used to run the guest (hyper-

117

01 reverse propagation svm() {
02 initialize gVMCB
03 clear proxy flag
04 while (true) {
05 RAX := proxy ? pVMCB : gVMCB
06 VMLOAD
07 while (true) {
08 restore additional registers
09 VMRUN
10 save additional registers
11 if (handling #VMEXIT is easy) {
12 handle #VMEXIT
13 } else break
14 }
15 VMSAVE
16 if (proxy) and (guest intercepts this) {
18 clear proxy flag
19 gVMCB.State := pVMCB.State
20 } else if (guest trying to VMRUN) {
21 set proxy flag
22 gVMCB.rip := gVMCB.rip + 3

23
pVMCB.Ctrl := gVMCB.Ctrl

bitwise-or gVMCB.rax->Ctrl
24 pVMCB.State := gVMCB.rax->State
25 } else handle other #VMEXIT
26 }
27 }

visor or OS), whilepVMCB/pVMCS is a proxy VMCB/VMCS for simulating the

guest’s attempt toVMRUN orVMLAUNCH/VMRESUME. WhilegVMCB/gVMCS con-

tains all the machine state of the guest,pVMCB/pVMCS contains the machine

state of the guest’sgVMCB/gVMCS (pointed to bygVMCB.rax upon#VMEXIT

when the guest tries to doVMRUN, or given in VMX-Instruction Information Field

of VMCS upon#VMEXIT due to guest’s attempted execution ofVMPTRLD). In

pVMCB/pVMCS, we intercept anything that the guest wants to intercept or we our-

selves want to intercept. Theproxy flag is used to distinguish whether the hypervi-

sor is running the immediate guest or running an image on behalf of the immediate

118

guest.

If the hypervisor is running an immediate guest, it deals with whatever

#VMEXIT it catches. But if the hypervisor is running an image on behalfof the

immediate guest, it appropriately decides whether to forward the#VMEXIT event

to the guest handler or consumes the event itself. If it wantsto forward the event to

the guest handler, it simply re-starts the guest at the instruction followingVMRUN

or at the location specified inVMCS when invokingVMLAUNCH/VMRESUME, with

thegVMCB/gVMCS updated with the state information frompVMCB/pVMCS.

Since it is mandatory to interceptVMRUN in AMD SVM andVMLAUNCH/

VMRESUME in Intel VMX, the hypervisor would only proxyVMRUN orVMLAUNCH/

VMRESUME for its immediate guest. Hence it takes care of only the next level in the

hierarchy. When a level3 hypervisor tries toVMRUN or VMLAUNCH/VMRESUME,

the level1 hypervisor intercepts it and forwards it to the level2 hypervisor. The

level2 hypervisor then sets up a proxyVMRUN or VMLAUNCH/VMRESUME for the

level 3 hypervisor, which is again caught by the level1 hypervisor. And now the

level 1 hypervisor sets up a proxy for the level2 proxy. The level1 hypervisor has

no knowledge that theVMRUN orVMLAUNCH/VMRESUME of the level2 hypervisor

it tries to proxy for is itself a proxy for the level3 hypervisor!

6.4.3 Running Time Analysis

Similar to the running time analysis of the previous section, we determine

the round-trip time to a null handler for the effectiveness of the propagation algo-

rithm, and disregard any time spent inside the actual handlers.

119

For the bottommost hypervisor, the running time is dominated by the#VMEXIT

and VM resume events. These are the events that involve heavyweight world switch

between the hypervisor and the guest. LettWS be the time it takes for each world

switch. We haveT1 = 2tWS. For all higher levels, the entry point when an intercept

is forwarded to the next level hypervisor is the#VMEXIT event at line 10 (immedi-

ately following theVMRUN instruction) inreverse propagation svm(), and

the running time is measured until control loops back to theVMRUN instruction at

line 9. TheVMSAVE, VMLOAD andVMRUN instructions on lines 15, 6 and 9 respec-

tively require reverse propagation of their own. Thus,T r
n = 3T r

n−1 = 3n−1 · 2tWS.

From table 6.1,tWS = 794 cycles. The equation is graphed as solid line in

figure 6.4, overlaid with simulation results as data points with uncertainty range.

102

103

104

105

106

 1 2 3 4 5

nu
m

be
r

of
 c

lo
ck

 c
yc

le
s

(T
n)

hypervisor level number (n)

Tn = 794 * 2 * 3n-1

SVM Reverse Propagation (simulation)

Figure 6.4: Reverse propagation with hardware-assisted virtualization also takes
exponential time.

With the current hardware-assisted virtualization support, running time for

120

propagating intercepts in recursive virtualization is still exponential in terms of the

level number that the intercept needs to be forwarded to. Though the exponential

factor is less than the case without hardware-assisted virtualization, the base case

tWS is still prohibitively expensive (tWS ≫ tINT + tIRET).

The mathematical analysis again closely matches but slightly underesti-

mates the running time than the simulation result. This is because we only consider

the key steps that take up the largest number of clock cycles in the mathematical

analysis and ignore the rest.

6.5 Possible Hardware Extensions to Support Recursive Inter-
cept Delivery

In this section, we suggest hardware improvement that can drastically bring

down the running time for intercept delivery in recursive virtualization.

6.5.1 Hardware Intercept Delivery

The whole interrupt, exception and intercept forwarding could be done bet-

ter if we adopt a simple hardware algorithm. This algorithm accomplishes correct

delivery of intercepts to the hypervisor at the correct level.

6.5.1.1 Ancestor and Descendant Linked Lists

First of all, hardware needs to keep track of the chain of hierarchical hy-

pervisors loaded at any moment. This can be achieved by adding a pointer to the

VM HOSTSAVE AREA (for AMD) and VMCS Host-State Area (for Intel) to point

121

back to their parentVM HOSTSAVE AREA or VMCS Host-State Area respectively.

Thus, no matter which level in the hierarchy is currently running, this pointer chain

links all the ancestorVM HOSTSAVE AREA or VMCS Host-State Area in a linked

list. Similarly, from the parent area, hardware can find the next level by keeping

their currently runningVMCB or VMCS Guest-State Area in their parent’s area.

6.5.1.2 Intercept Redirect Bit

Instead of forcing all intercepts to statically fall into either forward propa-

gation or reverse propagation, we can leave this option opento the hypervisor. We

propose that along with each intercept bit that a hypervisorspecifies in theVMCB/

VMCS we define a redirect bit. For backward compatibility, the redirect bit could

be specified as follows:

When the intercept bit is not set, the value in the redirect bitis ignored, and

the hypervisor won’t get this intercept anyway. If the intercept bit is set but the

corresponding redirect bit is cleared (which is the defaultcase), then the hypervisor

has priority over its guest in intercepting this event, which is what happens with

current hardware. If both bits are set, then the processor checks whether the guest

is intercepting this event. If it does, then the intercept goes to the guest, otherwise

it goes to the hypervisor.

6.5.1.3 The Hardware Algorithm

Thus the processor algorithm to determine which level of hypervisor to de-

liver an event is unified in pseudocodeintercept delivery(). The originat-

122

ing level is defined as the level where the currently executing code (pointed to by

the instruction pointerCS:RIP) resides when the intercept occurs.

intercept delivery() {
i := 0; j := 1
while (j < originating level) and

((level j intercept bit is 0) or
(level j redirect bit is 1)) {

if (level j intercepts) {
i := j

}
j := j + 1

}
if (j < originating level) or (i == 0) {

deliver the event to level j

} else {
deliver the event to level i

}
}

The algorithm always finds a definite level to deliver the event, so it itself

will not generate double fault (#DF) or triple fault (SHUTDOWN) exceptions. A

#DF orSHUTDOWN exception occurs only when a certain level has been selectedto

handle an event, and further faults occur while locating thecorresponding handler

in that same level.

For exceptions and interrupts (both internal and external), the top-level OS

(as well as any hypervisor which is currently not running anyguest, during which it

behaves like a top-level OS) is poised to handle it anyway, asif it has the intercept

bit set and the redirect bit cleared. So if each underlying hypervisor decides either

not to handle an event or preferentially let its guest handlethe event, thenj equals

the originating level at the end of the while-loop, and the top-level gets to handle

the event.

123

For new intercepts that come only with the introduction of hypervisor (e.g.

instruction intercept), the intercept event is generated only if at least one underlying

hypervisor decides to intercept it. Hencej equals originating level impliesi 6= 0 at

the end of the while loop. The originating level will never get to receive the event

(which it does not expect to receive).

If this algorithm is implemented in software, it would have the same linear

running time (see section 6.5.1.4), but it would violate theisolation requirement

between adjacent levels of hypervisors (see section 5.3.1). This requirement is of-

ten needed in real-time systems. It is not possible to achieve linear running time

in software without paravirtualization because each forwarding step would incur

more reverse propagation that avalanche down the hierarchyof hypervisors. Imple-

menting this algorithm as a hardware extension avoids steering the hypervisor into

paravirtualization.

6.5.1.4 Running Time Analysis

The running time is still dominated by the world switch costtWS. From

table 6.1,tWS = 794 clock cycles. Now, hardware walks the ancestor and descen-

dants linked lists to determine the correct level where intercept should be delivered.

This walk isO(n), wheren is the numerical value of the originating level. Thus the

total running time isO(n + tWS). This hardware algorithm is a great performance

improvement (figure 6.5) to the exponential running time software solutions, and

still keeps the hypervisors isolated from each other.

As the depth of nesting increases, the maximum delivery timeincreases

124

 780

 800

 820

 840

 860

 880

 900

 1 2 3 4 5

nu
m

be
r

of
 c

lo
ck

 c
yc

le
s

(T
n)

hypervisor level number (n)

Tn = 10n + 794 (analysis)

Empirical data (simulation)

Figure 6.5: Propagation with hardware extension takes linear time.

linearly but the minimum delivery time flattens out. Our mathematical analysis

closely matches the average case.

6.5.2 Avoid Avalanche of Intercepts Cascading down the Hierarchy

If the aforementioned hardware solution is not implemented, there are still

other ways we could improve performance of intercept delivery in recursive virtu-

alization, albeit to a lesser degree.

In recursive virtualization, intercepts often avalanche down the hierarchy

before they are completely serviced, with each handler generating more than one

additional intercept to its parent hypervisor. In order to improve performance, either

the world switch cost or number of intercepts need to be greatly reduced, or both.

For reducing the world switch cost, we propose the option of lightweight

#VMEXIT. Adams et. al. [1] found that the current architecture of hardware support

125

for hypervisors assumed too much of the trap-and-emulate paradigm, leaving little

room for other approaches like binary translation to be effectively implemented.

With the option of lightweight#VMEXIT, some hypervisor handlers could run in

guest context, thus avoiding costly world switches back andforth.

Alternatively, for reducing the number of instruction intercepts, SVM/VMX

could allow a hypervisor to specify a mapping of instructionto sequence of instruc-

tions in theVMCB/VMCS, so that whenever the processor encounters an instruction

defined in the mapping while executing the guest, it executesthe mapped sequence

of instructions instead. The hypervisor effectively binary translates instructions to

avoid excessive instruction intercepts.

6.6 Conclusion

There are many practical uses for recursive virtualization. We would like to

reap the same benefits in running real-time guests. Interrupt and exception forward-

ing is a key issue in building a real-time capable hypervisor. We proposed the con-

cept offorward propagationandreverse propagation, and formulated a hypervisor-

level distributed algorithm for its correct implementation. We have shown in this

chapter that its performance bound can be reasonably predicted.

With the current x86 architecture, running time is exponential in the num-

ber of nesting levels, whether we adopt the hardware-assisted virtualization or not.

This exponential running time may be acceptable because thenumber of users to

a hierarchical hypervisor also decreases exponentially with the number of nesting

levels. However, the situation can be improved to linear running time if we assume

126

simple hardware extension as outlined in the last section.

127

Chapter 7

Conclusion

7.1 Future Work

With all the different types of resources virtualized recursively for real-time

workloads using the framework constructed in this dissertation, including the fully

preemptable, non-preemptable and limited preemptable resources under the peri-

odic, sporadic or aperiodic task models, the future of real-time recursive virtualiza-

tion looks promising. From our analysis on the x86 architecture, we are going to

generalize our works so that it may apply to broader computerarchitectures. We

are going to review the existing methods and toss a wild guessat future possibilities

in this section.

7.1.1 Architectural Constraints to Real-Time Recursive Virtualization

The current computer architecture has a lot of limitation making it difficult

to be virtualized, difficult to be virtualized for real-timeworkloads, and difficult to

be recursively virtualized.

Section 1.3 reviewed the literature of known problems that make the x86

virtualization and x86 recursive virtualization difficult. These include, but not lim-

ited to, ring aliasing, ring compression, address space compression, non-faulting

128

access to privileged state, etc.

As we have discussed in chapter 6, the biggest deterrent to real-time virtu-

alization in the x86 architecture is the unbounded frequency of occurrence of inter-

rupts and exceptions, and the unbounded amount of time to service each interrupt /

exception when it arrives.

The need to maintain backward compatibility makes the x86 instruction set

architecture difficult to evolve into one that could seamlessly support real-time re-

cursive virtualization.

7.1.2 Principles for Adapting Any Architecture for Real-Ti me Recursive Vir-
tualization

Despite all the constraints mentioned, any given architectures could still

be used for real-time recursive virtualization, of course,with some hardware and/or

software adaptation. We have discussed in chapters 5 and 6 how the x86 architecture

could be adapted. The adaptation principles is then generalized.

Generally speaking, adapting a given architecture for real-time recursive

virtualization is a three-step process.

1. Make the architecture virtualizable

2. Make the architecture real-time capable

3. Make the architecture recursively virtualizable in a real-time perspective

We are going to look at each of these three steps in turn. Within each step,

129

we need to look at three aspects: the instruction set architecture, the memory man-

agement unit (MMU) and the interrupt / exception delivery mechanism.

7.1.2.1 Make the architecture virtualizable

There are a number of ways to virtualize any given architecture. If the

architecture meets the requirement as listed by Popek et. al. [42], then a simple

trap-and-emulate approach is sufficient. Otherwise, theoretically speaking, full in-

terpretation is always available where all the machine states are stored and emulated

in memory. However, this is not performant enough to be of anypractical use. So,

depending on what is lacking, three common approaches were used to tackle the

problem, namely, paravirtualization, binary translationwith software MMU, and

hardware assisted virtualization. Not all approaches are applicable in all situations.

1. Paravirtualization. The hypervisor and guest OS cooperate with each other

using predefined protocols. Problematic instructions (like those that involves

non-faulting access to privileged state) and/or memory management routines

are replaced with system call to the hypervisor.

This approach is the most performant but it also involves a great amount of

work to tweak every guest OS at the source code level. In otherwords, it has

the fewest requirements on hardware capabilities but it is possible only if the

guest OS source code is legally available for modification and redistribution.

The other pros and cons of paravirtualization has been discussed thoroughly

in section 5.3.1.

130

2. Binary translation. It is a clever invention that strikes the balance between

the fast speed in native execution and the flexibility of a full interpretation.

Guest kernel binary code (instead of source code) is decodedand translated

on-the-fly so that problematic instructions and/or memory management rou-

tines are translated into sequences of safe instructions, or even callouts to the

hypervisor.

Binary translation makes the fewest assumption about the guest OS so it has

the advantage of being able to run unmodified guest OSes. However, it does

put some hardware requirements on the architecture to enable the implmenta-

tion of binary translation. For example, the binary translator must be able to

fully protect itself from inadvertent or even malicious attack from the guest

OS. As a counter-example, the 64-bit Intel CPUs do not offer segment limit

check, and segment limit check is too expensive to be done in software, there-

fore binary translation cannot be used on 64-bit Intel CPUs when the guest

OS is also 64-bit. Some more discussion of binary translation is available in

section 5.3.2.2.

3. Hardware assisted virtualization. Last but not least, we could modify the

hardware to support virtualization instead of restrictingourselves to software

solutions only. Hardware assisted virtualization generally adds a new mode

of processor execution called the root mode, which is dedicated to the hyper-

visor. Guest OSes run in non-root mode. Hardware makes all the necessary

distinction between the two modes and acts accordingly.

131

Existing hardware assisted virtualization all brings us back to the trap-and-

emulate paradigm, although this need not necessarily be theonly option. Al-

ternatives include hardware design to support more efficient binary transla-

tion or even a combination of the above mentioned methods. Section 6.5.2

has a brief discussion of how hardware assisted virtualization could be made

to better support binary translation.

Except for paravirtualization, when we virtualize a given architecture, we

always want our hypervisor to be transparent for security reasons, but it does not

mean that the presence of the hypervisor is totally undetectable, otherwise a trans-

parent and undetectable viral hypervisor could wreck havocin the computer system.

If a guest cannot tell,without external knowledge, whether it is running

directly on hardware or within a hypervisor, then we say thatthe hypervisor is

transparent. It could, however, detect the presence of the hypervisor if it knows, for

example, the hardware configuration or CPU speed externally (i.e. not probed by

the code, e.g. being told by the end-user), or has access to anexternal timer. Thus

faking the return values ofCPUID instruction to indicate less features available

to the guest does not in itself constitute non-transparency, but an inconsistency

in return values when the guest is probing the total amount ofavailable memory

by different means, or an incorrect hypervisor behavior in emulating a virtualized

hardware are examples of non-transparency.

Hence, as a security issue, a viral hypervisor could be transparent, but not

totally undetectable. Transparent hypervisor ensures thecorrect functioning of all

132

proper guests, be they OSes or hypervisors themselves. An undetectable hypervisor

is a theoretical curio but practically impossible in a real machine.

7.1.2.2 Make the architecture real-time capable

In order to make a given architecture real-time capable, we need to identify

and classify all the resources into fully preemptable, non-preemptable or limited

preemptable types, as in section 1.1. Virtualization of fully preemptive resources

follow the summary outlined in section 1.2. Interested readers are also referred to

Mok et. al. [37] [36] for a detailed analysis. Virtualization of non-preemptable

resources are given in great length in chapters 2 and 3. Thereare more variation to

limited-preemptable resources. Some common types and a VMware case study is

provided in chapter 4. One may need to develop similar solutions if the task models

are different from what have considered in the chapter.

Basically, a (virtual or physical) resource is real-time capable if its availabil-

ity is highly predictable. The Bounded Delay Resource Partition (BDRP) approach

we adopted in this dissertation provides the predictability and enables some well-

known scheduling algorithms to be run unmodified inside suchpartitions.

Known existing architectures have a big blow to timing predictability of

any running software. The incoming rate of external interrupts are unbounded, and

the processing time of each interrupt is also unbounded. These interrupt handlers

could stack on one another during execution for an arbitrarily long time. In order to

make any given architecture real-time capable, we need to enforce some hardware

contract on the maximum frequency of incoming external interrupts, and instill

133

some software discipline to keep each interrupt handler quantifiably short.

7.1.2.3 Make the architecture recursively virtualizable ina real-time perspec-
tive

There are two parts to this problem. (1) The resource virtualization needs

to be capable of doing so recursively; (2) the computer architecture needs to have

a predictable and reasonable time bound on all of its activities, particularly the

interrupt and exception delivery across the hierarchy of hypervisors.

The Bounded Delay Resource Partition (BDRP) model adopted in this dis-

sertation can be stacked up in recursive virtualization. Theorem 5 and the discussion

that follows give the details of how this recursion could be done.

When virtualization becomes recursive, some operations become prohibitively

costly. This could cause real-time workloads, which are timing-sensitive, to fail

miserably. The most important thing would be the forwardingand delivery of inter-

rupts, exceptions and intercepts across the hierarchy of hypervisors. It is involves

every time the hypervisor regains control of the system in the trap-and-emulate

paradigm. It is also heavily relied upon by the software MMU when doing binary

translation. Chapter 6 specifically deals with how the interrupt / exception delivery

could be made predictable.

7.2 Conclusion

Abstract resources are classified into fully-preemptable,non-preemptable or

limited-preemptable types and analyzed independently forrecursive virtualization

134

with a real-time perspective on the workloads. Specifically, the non-preemptive

scheduling is found to suffer anomalies whereby an originally schedulable task set

may become unschedulable under reduction in system load. This anomaly is coined

asrobustness. Non-preemptive scheduling in general, and non-preemptive robust-

ness in particular is analyzed in depth, leading to some necessary and sufficient

conditions to guarantee non-preemptive robustness.

The Bounded Delay Resource Partition (BDRP) model is borrowed from

the fully-preemptable resources and applied to non-preemptable and some vari-

ants of limited-preemptable resources with some promisingresults. The model

allows for recursive virtualization with real-time workload because existing com-

mon schedulers like Earliest-Deadline-First (EDF) and Fixed Priority (FP) can be

applied within such a partition without modification, therefore integrates seamlessly

with the whole framework. The application of the model is discussed in a VMware

ESX server case study.

With all the theoretical models of real-time recursive virtualization of ab-

stract resources in place, we look at the challenges from a real computer architec-

ture. The x86 architecture is chosen because it is popular and readily available.

We looked at various aspects of recursive virtualization onthe x86 architecture and

then drilled into the one that affects real-time performance the most, namely, the

recursive forwarding and delivery of interrupts, exceptions and intercepts across

the hierarchy of hypervisors in recursive virtualization.Experiments were done

to characterize the timing properties of various schemes, including two software

schemes one with and one without the latest hardware assisted virtualization tech-

135

nology, and a hardware scheme proposed for future hardware extension. Finally,

we distilled the whole process and discussed how it could be applied to real-time

recursively virtualize any computer architectures.

136

Appendix

137

Appendix 1

Acronyms

The following acronyms were used throughout this dissertation.

[#DB] Debug Exception

[#DF] Double Fault

[#GP] General Protection Fault

[#MC] Machine Check Exception

[#PF] Page Fault

[#VMEXIT] Virtual Machine Exit Event

[ADD] Addition (Instruction)

[ALU] Arithmetic and Logic Unit

[AMD] Advanced Micro Devices, Inc.

[AND] Bitwise AND (Instruction)

[ASID] Address Space Identifier (AMD)

138

[BDRP] Bounded Delay Resource Partition

[BT] Binary Translation / Bit Test (Instruction)

[CLI] Clear Interrupt Enable Flag (Instruction)

[CMP] Compare (Instruction)

[CP] Concrete Periodic

[CPL] Current Privilege Level

[CPU] Central Processing Unit

[CR3] Control Register 3, for physical address of top-level page translation table

[CR4] Control Register 4

[CS] Code Segment / Concrete Sporadic

[DEV] Device Exclusion Vector

[DPL] Descriptor Privilege Level

[EDF] Earliest Deadline First

[FERR] Processor Freeze (Event)

[EFLAGS] 32-bit Extended Flags Register

[FP] Fixed Priority

[FrobOS] Frob OS (VMware)

139

[gCR3] Guest CR3

[gVMCB] Guest VMCB (AMD)

[gVMCS] Guest VMCS (Intel)

[GDT] Global Descriptor Table

[GENI] Global Environment for Network Innovations

[IDT] Interrupt Descriptor Table

[IF] Interrupt Enable Flag (RFLAGS)

[INC] Increment (Instruction)

[INIT] External Processor Initialization (Event)

[INT] Software Interrupt (Instruction)

[INTR] Maskable External Interrupts (Event)

[INVLPG] Invalidate TLB Page (Instruction)

[INVLPGA] Invalidate TLB Page Global Address Space (Instruction, AMD)

[I/O] Input/Output

[IOMMU] Input Output Memory Management Unit

[IPL] Interrupt Priority Level

[IRET] Interrupt Return (Instruction)

140

[Jcc] Conditional Jump (Instruction)

[JMP] Unconditional Jump (Instruction)

[JVM] Java Virtual Machine

[LDT] Local Descriptor Table

[LGDT] Load Global Descriptor Table (Instruction)

[LIDT] Load Interrupt Descriptor Table (Instruction)

[MMU] Memory Management Unit

[MOV] Move (Instruction)

[MTRR] Memory Type Range Register

[NCP] Non-Concrete Periodic

[nCR3] Nested CR3 Register

[NCS] Non-Concrete Sporadic

[NMI] Non-Maskable Interrupt (Event)

[NPEDF] Non-Preemptive Earliest Deadline First

[NPFP] Non-Preemptive Fixed Priority

[NPFP/RMA] Non-Preemptive Fixed Priority Scheduler with Rate Monotonic As-

signment of Priority

141

[NSF] National Science Foundation

[OR] Bitwise Inclusive OR (Instruction)

[OS] Operating System

[PAT] Page Attribute Table

[PC] Personal Computer

[PCPU] Physical CPU

[PEDF] Preemptive Earliest Deadline First

[PFP] Preemptive Fixed Priority

[PFP/RMA] Preemptive Fixed Priority Scheduler with Rate Monotonic Assign-

ment of Priority

[PUSH] Push to Stack (Instruction)

[PUSHF] Push RFLAGS to Stack (Instruction)

[pVMCB] Proxy VMCB (AMD)

[pVMCS] Proxy VMCS (Intel)

[RAX] 64-bit Accumulator Register

[RFLAGS] 64-bit Flags Register

[RIP] 64-bit Instruction Pointer

142

[RMA] Rate Monotonic Assignment of Priority

[RSP] 64-bit Stack Pointer

[RVI] Rapid Virtualization Indexing (AMD)

[SMI] System Management Interrupt (Event)

[SS] Stack Segment

[STI] Set Interrupt Enable Flag (Instruction)

[SUB] Subtract (Instruction)

[SVM] Secure Virtual Machine (AMD)

[TF] Trap Flag (RFLAGS)

[TLB] Translation Lookaside Buffer

[TSS] Task State Segment

[VCPU] Virtual CPU

[VIF] Virtual Interrupt Enable Flag (RFLAGS, AMD)

[VM] Virtual Machine

[VMCB] Virtual Machine Control Block (AMD)

[VMCS] Virtual Machine Control Structure (Intel)

[VME] Virtual Mode Extension (CR4, AMD)

143

[VMLAUNCH] Virtual Machine Launch (Intel)

[VMLOAD] Virtual Machine Load (AMD)

[VMM] Virtual Machine Monitor, i.e. Hypervisor

[VMPTRLD] Virtual Machine Pointer Load

[VMRESUME] Virtual Machine Resume (Intel)

[VMRUN] Virtual Machine Run (AMD)

[VMSAVE] Virtual Machine Save (AMD)

[VMX] Virtual Machine Extension (Intel)

[VT-d] Virtualization Technology for Directed I/O (Intel)

[VT-x] Virtualization Technology x86 (Intel)

[WCET] Worst-Case Execution Time

[XOR] Bitwise Exclusive OR (Instruction)

[ZCP] Zero-Concrete Periodic

[ZCS] Zero-Concrete Sporadic

144

Bibliography

[1] Keith Adams and Ole Agesen. A comparison of software and hardware tech-

niques for x86 virtualization. In12th International Conference on Architec-

tural Support for Programming Languages and Operating Systems (ASPLOS),

San Jose, California, USA, October 2006.

[2] BIOS and Kernel Developer’s Guide for AMD NPT Family 10h Processors

(Publication number 31116; revision 3.46). AMD, March 2010.

[3] Software Optimization Guide for AMD Family 10h Processors (Publication

number 40546; revision 3.11). AMD, May 2009.

[4] AMD64 Architecture Programmer’s Manual, Volume 1, 2 and 3 (Publication

number 24592, 24593, 24594; revision 3.15). AMD, November 2009.

[5] Madhukar Anand and Insup Lee. Robust and sustainable schedulability anal-

ysis of embedded software. InProceedings of the ACM SIGPLAN/SIGBED

Conference on Languages, Compilers, and Tools for Embedded Systems, pages

61–77, Tucson, Arizona, USA, June 2008.

[6] Paul Barhem, Boris Dragovic, Keir Fraser, Steven Hand, TimHarris, Alex

Ho, Rolf Neugebauer, Ian Pratt, and Andrew Warfield. Xen and the art of

virtualization. InProceedings of the 19th ACM Symposium on Operating

145

System Principles (SOSP), pages 164–177, Bolton Landing, New York, USA,

October 2003.

[7] Sanjoy Baruah and Alan Burns. Sustainable scheduling analysis. InProceed-

ings of the 27th IEEE Real-Time Systems Symposium (RTSS), pages 159–168,

Rio de Janeiro, Brazil, December 2006.

[8] Sanjoy K. Baruah, Deji Chen, and Aloysius K. Mok. Jitter concerns in pe-

riodic task systems. InProceedings of IEEE Real-Time Systems Symposium

(RTSS), San Francisco, California, USA, December 1997.

[9] Gerald Belpaire and Nai-Ting Hsu. Formal properties of recursive virtual

machine architectures. InProceedings of the 5th ACM Symposium on Oper-

ating System Principles (SOSP), pages 89–96, Austin, Texas, USA, November

1975.

[10] Scott A. Brandt, Scott Banachowski, Caixue Lin, and Timothy Bisson. Dy-

namic integrated scheduling of hard real-time, soft real-time and non-real-time

processes. InProceedings of the 24th IEEE Real-Time Systems Symposium

(RTSS), page 396, Cancun, Mexico, December 2003.

[11] Alan Burns and Sanjoy Baruah. Sustainability in real-time scheduling.Jour-

nal of Computing Science and Engineering, 2(1):72–94, 2008.

[12] Giorgio C. Buttazzo. Scalable applications for energy-aware processors. In

Proceedings of the 2nd International Conference on EmbeddedSoftware (EM-

SOFT), pages 153–165, Grenoble, France, October 2002.

146

[13] Ya-Shu Chen, Lin-Pin Chang, Tei-Wei Kuo, and Aloysius K. Mok. Real-time

task scheduling anomaly: Observations and prevention. InProceedings of the

20th ACM Symposium on Applied Computing, pages 897–898, March 2005.

[14] Ya-Shu Chen, Lin-Pin Chang, Tei-Wei Kuo, and Aloysius K. Mok. An

anomaly prevention approach for real-time task scheduling. Journal of Sys-

tems and Software, 82(1):144–154, 2009.

[15] R. J. Creasy. The origin of the vm/370 time-sharing system. IBM Journal of

Research and Development, 25(5):483–490, September 1981.

[16] Robert I. Davis and Alan Burns. Robust priority assignmentfor fixed prior-

ity real-time systems. InProceedings of the 28th IEEE Real-Time Systems

Symposium (RTSS), pages 3–14, Tucson, Arizona, USA, December 2007.

[17] J. S. Deogun, R. M. Kieckhafer, and A. W. Krings. Stability and performance

of list scheduling with external process delays.Real-Time Systems: The In-

ternational Journal of Time-Critical Computing Systems, 15:5–28, 1998.

[18] Renato Figueiredo, Peter A. Dinda, and José Fortes. Resource virtualization

renaissance.IEEE Computer, pages 28–31, May 2005.

[19] Bryan Ford, Mike Hibler, Jay Lepreau, Patrick Tullmann,Godmar Back, Shan-

tanu Goel, and Steven Clawson. Microkernels meet recursive virtual ma-

chines. InProceedings of the 2nd Symposium on Operating Systems Design

and Implementation (OSDI), pages 137–151, Seattle, Washington, USA, Oc-

tober 1996.

147

[20] Laurent Georges, Paul M̈uhlethaler, and Nicolas Rivierre. Optimality and

non-preemptive real-time scheduling revisited. Research Report 2516, IN-

RIA, April 1995.

[21] Laurent Georges, Paul M̈uhlethaler, and Nicolas Rivierre. A few results on

non-preemptive real time scheduling. Research Report 3926, INRIA, May

2000.

[22] Robert P. Goldberg. Architecture of virtual machines. In Proceedings of

the Workshop on Virtual Computer Systems, pages 74–112, Cambridge, Mas-

sachusetts, USA, March 1973.

[23] Robert P. Goldberg. Survey of virtual machine research.IEEE Computer,

7(6):34–45, June 1974.

[24] R. L. Graham. Bounds on multiprocessing timing anomalies. SIAM Journal

of Applied Mathematics, 17(2):416–429, March 1969.

[25] Peter H. Gum. System/370 extended architecture: Facilities for virtual ma-

chines. IBM Journal of Research and Development, 27(6):530–544, Novem-

ber 1983.

[26] Intel 64 and IA-32 Architecture Optimization Reference Manual (Order num-

ber 248966-016). Intel, November 2007.

[27] IA-32 Intel Architecture Software Developer’s Manual, Volume 1, 2A, 2B,

3A and 3B (Order Number 253665-025US, 253666-025US, 253667-025US,

253668-025US and 253669-025US). Intel, November 2007.

148

[28] Kevin Jeffay, Donald F. Stanat, and Charles U. Martel. Onnon-preemptive

scheduling of periodic and sporadic tasks. InProceedings of the 12th IEEE

Real-Time Systems Symposium (RTSS), pages 129–139, San Antonio, Texas,

USA, December 1991.

[29] Mark H. Klein, John P. Lehoczky, and Ragunathan Rajkumar.Rate mono-

tonic analysis for real-time industrial computing.IEEE Computer, pages

24–33, January 1994.

[30] Hugh C. Lauer and David Wyeth. A recursive virtual machine architecture.

In Proceedings of the Workshop on Virtual Computer Systems, pages 113–116,

Cambridge, Massachusetts, USA, March 1973.

[31] Tim Lindholm and Frank Yellin. The Java Virtual Machine Specification.

Addison Wesley, 2nd edition, April 1999. ISBN 0-20-143294-3.

[32] C. L. Liu and James W. Layland. Scheduling algorithms formulti-programming

in a hard-real-time environment.Journal of ACM, 20(1), January 1973.

[33] Jane W. S. Liu and Rhan Ha.Efficient Methods of Validating Timing Con-

straints, chapter 9, pages 199–224. Advances in Real-Time Systems. Prentice

Hall, 1995. ISBN 0-13-083348-7.

[34] Aloysius K. Mok. Fundamental Design Problems of Distributed Systems for

the Hard Real-Time Environment. PhD thesis, MIT Department of EECS,

MIT/LCS/TR-297, May 1983.

149

[35] Aloysius K. Mok, Prasanna Amerasinghe, Moyer Chen, Supoj Sutanthavibul,

and Kamtorn Tantisirivat. Synthesis of a real-time messageprocessing system

with data-driven timing constraints. InProceedings of the IEEE Real-Time

Systems Symposium (RTSS), pages 133–143, December 1987.

[36] Aloysius K. Mok and Alex Xiang Feng. Real-time virtual resource: A timely

abstraction for embedded systems. InProceedings of the 2nd International

Conference on Embedded Software (EMSOFT), pages 182–196, Grenoble,

France, October 2002.

[37] Aloysius K. Mok, Xiang (Alex) Feng, and Deji Chen. Resource partition

for real-time systems. InProceedings of IEEE Real Time Technology and

Applications Symposium (RTAS), pages 75–84, Taipei, Taiwan, June 2001.

[38] Aloysius K. Mok and Wing-Chi Poon. Non-preemptive robustness testing is

not finite. In WiP session of IEEE Real-Time Systems Symposium (RTSS),

Austin, Texas, USA, December 2002.

[39] Aloysius K. Mok and Wing-Chi Poon. Non-preemptive robustness under

reduced system load. InProceedings of the 26th IEEE Real-Time Systems

Symposium (RTSS), pages 200–209, Miami, Florida, USA, December 2005.

[40] Larry Peterson, Tom Anderson, Dan Blumenthal, Dean Casey, David Clark,

Deborah Estrin, Joe Evans, Dipankar Raychaudhuri, Mike Reiter, Jennifer

Rexford, Scott Shenker, and John Wroclawski. Geni design principles. IEEE

Computer, pages 102–105, September 2006.

150

[41] Wing-Chi Poon and Aloysius K. Mok. Necessary and sufficient conditions

for non-preemptive robustness. InProceedings of the 16th IEEE Interna-

tional Conference on Embedded and Real-Time Computing Systems and Ap-

plications (RTCSA), Macau, China, August 2010.

[42] G. J. Popek and Robert P. Goldberg. Formal requirements for virtualizable

third-generation architectures.Communications of ACM, pages 412–421,

July 1974.

[43] Peter Puschner and Alan Burns. Guest editorial: A reviewof worst-case exe-

cution time analysis.Real-Time Systems: The International Journal of Time-

Critical Computing Systems, 18:115–128, 2000. Kluwer Academic Publish-

ers.

[44] John Scott Robin. Analyzing the intel pentium’s capability to support a se-

cure virtual machine monitor. Master’s thesis, Naval Postgraduate School,

Monterey, California, USA, September 1999.

[45] Mendel Rosenblum and Tal Garfinkel. Virtual machine monitors: Current

technology and future trends.IEEE Computer, pages 39–47, May 2005.

[46] L. Sha, R. Rajkumar, J. Lehoczky, and K. Ramamritham. Mode change proto-

cols for priority-driven preemptive scheduling.Real-Time Systems, 1(3):243–

265, December 1989.

[47] L. Sha, R. Rajkumar, and L. Lehoczky. Priority inheritance protocols: An ap-

proach to real-time synchronization.IEEE Transactions on Computer, 39(9),

151

1990.

[48] James E. Smith and Ravi Nair. The architecture of virtualmachines. IEEE

Computer, pages 32–38, May 2005.

[49] James E. Smith and Ravi Nair.Virtual Machines - Versatile Platforms for

Systems and Processes. Morgan Kaufmann, 2005. ISBN 1-55860-910-5.

[50] Rich Uhlig, Gil Neiger, Dion Rodgers, Amy L. Santoni, Fernando C. M. Mar-

tins, Andrew V. Anderson, Steven M. Bennett, Alain Kägi, Felix H. Leung,

and Larry Smith. Intel virtualization technology.IEEE Computer, pages

48–56, May 2005.

[51] Richard T. Wang and James C. Browne. Virtual machine-basedsimulation of

distributed computing and network computing. InProceedings of the ACM

SIGMETRICS Conference on Measurement and Modeling of ComputerSys-

tems (ACM SIGMETRICS Performance Evaluation Review), volume 10(3),

pages 154–156, Las Vegas, Nevada, USA, September 1981.

[52] Yun Wang and Manas Saksena. Scheduling fixed-priority tasks with pre-

emption threshold. In6th International Conference on Real-Time Computing

Systems and Applications (RTCSA), page 328, Hong Kong, China, December

1999.

152

Index

#DB, 103
#DF, 123
#GP, 105, 106, 111, 112, 117
#MC, 103
#PF, 94, 114
#VMEXIT, 95, 96, 106, 117–120

Lightweight,seeLightweight #VMEXIT

Abort-type exception, 102
Abstract, viii
Access Control, 98, 108
Acknowledgments, v
Adaptive Real-Time System, 67
ADD, 106
Address Space Compression, 7, 128
Address Translation, 92–94, 96
Admission Control, 13, 69
Advertised Computation Time, 36
Advertised Increase in Period, 21, 32,

46
Advertised Reduction in System Load,

14, 46
Algorithm, 79, 101, 102, 104–106, 119,

121–124, 126
ALU, 106
AMD, 85, 86, 90, 95, 98, 105–107,

116, 117, 119, 121
Ancestor and Descendant Linked List,

121, 124
AND, 106
Anomalous Region, 40
Anomaly, 16, 22, 25, 26, 28, 40, 52,

57, 135

Aperiodic Partition, 78, 82
Aperiodic Partition Group, 78
Aperiodic Scheduling, 83, 91
Aperiodic Task, 70, 77, 78
Aperiodic Task Model, 78–80, 128
Aperiodic Task Set, 78, 79, 83
Appendix, 137
Application Program, 84, 90, 91, 107,

109, 116, 117
Architecture,seeComputer Architec-

ture
Arrival Time, 38
ASID, 98
Assembly Code, 106
Availability, 112, 133
Avionics, 41, 43

Backward Compatibility, 122, 129
Backward Propagation,seeReverse Prop-

agation
Bandwidth, 15
Bare-Metal Hypervisor, 85
Batch Processing, 15
BDRP, 3–5, 7, 71–79, 81–83, 90, 133–

135
Bibliography, 152
Binary Code, 131
Binary Translation, 91, 92, 108, 126,

130–132, 134
Binary Translator, 91, 92, 131
Blocking, 16
Blocking Factor, 42, 43, 46, 63, 67

153

Bottom-level Hypervisor,seeBottom-
most Hypervisor

Bottom-Up Delivery, 102, 103
Bottommost Hypervisor, 103–105, 108,

109, 111–114, 117, 120
Branch Prediction, 91
BT, 106
Bubble Sort, 21

Cache, 11, 42
Cache Effect, 87
Cache Flush, 11, 87
Callout, 131
Capacity, 6
Change, 9–11, 13
CLI, 106, 110–112, 114
Clock Cycle, 69, 107, 116, 121, 124
Clock Cycles, 105–107
Clock Frequency, 14, 67
CMP, 106
Communication, 89
Communication Network, 15
Completion Time, 31
Compliance, 42
Component, 10
Computation Time, 11, 13, 21, 30, 36–

39, 44, 46, 53, 59, 61, 62, 64,
66, 70

Computer Architecture, 128–136
Computing Resource, 2, 11
Concrete Instance, 52
Concrete Task Set, 43, 44, 67, 77
Conforming Code Segment, 108, 109,

115
Context Switch, 6, 15, 42, 67

Contradiction, 54, 65
Contrapositivity, 52
Control Application, 17
Control Flow, 91
Control Task, 67
Correctness, 101
Counter-Example, 12, 23, 25, 131
CP, 41, 44, 49–54, 56, 57, 59, 61, 67,

77
CPL, 109, 115
CPU, 2, 3, 14, 22, 30, 36, 45, 87, 90,

98, 99, 109, 112, 131
CPU Overclock,seeCPU Upgrade
CPU Speed, 9, 11, 67, 132
CPU Time, 11
CPU Upgrade, 13, 17, 18, 21, 23, 25,

27, 35, 36, 46
CPUID, 132
CR3, 95–98
CR4, 109
Critical Instant Test, 30–32
Critical Path, 2
Critical Section, 76
CS, 41, 44, 48–55, 57, 59, 61, 67, 77,

109–111, 113, 123
Culprit Task, 34, 35, 37, 38, 47, 53,

57–61, 64, 66
Definition, 34, 58

Cycle Time, 69
Cyclical Asynchronous Buffer, 16

De-scheduling, 76, 78
Deadline, 1, 4, 5, 12, 18, 19, 21, 31,

33, 34, 39, 44, 45, 63, 66, 70–
72, 74, 82, 83

154

Deadline Miss, 2, 24, 25, 29–40, 42,
53, 56–66, 70, 71, 82

Debug Register, 103
Decrease in Computation Time, 13, 17–

19, 21–23, 26–30, 33, 45–47,
52–56, 72, 73, 75

Dedicated Resource, 2, 4, 6, 71, 76
Dedication, iv
Delay Bound,seePartition Delay
Delivery Time, 124, 125
Dense Time, 17, 41, 43, 44, 48, 55,

57, 59, 61, 67, 78
Design, 9, 11, 12, 14, 88, 90, 101, 102
Design Process, 9
Design Solution, 11
Design Space, 9, 10
DEV, 98
Device, 98
Difference, 10
Difference Metric, 9, 10
Direct Execution, 91
Discrete Time, 17, 41, 43, 44, 48, 55–

57, 59, 61, 67, 69, 77–79
Dispatcher, 13, 14, 36, 46
DPL, 93, 109–111
Dynamic Priority, 58
Dynamic Priority Assignment, 12, 34,

45
Dynamic Schedule, 80
Dynamic Scheduling,seeOnline Sched-

uler

Eager Scheduler, 22, 45, 48, 56
EDF, 12, 17, 58, 70, 71, 80, 82, 83,

135

Effectiveness, 119
Efficiency, 100, 101
EFLAG, 112
EFLAGS, 113
Embedded System, 13, 89
Emulation, 94, 130, 132
Environmental Condition, 67
EPT, 95
Ethernet, 2
Event, 69, 70, 109–112, 117, 119, 120,

122–124
Event Handling,seeForwarding
Exception, 89, 94, 104, 108, 109, 111–

115, 123, 129, 135
Exception Delivery,seeForwarding
Exception Forwarding,seeForward-

ing
Exception Handling,seeForwarding
Exception Propagation,seeForward-

ing
Exclusively Owned Resource, 2
Exclusively-Owned Resource, 2
Execution Environment, 84
Execution Order, 5
Execution Time, 11, 42
Exhaustive Search, 79
Exponential Time, 116, 120, 121, 124,

126
External Event, 102, 103, 105
External Knowledge, 132
External Time Source, 89
External Timer, 132

Fault Containment, 1
Fault-type Exception, 102

155

FERR, 103
Finish Time, 48
First Task Instance, 11, 14, 16, 31–34,

44, 49, 52, 56, 58, 59, 61
Fixed Priority Assignment, 12
Flexibility, 88, 131
Floppy Disk, 2
Forward Propagation, 102, 103, 109,

110, 112–115, 117, 122, 126
Forwarding, 88, 89, 91–93, 99–105,

109, 111, 113–115, 119–121,
123–126, 130, 134, 135

FP, 12, 71, 83, 135
FP/RMA, 12, 17
Frequency, 69, 114, 129, 133
FrobOS, 105
Fully-Preemptable Resource, 3, 6, 69,

83, 90, 99, 128, 133–135
Fully-Preemptive Scheduling,seePre-

emptive Scheduling
Functionality, 10, 13

GDT, 90, 92
General Increase in Period, 46, 47
General Robustness, 47, 54
GENI Net, 88
Geometric Envelope Task Set, 62
Geometric Series, 65
Granularity, 70, 78, 79, 81
Greedy Scheduler,seeEager Sched-

uler
Guest, 86, 90, 92–96, 98, 99, 101, 103,

107–112, 118–120, 122, 123,
126, 131–133

Guest GDT, 111

Guest GDT/LDT, 93
Guest Handler, 109, 112, 113, 119
Guest Hypervisor, 7, 89, 90, 93, 101
Guest Instruction, 91, 106
Guest Linear Address, 94, 96
Guest OS, 84, 90, 93, 94, 107, 130,

131
Guest Page Table, 94–96
Guest Pending Interrupt, 110–114
Guest Physical Address, 93–97
gVMCB, 117–119
gVMCS, 117–119

Hard Disk, 2
Hardware Algorithm, 121, 124, 125
Hardware Assisted Virtualization, 100,

102, 107, 113, 116, 117, 121,
125, 126, 130–132, 135

Hardware Contract, 133
Hardware Extension, 100, 102, 121,

122, 124, 125, 127, 136
Hardware Feature, 87, 99, 100
Hardware Interface, 84
Hardware Requirement, 131
Hardware-Assisted Virtualization, 7, 8,

86, 89, 101, 116, 120, 132
Harmonics, 25, 40, 65
Heuristic Algorithm, 79
Hidden Page Fault, 102
Hidden State, 7
Hierarchical Hypervisor, 1, 84, 88, 89,

91, 100, 109, 117, 121, 124,
126, 134, 135

Hierarchical Partitioning, 6
Highest Priority Task, 32, 33

156

Host, 86, 87
Host Physical Address, 97
Hybrid Scheduler, 69
Hypervisor, 1, 7, 40, 84–87, 89, 90,

92–99, 101–105, 107, 108, 111,
112, 114, 116–124, 126, 130–
134

Hypervisor Debugging, 86, 99, 103
Hypervisor Development, 86
Hypervisor IDT, 108, 109, 111, 112
Hypervisor Management Software, 87,

99
Hypervisor Upgrade, 86, 99

I/O, 67
I/O Access Control, 98
I/O Controller Unit, 87
I/O Event, 112
I/O Instruction, 103
I/O Intercept, 103
I/O Operation, 11
I/O Page Table, 98, 99
I/O Permission Map, 98
I/O Port, 98
I/O Redirection Bitmap, 109
I/O Resource, 40
I/O Scheduling, 98, 99
I/O Subsystem, 89, 98, 99
Idle Interval, 30
Idle Time, 48, 66
IDT, 108
IDT Entry, 108
IF, 110, 112, 113
Imaginary Deadline, 80
Imaginary Period, 80, 82

Immediate Guest, 95, 96, 111, 117–
119

INC, 106
Inconsistency, 132
Increase in Computation Time, 56
Increase in Minimum Separation, 45
Increase in Period, 13, 14, 17–22, 24,

27, 31, 32, 41, 45–47, 49–58,
60, 66, 67, 73–76

Increase in System Load, 10, 13, 17
Infinite Time Slicing, 6, 78
INIT, 103
Instruction Boundary, 91
Instruction Intercept, 103, 124, 126
Instruction Intercepts, 126
Instruction Pipeline, 11
Instruction Set Architecture, 129, 130
INT, 103
Intel, 85, 86, 90, 95, 98, 107, 116,

117, 119, 121, 131
Intercept, 118, 120–122, 124, 125, 135
Intercept Bit, 122, 123
Intercept Delivery,seeForwarding
Intercept Forwarding,seeForwarding
Intercept Redirect Bit, 122, 123
Intermediate Task Set, 17, 18, 21, 32
Internal Event, 102–105
Interoperability, 100
Interpretation, 130, 131
Interrupt, 42, 89, 94, 108, 109, 111,

113–115, 123, 129, 133, 135
Interrupt / Exception Handler, 94, 133,

134
Interrupt Delivery,seeForwarding
Interrupt Forwarding,seeForwarding

157

Interrupt Handling,seeForwarding
Interrupt Redirection Bitmap, 109
Interrupt Shadow, 110, 111
Interrupt Virtualization, 7, 8
INTR, 103, 112, 114, 133
INVLPG, 98
INVLPGA, seeINVLPG
IOMMU, 98, 99
IPL, 110
IRET, 105, 106, 110–114
Isolation, 1, 81, 82, 88, 90, 124

Jcc, 106
Jitter, 5, 14, 37
JMP, 106
Job Size, 23, 25, 40
Just in Time, 91
JVM, 84

Kernel, 131
Kernel Mode, 90, 91, 93, 94, 107, 116
Keyboard, 103
Keyboard Interrupt, 104

Latency, 114
LDT, 90, 92
Least Common Multiple, 56
LGDT, 93
LIDT, 106
Lightweight #VMEXIT, 125, 126
Limited Preemptable Resource, 128
Limited Preemption, 15, 43, 69, 70,

78–80
Limited-Preemptable Resource, 3, 69,

133–135

Limited-Preemptive Scheduling, 7, 70,
82, 83, 91

Linear Address, 92–95, 97
Linear Running Time, 124–126
Linked List, 122
Linux, 85
List Scheduling, 16
Locality, 10
Locking, 43
Long Mode, 106, 109, 113
Lower Bound, 14
Lowest Priority Task, 29–33

Machine Address,seeSystem Physi-
cal Address

Machine State, 86
Magnitude, 10
Mapping, 9, 95–98, 126
Memory, 2, 11, 87, 94, 96, 99, 114,

132
Memory I/O Bandwidth, 11
Memory Management, 89, 92, 99, 108,

130, 131
Memory Mapped I/O, 94–96, 98
Methodology, 105
Microsoft Windows, 85
Minimum Separation, 44, 55, 77, 78
Miss Ratio, 35, 37, 39, 40
Mission Critical System, 13
Mixed-Type Resource, 69, 70, 82, 83
MMU, 130
Mobile Computing, 14, 15, 67
Moore’s Law, 1
MOV, 106, 111
MTRR, 97

158

Multiprocessor Anomaly, 16
Multiprocessor Scheduling, 16

Nanobenchmark, 106
Native Execution, 131
NCP, 41, 44, 48, 49, 51, 52, 54, 55,

57, 59, 61, 67, 77
NCS, 41, 44, 48–52, 54, 55, 57, 59,

61, 67, 77
Necessary and Sufficient Condition, 7,

9, 41, 43, 48, 55, 57, 60, 62,
65–68, 77, 135

Necessary Condition, 56, 59, 61, 65,
66

Nested Page Table, 95, 97, 98
Nested Page Table Walk, 97
Nested Paging, 93, 95, 96, 99
Nested Virtualization,seeRecursive

Virtualization
Network Architecture, 88
NMI, 103, 114
Non-Advertised Reduction in System

Load, 48
Non-Concrete Task Set, 43, 44, 67, 77
Non-Conforming Code Segment, 108,

109
Non-Faulting Access, 91, 129, 130
Non-Idling Scheduler,seeEager Sched-

uler
Non-Interference, 15
Non-Preemptable Resource, 3, 15, 40,

69, 83, 99, 128, 133–135
Non-Preemption, 43
Non-Preemptive Priority Scheduler, 43

Non-Preemptive Robustness, 7, 9, 22–
25, 29, 41, 48–55, 62, 67–69,
71, 76, 77, 135

Miss Ratio, 35
Non-Preemptive Schedulability, 49–52,

54, 60, 67
Non-Preemptive Schedule, 15, 43
Non-Preemptive Scheduler, 9, 12, 22,

41, 42, 49
Non-Preemptive Scheduling, 7, 9, 15,

29, 30, 40, 43, 46, 47, 59, 61,
78, 83, 91, 135

Non-Preemptive Task, 76
Non-Preemptiveness

vs. Preemptiveness, 15
Non-Realtime Workload, 82
Non-Root Mode, 7, 131
Non-Transparency,seeTransparency
Non-x86 Architecture, 8
Normalized Execution, 5, 6
Not Present, 94, 95, 97
NP-Complete, 15
NP-Hard, 40
NPEDF, 12, 22–24, 26, 27, 29, 33–35,

37, 39–41, 43, 45, 48, 55–58,
60, 63, 67, 76, 77

NPFP, 12, 41, 43, 45, 48, 55, 59, 60,
67, 76

NPFP/RMA, 12, 22–24, 26, 27, 29–
35, 40, 58, 60, 63, 65

NSF, 88
Null Handler, 115, 119

Offline Algorithm, 79
Online Algorithm, 79

159

Online Scheduler, 4, 82
Open System Environment, 88
Open Systems Environment, 15
Optimal Schedule, 14, 46
Optimal Solution, 79
OR, 106
OS, 1, 2, 84–86, 90, 101, 104, 107,

116–118, 123, 133
OS Debugging, 103
OS Kernel, 90
Outstanding Computation, 16, 29, 31,

35, 37, 50, 56, 59, 61, 64, 66

Pacifica, 116
Packet Header Processing, 15
Packet-Switched Network, 3
Page Table, 11, 92–97
Page Table Entry, 97
Paging, 90, 92, 93
Parameterized Task Set, 25, 28
Parametric Delay Bound,seeParamet-

ric Partition Delay
Parametric Granularity, 81
Parametric Partition Delay, 80
Paravirtualization, 89, 95–97, 117, 124,

130, 132
Parent Hypervisor, 89, 112, 125
Partition, 3–6, 15, 71, 72, 76, 78–82,

90, 133, 135
Partition Delay, 4, 5, 71, 78, 80–83
Partition Dependency, 76
Partition Group, 6, 78, 80
Partition Parameter, 81
Partition Period, 4
Partition Schedule, 80

PAT, 97
PCPU, 79, 80
PEDF, 12, 17–19, 34, 40, 72–74

Robustness of, 18
Performance, 1, 8, 36, 42, 68, 70, 81,

87, 91, 92, 100, 102, 105, 124–
126, 130, 135

Performance Failure, 11
Performance Requirement, 11
Period, 11, 13, 16, 17, 21, 23–25, 30–

32, 35, 36, 38, 39, 44, 46, 56,
58, 59, 61, 62, 65, 70, 77–79,
82

Periodic Partition, 4, 79, 82
Periodic Task, 11, 14, 20, 43, 44, 80
Periodic Task Model, 11, 43, 77, 78,

80, 128
Periodic Task Set, 11, 12, 44, 52, 67,

77, 83
Periodicity, 46
PFP, 12, 19, 20, 22, 40, 74–76

Robustness of, 19
PFP/RMA, 12, 20, 21
Physical Address, 93, 97
Physical Resource, 4, 133
Piggyback Optimization, 114
Pipeline, 15, 42
Portability, 90
Power Consideration, 14
Predictability, 42, 101, 133, 134
Preemption, 15, 69, 70, 76, 79, 83
Preemption Cost, 11, 15
Preemptive Robustness, 17, 71, 72

PEDF, 18
PFP, 19

160

Preemptive Scheduler, 12, 17, 41, 42,
48

Preemptive Scheduling, 3, 9, 15, 30,
83

Preemptiveness
vs. Non-Preemptiveness, 15

Printer, 3
Priority, 12, 17–21, 33–35, 45, 46, 58–

61, 73–76, 122
Priority Assignment, 12–15, 21, 45,

58, 60
Priority Inversion, 52, 59, 60
Priority Queue, 59, 61
Privilege, 90
Privileged Instruction, 114
Privileged State, 91, 129, 130
Probing, 86, 132
Processor, 13, 15, 87, 89, 99, 103, 112,

122, 126
Processor Architecture, 42
Processor Assignment Anomaly, 16
Processor Mode, 107, 108, 116, 131
Processor Overload,seeIncrease in Sys-

tem Load
Processor Resource, 112
Progress, 39
Propagation,seeForwarding
Proportional Share Scheduler, 79
Protected Mode, 108, 109, 113
Protection, 90
Protocol, 130
Prototyping, 87, 99
Proxy, 104, 118, 119
Pseudocode, 109–113, 117, 118, 122,

123

PUSH, 106, 113
PUSHF, 106
pVMCB, 118, 119
pVMCS, 118, 119

Randomization, 107
Rate Adaptation, 17
RAX, 118
Re-entrant, 112
Ready Task, 22
Real Number, 44
Real-Time, 2
Real-Time Analysis, 102
Real-Time Application,seeReal-Time

Workload
Real-Time Capability, 129, 133
Real-Time Constraint, 42
Real-Time Guarantee, 101
Real-Time Guest, 126
Real-Time Hypervisor, 1, 88, 126
Real-Time Performance, 9, 11, 42
Real-Time Recursive Virtualization, 3,

8, 99, 128, 129, 135, 136
Real-Time Requirement, 14
Real-Time Scheduling, 4, 9, 41, 82,

83
Real-Time System, 11, 14, 81, 100,

124, 134, 135
Real-Time Virtualization, 128, 129
Real-Time Workload, 1, 3, 8, 42, 62,

79, 82, 101, 128, 134, 135
Recursive Resource Partitioning, 101
Recursive Virtualization, 6–8, 84–91,

99–103, 107–109, 117, 121,
125, 126, 128, 129, 134, 135

161

Redirect Bit,seeIntercept Redirect Bit
Reduction in System Load, 13, 14, 17–

19, 21–24, 29–34, 38, 40, 41,
43, 45, 47, 56–67, 70–72, 74–
76, 135

Advertised vs. Unadvertised, 14,
20

Reduction in System Load
Advertised vs. Unadvertised, 46

Relation, 9, 11, 13
Relative Deadline, 58
Release Time, 44, 48–50, 52, 53, 56
Request, 11, 15, 16, 43
Request Time, 29–31, 33, 34, 53, 58,

63, 66
Requirement, 4, 9–11, 14, 78, 82, 124,

130
Requirement Change, 28
Requirement Space, 9–11, 13
Requirement Specification, 13, 28
Resource, 3, 71, 72, 78, 82, 128, 133–

135
Resource Demand, 81
Resource Level Scheduling, 5, 6, 76,

77
Resource Partitioning, 88
Resource Scaling, 13
Resource Scheduling, 14
Resource Usage, 14
Resource Virtualization, 2, 7, 8, 133,

134
Response Time, 15, 16, 30–33, 64, 73–

75
Restrictive Increase in Period, 46, 47

Reverse Propagation, 94, 102, 104, 105,
107, 111–118, 120, 122, 124,
126

RFLAG, 112
RFLAGS, 109, 110, 112, 113
Ring 0, 90, 107, 108, 116, 117
Ring 3, 90, 93, 107, 108, 116, 117
Ring Aliasing, 7, 117, 128
Ring Compression, 7, 90, 128
RIP, 113, 118, 123
RMA, 12, 17, 43, 45, 67
RMA Priority, 20, 21, 32
Robustness, 7, 9, 11, 14, 16–18, 20,

22–24, 26, 27, 34, 40–43, 45–
48, 52, 55–58, 60, 62, 63, 65–
67, 69–71, 73–78, 82, 135

Root Mode, 7, 131
Root Mode Operation, 8
Round Trip Time, 119
Round-trip World Switch Time, 106
Running Time, 48, 57, 59, 61, 67, 102,

113, 114, 119–121, 124, 126
RVI, 95

Safety Critical Application, 42
Scalability, 10
Schedulability, 6, 9, 11, 14–19, 21–

23, 27, 28, 33, 34, 38, 40–43,
47, 48, 52, 55–60, 63, 65, 69–
72, 74, 77, 78, 83, 100, 135

Schedule, 5, 12, 13, 15, 16, 29, 34
Scheduler, 13, 14, 43, 47–49, 52, 83,

112, 135
Scheduling Algorithm, 14, 133
Scheduling Anomaly, 9, 16, 40

162

Scheduling Decision, 69, 70, 78, 83
Scheduling Model, 79
Scheduling Policy, 14, 17–19, 22, 26,

40, 72, 74, 76
Secure, 100
Security, 1, 95, 98, 132
Segment Base, 90, 92, 96
Segment Limit, 92, 96
Segment Limit Check, 90, 92, 131
Segment Offset, 92
Segment Register, 109
Segment Selector, 92
Segmentation, 92
Self-Modifying Code, 92
Sensitivity, 9, 14
Sensor, 17
Server Consolidation, 1
Shadow GDT, 110, 111
Shadow GDT/LDT, 92, 93, 108
Shadow IDT, 108, 109, 111
Shadow IF, 112
Shadow Nested Page Table, 95
Shadow Page Table, 92–94, 97, 98
Shadow Paging, 99, 102
Shared Resource, 16
SHUTDOWN, 123
Simulation, 40, 102, 104–107, 115, 120,

121
Simulator, 87
Single Processor, 9
Sliceability, 88
SMI, 103, 114
Software MMU, 130, 134
Software-Emulated Resource, 2
Source Code, 130, 131

Space-Partitioned Resource, 2, 99
Special Robustness, 47
Sporadic Task, 14, 20, 43, 44, 47
Sporadic Task Model, 43, 78, 80, 128
Sporadic Task Set, 44, 47, 52, 67, 77,

83
SS, 111
Stability,seeRobustness
Stack, 109
Stack Frame, 109, 110, 113
Stack Pointer, 109, 113
Start Time, 29–31, 33–35, 53, 64
Static Partition, 4
Static Priority, 58
Static Priority Assignment, 34
STI, 111, 112
SUB, 106
Successively Divisible Period, 65, 66,

68
Sufficient Condition, 14, 41, 49, 53,

56, 62, 65, 67, 68
Sustainability,seeRobustness
SVM, 105, 116, 117, 119, 126
Synchronization, 15
System Call, 130
System Load, 13
System Parameter, 81
System Physical Address, 93–95, 97
System Program, 84, 87

Tail Recursion, 112
Task Deletion, 13, 46
Task Group,seeTask Set
Task Instance, 13, 15, 29–31, 34–38,

44–46, 48, 53, 60, 66, 78, 83

163

Task Level Scheduling, 5, 71
Task Model, 43, 44, 47, 48, 70, 77
Task Set, 3–5, 9, 12–14, 16–19, 21–

24, 26–28, 30, 32–35, 38, 40,
41, 43, 44, 46, 47, 49, 50, 52,
53, 55, 56, 58–63, 65–68, 70–
72, 74, 135

Temporal Length, 67
Testing, 42, 43, 87
Testing Point, 26
TF, 110, 111, 113
Time Bound, 134
Time Interval, 4, 30, 33, 35, 56, 60,

61, 71, 83
Time Point, 69, 70, 83
Time Quantum, 44, 69, 70, 77, 78,

80–82
Time Unit, 3, 11, 43, 50, 70, 72, 78,

83
Time-Shared Resource, 2, 3, 40, 69,

80, 82, 83
Time-Sharing Resource,seeTime-Shared

Resource
Timer Interrupt, 104, 112
Timing Analysis, 89
Timing Compliance, 42
Timing Constraint, 14
Timing Parameter, 17
Timing Parameters, 67
Timing Predictability, 133
Timing Property, 2, 135
Timing Sensitivity, 134
TLB, 98
TLB Flush, 98
Top-Down Delivery, 102–105

Top-Level Hypervisor, 109
Total Computation, 30
Tracking Relation, 9–11
Tradeoff, 42
Transitivity, 18, 32, 33, 47, 52
Transparency, 132
Trap, 8
Trap and Emulate, 89, 95–97, 126, 130,

132, 134
Trap-type Exception, 102
Triple Fault, 103
TSS, 109

Unadvertised Increase in Period, 20,
32, 46

Unadvertised Reduction in System Load,
14, 46

Undetectability, 132, 133
Uniprocessor Scheduling, 16
Uniprocessor VM, 79
Upper Bound, 14
User Mode, 90, 93, 107, 116
Usurper Task,seeCulprit Task
Utilization, 9
Utilization Factor, 19, 23–25, 40, 62,

63, 70, 72, 73, 78, 81

Variance, 42
Variation, 42
VCPU, 79, 80
VCPU Migration, 80
Verifiability, 43
Victim Task, 34, 35, 37, 38, 53, 58,

60, 61, 64
VIF, 109
VIP, 113

164

Viral Hypervisor, 132
Virtual Address, 92
Virtual Machine, 84
Virtual Machine Monitor,seeHyper-

visor
Virtual Resource, 133
Virtual TLB, 97
Virtual-8086, 109
Virtual-8086 Mode, 109, 112, 113
Virtualization, 85, 86, 88, 98–101, 107,

128–130, 132
VM, 79
VM Instance, 84
VMCB, 117, 118, 122, 126
VMCS, 117–119, 121, 122, 126
VME, 109
VMLAUNCH, 117–119
VMLOAD, 106, 118, 120
VMM, seeHypervisor
VMPTRLD, 118
VMRESUME, 117–120
VMRUN, 95, 96, 106, 117–120
VMSAVE, 106, 118, 120
VMware, 84, 85, 87, 105, 133
VMware ESX Server, 79, 83, 85, 87,

135
VMware Workstation, 85, 87
VMX, 116–119, 126
VT-x, 116

Wall Clock Time, 69
WBINVD, 87
WCET, 2, 73, 102, 115
World Switch, 106, 120, 124, 126
World Switch Cost, 125

Write Protection, 94

x86 Architecture, 7, 8, 85, 88–93, 99–
102, 107, 117, 125, 126, 128,
129, 135

x86 Instruction, 91, 106, 126, 129
Xen, 85
XOR, 106

ZCP, 41, 44, 49, 52, 55–57, 67
ZCS, 44, 55, 57
Zero-Concrete Task Set, 44, 58, 60

165

Vita

Wingchi Poon won Gold Medal in International Olympiad in Informatics

(IOI) in 1997. He graduated his Bachelor of Engineering in Computer Engineering

with First Class Honour from the University of Hong Kong in 2000, and received

Master of Science in Computer Sciences from the University ofTexas at Austin in

2001.

He accepted Christ in 2002 and was baptized in 2003. In his spare time, he

likes visiting national parks and taking nature photos. He is now working on core

virtualization technology in the virtual machine monitor group in VMware, Inc. in

Palo Alto, California.

Wingchi Poon has contributed to the following publications:

1. Aloysius K. Mok andWing-Chi Poon “Non-Preemptive Robustness under

Reduced System Load”Proceedings of the 26th IEEE Real-Time Systems

Symposium (RTSS), pp.200-209, Miami, Florida, USA, December 2005

2. Wing-Chi Poon and Aloysius K. Mok “Necessary and Sufficient Conditions

for Non-Preemptive Robustness”Proceedings of the 16th IEEE International

Conference on Embedded and Real-Time Computing Systems and Applica-

tions (RTCSA), Macau, P.R. China, August 2010

166

3. Wing-Chi Poon and Aloysius K. Mok “Bounding the Running Time of In-

terrupt and Exception Forwarding in Recursive Virtualization for the x86 Ar-

chitecture”Manuscript to be submitted

4. Wing-Chi Poon and Aloysius K. Mok “Architecture Independent Real-Time

Recursive Virtualization”Manuscript in preparation

5. Wing-Chi Poon and Aloysius K. Mok “Robustness on Bounded Delay Re-

source Partition”Manuscript in preparation

Permanent address: 2123 Oakland Road
San Jose CA 95131

This dissertation was typeset with LATEX† by the author.

†LATEX is a document preparation system developed by Leslie Lamport as a special version of
Donald Knuth’s TEX Program.

167

