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Both real-time virtualization and recursive virtualizatiare desirable prop-
erties of a virtual machine monitor (or hypervisor). Altlgbuthe prospect for vir-
tualization and even recursive virtualization has becosttebas the PC hardware
becomes faster, the real-time systems community so far diaseen able to reap
much benefits. This is because no existing virtualizatioshmaism can properly
support the stringent timing requirements needed by res-systems. It is hard
to do real-time virtualization, and it is even harder to deeitursively. In this dis-
sertation, we propose a framework whereby the hypervisoable of running
real-time guests and participating in recursive virtugian. Such a hypervisor is

called a real-time hierarchical hypervisor.

We first look at virtualization of abstract resource typesrfrthe real-time
systems perspective. Unlike the previous work on recurseat-time partition-
ing that assumes fully-preemptable resources, we coratendn other and often

more practical types of scheduling constraints, espgcié non-preemptive and
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limited-preemptive ones. Then we consider the current x86itecture and ex-
plore the problems that need to be addressed for real-tiougsige virtualization.
We drill down on the problem that affects timing properties most, namely, the re-
cursive forwarding and delivery of interrupts, exceptians intercepts. We choose
the x86 architecture because it is popular and readilyavia) but it is by no means
the only architecture of choice for real-time recursivauatization. We conclude
the research with an architecture-independent discussidature possibilities in

real-time recursive virtualization.
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Chapter 1

Introduction

The performance of computer systems has been growing erpalheac-
cording to Moore’s Law. Most new servers have seen very losvagye utilization.
Hence it is more economical to consolidate different serigio one physical ma-
chine to reap the benefits of its increased performance. waweunning multi-
ple servers in one physical system poses new security amcénother layer of
system software called virtual machine monitor or hypemvis used between the
hardware and OS to provide isolation and fault containm&thile the hypervi-
sor solves part of the problem, it does not deliver the fulveoof the underlying
hardware to its virtual machine partitions, hence reaktiapplication may miss
the deadline when running inside a hypervisor. We propossahtime hypervi-
sor that could be stacked up hierarchically to allow for tagily complex security

constraints to be implemented.

There are two challenges to this research, one is to makeyihenhsor
real-time capable, and the other is to make the hypervisaatghical capable.
Sections 1.1 and 1.2 give an introduction and related knasnlts to the real-
time resource sharing problem. Chapters 2, 3 and 4 will couerdevelopment

to the real-time resource sharing issue. Section 1.3 givesduction and related



works on the hierarchical virtualization problem, wherehapters 5 and chapter 6
will cover our development to the x86 hierarchical virtaation issue. Finally, we
conclude in chapter 7 with a summary of new results and a sson of future

possibilities.

1.1 Abstract Resource Virtualization

Computing resources could be exclusively-owned, spad#ipaed, time-
shared or software-emulated. Examples of each type of res@uwe shown in ta-
ble 1.1. We try to lay down a theoretical framework for thel4#t@ae aspects of

resource virtualization by abstracting all computing teses.

| Exclusively Owned| Space Partitioned ~ Time Shared | Software Emulated
. . Memory CPU
Floppy Disk Drive Hard Disk Space| Hard Disk Controller Virtual Ethernet

Table 1.1: Abstract resources and their real-life examples

Exclusively-owned and space-partitioned resources dgasé any real-
time problems, because they are always available to theieo®S. Problems arise
with time-shared or software-emulated resources becdugsenhay lengthen the
critical path of execution and potentially induce a deagllmiss which does not

exist if running on a dedicated resource.

Timing properties of software-emulated resources couldliiained from
Worst-Case Execution-Time (WCET) analysis. Puschner and [ABjrhave a de-

tailed review of the available literature in WCET analysisttbauld be utilized.



Virtualization of time-shared resources could be fullggmptable (e.g. proces-
sor), limited-preemptable (e.g. packet-switched netyvorknon-preemptable (e.g.

printer).

Time sharing fully preemptiable resources has been watliesti We will
guote some selected definitions and key results from the Balibeblay Resource
Partition (BDRP) model in the next section. This related warkighly useful
in real-time recursive virtualization for all fully preengble resources. We will
present our development on non-preemptable resources chpter 2 and chap-

ter 3, followed by limited-preemptable resources and otheants in chapter 4.

1.2 Time Sharing Fully Preemptable Resource

Mok et. al. [37] [36] have developed a complete frameworkartitioning
fully-preemptable resources so that each partition is ldepaf running real-time
application. For the sake of easy reference, this sectianréproduction of their

key definitions and results.

1.2.1 The Bounded-Delay Resource Partition (BDRP) Model

In summary, each partition has two configurable parameétersy < 1 and
A > 0. « is the percentage of time we want to assign the resource foatftigion,
and A is the maximum additional units of time a partition has to tweefore it
receives its full allocation (¢, —t;) of the resource for any duration of tinie —, ).
Based on this model, Feng et. al. has shown that any preensptiasiuling policy

that works with a given task set under the reduced resousiahility (o of total),



with A subtracted from all the deadlines, are guaranteed to agntowwork on this

partition.

Definition 1. A Periodic Resource Partition II is a tuple(T', P), wherel" is an
array of N time pairs{(Si, E1), (S2, E»), ..., (Sy, En)} that satisfieg0 < S; <
Ey < Sy < Ey<...< Sy < Ey < P)forsomeN > 1, and P is the partition
period. The physical resource is available to a task setkeg on this partition

only during time interval$S; + j x P, E; + j x P),wherel <i¢ < N,j > 0.

The above definition enumerates every time interval thassigaed to a
partition and is a general representation of periodic pamning schemes, includ-
ing those that are generated dynamically by an on-line tpartscheduler. We
will build onto this definition and arrive at a more useful angerms of real-time

scheduling.

Definition 2. A Bounded Delay Resource Partition (BDRP) II is a tuple(a, A)
whereq is the percentage of total time the resource is availabl&é&odartition and
A is called thePartition Delay, which is the largest time deviation of a partition
during any time interval with regards to a uniform unintertag allocate of the

resource.

Note that this definition defines a set of partitions becabsestare many
different partitions in the static partition model that nmeatisfy this requirement. It
provides a starting point upon which other approaches ohighgfipartitions will be

considered in sections 4.3.2 and 4.4.



Thus the problem of scheduling a number of task sets on a gasource

could be split into two steps:

1. Scheduling of the given resource into BDRPs

2. Scheduling of one task set on each of these BDRPs

We call the first one resource level scheduling, and the skopa task level

scheduling.

1.2.1.1 Task Level Scheduling

Theorem 3. Given a task set and a BDRPII = (o, \,), let S,, denote a valid
schedule of- on the normalized execution of, S, the schedule of on Partition

IT according to the same execution order and amoun$,asAlso let\ denote the
largest amount of time such that any job 8pis completed at least time before

its deadline.S, is a valid schedule if and only ¥ > \,.

In Theorem 3,\ defines the maximum allowable output jitter [8] f6J,.
Therefore, informally, Theorem 3 could be written as: A taskis schedulable on

a partition if the maximum allowable output jitter is no lekan the partition delay.

Theorem 3 provides a practical way to schedule a task set @rtiign.
If we could find a schedule on the normalized execution andsithallest) is no
less tham\,,, we could use this schedule on the partition and be guartie¢ no
deadline will be missed on the partition. The schedule omttrenalized execu-
tion is the same as the traditional task schedule, for whiehet are many known

techniques.



1.2.1.2 Recursive Resource Level Scheduling

In recursive virtualization, a partition group is schediagthin another par-
tition. This is the more general problem of recursive resedevel scheduling.
When we schedule a partition group on a dedicated resourcepuie consider the

dedicated resource as a partition with= 1 andA = 0.

Theorem 4. A partition group {II;(a;, A;)} (1 < ¢ < n) is schedulable on a

partition IT(a, A) if 327, oy < aandA; > Aforall i, (1 <i <n).

Theorem 4 provides a method to determine the schedulabflggheduling
partitions (a partition group) on another partition. Hoee\t does not explain how
to perform the actual scheduling since the infinite timeesicheme that is used in
the proof is impractical. Therefore, the question remaos to schedule partitions

using methods with finite context switch overhead.

Theorem 5. Given a partition group{I1;(«;, A;)} (1 < ¢ < n) to be scheduled on
a partition IT(«, A). Let .S, denote a scheduler of schedulibi(c; /o, A; — A)
(1 < i < n)on a dedicated resource with capacity of the same as the narachl
execution ofl. Also letS, denote the virtual time,, scheduler of scheduling;

onll. ThenS, is valid if S,, is valid.

Theorem 5 justifies the observation that we may use esdgrttial same
algorithms of scheduling partitions on dedicated resaifoe hierarchical parti-

tioning by applying the virtual time scheduling scheme.

With the ability of scheduling a partition inside anothertpen, we could

build a hierarchy of resource partitions for fully-preemge resources.



Chapter 2 continues with an anomaly we discovered in nonagpéee
scheduling. We call this the robustness problem. It is beiggrously defined
and formally analyzed. Then in chapter 3, we propose negeasd sufficient con-
ditions to ensure non-preemptive robustness. Finallg, rieiv result is combined
with the BDRP model in chapter 4, together with new lights ontkh-preemptive

scheduling and other types of scheduling constraints.

1.3 The x86 Recursive Virtualization

The x86 architecture is chosen because it is popular andyeagilable.
The abstract theory in resource virtualization discusseskction 1.2, chapter 2,

chapter 3 and chapter 4 finds its application in a real-liEnacio.

Before the advent of the Intel VT-x [27] and AMD SVM technolof,
the x86 architecture is not known to be virtualizable [42}][4Known problems
include, but are not limited to, ring aliasing, ring comies, address space com-
pression, non-faulting access to privileged state, higirleead in interrupt virtual-

ization, and lack of access to processor hidden states.

The advent of hardware-assisted virtualization addretsesk issues [50]
but some of them would re-appear if we proceed to recursiitaealization. For
example, the hardware-assisted virtualization solveditigealiasing problem by
essentially creating an extra set of rings for the hyperyilszown as the root mode
operation. When we do recursive virtualization, the guepehyisor has to be run
in non-root mode although it was designed to be run in rootendalstead of ring

aliasing, we may call this mode aliasing problem. Basicallg, outer hypervisor



has to trap all root mode operations and emulate them saagifoerformance.

Although the hardware-assisted virtualization is verydato use, we do
not take it for granted as the only possible form of virtuatian in our discussion.
In each aspect of recursive virtualization, we presentedctse when hardware-
assisted virtualization is not available, when it is aval#ga and when the hardware
could be extended to do better. Chapter 5 integrates theaab#teories of resource
virtualization in the context of the x86 architecture. Thodmapter 6 deals with one
specific problem that affects real-time workloads the moamely, the recursive
forwarding and delivery of interrupts, exceptions and ricépts. These chapters
dive into a lot of the x86 technicalities. Readers are retetoeappendix 1 for a list

of the acronyms used.

Finally, we give an architecture-independent view of hoal+téme recur-
sive virtualization might be achieved in chapter 7. Thisssful in real-time recur-
sively virtualizing non-x86 architecture, or designingwnarchitecture specifically

for use with real-time recursive virtualization.



Chapter 2

Non-Preemptive Robustness - Definition and
Characterization

Unlike preemptive scheduling policies, non-preemptiva-tene schedul-
ing policies can exhibit anomalies even for the single-pssor case. In particular,
atask set that is schedulable by a non-preemptive schadalebecome unschedu-
lable when the utilization of the task set decreases relatithe CPU speed, e.g.,
when a faster CPU is used to run the same task set. In this chagtelefine the
notion ofrobustnesso capture the essence of the scheduling anomaly on real-tim
system performance. We shall show that it is difficult to festrobustness in gen-
eral but it could still be characterized. In chapter 3, wdlsterive necessary and

sufficient conditions for guaranteeing non-preemptiveusbhess.

2.1 Introduction

One problem in engineering large complex software systertigei sensitiv-
ity of a design to changes in the requirements. If we view estep of the design
process as a mapping from a requirement space to an (apstesayn space, the
sensitivity problem may be viewed as a relation. Let us t#fietracking relation

between alifference metridgn the requirements space and a corresponding differ-



ence metric induced in the design space. These differentemare appropriately

defined to measure the magnitude of change within their otispespace.

Some properties of the tracking relation are obviously rdéé. For ex-
ample, it should presendecality: differences confined to a locality in the require-
ments space should induce differences confined to a logaliiye design space,
andscalability. a small difference in the requirements space should indwrall

difference in the design space.

Of course, how a difference metric is defined should reflectgpect of re-
guirements captured under consideration. For exampleliffieeence metric meant
to capture locality in the requirements space may reflechtimber of functional-
ities / components that are affected by a change in the geint, and the differ-
ence metric meant to capture the scalability in the requer@sspace may reflect
the increase in system load in a requirements change. Theideacking relation

is illustrated in figure 2.1.

requirement
space

Want IlY'=XIl ~ IIY=XII

Figure 2.1: Tracking Relation
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In the following, we shall illustrate the tracking relatioancept by consid-
ering a specific aspect of real-time systems design, spaltyfithe relation between
a change in the real-time performance requirements andlieelalability of the de-
sign solution. Intuitively, if we make the real-time penfwgince requirement of an
application less stringent, we should expect the desigutisal to require at most
the same amount of computing resources. A mapping from reeint to design
is robustif a less demanding requirement will not cause a performéaibge in

the design.

We believe that the notion of robustness will be importanibag as CPU
speed keeps on improving at a faster rate than memory |/Ovidtid(including
L1, L2 and L3 caches). This is because therst-casecost of preempting a task
includes flushing caches, instruction pipelines and pajgkedaall of which may
incur I/O operations. Therefore unless all real-time tasisbe kept in fast memory
all the time, the cost of preemption will be significant comgahwith task execution

time.

2.1.1 Requirements Space - Periodic Task Set

The requirements space is the set of periodic taskserodic taskis char-
acterized by a pairff; = (C;, P;), where each service requestipfrequiresC; units
of CPU time to satisfy and two successive requests must beategadyP; time
units. Supposé/ is a set ofn periodic tasks{(Cy, P), ..., (Cy, P,)} where(;,
P; are respectively the computation time and the period foioder task7;. The

first instance of all tasks i/ arrive together at time.

11



2.1.2 Design - Priority Assignment

A design is a (fixed or dynamic) priority assignment to thésas the peri-
odic task set. A Fixed-Priority (FP) scheduler or an Eari2sadline-First (EDF)
scheduler is used to schedule tasksiin An FP scheduler always selects for ex-
ecution the task that has the highest priority. With Rate Moniac Assignment
(RMA) of priority, taskZ; having a higher priority than task; implies P, < P;.

We shall adopt the convention for FP scheduler that fgsk assigned a higher
priority than taskl} iff i < 5. An EDF scheduler always selects for execution the
task whose deadline is the nearest, hence the task prediatieceDF scheduler are

dynamic, and change over time.

In this chapter, we talk about schedules for task\gethat are produced by
a Preemptive FP (PFP) scheduler, Non-Preemptive FP with RNAity (NPFP/
RMA) scheduler, Preemptive EDF (PEDF) scheduler and Noe+Rpéive EDF
(NPEDF) scheduler. We call these schedules the PFP sclsetliite P/RMA sched-

ules, PEDF schedules and NPEDF schedules respectively.

| | Preemptivel Non-Preemptive
EDF PEDF NPEDF

FP PFP NPFP
W RMA | PFP/RMA | NPFP/RMA

In general, FP/RMA and EDF produce different schedules (@gsider the
task set{(2,3), (1,5),(1,8)}), but in order to save space, throughout the chapter,
counter-examples are carefully chosen so that both EDF &iBMA have the

same schedule.
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A scheduler first computes an initial schedule or prioritgigsment based
on the requirements specification of each task either athticcomputed offline)
or as part of the admission control process (computed onlifiéen a run-time
dispatcher selects task instances for execution basedletatypor partially on the

priority assignment information provided by the scheduler

2.1.3 Requirement Change - Reduction in System Load

A (favorable) change in the requirements space is charaeteby a reduc-

tion in system load, which is defined to be one or more of thieviehg:

e Decrease in computation time of some task(s)
e Increase in period of some task(s)

e CPU upgrade, i.e. the use of a faster processor or CPU overclock

In particular, (3) is a special case of (1), where the contprtaime of all
tasks are decreased by the same ratio. Also, deletion ofkadadso a special
case of (1) and (2), where the computation time becaiaa®l period becomes.
Note that we do not talk about scaling up resource nor ineceasrkload in this
dissertation (this is because in most of our target apjpdicat e.g., mission critical
embedded systems, an upgrade is often forced by the needdiioaal system

functionality, and at best, you end up with the same if noatgesystem load).

We denote the task set after reduction in system load/byand its con-
stituent taskg! = (C/, P/), obeying the relation§’! < C; and P! > P, with at

least one inequality over all tasks being strictly less tfxan
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There are two possibilities for reduction in system loadjeatised and un-
advertised. An advertised reduction in system load for & tasans the actual
values of(C!, P/) are made known to the run-time dispatcher prior to the droiva
the first instance of the task. Unadvertised reduction m#angun-time dispatcher
is never informed of any such changes. If the system loadctextuis advertised,
the scheduler could spend some time computing the optinhaldsde; but the un-
advertised ones are more common and do more harm. The utiadsiencrease in

period also represents a transitional model from pericaik to sporadic task.

2.1.4 Robustness

When there is a reduction in system load, we would normallyeekthe
same design to work. In other words, a priority assignmeattribsults in a task set
being schedulable should preserve schedulability unakrcteon in system load.
We say that a priority assignment is robust if schedulabibtpreserved in any
reduction of system load. Robustness depends on the samggolicy and type of

timing constraints imposed on the system.

One of the hard problems in maintaining real-time systemggirements in
mobile computing is to keep track of the impact of resourageson the applica-
tions. Due to power consideration, CPU in mobile computingfien clocked at a
range of frequencies, and adjusted at run time accordinged.nOften times, it is
not sufficient to keep track of only the upper bounds on resmusage, since some
requirements such as jitter are also sensitive to the lowends and the resource

scheduling algorithm employed.
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2.1.5 Preemptiveness vs Non-preemptiveness

Because of the NP-completeness of non-preemptive deadtlieelsling [28],
most extant work is about preemptive scheduling. Howe@r;preemptive schedul-
ing is worth studying for a number of reasons, especiallyrémources that are

inherently non-preemptable or when preemption cost is.high

Nowadays, processors are much faster, so jobs are mucleshstproces-
sors are more pipelined, context switch overheads becdatevedy high. We want
to resort to non-preemptive policies in an attempt to cutmdws context switch

overhead.

Also, in communication networks, synchronization and padleader pro-
cessing overhead is relatively large. In order to deliveshad the available band-
width to the end-user, batch processing of packets and gessa favored, thus

limiting preemption.

Moreover, in open systems environment like mobile commgytime want
non-interference among partitions, and jobs should notreerppted by other par-

titions. So it also necessitates the use of non-preemptivedailes.

2.1.6 Some Definitions and Notations

Thep' instance of a task; is denoted byl’”. Suppose is the request for
T? that occurs at timein a schedule. Then the response time ofs defined to be
t" — t wheret’ is the time at whichr is satisfied by the completion @f in s. Given

a priority assignment, a task is schedulable if and onlylibaits requests have
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response time no bigger than its period in the schedule. lAd@isis schedulable if

every task in the set is schedulable.

A taskT; has no outstanding computation at timiéall the requests fof’;
that arrived beforéwere satisfied by time A task setV/ does not have outstanding
computation at time if all the tasks insidel/ have no outstanding computation at
time¢. TimeO0 is the time of the first request arrival, so by definition, iaisme of

no outstanding computation.

2.1.7 Related Works

Scheduling anomalies have been known since [24]. Prevesugdts pertain
mostly to multiprocessor and list scheduling anomaliese Tésults reported in
this dissertation pertain to real-time uniprocessor saliegl. The multiprocessor
anomaly reported in previous work depends on processgrassint anomaly and

do not apply to the uniprocessor case.

As far as we know, the definition of robustness in the senseegidbm
from anomalies was first proposed by Mok in an invited lecatreoth the NSF/
ARO/CNR-Italy Workshop on Modelling Software System Struetuand the 7th
International Conference on Real-Time Computing Systems gigligations in
2000 (http://www.informatik.uni-trier.de/ley/db/conf/rtcsa/rtcsa2000.html). This
and the next chapters contains results that answer someopaems proposed by

Mok.

In [12], Buttazzo used Cyclical Asynchronous Buffers to avoliocking

on shared resources to avoid anomalies. However, the udefapproach is
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mainly limited to control applications, e.g. sensory asgion task, because in
their model, messages could be lost or read more than oned. Rate Adaptation
scheme works for processor overload, not reduced systein Ind10], Brandt et
al showed that PEDF scheduling is anomaly-free. In [46], &haal showed that
RMA scheduling is anomaly-free under load reduction. Inticithn to the general

area includes [32], [47], [29] and [33]. Other related workdude [28] and [52].

2.2 Robustness of Preemptive Schedulers

The schedulability problem for preemptive schedulers watdiscussed in
Liu & Layland [32]. We shall assume that time is discrete alhtiraing parameters
are integers. Only slight modification is needed for the uiswn below to apply

to continuous time.

In each of the following sections, we are going to considereise in com-
putation time and increase in period separately. In pdaicwe also highlight re-
duction in system load due to CPU upgrade, which is just a apease of decrease

in computation time.

For the sake of clarity in proofs, we define an intermediask wet)”,
whose constituent task§’ = (C}, P;) have the same periakl as the original task
setT; (hence the same priorities no matter if we use FP/RMA or ED&)ywth the

decreased computation ting as in7”.

A scheduling policy which is robust separately under bottre@se in com-

putation time and increase in period is also robust underadyction in system
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load, because any reduction in system load could be refgezsan a combination

of these two factors. Given that a task 8étis schedulable under the policy con-
cerned, the intermediate task 4ét is also schedulable because the policy is robust
under decrease in computation time. Givel{ is schedulable, our target task set
M’ is also schedulable because the policy is robust underaseria period. Hence
by transitivity, schedulability is preserved by this schiéty policy when system
load is reduced fromd/ to M’.

2.2.1 Preemptive Earliest-Deadline-First (PEDF)

By the Liu & Layland Model [32], a task set is schedulable by FED

scheduling policy iff " Y% <1

j=1 P; —
For decrease in computation time of some t@gly d (1 < k <n,d§ > 0),
- A I I <
25 (Zg) B2 p <!
j=1 "7 j=1
For increase in period of some taBkby o (1 < k <n,d > 0),

" C] " O] Ck Ck " O]
»5-(S%) (77 -Sh e

j=1 "7 j=1 Jj= J

(Note that this proof assumes that job priorities may chaaftgr period increase
when the deadlines cross).

For CPU upgrade, where we reduce the computation time ofskiétay the

same proportiom (0 < o < 1),

z z““ z
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Under any reduction in system load, the utilization factor

o " O,
remains smaller thah Hence the task set remains schedulable under PEDF schedul-
ing policy. In order words, the PEDF scheduling policy isusb (Note that this
proof assumes that job priorities may change after periockase when the dead-

lines cross).

2.2.2 Preemptive Fixed-Priority (PFP)

By the Liu & Layland Model [32], a task set is schedulable by BfeP
scheduling policy iff
. . i 2
\V/Z(l <1< n),EItZ- S (O,PZ],ZCJ . ’VF—‘ <t

j=1
Since the task sét/ is schedulable at first, we have a set of valyes,, . . .,

t,, satisfying the above inequality. After reduction in systesd, we want to find

t, t, ..., t, satisfying:

i "
Vi(l<i<n),t,e(0,PIANY C- || <t
Z( _Z_n)77,€(7 z} ; j ’VP—‘_

/

For decrease in computation time of some talby § (1 < k < n,d > 0),

thenV: (k < i < n, otherwise task;, has no effect on the summation, which is
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only to:), we taket, = t;, € (0, P;] =

(0, F]
>.C [ﬁw = ( Cj-
j=1 J j=1

) [l

IN
~ o

For increase in period of some tagk by 0 (1 < k < n,d > 0), we first
consider when job priorities do not chang&:(k < i < n, otherwise task, has

no effect on the summation, which is only &p taket, = ¢; € (0, B;] C (0, F/],

;CJ“ “?j - (;Cj %D — G%J B {Pkt-z}éD

< o |5

J:
< t

then

= ¢

7

Hence in both cases, the inequality still holds.

If the period increase is advertised, we may change the RMgipes ac-
cordingly. If it is unadvertised (which makes the periodisk begins to look like
a sporadic task), the RMA priorities remain unchanged. We Istaown that PFP
is robust in general when priorities do not change, hencdweréised PFP/RMA is

robust with respect to increase in period.
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Consider next advertised PFP/RMA. If the deadlines do crossle peri-
ods increase, we introduce a series of intermediate redaskdets\/ (. MM
MO+ whereM© = M, M™+t) = M’ andm is the number of swappings
needed for bubble sort to sort the task sets from their algiriority arrangement

to the new one.

The intermediate reduced task sets are constructed agé$oll8tart with
M®, M@+ js obtained by picking the task' with the lowest final priority (in
M") whose periodP!” + P! and stretch it until either (LPX™) = P’ or (2) it
hits the period of another taskl” so thatP!” < P = P < P!, whichever
is earlier. Repeatedly pick a task this way and stretch itgdamtil there are no

more such tasks to pick, then the resulting task sgfis .

It is easy to show that/(™+1) = M’ based on an analogy with bubble sort.
When system load is reduced fraii®) to A/¢+1)| task priorities are not changed,
so our previous proof holds. Withit/ @+, swapping the priority of taskg!
andT,Ei“) does not affect the schedulability of the task set becawsedhods of
these two tasks are the same, i) = P{*Y. Continuing this way, we see that
M’ remains schedulable for PFP/RMA even when the RMA priorityngfes after

reduction in system load.

CPU upgrade or overclock is a special case of decrease in ¢atigmutime.
We provide the proof here for completeness. Here, the camtipattimes of all

tasks are reduced by the same ratier 1. Taket, = ¢;, thenVi(1 < i < n),

t; = ti € (0, P] = (0, F}]
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and

IN
St

In any case, there existssatisfying the inequality after reduction in system
load. Hence the task set remains schedulable under PFRuiciggablicy. In other

words, the PFP scheduling policy is robust.

2.3 Loss of Robustness in Non-preemptive Schedulers

Neither NPEDF nor NPFP/RMA scheduling policy is robust. Ingel, an
anomaly may occur for any non-preemptive, eager schediehwloes not idle

the CPU as long as there is a ready task.

e Decrease in Computation Time: Task $&i = (3,5), 7o = (2,10), T3 =
(4,20)} is schedulable by an NPFP/RMA or an NPEDF scheduler. But it
becomes unschedulable if we reduce the execution timg& é&fom 2 to 1.

(figure 2.2)

e Increase in Period: Task st} = (1,4), T» = (3,8), T3 = (6,16)} is
schedulable by an NPFP/RMA or an NPEDF scheduler. But it besame

schedulable if we increase the period/gffrom 4 to 5. (figure 2.3)
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T1 ‘ | (3,5)

T2 ‘ ‘ (2, 10)

T3 ‘ ‘ ‘ ‘ (4, 20)
0 5 10 15 20

T1 ‘ ‘ ‘ ‘ (3,5)

T2 ‘ ( T1 misses deadline (1, 10)

T3 ‘ ‘ ‘ ‘ (4, 20)
0 5 10 15 20

Figure 2.2: Loss of Non-Preemptive Robustness under DexiaaSomputation
Time (Top=Before; Bottom=After)

e CPU Upgrade or Overclock: Task sgf, = (30,50), T, = (20,100), T3 =
(40,200)} is schedulable by an NPFP/RMA or an NPEDF scheduler. But it
becomes unschedulable if we reduce the execution timestaks by10%.

(figure 2.4)

Hence, the above counter-examples establish:

Theorem 6. Neither the NPFP/RMA scheduler nor the NPEDF scheduler is obus

with respect to any reduction in system load.

2.4 How Bad is the Non-Preemptive Robustness Problem

The robustness problem occurs regardless of the CPU ublegtctor, re-

gardless of the number of different job sizes (length of jebqxls), and the problem
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T1 _l
T2 | | |
T3
0 5 10 15 1¢
T1=1(1.4) T2 =(3.8) T3 =(6. 16)
T1 | _—al ]
T1 misses deadline
T2 | | ]
T3 | ]
0 5 10 15 1¢

T1=(1.5 T2=(3.8) T3=(6.16)
Figure 2.3: Loss of Non-Preemptive Robustness under IneréasPeriod
(Top=Before; Bottom=After)

could not be solved by testing a finite number of workload otida cases.

Theorem 7. The loss of robustness for NPFP/RMA and NPEDF schedule exists

even when the utilization factor of the task set tends to zero.

Proof: A scenario suffices to demonstrate the fact here. For any giesitive
numbere, we construct a task set whose utilization fadiox ¢, yet neither NPFP/

RMA nor NPEDF schedule is robust on it.

Consider the task sdtl}, = (C,P), T, = T3 = (2P — 2C,kP)}, where
k > 4 is an integer. The NPFP/RMA and NPEDF schedules are not rédoustis
task set under any reduction in system laod. In figures 2.2.2.@.8, it cause$;

to miss the deadline in the third period.

24



T1 | | (30, 50)
T2 ‘ ‘ (20, 100)
T3 \ | | | (40, 200)
0 50 100 150 200
T1 misses deadline at time 100
T1 | \\H | (27, 50)
| |
T2 ‘ | | .| (18,100)
| |
I I
T3 | | ! | (36,200)
0 27 45 81 108 120

Figure 2.4: Loss of Non-Preemptive Robustness under CPU dpgnaCPU Over-
clock (Top=Before; Bottom=After)

(k—4)C

-1 then

For this parameterized task set, take- max(4,%) andP >
we have utilization factol/ < e. Hence wher — 0, we havek — oo andP — oo,
utilization factorU — 0, but task7; misses its deadline on the third period, so the

anomaly still exists even when the utilization factor— 0. |

Corollary 8. Restricting job sizes (length of job periods) to a selectetdvwon’t

avoid anomalies as long as there are more than one job size.

Proof: The same example from theorem 7 shows that anomaly can occur
when there are as few as only two job sizes. Restricting jobssia harmonics

won'’t help either, as illustrated in the scenario above. |

Moreover, testing cannot solve the anomaly problem becanisesting can

detect all problems.
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| | | 1 N

i
T1 misses deadline
T2 | | | |

T3 | | | |
0 P 2P 3P 4AF
T1=(C-d.P) T2=T3=(2P - 2C. kP)

Figure 2.5: NPFP/RMA and NPEDF are not robust against deglieas computa-
tion time of T}

T N
T1 misses d\eadline
T2 | | | |
T3 | | | |
0 P 2P 3P 4F

T1=(C, P) T2=(2P - 2C - d, kP)
T3 = (2P - 2C. kP)

Figure 2.6: NPFP/RMA and NPEDF are not robust against deerieascomputa-
tion time of T,

We will illustrate this with decrease in computation time.gAod testing
approach may go like this: For each task, try to decreaseitgpatation time by a
fixed factors each time and see if the anomaly occurs. If no anomaly occualb a
such testing points, we assume that the task set does nbitextomaly behavior

for the scheduling policy concerned.

However, for any real-valued chosen, we can construct a task set such
that it remains schedulable at all the testing points butvsremomalies in-between

testing points:
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T1 | L N

T2 | | |

7/
T1 misses deadline

T3 ‘ ‘

0 P 2P 3P
T1=(C.P+d) T2=T3=(2P - 2C, kP)

Figure 2.7: NPFP/RMA and NPEDF are not robust against anasere period of

4F

T,
T | | A~
T1 misses deadline
T2 | | | |
T3 | | | |
0 P 2P 3P 4AF

T1 = (aC. P) T2 =T3 =(2aP - 2aC. kP’

Figure 2.8: NPFP/RMA and NPEDF are not robust against CPU dpgtia< 1.0

Tl (25, P)
T, | (2P — 46, kP)
T3 (57 kP)

T, | (P-4,kP)

T, | (P-4 kP)

whereP > nd and is an even multiple of, integersk > n andn > 4. This task

set is schedulable by both NPFP/RMA and NPEDF scheduler €ig®).

As shown in figures 2.10 to 2.13, whenever the computatior o, is
decreased by integral multiplesdfthe task set remains schedulable, but it may not

be so when the computation time Bf is decreased by a non-integral multiple of
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ml ] | [ 1] L[] Ll [,
T2 | | | | | J
I: | L[ | | | J
T4 | | | | | J
TS5 | | | | | J
T6 | | | | | J
Figure 2.9: Original task set is schedulable
n[ ] ! [1[] 1 I I I I B Y L [ T I T I
T2 | | | | | | T2 | | | | | J
T3 | | | | | ] T3 | i | | | J
T4 | | | | | | T4 | | | | | J
5 | | | | | | T8 | | | | | J
T6 | | | | | ) T6 | | | | | J

Figure 2.10:C%, = left: C, — 14, right: Cy — 6

0. In particular, the task set is not schedulable when the coatipon time of7; is
decreased bym+1)d and(£ —2+m+3)d, Vm : 1 < m < n—3. Notice that even
though an anomaly may not occur when the change in requirsnspecification

tends to zero, it may still occur later.

Theorem 9. There can be an infinite number of regions where an anomalyrsccu

Proof: Consider the same parameterized task set we just constrimtechy

positive integern, we can choose = m + 3 to achieve&2m number of anomalous

regions. Asn — oo, n — 00. |
n[ ] L[ (] L T ymf] L[l [T] I I
el [ ] | \‘\ " m‘sses\dsadlme | 2| [ ] | | | | J
T3 | [ | | | ] T3 | [ | | | J
T4 | | | | | | T4 | | | | | J
5 | | | | | ] TS5 | | | | | J
T6 | | | | | ) T6 | | | | | J

Figure 2.11:C} = left: Cy — 114, right: Cy, — 26
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Tl ] | [, [ L[] L[] ymal ] I [ 1 [T] il J
| [ ] | " e deadlme/\‘ | 2| [ ] | | | | J
T3 | [l | | | ) T3 | [l | | | J
T4 | | | | | ) T4 | | | | | J
T | | | | | ) TS | | | | | J
6 | | | | | ) T6 | | | | | J
Figure 2.12:C} = left: C, — 230, right: Cy — 36
] L[] | [1, [ [ ] RN L[] | [, [ 1 [T] J
o ], e e[ ] N ‘
T3 | [l | | | ) T3 | [l | | | J
T4 | | | | | | T4 | | | | | J
5 | | | | | ) TS | | | | | J
6 | | | | | | T6 | | | | | J

Figure 2.13:C} = left: Cy — 334, right: C, — 46

2.5 Properties of Non-preemptive Anomaly

In order to tackle the problem of non-preemptive schedulalmistness, we

first gather a set of useful properties of non-preemptivedaling.

Lemma 10. For both NPFP/RMA and NPEDF, if the only kind of reduction in
system load allowed is decrease in computation time, thelothest priority task

T,, will not miss its deadline.

Proof: We will show that all instances of the task would start no later than

their respective start time in the original schedule.

Consider an arbitrary instan@@ of the taskl,,. Letr be its request time,
be its start time and lét be the latest time befotavith no outstanding computation.
Notice thatt’ remains a time of no outstanding computation under any dsere

in computation time, because no task execution could afogsder decrease in
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computation time. Tasks befotecould not cross because their computation time
can only shrink but not expand to crasstasks executed aftércannot start earlier

than their request time so they cannot crfgso.

The number of requests for each task within the intep/ad) remains un-
changed under reduction in system load, because the perioat changed. After
reduction in system load, the total computation in the akjt’, ¢) (excluding the
task instancé€?) is decreased, hence the CPU must be idle during some timisin th
interval. Let the end of the last idle interval thus genatdiet”. If r < ¢" < t,
thenT? starts earlier; otherwise, the total computation withie ifiterval(t”, t) is
not greater than before, §¢ starts no later than before. HerdEg will not miss its

deadline. ]

For NPFP/RMA, observe that the start times of all instances®fowest
priority task7,, in a task set is the same no matter if we use preemptive or non-
preemptive scheduling, it is natural to think that the catiinstant of the lowest
priority task7,, also occurs when the request for all tasks align at the samee ti
We will prove it formally in the following lemma. Note thatithlemma is a study
of the non-preemptive scheduling in general, and has ngtioiio with reduction

in system load.

Lemma 11. For NPFP/RMA, the lowest priority task, has the longest response

time when the request for all tasks align at the same time.

Proof: Suppose the contrary is true that the lowest priority tAskas the

longest response time when the request for a certain taskired” is not aligned
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with that of 7)?. Letr, be the request time @ andr, be that of7’)¢. Without loss
of generality, let-, < r, (in the case that the start time 6f is later than-,, we let
p = 0, andT? be a dummy instance which has no outstanding computatianglur

its whole period). We consider the following cases:

If T7 still has outstanding computation at timg or the CPU is busy be-
tween the completion time & andr,, then we move the request time Bf to
align withr,. Doing so would not change the start time nor completion tfr@ny

task, yet the response time fof is increased, which is a contradiction.

Otherwise we consider the next instari€&™, and move its request time
to align withr, (and move all subsequent request time§’,0by the same amount
too). This way, the number of requestsiofduring the period of ¢ is not less than

before, so the response time fBf is at least as much as before.

So, the lowest priority task,, has the longest response time when the re-

guest for all tasks align at the same time. |

If a task meets its deadline when it has the longest respamsge then it

meets all deadlines. This is traditionally called the catiinstant test.

Corollary 12. For NPFP/RMA, when the first request for all tasks arrive togeth
if the only kind of reduction in system load allowed is incee@s period, then the

lowest priority task7,, will not miss its deadline.

Proof: Special case 17T, is the only task whose period is increased, the
completion time for the first instance @f, remains unchanged but its deadline is

extended, s@,, would still pass its critical instant test. Special casel2e period of
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T,, remains unchanged, then during the first period,otthe number of requests for
higher priority tasks decreases (because some or all efdbgods have increased),
so the response time fat! is less than or equal to before, heriGestill meets the

critical instant test.

General case: The period 6f, and one or more other tasks are increased,
we consider an intermediate task set in which only the perfdd, is increased. By
transitivity of the above two cases, still passes its critical instant test. Hence in

any case7,, will not miss its deadline. [ |

Notice that the proof is true fdf,, even if the period of some other tagk
increases to beyond that @}, i.e. P, > P.. Hence corollary 12 is valid for both
advertised and unadvertised period increase, or in othedsyealid no matter if

the RMA priorities are re-adjusted accordingly or not afterigd increase.

Theorem 13. For NPFP/RMA, when the first request for all tasks arrive togeth
after reduction in system load, the lowest priority tagkin M never misses the

deadline.

Proof: After reduction in system load, the new task 8ét = {(C}, P)),
(C4, Py, ... (Cl,P!)}. We consider an intermediate task 3¢t = {(C}, P,),
(Ch, Py),...(Cl,P,)}. The lowest priority task’, in M remains to be the lowest
priority task asl;’ in M" because the periods are not changed. By lemma 10, the
lowest priority taskl!” in M"” does not miss its deadlines. By corollary 12, tdk

does not miss its deadlines ¥’ too even though it may or may not remain to be
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the lowest priority task in\/’. Hence by transitivity, the lowest priority tagk, in

M never misses its deadline under reduction in system load. |

Notice that the lowest priority task is not completely déieat from the rest
of the task set. Removing it may leave the task set unscehdukaly. deleting’;
from the task set{T} = (2,8), 7o = (9,14), 75 = (3,28)} under NPFP/RMA
or NPEDF. Similarly, decreasing the load (or even removithe highest priority
task may also leave the task set unschedulable, e.g. regidvior reducing it to
(1,20) from the task set{7} = (2,20), T, = (6,20), T5 = (24, 80), Ty = (21,80)}
under NPFP/RMA or NPEDF.

Theorem 14. For NPFP/RMA, when the first request for all tasks arrive togeth
then after any reduction in system load, let the request tftask?; ber’ and its
time of start of execution b€: if all the tasks that get executed betweémnd s’

have priorities higher tham, then taskl"p; does not miss its deadline.

Proof: Since all the tasks that get executed betwegeand s’ have priorities
higher than, then we may consider tagK as the task of lowest priority during this
interval of time (by deleting all lower priority tasks, anorfthe remaining tasks,
counting only requests whose deadlines are afjeBy lemma 11, task has the
longest response time when the request of all higher pyitagks arrive together at
', S0 we only need to consider the first request of t§skBy theorem 13, task?

would not miss its deadline under any reduction in systerd.loa |

Theorem 15. For NPEDF, after any reduction in system load, let the reqtest

of task”; ber’ and its time of start of execution b& if all the tasks that get
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executed betweeti and s" have deadlines earlier than that @f (i.e. with higher

dynamic priority), then task does not miss its deadline.

Proof: It is known that any task set that is schedulable by NPEDFse al
schedulable by PEDF. We have also proved that PEDF is rolgastst reduction
in system load. A property of PEDF is that betweérand s/, only tasks whose
deadlines are earlier than that'Bf get executed. By rearranging the PEDF exe-
cution order of task instances betweémnds’ after reduction in system load, we
get the corresponding schedule for NPEDF (which may or magaase deadline
miss for those higher priority tasks, but we are only conedwith taskZ?). This
task instance swapping keeps the start tirnef task7”. Hencel; would not miss

its deadline. [ |

Theorem 16. For both NPFP/RMA and NPEDF, assume the first request of all
tasks arrive together. If a certain instance of victim t4$k whose request time is
r’ misses its deadline after reduction in system load, there tldsts an instance of

a culprit task7.¢ satisfying these properties:

e The culprit taskT. is of lower priority than the victim taskK,, (For NPFP/
RMA, static priority means < c; for NPEDF, dynamic priority means the

deadline off.. is later than that ofT},).

e The culprit taskl’“ is executing at time’.

Proof: Suppose the contrary is true that all the task instancestbaxecuted

between’ and the deadline miss are of (static or dynamic) prioritighér than
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Figure 2.14: First seven periodsBf in the example task set

that of the victim taskr,,, then by theorems 14 and 15, the victim task instance
T.? would not miss its deadline, which is a contradiction. Heagénstance of the
culprit taskT, of lower (static or dynamic) priority must be executing beém’

and the deadline miss. Moreover, the culprit task must hiareesl executing before
r’, otherwise by the time it starts execution, there is no antting computation for
all higher priority tasks including the victim tagk, and the victim task would not
have missed the deadline. Hence the culprit task insté&jfcaust be executing at

timer’. [ |

2.6 Miss Ratio

We will look at a CPU upgrade scenario where the miss ratio lBFR/
RMA or NPEDF scheduler can be as high%aslvliss ratio is defined for a task as
the number of task instances whose deadlines are missedhevital number of

task instances initiated in that interval of time.

We assume that if a task instance is not yet started when siesiss dead-
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line, it will never be started. If an executing task instamgsses its deadline, it does
not matter whether it is killed right away or allowed to go tmpletion. When the
run-time dispatcher picks a task instance for executiantdbk is started even if the
remaining time to its deadline is insufficient for its adi@tl computation time.

Consider the following set of tasks:

Original After CPU upgrade
T (C,nC) (1= a)C,nC)
T (2(n —1)C,2knC) | (1 — a)2(n —1)C, 2knC)

71k:+l (2(n —1)C, 2knC) ((1:— a)2(n —1)C, 2knC)

whereC' is the computation time of, n is the ratio of period to computation
time of 71, k is the number of ‘long’ tasksy is a measure of increase in CPU
performance. Figure 2.14 shows the fifgieriods of7;. Herea is taken to bé).1,

i.e. the CPU becomes faster b§%. For ease of explanation, we group every two

periods into one step.

Consider the time left at the end of stgp
time left = 2ianC + (i — 1)(1 — a)C
Let & = i, the whole pattern repeats again when
time left = (1 — «)2(n — 1)C — nC

So we equate these two terms, and solve for

n(l —2a) — (1 —a)
2an + (1 — «)

1=
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Taking the limitn. — oo, 1 — 122, Atthe end of step, thetotal number of
requests fofl; = 2i, thetotal number of requests missedi — 1, so themiss ratio

==L Asa — 0, i — oo, S0 themiss ratio— 1.

Notice that the worst case miss ratio happens when 0, which may well

be the case of improperly handled clock jitters!

Theorem 17. A tight bound for the worst case miss ratio of NPEDIins

Proof: We have already seen a scenario where the worst case mes$orati
the NPEDF can be as high ésSo we only need to show that this is also the upper
bound and the tightness follows. The intuitive observaisthat there cannot be

two consecutive misses for any task.

Suppose the contrary is true that some tasks miss deadlisz=cuatively.

Let 7T, be thefirst task that misses its deadline consecutively in the exetutio

By theorem 16, an instance of lower priority culprit tanf must be exe-
cuting at the time the first missed request of the victim t&Slarrives ¢; > v),
and an instance of lower priority culprit taglgg must be executing at the time the

second of the consecutive missed requests of the victiniltaakrives ¢, > v).

These two task instances must be the same instance of thetasknee.
c1 = ¢ andp = ¢, otherwise by the tim@c'g starts, there are no outstanding
computation for7! so it won't miss the first deadline. Notice that by our choice
of treating deadline misg;, would be started instead @f? even if the remaining

time to deadline is insufficient for its required computattone C,,.
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Hence a certain instance of the lower priority culprit tdsk must be exe-
cuting at the times the two consecutive missed requestsofithim task?’ arrive

(c > ).

miss 1 miss 2
LA | |

Tc =
impossible: computation time for Tc is too lon

But if 7 starts before the arrival time of the first missed request,eards
after the arrival time of the second missed request, its coatipn time would be
longer than possible. First, we hag& > P/, and for each task;, where: < c,
2P, —2C; > C,, hence&P! > 2P, > 2P, —2C; > C. > C. > P/, so that% < 2,

le. {%W < 2. We will need this result at the last part of this proof.

Since the task set was originally schedulable before remluah system

load, by construction, the longest possiblewe can have is:

i=1 ‘

Notice thatL%J > 2 because/i,1 < i < v, P, < P,. Hence when maximizing
C., at least two instances of each higher priority task get@eecduring any two

consecutive periods d?,.

U

Tv-1
Tv ‘
Tc Cc
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Hence we have

1

C! <C.<2P, —i(}i- f}f”J < 2P, —2&@ < 2P —2i0§
=1 =1 =1

However, in order fofl”’ to cause two consecutive misses, its computation

time C! has to satisfy

v p v v
RTINS ol {ﬂ > 9P 23 > op 23
i=1 i i=1 i=1

ks

Tv-1 ) miss 2
miss 1
Tv ‘ ‘

Tc Cc

which is a contradiction. In the equatioﬁ%ﬂ counts the maximum number

of deadlines of tasi” that falls inside the second period of tagkin the graph.
So, there cannot be two consecutive misses for any task. eHbecmiss

ratio is at mos%, and this is a tight bound for NPEDF scheduling policy. H

Corollary 18. With NPEDF and our choice of treating deadline miss as in the

previous section, progress is guaranteed to all tasks irtdbk set.

Proof: Since theorem 17 tells us that there could not be two conisecut
misses for any task, there must be progress in any two adjpegiods for any

task. -
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2.7 Conclusion

Non-preemptive scheduling is known to be NP-hard. Nevérdise non-
preemptable resources account for most of the I/O resoof@esomputing system.
Therefore, a properly virtualizing non-preemptable r@seus very important for
any hypervisor design. However, the problem of time shanioig-preemptable re-
sources to achieve real-time properties is not fully res\Notably, non-preemptive
scheduling is subject to certain anomalies whereby a st¢higldusystem may be-

come unschedulable when the total system load is reducegased to increased).

We say that a scheduling policy is robust for a task set if ésprves the
schedulability of the task set under reduction in systend.loBoth the PFP and
PEDF schedulers are robust, while none of the NPFP/RMA noNEEDF sched-
uler is robust, even for the single processor case. In gersetzedulability condi-
tions do not necessarily guarantee robustness. Furtherm@cheduling anomaly
may happen even when the utilization factor tends to zereywvihere are as few as
only two job sizes in the task set, and when all the job sizedhyarmonics. Testing
(or simulation) cannot solve the problem, because for astynig approach, there
exists a task set whose anomaly cannot be detected. Thelbe earinfinite number
of anomalous regions too. We then study the effect of theckdhmgy anomaly on
deadline misses. We proved that a tight bound for miss rafjainder reduction in

system load for the NPEDF scheduler.
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Chapter 3

Solutions to the Non-Preemptive Robustness Problem

A real-time scheduler is robust (sustainable) for a certask set if its
schedulability is preserved under lighter system load leystheduler. The first
part of this chapter shows that non-preemptive robustnkaszero-concrete pe-
riodic task set against increase in period is sufficient targatee non-preemptive
robustness for all variants of the task set. This proof idefithe corresponding
concrete or non-concrete periodic and sporadic task satesigny kind of reduc-

tion in system load.

Based on this result, the second part of this chapter givesebessary and
sufficient conditions for robustness for both Non-Preewaptixed-priority (NPFP)
and Non-Preemptive earliest-deadline first (NPEDF) scleeslunder both discrete
time and dense time assumption separately. We also looknag special cases

where simplication could be made.

3.1 Introduction

A major advance in real-time scheduling theory started bysttminal work
of Liu and Layland [32] has been based mostly on preemptikedders. In prac-

tice, however, non-preemptive schedulers have been wigsdyg in the avionics
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industry and other safety-critical applications for vasaeasons such as ease of

testing for timing compliance and the minimization of cottewitching overhead.

In recent years, a new concern increasingly makes non-ptaensched-
ulers attractive for use in real-time applications, nantély difficulty in obtain-
ing accurate execution time bounds in modern processoitectlres that exploit
heavy pipelining and caching techniques. The result isglkaibrmance analysis
has to be overly conservative in the choice of execution timabers in the case
where compliance to hard real-time constraints must be dstrated to the certi-
fication authorities, or that a delicate tradeoff must be enlaetween using more
optimistic execution time numbers and accepting the poggibf missing some
deadlines in the case of softer real-time constraints. €hace is increasingly
difficult to make as the variance in execution time can be tofaaf 10 or higher
in modern computer architectures, especially where heamtegt switching is in-
curred by preemptive schedulers. The end result is the Ibgsedlictability in

real-time performance.

This situation is ameliorated by the use of non-preemptoleedulers for
which task interrupts are not allowed and the effect of aagbn timing predictabil-
ity is easier to analyze and control. However, there is agpacpay for the use of
non-preemptive schedulers including weaker schedutglitunds and, less obvi-
ously, the loss of robustness against variation in resousage parameters [38], a
phenomenon that has also been referred to as sustaingbjlithereas the degra-
dation in schedulability bounds could be somewhat coupdg¢ainced by a decrease

in the length of the blocking factor, the loss of robustnessdirect consequence of
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non-preemption and complicates the testing and veriftglofireal-time systems.

In this chapter, we present some general results in nonvptaee real-time
scheduling with respect to the issue of robustness. Chagtas 2hown that non-
preemptive schedulable task set may become unschedutad#e reduction in sys-
tem load. A scheduler i®bustfor a certain task set if it preserves schedulability
under reduction in system load. We analyze the necessargu#fidient condi-
tions for robustness of the non-preemptive earliest deadilist (NPEDF) and non-
preemptive fixed priority (NPFP) schedulers for both padaghd sporadic task
models, both discrete and dense time models, and both ¢eraord non-concrete

task sets.

A preference for non-preemptive scheduling disciplindks ¢ar formal in-
vestigation of the notion of robustness as we shall pursukisnchapter. In fact,
many avionics applications already adopt at least limite-preemption because
of data locking issues. It is commonly held that by introaigca blocking term
which is equal to the longest task, well known results sudhase in RMA analy-
sis can also be applied to non-preemptive priority schedpibeit as far as we know,
this has never been justified in open literature. Our resualtee last part of this

chapter provide a formal justification for this “folk knovdge”.

3.1.1 Task Model

A periodic / sporadic tasks characterized by a paif; = (C;, P;), where
each request for service @f requiresC; units of time and two successive requests

are separated bgxactly(periodic) /at least(sporadic)P; time units. Each request
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results in atask instance A periodic / sporadic task sas a set ofn periodic /
sporadic task$C, Py), ..., (C,, P,) whereC;, P; are the computation time and

period / minimum separation respectively for task

If a task set has a fixed release time for the first instanceb ib$ sasks, it
is called aconcrete task sebtherwise it is anon-concrete task seA non-concrete
task set is a set of concrete task sets over all possibleseeteaes, i.e., arbitrary
release times for its first task instanceszéo-concrete task seta special case of
concrete task set where the release times of all first taskriogs are at precisely

time 0. (See figure 3.1).

task e (concrete)
instance task
M
zero—concrete concrete non—concrete
task set C task set S task set

Figure 3.1: Set relationship in our task model

The deadline for each task instance is assumed to be at thefehdir
respective period or minimum separation. Time couldliseretewith a minimum

guantum, odenseby taking on values over the set of real numbers.

We use the following abbreviation in this chapter: CP (cotecperiodic),
CS (concrete sporadic), NCP (non-concrete periodic), NCS¢oocrete sporadic),

ZCP (zero-concrete periodic) and ZCS (zero-concrete sporadi
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We only consider non-preemptive eager schedulers. By neenpptive, we
mean that a task instance must be allowed to go to completiorienrupted once
it is selected for execution. Bgager schedulefalso callednon-idling or greedy
scheduleiin some literature), we mean that the CPU must not be let idienever
there is any ready (released) task instances. In partjouéaexplore the properties
of a few eager schedulers like the Non-Preemptive FixedriBriNPFP) scheduler

and the Non-Preemptive Earliest-Deadline-First (NPERRgsuler in this chapter.

An NPFP scheduler always selects for execution the task#sthe highest
priority. With Rate Monotonic Assignment (RMA) of priorityask7; has a higher
priority than task7j iff P, < P;. For simplicity, we shall adopt the convention
for NPFP scheduler that tagk is assigned a higher priority than tagkiff ¢ <
j. An NPEDF scheduler always selects for execution the taskse/fdeadline is
the nearest, hence the priority assignment for NPEDF sdétedudynamic, and

changes over time.

3.1.2 Reduction in System Load Revisited

The definition of robustness [39] is closely coupled with toacept of re-
duction in system load. There are two basic components afctenh in system

load:

e decrease in computation tinfeC")

e increase in periodor minimum separation(] P)
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Many common forms are special cases or a combination of tbeeatwvo
components. For exampldeletion of tasks a special case where the computation
time is decreased toand the period is increaseddo; CPU upgrade or overclock
is another special case where the computation times ofskiétare reduced by the

same factor.

Blocking factot could also be thought of as a special cas¢ @f(by treat-
ing the blocking factor as a task with the highest prioritythe system). When a
scheduler is robust for a certain task set with blockingdigét remains schedulable

when the blocking factor is reduced or removed.

A reduction in system load could laelvertisedrun-time dispatcher knows
the exact amount of (decreased) computation time and ésedd period of all
task instances by the time it dispatches themyr@dvertisedrun-time dispatcher
has no idea if a task instance would finish early once it igestiaror if the next
task instance would arrive late once the previous one fig)jsHéthe system load
reduction is advertised, the scheduler could spend sonesciimputing the optimal

schedule; however, the unadvertised ones are more comnaasoas more harm.

There are two kinds df P. (1) Restrictive| P (usually happens when adver-
tised) means that all task instances have the same (indjgaeseod thus keeping
its periodicity. (2)Generall P (usually happens when unadvertised) may leave the

different instances of the same task having their periocieased to a different ex-

!Blocking factoris a term that is used in non-preemptive scheduling anatgsapture the
maximum amount of time a released higher priority task hasatib before it could start execution
due to another lower priority task that is executing and tlaainot be preempted.
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tent. Restrictivel P is a special case of the genefdf. The general P resembles
the definition of asporadic taskhence some known schedulability analysis results
of sporadic task set could be borrowed. In this regard, sfiotask sets could also

be considered as manifestations of the gengfal

3.1.3 Robustness Revisited

Atask setisobustunder a certain scheduler if its schedulability is presgrve
under reduction in system load. A schedulemoisustif it is robust for all task sets.
Chapter 2 has shown that in non-preemptive scheduling, ndmgdsilable task sets

become unschedulable under reduction in system loadheg.are not robust.

We call itgeneral robustnes§schedulability is preserved under any reduc-
tion in system load. We also talk about special robustnegs, schedulability is
preserved specifically undérP. If a task set under a certain scheduler is robust
against botl P and | C, then by transitivity, it is also robust against any reducti

in system load, therefore qualifies for general robustness.

3.2 Related Work

Different words have been used in the literature to meanaheeghing. For
example, the concept ebbustnessvas coined astability in Deogun et. al [17]
andsustainabilityin Baruah et. al. [7] [11]; the concept olilprit taskwas coined

asusurper taskn Deogun et. al. [17].

However, some of the previous work assumed task modelsefiffehan

ours. While we adopted the periodic and sporadic task mo@&€ls Peogun et.
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al. assumed exactly one task instance for each task, witl fréay between the
finish time of the previous task instance and the release dintiee next instance.
We believe the periodic and sporadic task models are so yitdgloyed that their
non-preemptive robustness is worth studying. Also, theyrent assuming eager
scheduler, whereas using an eager scheduler is important imodel because un-
der non-advertised reduction in system load, no schedakeahy fore-knowledge

to insert idle time in anticipation of unarrived task instas.

No previous work addresses the necessary and sufficieniticorsdfor non-

preemptive robustness over the full spectrum of task madetoes this chapter.

Burns and Baruah [7] [11] considered sustainability maintydieeemptive
schedulers. Their non-preemptive test requires detetrmmaf a minimumgp; that
could be obtained by exhaustive search in discrete timenmpbssible with dense

time. Even with discrete time, our test has better runnimgti

Jeffay et. al. [28] provided a necessary and sufficient dawdfor schedu-
lability of CS, NCS and NCP tasks. Their results are very usefdliaspiring, but
they are limited to the NPEDF scheduler under discrete tissaimption. In this
chapter, we explore both the NPEDF and NPFP schedulers botlediscrete and

dense time assumptions.

3.3 Properties of Non-Preemptive Robustness

Chapter 2 gave some useful properties of non-preemptivestoéss. Let

us explore more of these properties here. They lead to thelusian that it is
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sufficient to check for non-preemptive robustness by loglahjust the ZCP task

set against P.

This section explores non-preemptive robustness in gendteout refer-
ence to any particular scheduler. We will add some famouspmeemptive sched-

ulers to the picture in section 3.4.

3.3.1 Concrete Robustness and Non-Concrete Schedulabylit

Jeffay et. al. [28] has shown that the non-preemptive sdabdity condi-
tions of NCP task set is exactly the same as that of the NCS tasknsthe next
theorem, we are going to show that the non-preemptive stdatity conditions in

this case are equivalent to its non-preemptive robustregs$itoons.

Theorem 19. Non-preemptive robustness of a CP/CS task set againss equiv-

alent to non-preemptive schedulability of the correspogdICS task set.

Proof: Letr = {T11,T5,...,T,} be a NCS task set with arbitrary release times
ri,andwherd; = (C;, P;),forl < i <n. LetT = {(T\,71), (T2,72),...,(Th,7Tn)}
be the corresponding CP/CS task set wherethe release time for the firstinstance

of T;.

(—) Given that7" is non-preemptively robust againkt;, we construct a

task sefl” of increasedP, as follows. Lett = max;<;<,,(r; + F;). (See figure 3.2).

For any values of release times(from task setr), wherel < i < n, let
the release time of the second instances ofithetask in7” bet + r.. Afterwards,

all task requests ifi} assume the same pattern as in task-s€bee figure 3.3).
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Figure 3.3: Construction of task st

SinceT’ is non-preemptively robust, we conclude tiiats non-preemptively
schedulable. By our construction, there is no outstandimgpedation at time, so
the task set (whose release timessgydormed by chopping off the firgtunits of

time from task sef’ is also non-preemptively schedulable. (See figure 3.4).

Since the derivation is valid for at], the NCS task setis non-preemptively
schedulable. Therefore, non-preemptive robustness of CR&kSset against P

implies non-preemptive schedulability of the correspagdCS task set.
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Figure 3.4: Back to- with arbitraryr;

(«) A CP/CS task sef” of T P is itself an instance of the NCS task set
7. Given thatr is non-preemptively schedulable, we conclude fiais also non-
preemptively schedulable. Hence the original CP/CS task sehon-preemptively
robust. Hence non-preemptive schedulability of NCS taskgaies non-preemptive

robustness of the corresponding CP/CS task set agaihst |

Corollary 20. The following statements are equivalent:

1. Non-preemptive robustness of CP task set agdifst
2. Non-preemptive robustness of CS task set agaifst
3. Non-preemptive robustness of NCP task set agéiRst

4. Non-preemptive robustness of NCS task set agaist

Proof: By theorem 19, items 1 and 2 are equivalent to non-preempt@s N
schedulability (let’s call it item 0). When rephrased, naegmptive robustness of

any instanceof a NCP task set again$tP (i.e., item 3) is equivalent to the same
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item 0. The former becomes non-preemptive robustness of Bi€kset againgtP

(item 3).

Finally, by the nature of a sporadic task set, item 4 is ed@ntao its own
non-preemptive schedulability. We show this by contrajpasi: (—) If such a
sporadic task set (items 4) is not non-preemptively rolibst) there exists a con-
crete instance of P that is non-preemptively unschedulable. This instanceséfi
also a concrete instance of the original NCS task set. Thudl@@ task set is
non-preemptively unschedulable—§ And anything that is unschedulable is auto-
matically not robust. By transitivity, all the above iteml4tare equivalent to one

another. [ |

Since non-preemptive robustness of periodic / sporadicseis against P
does not depend on the first release times of each task, infeltoais we only look
at ZCP task set, i.e. the release time of the first instancel$ talsés are at time.

The result is automatically applicable to all CP/CS/NCP/NCE sa&$s against P.

3.3.2 Increase in Period / Minimum Separation { P) vs.
Decrease in Computation Time (')

1 C causes anomaly only when it creates a priority inversion.avéegoing
to show in the next theorem that any such priority inversionld be simulated
by 1 P. If a task set is non-preemptively robust agaihst for a scheduler, then
any such priority inversion cannot result in anomaly, inohg those induced by
1 C. Hence the task set is also non-preemptively robust agaidsfor the same

scheduler.
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Theorem 21. Non-preemptive robustness of a CP/CS task set agaiRgs suffi-

cient to guarantee non-preemptive robustness of the sashestd againsiC'.

Proof: Suppose the contrary is true that a CP/CS taski'set {(C}, P,),
(Coy, By), ..., (Cy, P,)} is non-preemptively robust against afyP: {(Cy, P;),
(Co, Py), ..., (Cy, P} but misses its deadline for certajrC: 7" = {(C}, P1),
(C4, By),...,(CI,P,)}. Lett be the time of the earliest deadline miss. [gte
the task that misses its deadline at tiend letr’(= ¢t — P,) be the request time of
that task instance. L&t. be the task executing at timeéand lets’ be the start time

of that task instance. (See figure 3.5).

Pv |

Figure 3.5: Identification of time points, " andt

Consider another CP task s&t with the same”; and P, but with the fol-
lowing release times. Let the release time of taskbe at times’, and the release
time of all other tasks be at timg. 7" will start execution at time’ because it
is the only released task then. Betweémandt, the total demand for computation
time is no less than ifi”, because there are now the maximum number of requests
for each task, and the computation time for each task is alstored ta”;. Hence
if 7 misses its deadline af then the task sét” would also miss its deadline no

later than time.
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However, asl’ is non-preemptively robust agairnisP, according to corol-
lary 20, 7" is non-preemptively schedulable as an instance of the NGPskts
which is a contradiction. S@ must also be non-preemptively robust against

Corollary 22. Non-preemptive robustness of CP task set agajin3t(item 0) is

equivalent to the following general non-preemptive robesn

1. Non-preemptive robustness of CP task set
2. Non-preemptive robustness of CS task set
3. Non-preemptive robustness of NCP task set

4. Non-preemptive robustness of NCS task set

Proof: This follows directly from corollary 20 and theorem 21. By the
rem 21, item O is equivalent to item 1. By corollary 20, item @dglivalent to non-
preemptive robustness of CS task set agdifstwhich by theorem 21 is equivalent

to item 2.

This could be generalized to items 3 and 4 because the denwabove is
valid for any instanceof the NCP/NCS task set. So, non-preemptive robustness of
NCP task set again$tP is equivalent to item 3; and that non-preemptive robustness
of NCS task set again$tP is equivalent to item 4. Corollary 20 shows them to be
equivalent to item O too. Hence all the above items are etgrivéo one another.
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In what follows, we will consider the non-preemptive rolmess of only the
ZCP task set again$tP, and the result automatically applies to all task sets a&gain

bothTP and|C.

3.4 Common Non-Preemptive Schedulers

Next, we derive necessary and sufficient conditions on taskosguaran-
tee its robustness for both NPEDF and NPFP under discrete dindense time

separately.

3.4.1 Discrete-Time, NPEDF Scheduler

Jeffay et. al. [28] proposed a necessary and sufficient Gondor NPEDF
schedulability of NCP task, NCS task and CS task. We want to pitwaiethis is
also the necessary and sufficient condition for NPEDF rotmsst under discrete
time. A ZCP task is a special case of the CS task. For the sakespfreBerence,
Jeffay et. al’'s NPEDF schedulability condition is speeed to the case of ZCS

task and reproduced here:

Theorem 23. (special case of theorem 4.1 in [28DetT = {11, T>,..., T},
whereT; = (C;, P;), be a set of ZCS tasks sorted in non-decreasing order by the
minimum separatiow®; (i.e. for any pair of taskg; and7}, if ¢ > j, thenP; > P;)).
If T is schedulable, then

LYy &<

2.Vi,1<i<n; VL,PP<L<DP:
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A direct application of the theorem does not establish rsiess because
the VL term above expands undgrP. It is easy to see why this condition is a
sufficient condition for NPEDF robustness of CP task set. W peve that this

is also a necessary condition for ZCP task set.

Theorem 24.The condition in theorem 23 is also a necessary conditioNfEDF

robustness of ZCP task set agaifgt.

Proof: Suppose the condition does not hold, we construct a task’set
reduced system load where there is a deadline misst telcm(Py, P, ..., P,)
is the least common multiple of all the periods. Consider wiherrelease time of
the second instance of tagkis delayed to tim&t — 1. By our constructiofy there
is no outstanding computation at tirdé — 1, so taskl’ begins execution at time
2t — 1. Consider the time interval fro¢ — 1 to 2t + L — 1. Since the second
condition does not hold, the total available time is lessttiee requested amount

of time, so there is a deadline miss no later than tthe L — 1. [ |

Now, consider the case where a reduction in system logdis Both in-
equalities in Jeffay et. al.’s conditions continue to holtbnC; decreases. It means
that once the above schedulability conditions are metmiaias schedulable under

1 C. It also means that underC', a ZCP task set remains robust agaihst for

2With discrete time(; > 1. With eager scheduler and all first task instances arrivarat 0,
there cannot be outstanding computation at tdhe 1 when taskr; is taken out of the time interval
¢, 2t), otherwise the original task set would not have been schéthil
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NPEDF scheduler. Put it together, Jeffay et. al’s schdulitiacondition in the-
orem 23 is exactly the necessary and sufficient condition®NREDF robustness
of ZCP task set if discrete time is adopted. (The same comeiusduld also be

derived by applying theorem 21).

Alternatively, when translated to the terminology of thisapter, NPEDF
schedulability of ZCS task sets is equivalent to NPEDF roesgt of ZCP task
sets, if the only kind of reduction in system load allowed 3. Hence if discrete
time and NPEDF scheduler are adopted, and the only kind ofctexh in system
load allowed is| P, then Jeffay et. al.’s necessary and sufficient conditiorZ oS
schedulability is exactly the necessary and sufficient tamdfor ZCP robustness.
In fact, by corollary 22, we conclude that theorem 23 is als® necessary and

sufficient conditions for NPEDF robustness of CP/CS/NCP/NClE6dats.

The running time of this test ©(n?P,,.. ), whereP,,,, = max;<;<, P;.

3.4.2 Dense Time, NPEDF Scheduler

Theorem 23 does not work for dense time because the cllsE, <
L < P, makes it computationally intractable. Alsb,— 1 in the numerator would
becomeL — ¢ for infinitesimally smalld. This is in accordance with section 2.4
that testing cannot solve the anomaly problem because tingesan detect all

problems.

According to theorem 16 (theorem 11 of [39]), whenever tlieeedeadline
miss, a culprit task could be identified. For easy referetiee theorem is repro-

duced as follows:
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Definition 25. (reproduction of theorem 16)For both NPFP/RMA and NPEDF,
assume the first request of all tasks arrive together. If daterinstance of victim
task7,? whose request time i$ misses a deadline after reduction in system load,

then there exists an instance of a culprit td3k satisfying these properties:

e The culprit taskT.. is of lower priority than the victim taskK, (For NPFP/
RMA, static priority means < c; for NPEDF, dynamic priority means dead-

line of T, is later than that off},).

e The culprit taskl.? is executing at time’.

As implied directly from the definition, for NPEDF, the deiz@ miss (dead-
line of 7,?) must occur before the end of the periodigf (deadline off %), assum-

ing relative deadlines are equal to periods.

Theorem 26.LetT = {13, 15, ..., T,}, whereT; = (C;, P;), be a zero-concrete
task set ofn tasks scheduled by NPEDF. The task set is robust agaidstiff
Vi,1 < i < n, T remains schedulable during the intervél ;] when task7; is
given the highest absolute priority, with all other priorigssignment remaining

the same as EDF.

Proof: (<) If task T; could ever be the culprit task, it would cause a deadline
miss within P; time when being promoted to the highest priority. So if thektset
remains schedulable whénis promoted to the highest priority, th€kh cannot be

a culprit task. If no task could act as a culprit task, the setks robust for NPEDF.
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(—) Suppose the condition does not hold for a certain 7ask the task set,
I.e., taskl; causes deadline miss in taskwhen promoted to the highest priority,
we construct a scenario withP where the task set becomes unschedulable. Let
the first instances of all tasks start at titheLet the second instances of all tasks
except taskl; start at time2 P, while the second instance of tagkstart at time
2P,... — ¢ for a sufficiently smalb. By the time2P,,,. — 9, there is no outstanding
computation, so task; is the only released task and it begins execution. Then all
tasks request at the maximum frequency. This causes/iaskmiss the deadline.

Hence it is also a necessary condition. |

According to corollary 22, theorem 26 also holds for all of CB/INCP/

NCS task sets and under all kinds of reduction in system load.

Since bothC; and P, remain the same when evaluating the condition above,
the number of steps in the evaluation is finite and computatip tractable. The
running time for this algorithm i@(% -nlogn), whereP,,,, = maxj<;<, P;
andC,,;, = min;<,<, C; are the maximum period and minimum computation time
of all tasks in the task set respectivel)ﬁ’ﬁ is the maximum number of non-
preemptive scheduling events during each test. Each slthg@went involves one
priority queue operation which i@(log n) and the test is repeatedimes once for

each task in the task set.

3.4.3 Discrete or Dense Time, NPFP Scheduler

Let P.. = maxi<i<, F;. When there is a priority inversion, €l =

(C., P.) be thepotentialculprit task that may cause a deadline miss toabiential
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victim task7,, = (C,, P,). Instead of checking for a deadline miss upRofrom
the priority inversion as in the case of NPEDF, we need to khgcto 2P, for
NPFP/RMA, and up t@~F,,.. for general NPFP.

Theorem 27.LetT = {13, T5,..., T,}, whereT; = (C;, P,), be a zero-concrete
task set of: tasks schedulable by an NPFP scheduler with priority assigrme

The following constitutes the necessary and sufficient ondor robustness:

Vi, 1 < i < n, 7 remains non-preemptively schedulable during the intefval .
2P,q:) (Or [0...2P,) for NPFP/RMA) when task; is promoted to the highest pri-

ority, with all other priority assignments the same asun

Proof: According to theorem 21, we consider orily?. Since the culprit
task must be executing by the time the victim task is releagedtime interval
between start of execution of culprit task instance to deadhiss of victim task
instance is less thaR, + C.. For NPFP/RMA, we havé®, < P. andC. < P,,
so P, + C. < 2P, and for general NPFP, we have < P,,., andC. < P,,.., SO
P, +C. < 2P4:.

If task: could ever be a victim task, then it would have caused deadiiss
within a time interval o2P,,,, for general NPFP an2lP; for NPFP/RMA when it
is promoted to the highest priority. If there is no deadlirieswhen’; is promoted
to the highest priority, thefi; cannot be a culprit task. If none of the tasks could be
a culprit task, there could not be any deadline miss underctéezh in system load,

hence the task set is robust.
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On the contrary, if task causes task to miss a deadline within the said
time interval when task is promoted to the highest priority, we can construct a
task set of reduced system load in which taskthe culprit task and taskis the

victim task that misses the deadline:

Let the first instances of all tasks start at the same timetHeesecond in-
stances of all tasks except taskstart at time2 P, while the second instance of
taskT; start at timeP,,.., — §, whered = 1 for discrete time and is a sufficiently
small value for dense time. By the tieé’,,.. — 9, there is no outstanding compu-
tation, so task/; as the only released task is selected for execution. Theaskis
request at their maximum frequency. This cauBgt miss its deadline. Hence it

is also a necessary condition. |

According to corollary 22, theorem 27 also holds for all of CB/INCP/

NCS task sets and under all kinds of reduction in system load.

The running time of this test '@(%m logn), wherepP,,,, = maxi<;<, P;
andC,,;, = min;<,;<, C; are the maximum period and minimum computation time
among all tasks in the task set respectivé&% is the maximum number of non-
preemptive scheduling events during the time period urelr tEach scheduling
event involves a priority queue operation whictCiflog n). The test is repeated

times over all tasks.
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3.5 Special Cases for Non-preemptive Robustness

In order to not miss deadlines for non-preemptive real-tapplication, it
is important to know the criteria for non-preemptive rolmests. While a necessary
and sufficient condition is often too complicated to use, wesent some sufficient

conditions with reasonable utilization bounds.

3.5.1 Geometric Envelope Task Set

When the sum of computation time of all tasks in the set do no¢eat the
shortest period, the task set is obviously robust. Thezatilbn factor for such a
task set could still be reasonably high. Consider the folhgmnparameterized task
set normalized td?, = 1

IR R

Ty | (B, - 1 .lx)

T x?

T | (5 (1= 1) o)

wherez > 1 andVi,0 < 5; < 1. Let 3 = min(;). We can see that:
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so the task set is robust against reduction in system loadNRF¥P/RMA and
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NPEDF scheduling policies. The utilization factor
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Taking the limitz — 1, U — 3 -  and taking the limitt — oo, U — .
As an example, suppose= 2 and( = 0.9, meaning that the anomaly-free task
set deviates from the geometric series envelope by at méstth@n the utilization

factor can be as high as< U < 2.

3.5.2 No-Blocking Test

Theorem 28. Let an arbitrary taskl; within a task setV/ be schedulable under
NPFP/RMA. TasK; remains schedulable under reduction in system load if
: P,
max C, <P, — Cj’{_—‘
i+1<r<N ‘ P;
j=1 J
If all tasks within the task set/ remain schedulable under reduction in
system load, then NPFP/RMA is robust for this taskigetnder reduction in system

load.

Proof: Suppose the contrary is true that a certain miss occursdkfltaafter

reduction in system load. Let the request time and the deadir the miss be

63



andd respectively. There could be at most one lower priority taetiveen- andd,
otherwise by the time the second lower priority task is saolestito execute, there is

no outstanding computation f@f and hence it would not have missed the deadline.

Let ¢ be the latest time no later thanwith no outstanding computation.
By theorem 16, there exists at least one culprit task betweewld. Let the start
time of the latest culprit task betweerandd be s. At time s, there could be no
outstanding computation for tasks lit@os < r otherwise the miss could not have

occurred.

Consider the time betweenandd. Except the culprit task,., the victim
taskT, is the lowest priority task betweenandd. So by lemma 11, the response
time of T, is the longest when the requests of all the higher priorgiksare aligned
with s. After reduction in system load, the maximum amount of cotagon time

demanded betweenandd is:
7 d _
ey [ ,ﬂ
j=1
d d—s P
Gc+;cj~ [ & -ﬂ

d—s « P
Cet —5 -;Cjwﬁj

IN

IN

1

d—s : P
)

=1 !
d—s

P,

IA

-P=d—s

The total required computation time is less than the avialaime, so there
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could not be a deadline miss &t which is a contradiction. Hence the task set

remains schedulable using NPFP/RMA under reduction in sykiad. |

Note that this is a sufficient but not necessary condition.

3.5.3 Necessary and Sufficient Condition of Robustness fola$k Set of Suc-
cessively Divisible Period

A task set with/V tasks is said to exhibit successively divisible period if

P. P. P.
Vi, 1<i<i<N R A e
v rsssisn gl
A common example would be when the periods form a subset of¢loenetric

series.

Theorem 29. Let an arbitrary taskr’; within in task set\/ with successively divisi-
ble periods be schedulable under NPFP/RMA. A necessary dficiesot condition

for taskT; to remain schedulable under reduction in system load is

i P
max C, <P, — C, —
iti<r<nN | — ° 7 p.

j=1 J
If all tasks in the task set/ remains schedulable under reduction in system load,

then NPFP/RMA is robust for this task set under reduction stesy load.

Proof: Substituting the definition of successively divisible pérthatVi, j :
{%W = % into theorem 28, we see that the above inequality is a sufticendition
of robustness. So in what follows, we only need to prove thati$ also a necessary

condition.
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Suppose the inequality above does not hold, we have

P,
P.

J

Ji,r, 1<i<r<N, C,>PF-) Cj-

j=1
and we want to construct a certain reduction in system loherethere is a dead-

line miss in some task;, wherel < j <.

Letx = P.. From time0 to 2x, there are two instances of task Consider

if we increase the period of tagk from P, to P, = 2z — ¢ for some very smal.

Given thaté is very small, we can conclude that< C,, so there could be
no outstanding computation for any task at titne- § after this reduction in system
load. Now, the task instan&? would start right at its request tinte: — ¢, while

requests for all other tasks arrive simultaneously at time

From time2z to 2z + P;, the exact amount of works that needs to be done
in order to avoid any deadline miss for tasks 1 < j < ¢, would be greater than

the total available time

~ . PR
OT+ZCJ~F>P¢
j=1 J

HereP, represents a deadline for all tasks wherel < j <. The required
computation time is more that the total available time, sve¢hmust be one or more
deadline miss in the tasks, wherel < j < 4. The situation is worse if there is

other culprit task or idling time during this period of time.

Hence the inequality is also a necessary condition of rolesst Putting
together, the inequality is a necessary and sufficient ciomddf robustness for task

set of successively divisible period. [
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3.6 Conclusion

The notion of robustness will become increasingly impdréenCPU speed
keeps on improving such that the temporal length of conasks becomes rela-
tively short compared to the cost of context switching oeadhwhich may incur
I/O actions and thus does not scale with CPU speed. The rasssproblem is
particularly important to mobile computing because suchads are often clocked
at a range of frequencies, and adjusted at run time accotalimged. Hence itis not
sufficient to keep track of only the upper bound on resoureges Our results in
non-preemptive robustness provides formal justificatmmtiie “folk knowledge”
that the use of the longest task in the blocking factor in RMAe@mptive priority

scheduling) analysis can also be used in non-preemptivetstdbility analysis.

In this chapter, we prove that non-preemptive robustness #EP (zero-
concrete periodic) task set against increase in pefiié (s sufficient to guarantee
robustness of the corresponding concrete or non-congretiedic or sporadic task

set against any kinds of reduction in system load.

Based on this result, we derived the necessary and suffic@mditoons
of robustness for both Non-preemptive fixed-priority (NPBRd non-preemptive
earliest-deadline-first (NPEDF) schedulers under bottreis time and dense time
assumptions separately. It has pseudo-polynomial rurtmmg and is potentially
practical for use in adaptive real-time systems where nbt the timing parame-
ters but the task sets themselves may change at run time po tadenvironmental

conditions.
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Besides the general necessary and sufficient condition®fepreemptive
robustness, we also formulated a set of sufficient conditionspecial cases, with
reasonable performance bounds. In particular, inteiggtioperties could be de-

rived when the task set exhibits a property we called sucedgslivisible periods.
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Chapter 4

Time Sharing Limited-Preemptable Resources and
Mixed-Type Resources

In this chapter, we would like to examine the issue of robesssrfor hybrid
schedulers where task preemption is allowed in limited waysrder to strike a
balance between optimizing schedulability bounds andepvasy robustness. This
can be done, for example, by restricting the frequency & pesemption by both

compilation methods and run-time enforcement mechanisms.

4.1 Introduction

Most real life examples do not fall entirely into fully preptive nor fully
non-preemptive task models, but somewhere in-between.edtiosis 3.4.1 and
3.4.3, we already discussed the admission control for meafpptive robustness

when time is discrete.

Under discrete time, events could only happen at certaia points, sep-
arated by integer multiples of a time quantym Without loss of generality, the
discussion in sections 3.4.1 and 3.4.3 assumed]1 clock cycle. We shall relax
the assumption in this chapter by adopting wall clock tim&ead of cycle time

and thereby allowing an arbitrary value fprScheduling decision, being a class of
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events, is allowed to happen only on a subset of these tinmoi

Depending on the exact model where scheduling decisionallanged to
be made, our scheduling analysis needs to be massaged for guitariety of task
models. We are going to explore the robustness for some concages in the this

chapter, including limited preemption, aperiodic taskd amxed resource types.

4.2 Robustness for Limited Preemption

If we allow limited preemption, the performance can be muettds. Lim-
ited preemption is characterized by a granulagityhich is the minimum number
of time units that a task, once scheduled, is allowed to rdorbet is allowed to be

preempted. Note thatis an integer multiple of the time quantum

Theorem 30. If we allow limited preemption with a granularity of then by adopt-
ing EDF scheduler, a task won't miss its deadline by more than1 time units

under reduction in system load.

Proof: Mok et. al. [35] have proved that if the utilization factdr< 1, then
by adopting EDF scheduler with granularityno task would ever miss its deadline
by more thary — 1 time units. After reduction in system load, the utilizatfaetor
becomes smaller, hence by the same argument, no task wossdtsndeadline by

more thary — 1 time units. |

Corollary 31. If atask set is schedulable by the limited-preemptive EDfedualer
wheng — 1 time units are added to all the computation time of the taskbétter, if

deadline is administered separately from period, tatl time units are subtracted
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from the deadline of all tasks), then no task would ever mgsléadline under

reduction in system load.

Proof: This follows directly from theorem 30. [

4.3 Robustness on a Bounded Delay Resource Partition (BDRP)

In chapter 2 and 3, we discussed the preemptive and non-pt®enno-
bustness problem on dedicated resource. In this sectioarevgoing to apply the

robustness analysis on a BDRP that has been introduced intefiRi

For the sake of easy reference, definition 2 is reproducesl her

Definition 32. A Bounded Delay Resource Partition (BDRP) 11 is a tuple(«, A)
whereq is the percentage of total time the resource is availablééogartition and
A is called thePartition Delay, which is the largest time deviation of a partition
during any time interval with regards to a uniform unintertag allocate of the

resource.

Consider task level scheduling (see section 1.2.1.1), we twaknow if
schedulability is preserved under a reduction in systerd lghen the task set is
scheduled on a BDRP instead of on a dedicated resource. Agaioomsider the

two common schedulers Earliest Deadline First (EDF) anddFRriority (FP).

For a formal definition and analysis of reduction in systeadlmlease refer
to sections 2.1.3 and 3.1.2. For a formal definition of robess, please refer to

sections 2.1.4 and 3.1.3.
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4.3.1 Preemptive Robustness on a Bounded Delay Resource R@oh (BDRP)

Atask setM = {(Cy, P),..., (Cy, P,)} is schedulable on a BDRR =
(o, A) by a certain scheduling policy if all task execution finisla¢$eastA time

units before their respective deadlines.

4.3.1.1 Preemptive Earliest-Deadline-First (PEDF)

For the PEDF scheduling policy, finishing task executiorobeftheir re-
spective deadlines on a given BDRP means
Vi(l <i<mn),3t € (0,P— A C'+ii7§"'—0j<a.t~
<1< n) 3, s 1 , Ci P S i

=1 7

Since that task se¥/ is schedulable on the BDRP, we have a set of values

ti, t9, ..., t, satisfying the above inequality.

In addition to the criteria oM\ above, the task set/ is schedulable with
PEDF on the BDRHAI = («, A) if the total utilization factor is not more than

available rate of the resoureefor the partition, i.elUU = Z?:l % < a.
J

After reduction in system load, we want to make sure thatdked ttiliza-
n  Cj

tion factor remains less than of the partition, i.e.U = > 7, 7 < « and that
J
there exists a set of valués t,, . . . | t/ satisfying:
e
Vi(l<i<mn)t e (0,P —AACI+> S <at]
=1 7

For decrease in computation time of a certain @shy o (1 <k <n,d >
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0), the total utilization factor is less than before.
J_ )
> 5-(26) e
j=1 " J j=1 "7 j=1
We also need to look at the worst case response time. Foffjaske taket, =

tr € (0, Pk—A]:(O P, — Al, then
kzlt/

Ck+z

andVi (k: < 1 < n, otherwise Ifz < k the response time of tagk clearly remains

t
(Jk—6+2’“ <Ck+z J<a th=a-t,

the same), we také = ¢, € (0, P, — A] = (0, P/ — A], then

i—1 4y / 1—1
C”Zt - (Cﬂrzt c) tz-P-ké

J=1

— ;- C;

j=1

IN
S
:'»

Hence PEDF is robust against decrease in task computatieroin a given BDRP.

For increase in period of some tagk by 0 (1 < k£ < n,d > 0), we first

consider when job priorities do not change. The total w@tlan factor is less than

gpf<ip> (k Pk+<5> ZP—

We also need to look at the worst case response time. Foflijaske taket, =

before.

tr € (0, P, — A] C (0, P, — AJ, then

k’*ll_ /

k—
Ch+ Z J<atk—atk

j=1 J
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andVi (k < i < n, otherwise ifi < k the response time of tagk clearly remains

the same), we také = ¢, € (0, P, — A] C (0, P/ — A], then

1—1 i—1
¢ t-C; ti-Cp i Cy
Cl+y = oy ) o (R

=1 7
i—1
t.-C.
< Oi—i- : J
P,
7=1
S a’tz
= a-t

Hence PEDF is robust against increase in task period on a §{dRP, provided

that task priorities do not change.

Using the same construction as in section 2.2.2, it can berstiat PEDF is
also robust against increase in task period on a given BDRP thledask priorities
change accordingly.

In other words, PEDF scheduling policy is robust againstraaction in

system load when applied on any given BDRP.

4.3.1.2 Preemptive Fixed Priority (PFP)
For the PFP scheduling policy, finishing task execution teefoeir respec-
tive deadlines on a given BDRP means

7 t'
Vi(l1<i<n),3t; € (0,P,—A]LY C:-|=|<a-t
sismane0n- 8350 7| <a
Since that task se¥/ is schedulable on the BDRP, we have a set of values

t1, ta, ..., t, satisfying the above inequality.
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After reduction in system load, we want to find a set of valtjes,, ..., t/
satisfying:
i /
Vi(l<i<n)t;e(0,P —AIAY Cj- {—w <a-t
J
For decrease in computation time of a certain @shy o (1 <k <n,J >
0), thenVi (k < ¢ < n, otherwise ifi < k the response time of task clearly

remains the same), we take=t;, € (0, 5, — A] = (0, P/ — A]

efal - (Bo )—a 4]

IN
o
=

Hence PFP is robust against decrease in task computatierotim given BDRP.

For increase in period of some tagk by 0 (1 < k£ < n,d > 0), we first
consider when job priorities do not changé:(k < i < n, otherwise ifi < k the
response time of task; clearly remains the same), we take-¢; € (0, P, — A] C

(0, P! — A, then

o (5] = (e [5]) - (3] - [=5)
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Hence PFP is robust against increase in task period on a Bb&#, provided that

task priorities do not change.

Using the same construction as in section 2.2.2, it can berstitat PFP is
also robust against increase in task period on a given BDRP thlegask priorities

change accordingly.

In other words, PFP scheduling policy is robust against &ayction in

system load when applied on any given BDRP.

4.3.2 Non-Preemptive Robustness on a Bounded Delay Resourartition
(BDRP)

Notice that when we assign a non-preemptive task to a BDRP,dhe n
preemptive task may not always be running once it is schddoleexecution be-
cause the partition itself could be de-scheduled by theuresolevel scheduling
(section 1.2.1.2). In that case, once the partition is bnbbgck for execution, the
non-preemptive task that has been running inside theiparptcks up where it left
off and continues until completion (or another de-schedubf the partition). The
task could still be treated as non-preemptive because ipierequisite that there
are no dependencies between different partitions in theisyso partitions could
be freely preempted even if the tasks running inside aredi tespective critical

sections.

Non-preemptive Earliest Deadline First (NPEDF) and Noeepnptive Fixed
Priority (NPFP) schedulers are known to be not robust agegasiction in system

load even on dedicated resources (see section 2.3. Herycaréhalso not robust on
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BDRP. Instead of looking at how un-robust they are, we woulteexs determine
if the necessary and sufficient conditions given in sect®dsl and 3.4.3 could be
adapted for use on BDRP. We consider only discrete time with tiopmantumy in

this chapter.

We state without proof in this section the necessary anccgerfticonditions
for non-preemptive robustness of concrete or non-concpeteodic or sporadic

task sets using NPEDF on a BDRP.

Theorem 33. LetT = {1}, T»,..., T,}, whereT; = (C;, P;), be a set of concrete
or non-concrete, periodic or sporadic tasks sorted in necsrdasing order of the
period or minimum separatiof®; (i.e. for any pair of taskg; and 7}, if © > j,
then P, > P;). If T'is schedulable by NPEDF with time quantynon a BDRP
II=(a,A), then

1. Z?:l% < o

2.Vi,1<i<n; VLLPR<L<P:

J.Cj

4.4 Resource Level Scheduling with Aperiodic Tasks under Dis-
crete Time

1—1
L —
a-chﬁZ{ o
=1t

Construction of BDRP by Mok et. al. [37] [36] was based on thequkci

task model. Up till now, this dissertation also assumedeeithe periodic task

1



model or the sporadic task model. We are going to show in #asan that we may

as well construct BDRP with an aperiodic task model.

When task sets are aperiodic, we do not have the notion ofgppaomini-
mum separation. Each task is equivalent to having only desimgrgoing instance
that needs to be scheduled and de-scheduled from time to Eawh aperidic task
is characterized by a percentagef resource that the task demands, much like the

utilization factor in the periodic task model.

It is meaningless to talk about non-preemptive schedubngperiodic task
sets because each aperiodic task in the task set would gorewvefo If time is
dense, we could have infinite time-slicing [32] so there igolaustness problem.
However, the robustness problem becomes interesting wieadlow only limited

preemption by imposing the discrete time requirement.

441 The Problem

An aperiodic partition group consistsefiperiodic partitions{ (11, I, . . .,

I1,,)} where each aperiodic partition is specifiedllby= («;, A;). a; which is the

percentage of the resource demanded by partitiandA; is the partition delay.

Let g be the scheduling granularity, which is an integer multgdléhe time
quantumy. Scheduling decisions could only be made once eydime units. We
will consider two cases, namely, wheris a system-fixed constant, and whers

a variable that could be adjusted per resource.

Our goal is to find a way to partition the resource among a sapefiodic
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tasks in discrete time with scheduling granulagtguch that real-time application

could be run within each such partition.

Note that our partition$l; (1 < i < n) does not satisfy the definition of
Periodic Resource Partition (see definition 1) as develogeddk et. al. [37] [36]
because ours are aperiodic. However, we still satisfy thefinition of a BDRP (see
definition 2) because the notion of BDRP does not intrinsiaatyire the presence

of a constant and finite period.

The algorithm presented by Mok et. al. [37] [36] to compute BDRPs
assumed the existence of a constant and finite period, trerdfey adopted ex-
haustive search to find the optimal solution. We cannot usie diffline exhaustive
search algorithm because our task model is aperiodic. We toeBnd an online
heuristic algorithm to compute the BDRPs with théirvalues good enough for

real-time workloads.

4.4.2 VMware ESX Server Case Study

The problem was motivated by the scheduling model in VMweéB& Eerver.
A number of virtual CPUs (VCPU) are to be scheduled on a fixed rurabphys-
ical CPUs (PCPU). Basically, a proportional share schedulengemented as-
suming an aperiodic task model. The scheduler kicks in ones/&0ms on every
PCPU to determine if the current VCPU should be preempted aoihe@nVCPU
should be selected for execution. Therefore this is a luneeemptive aperiodic

task model.

As a simplification, if all VMs in the system are uniproces$s, then
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VCPU migration between PCPUs are minimal and negligible. imdissertation,
we only consider time sharing a single PCPU among many VCPUswakéto be
able to reap the same real-time benefits with an aperiodicneslel in the same

way as we did in periodic or sporadic task models in our previdiscussion.

4.4.3 A Parametric Delay BoundA Solution

Given a partition group wit partitions{II; = («;, A;)} for 1 < i < n,
Mok et. al. [37] [36] have given a dynamic schedule whereaspértitions could
be computed using the Earliest Deadline First (EDF) sclezdiNve consider each

partitionII; as a periodic taskC;, P,) with P, = ﬁ andC; = o, P, = 2(‘{@(;_).

In our limited preemptive moded;; must be an integral multiple of the time
quantumg. Hencedn,n € Z*,C; = ng. We do the derivation od; instead of
P; because”; is a real quantity whereak; is imaginary in our aperiodic model.

Re-arranging and solving fak;, we have:

~ 2nq(1 — ay)
- o

A;

We could adopt EDF on an imaginary deadliieor each partition when
we compute the partition schedule. Note that this imagipanod P; does not have
to be an integral multiple of because it does not have a real manifestation in our

aperiodic model.

A 2ng(l—a) g
2(1 — Oéi) N 2(11(1 — Odl') N a;

P =
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This solution keeps the resource demandof each partition intact, but
makes the partition delay\; dependent upon the resource demand of the same
partition«; as well as the time quantug Thus the partition delay; is no longer
a constant, and also no longer a parameter that could bg &petified by the user.
The only factor the user is still free to influence on the piarti delay A; is the
integern. The ability to attain high system utilization is retainezthusey; is kept

intact.

4.4.4 Why Isn’t Parametric Granularity a Good ldea?

One could argue that the situation could be further imprafede make
the granularityg roughly inversely proportional to the resource demandThis
way, within a certain operating range (limited by the timequumg asg cannot
drop belowg), we could achieve BDRP with essentially the same parametansl
A that are fully and independently specifiable by the uses that sacrificing any

performance.

However, this is not a good idea because it breaks VM isalati@ranular-
ity ¢ is a parameter of the system whereaand A are parameters of the partition.
There are many partitions in a system. If we make a systenmees dependent
upon the parameters of the (often changing) partitionsingnan the system, we
are breaking the isolation between the partitions. When vdecademove a par-
tition, or change the parameters of a partition, the bemadfiother partitions are
also affected because the system paramgetieat affects all partitions changes ac-

cordingly. This is undesirable for real-time systems.
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4.5 Time Sharing Mixed Set of Resources

The realistic computing system contains some instancetbiesabove re-
source types, so it is important to be able to properly irsttgthe above paradigms

into a unified real-time resource scheduling framework.

Assume there is time quantugrin the system (which is realistic), periodic
and aperiodic partitions could be easily mixed becausentiaginary periods de-
rived in the aperiodic partitions are compatible with thosal periods from the
periodic partitions. They can be scheduled together wighsdime online Earliest
Deadline First (EDF) scheduler, provided that we treat teadiines of periodic
partitions are half their respective periods. The dividign2 is to guarantee the
maximum separation of executions between two adjacenvgeto be less than

the partition delay\ requirement.

Real-time and non-realtime workloads could also be mixed dnjichting
a BDRP for non-realtime workloads. Thus failure or deadlinestirom the non-
realtime workloads would not affect any other real-time kloads because they

isolated from each other by residing in different partison

4.6 Conclusion

All computing systems carry intrinsic minimum addressdintee quantum.
When this time quantum is significantly large, or when the reati the workload
demands minimal interruption, we resort to using limitedgmptive scheduling.

The robustness of limited-preemptive scheduling disaigsehis chapter com-
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pletes the spectrum of real-time resource scheduling fraltg-preemptable re-

sources to non-preemptable resources.

There are a variety of limited-preemptive scheduling. Agaic or sporadic
task set may allow preemption of any running task only if thekthas been exe-
cuting for at least a specific number of time units. An apeddask set may have
its scheduling decision updated only at specific time posefsarated from each
adjacent ones by a fixed time interval. The common theme Irtiraa limited pre-
emptive schedulability analysis is the presence of a dedapt). Schedulability by
common schedulers like Earliest Deadline First (EDF) oeBiRriority (FP) is pre-
served in the limited-preemptive scenario if all task insts finish their execution
ahead of their respective deadlines by at least a certaiauaf time units equal

to the delay bound.

The delay bound concept is the same as the one in Bounded DedayiRe
Partition (BDRP), first introduced in chapter 1 for fully-pregtable resources.
This chapter generalizes the concept by adapting it to mearpptive scheduling
and limited-preemptive scheduling as well. We looked atecsjg case study of

VMware ESX server as an example of aperiodic limited-pretmascheduling.

Together with the previous chapters on fully-preemptiveesitiling (chap-
ter 1) and non-preemptive scheduling (chapters 2 and 3disesission of limited-
preemptive scheduling completes the real-time schedplutgre of all time-shared
resources. With all these pieces in place, they could be osatptogether for

scheduling mixed-type resources in the same system.
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Chapter 5

The x86 Hierarchical Hypervisor

5.1 Introduction
5.1.1 Definition

A Virtual Machine (VM) is an abstraction of an execution environment
where system and/or application programs can be run. Tloe pesoftware that
provides this interface is called\artual Machine Monitor(VVM Monitor) or hyper-
visor. There are many flavors of VM Monitors: some present a diffeneachine
interface from that of the host (e.g. the Java Virtual MaehidvVM) [31]), others

provide an identical machine interface (e.g. VMware Wakenh or ESX server).

Just as an OS abstracts the underlying hardware details\tmpra software
interface for simultaneously running one or more applaraprograms, a hypervi-
sor virtualizes the underlying hardware interface to patevjvirtual) instances of
the hardware interface to simultaneously run one or moresOBside a hypervi-
sor, each OS is run in a separate VM instance. In theory, a \&tainte should be
able to run another copy of the hypervisor, resultingeicursive virtualizationWe
call a hypervisor participating in recursive virtualizatiahierarchical hypervisar
In theory, there could be an arbitrary number of hierardhigpervisors participat-
ing in recursive virtualization between the actual hardwand the ultimate guest

OsS.
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We call the hypervisor that is the closest to the hardwarebtittommost
level (levell), and the one that is the closest to the OS the topmost lexadl(t).
For different OSes in the same system, the topmost level esge at a numerically
different level number. From the point of view of levglleveli — 1 is the parent
level, leveli 4+ 1 is the next level or child level, all successive parentsleaee
collectively called ancestor levels, and all successiviel@n levels the descendant

levels.

5.1.2 Related Works

Machine virtualization has been studied for a long time [2Bppek and
Goldberg [42] listed separate criteria for a machine aechitre to be virtualiz-
able and recursively virtualizable at the system level. c8jpally, the AMD/Intel
x86 CPU architecture has been shown to be not virtualizadlegdcording to the
requirements. Despite that, a number of techniques haveusssal in various suc-
cessful attempts to virtualize the x86 architecture, ngtaly VMware and Xen.
VMware also has begun to support running VMware ESX servaiorkstation
inside another VMware ESX server or Workstation, but thignsted to only one

level of nesting. We explore arbitrarily nested virtualiaa in this dissertation.

The problem of recursive virtualization has been tacklegarious ways
before. Some adapted the machine-OS interface [30] [L3MRBe others tackled
the OS-application interface [19] [6] to make way for redugsvirtualization. In
this dissertation, we base our hypervisor on unmodified x@@are, taking an

unmodified OS (e.g. Linux, Microsoft Windows) or “bare-métaypervisor as our
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guest.

Both AMD [4] and Intel [27] introduced hardware support fortualization.
Although the present hardware only supports a single lek@irtualization, we
show in this dissertation that they are extensible to reeirsrtualization. Adams
& Agesen published an analysis [1] comparing performancs&rajle-level virtu-
alization with and without hardware support. We do the asialjor multi-level

virtualization with and without hardware support.

5.2 Why Recursive Virtualization?

There are a number of scenarios for which we might need rieewstual-

ization.

5.2.1 Debugging and Upgrading to New Hypervisor

A hypervisor could be used during the development of an OSdbepinto
the machine state, capture and restore the machine stat8jmilarly, it is also de-
sirable to have the aid of such a hypervisor in the developwfemew hypervisors.

A hypervisor to debug another hypervisor naturally meanansve virtualization.

When a hypervisor is upgraded, it is desirable to keep botblthand new
versions up and running for an extended period of time whilesgs are migrated,
S0 as to make sure that the new hypervisor performs correctit least as well as
the old one. Recursive virtualization is needed if two varsiof hypervisors must

be up and running simultaneously on a single host for corapari
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5.2.2 Testing Hypervisor Management Software

A specific example, encountered at VMware, is the need tohgservi-
sor management software at a large scale. Large numbergpefigors must be
managed. Without recursive virtualization, this requaeasexpensive setup with as
many hosts as hypervisors. With recursive virtualizatggnificant hardware cost
savings can be achieved by running multiple copies of VMiEBX servers within

another VMware ESX server or Workstation.

5.2.3 Hardware Feature Prototyping

The introduction of new hardware features is currently @rgied in simu-
lators, which are often slow, and do not simulate all haréweatures (e.g. a sim-
ulator for the CPU may not simulate cache effects and hena@egnnstructions
like V\BI NVD that invalidate the cache). If a new hardware feature isopyped in
a hypervisor layer, real systems could be tested fasterhrengddrformance results
obtained may be more representative of the real system. df@ware prototyping
hypervisor is able to run all present system programs imetyd hypervisor, it itself

has to support recursive virtualization.

Hardware features that can be prototyped this way includeteunot lim-
ited to new instructions, more memory or processors, an@dmegments to 1/0

controller units.
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5.2.4 GENI Net

The Global Environment for Network Innovations (GENI) [48]a major
planned initiative of the US National Science Foundatiobuitd open, large-scale,
realistic experimental facility for evaluating new netwarchitecture. One of the
requirements of GENI is its sliceability, i.e. GENI must li@eato be shared among
many researches running different experiments. Virtaéibn is at the heart of such
provision. Recursive virtualization allows for even gredtexibility (some exper-
iments are guaranteed greater access to high-cost respaog better isolation

(experiments shall not interfere with each other).

5.2.5 Real-Time Resource Partitioning

In an open system environment, real-time resource paniitgpmust be per-
formed by local decisions and is therefore recursive by neatlf we can divide
resource into real-time capable partitions (see sectidhs4l3 and 4.4), then the
division scheme should naturally be able to work recurgivéDur next chapter
(chapter 6) deals with the real-time aspects of recursistealization by seeing if
the greatest timing-sensitive overhead, interrupt aneégxen forwarding, could

also be taken into account in recursive virtualization.

5.3 Design Issues on the x86 Architecture

There are two challenges to this research, one is to makeyjmenhsor
real-time capable, and the other is to make the hypervisyatghically capable.

This section explores how the hierarchical framework cdadduilt with common

88



PC processors (the x86 architecture). Much of the resutts ¢muld be extensible

to other processors including those in embedded systems.

Before we dive into details of how to recursively virtualizeetprocessor,
the memory management, the interrupt/exception/intérbapdling and the 1/0
subsystem, we first look at two flavors of hierarchical hysay namely, the trap-

and-emulate paradigm and the paravirtualization paradigm

5.3.1 Trap-and-Emulate vs. Paravirtualization

There are many ways a hypervisor could be designed. Soma tedg-and-
emulate approach, others take a paravirtualization approghe trap-and-emulate
approach is gradually replacing paravirtualization asl\vare assisted virtualiza-
tion becomes more and more common. It allows the hypervisotéroperate with

other hypervisors (developed by others or even developttifuture).

In designing our algorithm for forwarding interrupts andcegtions, we
assume the trap-and-emulate approach. The paravirtuebagpsimply requires
some centralized bookkeeping to directly deliver the imiets or exceptions to the
correct guest hypervisor. The problem is harder in the &agh-emulate approach

because of the assumptions we make:

e The hypervisor has no way to tell whether it is running insadether hyper-
visor or on top of real hardware (except possibly by timinglgsis with the
aid of an external time source). Guests do not have any comcation with

the parent hypervisor.
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e The hypervisor does not assume anything about its guesti®e#t not even

know whether its guests are OSes or hypervisors.

5.3.2 Processor Virtualization

The x86 architecture provides 4 rings of privileges. The @®&l resides in
ring O which is the most privileged, while application pragrs run in ring 3 which
is the least privileged. Both AMD and Intel removed supportfon-zero segment
base in their 64-bit mode. Intel further removed supporsgment limit checking
in 64-bit mode. Thus the only protection we could get is froagipg. However,
paging does not distinguish between rings 0, 1 and 2 as tlesyodlectively treated
as kernel mode. This is known as theg compressiorproblem. For this reason
and for the sake of portability, we choose to stick to the dsanty ring 0 (kernel

mode) and ring 3 (user mode) for all levels of the hypervisayur design.

The challenge is to properly assign processor privilegdlti@wels of hy-
pervisor, the OS and application program and can still aehisolation between
them. The hypervisor does this by properly shadowing théo@I®escriptor Ta-
bles (GDT) and Local Descriptor Tables (LDT) of its guests.

5.3.2.1 Time Multiplexing

Real-time properties of each VM partition is guaranteed bgpéidg the
Bounded Delay Resource Partition (BDRP) scheme from sectiobet@use CPU
is a fully preemptable resource. This scheme allows the CBalree to be recur-

sively virtualizable in the real-time systems context.
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The same real-time recursively virtualizable scheme has sthown in
sections 4.3.2 and 4.4 to be extensible to non-preempthivedsding and limited-

preemptive aperiodic scheduling.

5.3.2.2 Binary Translation

Some x86 instructions have non-faulting access to prigdlegachine states,
others may incur excessive performance penalty to therstaical hypervisor while
propagating exceptions up and down the hierarchy. Theseiati®ns need to be

re-written with online binary translator for safe and e#iti execution.

The binary translator needs to be just-in-time and traeslanly those guest
instructions that are about to be executed. Due to the congplarol flow structure
in the x86 architecture, we cannot reliably tell ahead oétimhich instructions will
never get executed, and we cannot force control flow to alwesfsect instruction
boundaries and never jump into the middle of an instructién. online just-in-
time binary translator solves this issue by translatingy ahbse instructions that

are actually needed.

Following this line of thought, when we reach a control flowgtmction,
we cannot predict which branch the program execution waoalkg.t The binary
translator stops translation and resumes guest executibarslated instruction

once we reach a control flow instruction in the original guestruction stream.

Binary translation is applied only to guest code that is idezhto be run
in kernel mode. Application programs do not have direct ssde the privileged

states, therefore could be allowed to execute directlyauitiranslation.
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Problem arises with a binary translating of the binary ti@os. A hypervi-
sor cannot distinguish between the binary translator coddtze translated code of
its guest. So from the point of view of a hypervisor, a gueshgldinary transla-
tion is a self-modifying code. Binary translating a self-rifgihg code incurs heavy
performance penalty. It is not clear which performance [tgrgminates, hierar-
chically binary translating self-modifying code, or prgaéing an exception up and
down the hierarchy. We will look at exception propagatioroas the hierarchy in

chapter 6.

5.3.3 Memory Management

Since non-zero segment base addresses is no longer swppoGd-bit
mode, and that paging is mandatory in 64-bit mode, much ofrtbenory manage-
ment in hypervisor is done through paging. There is a sepateidow page table
per guest, which either supersets or is different from thgeegable the hypervisor

uses when it is running itself.

5.3.3.1 Shadow GDT/LDT (for implementation without hardware support)

Address translation in x86 architecture starts with sedgatem, which trans-
lates virtual address into linear address. This is accaingtl by taking the segment
selector and indexing it into eith GDT or LDT to obtain the &dsmit and permis-
sion flags for the segment. After limit check and permissiback, the base is
added to the offset part of the virtual address to arrive atitiear address. Linear

address will be fed into paging, which is the next step in B@&address translation.
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For implementation without hardware support, since we skdo push all
hypervisors except the bottom-most one in user mode, wetbaleadow the GDT
and LDT that any guest hypervisor / OS creates by changiraf #lleir descriptor
privilege levels (DPL) to ring 3. Hypervisor needs to addeatst 2 entries to the
shadow GDT, one kernel code and the other kernel data forytpertisor itself.

There must be enough spare entries in the guest GDT at evetyrighe hierarchy.

The distinction of the same entry being kernel mode in gu&st/GDT and
user mode in shadow GDT/LDT is important for determiningethlievel of hyper-
visor in the hierarchy should handle an interrupt or excepfsee section 6.3.4 for

pseudo-code).

From the point of view of a hypervisor, there is one shadow GIDIT
per guest. It is necessary to switch shadow GDT/LDT for atlemtor levels of
hypervisors when a certain hypervisor in the hierarchydkscto switch guest. This
is accomplishing by all hypervisors intercepting any exiecuof LGDT instruction

at user mode.

5.3.3.2 Shadow Page Tables (for implementation without nesd paging)

The next step of address translation in x86 architecturelvieg paging,
which translates the linear address to the physical addFessa virtualized guest,
the result of paging is called guest physical address, wieels to be further trans-

lated to become the system physical address, also knowe asabhine address.

When nested paging is not available, in order to control thenamg access

of guest OS, hypervisor maintains its own page table on befahe guest OS.
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Since this page table mirrors the contents of the page thatetie guest OS builds,
it is called the shadow page table. Given a linear addresshybervisor parses
the guest page table to determine the linear to guest phyggldeess translation, at
the same time translating each guest physical address patietranslation table
entry into its system physical address, and doing the saanslation again at the
end to obtain the system physical address to be put into #fentede entry that

corresponds to the linear address in the shadow page tatiteefguest.

The handling of#PF exceptions, which are essential to shadow page ta-
ble maintenance, requires reverse propagation, and igssied in section 6.3.4.
Although different levels in the hierarchy may have diffarahadow page table
implementation, they should still be inter-operable byuegrof our exception and

interrupt handling framework.

The use of shadow page tables ensure that the memory redioosted
to one guest is not reachable by any other guests. When hardwpport is not
available, since the hypervisor is going to intercept a#iirupts and exceptions, at
least the entry points of the hypervisor’s interrupt andegtion handlers should be
reachable by the guest, but they should be write-prote¢Being in kernel mode,
the hypervisor's handlers are free to change the page tables to access the
rest of the handler code as well as the hypervisor’'s prafedé¢a structures.) The
linear address region associated with memory mapped I/@ teunarked as “not-
present” so that any read or write access to it becor#é¥-aand properly emulated
by the hypervisor. When hardware support is available, ndrtbeohypervisor-

exclusive memory region need to be visible in the guest tiaelaress space (this
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makes the hypervisor more secure), because the hypesvizage table (value of

CR3) is automatically swapped in upatVMVEXI T.

5.3.3.3 Shadow Nested Page Tables (for implementation wittested paging)

Nested paging is available on AMD RVI and Intel EPT. Withoosd of

generality, we will use AMD’s terminology for the rest of shsection.

When nested paging is available, two levels of page tables.eXine guest
page table (pointed to byCR3) maps linear address into guest physical address,
then the nested page table (pointed tonli3R3) maps guest physical address into
system physical address. We consider two cases, whetherewearaning an im-
mediate guest (i.e. code from the next level), or we are ngon behalf of our

immediate guest (i.e. code from the descendents of nex).leve

In the first case, we just create a nested page taflR3) that maps the
guest physical addresses to our allocated range of systgsicphaddresses for the
guest, marking all memory-mapped 1/0O addresses as nogmresor maximum
security, the hypervisor's own memory region should not éechable from any

guest physical address in the nested page table.

level< (L;) level-j (L,) | simulatedZ,
VIVRUN VIVRUN VIVRUN
L, gCR3 L, gCR3

L;gCR3 — L,nCR3 combined
L, nCR3 L, nCR3

Table 5.1: Combining nested page tables=(1,7 > 1,k = j + 1 for paravirtual
hierarchy; > 1,j =i+ 1,k > j for trap-and-emulate hierarchy)
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In the second case, where we are running on behalf of our inateeguest
under nested paging, things are more complicated. Refebte fal, the level
hypervisor is running a certain guest (at leygl and a#VMEXI T occurs due to
guest’s attempt to execuddVRUN, at which point it replaces its own page table
(L; gCR3) with a nested versionZ(; nCR3). Now the correct address translation
sequence should kg, gCR3 — L; nCR3 — L; nCR3. We need to combine two
of them because hardware facilitates only two levels ofetepaging but not three.
| am going to explain why we should combine the bottom two aaVvé thel,

gCR3 alone.

In a paravirtual hierarchy, imagine when thg_;, ;) guest is going to trig-
ger anotheW’MRUN, its L;—;.1) 9CR3 is going to be replaced. It takes less work to
combine something that won't be changéd (,) nCR3 andL; nCR3) as the hier-
archy grows deeper. For trap and emulate hierarchy, thdatedi; VIVRUNwould
be presented as thlg VIVRUN to the parent level hypervisor as th&RUN unfolds
across the hierarchy. In this case, although it doesn’tenttat much which two to
combine, it takes a lot less effort when the hypervisor hlikhowledge and con-
trol to one of the page tables to combine QCR3, which the hypervisor created
itself). In this case, the hypervisor doesn’t even have ¢éai@l; nCR3 at all but
just knowing the allocated memory base and limit for the entriguest as well as

the range of memory addresses that correspond to memorgedajo.

Table 5.2 shows the mapping of each level of page tablesdeafwl after
this combination exercise. The levelguest page table{ gCR3) maps the guest

linear addressy(l”) to guest physical address of leve(y, P), and so on, with level-
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| | | __mapping |
| keep [Ly,gCR3| gV — giP]

combine| L; nCR3 | gP — g;P
result L;nCR3 | P — ¢ P

Table 5.2: Mapping of combined nested page tables (1, > 1,k = j + 1
for paravirtual hierarchyj > 1,5 = i + 1,k > j for trap-and-emulate hierarchy;
finally, g, P is the system physical addresB)

1 physical addresg){ P) equivalent to the system physical addres8)( The way
combinedZ; nCR3 is created is very much the same as the way a shadow page
table is created, except that we are creating the whole paigeat once and cannot

opt for the virtual TLB alternative.

For each linear addresg.(°), the L, hypervisor parses the; nCR3 page
table, passing the guest physical addrgss) of the page translation table entry to
the L; nCR3 page table before each read to obtain the host physical sxijy€)
of the entry (which is equal to the system physical addregs= 1), and then
passing the final guest physical addregs?) translated into thé.; nCR3 again to
obtain the final linear address to host physical addresslagon g, P — g; P). It
then creates the combindd page table using these translation. This is basically a

software implementation of nested page table walk.

If a certain address is marked not-present in either table,marked not-
present in the combined table. The MTRR values are also parsed and reflected
in the corresponding PAT values in the combined page tableerV¢bmbining the

L; MTRR values,L; nCR3 andL; nCR3 PAT values, the memory type combining
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rules set forth by AMD and Intel’s documentation need to bgeoed.

5.3.3.4 ASID Remapping (for implementation with hardware sipport)

Hypervisor has to maintain a list of unused ASID numbers anthpping
of (guest ID, guest ASID)-» ASID. When it encounters a new guest ASID number,
it assigns the next unused ASID number and add to the mappiigen guest
issuesMOV CR3 or | NVLPGA, it reassigns all entries corresponding to the guest
ID to new unused ASIDs. When there are not enough unused AB&hyipervisor
issuesl NVLPGA, recycles all ASID numbers to the unused list and start again
This ASID remapping ensures correct TLB caching of pagestedions across the
hierarchy and among different guests, while at the same tiiyirgg to reduce the

number of (costly) TLB flushes.

5.3.4 1/0O Subsystem Virtualization

I/0 subsystem virtualization consists of /0O access caoiatnd I/O schedul-
ing. Access control for CPU processes could be done by propearking the
shadow or nested page table entries of the memory-mappee@gdion and prop-

erly setting up the 1/0 permission maps for individual 1/Qtso

Access control for external device cannot be securely implged without
the IOMMU (AMD) or VT-d (Intel). Take AMD as an example, for plementation
with hardware support, a Device Exclusion Vector (DEV) cbloé programmed to
achieve limited control but there is no guaranteed enfoesgrni IOMMU is not

involved. IOMMU provides the 1/0 page table for external @eg. In the context
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of recursive virtualization, the hypervisor needs to \atize the IOMMU for its
guest, which means that it has to do shadow paging for I/O patges anyway,

because nested paging is not available with IOMMU.

I/O scheduling that preserves real-time properties of dddhpartition is
done by following the scheduling analysis of chapter 3, angarticular the non-

preemptive part because 1/0O subsystem is mostly non-priadategn nature.

5.4 Conclusion

This chapter gives a brief introduction to recursive vilizegion for the x86
architecture. Recursive virtualization is useful in a numifescenarios, for exam-
ple, when we debug and upgrade to a new hypervisor, when weh&kypervisor

management software and when we prototype new hardwaredsat

We briefly analyzed the recursive aspect of processor Vizateon, mem-
ory management virtualization and I/O subsystem virtaaian for the x86 archi-
tecture. For the real-time aspects of these virtualizat#J is a fully-preemptable
resource, memory is a space-partitioned resource, I/Q/stén is a non-preemptable

resource. They have been dealt with in the previous chapiés3 and 4.

A key aspect of real-time recursive virtualization has bdeliberately left
out in this chapter, namely, the recursive forwarding ano/eley of interrupt, ex-
ceptions and intercepts. This topic directly affects thed-tene timeliness of the

recursive virtualization, and is the main topic of our ndxapter (chapter 6).
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Chapter 6

Interrupt and Exception Forwarding in x86
Recursive Virtualization

Virtualization has been a key technology in enhancing ogerability and
in making systems more secure. However, the question reméiether virtual-
ization can be used in the context of real-time systems lsecafiefficiency and
schedulability issues. This question is even more contsiglewhen recursive vir-

tualization is considered.

In this chapter, we explore one of the biggest challengesinging recur-
sive virtualization to the real-time systems communityyniedy bounding the time
for interrupt and exception forwarding across the hienarehhypervisors. We
analyze the problem and propose non-paravirtualized igthgas in the context of
the x86 architecture, both with and without the latest hamwirtualization sup-
port. Though the performance is severely limited by theentrhardware features,
we show that a simple hardware extension could speed upsreeunterrupt and

exception delivery significantly.
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6.1 Introduction
6.1.1 Motivation

Two important features of OS support for real-time appiaa are pre-
dictable, efficient interrupt handling and exception forgag (in general, event
handling). In the context of virtualization, it is espetyathallenging to run a
hypervisor inside another hypervisor (knownrasursive virtualizatioror nested
virtualization). Recursive virtualization is important for future systessn (see
section 5.2), especially if we can provide real-time gutges despite of the recur-
sive resource partitioning involved. This chapter conas on how to correctly
and efficiently support forwarding of interrupts and exaaps in recursive virtu-
alization in the context of the x86 architecture and to pleviime bounds. We
shall suggest specific hardware support that is needed feffiarent solution after

analyzing why a purely software solution will likely fall stt.

6.1.2 The Problem

A hypervisor needs to forward suitable interrupts and ettoap to its guest,
which could itself be another instance of the hypervisorthi context of nesting
hardware-assisted virtualization, we also need to forwarde of the intercepts to

the guest hypervisor.

When there are multiple levels of hypervisors in recursiveugiization, we
need a correct and efficient algorithm to forward these inf#s, exceptions and
intercepts to the hypervisor sitting at the correct leveté &sume that each hyper-

visor is unaware of whether it sits directly on top of hardeyvasr within another
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hypervisor. (Please see section 5.3.1 for more detailsism#isumption.)

The proposed algorithms need to provide performance gteesusuitable

for real-time analysis. We also restrict our discussiorh®x86 architecture.

6.1.3 Our Contribution

In this chapter, we propose the conceptaivard propagatiorandreverse
propagationfor interrupt / exception / intercept delivery in recursikgtiualization
in the context of the x86 architecture, and formulate distied software algorithms
for both cases that come with and without hardware-assigtielization supports.
The running time for each proposed algorithm is analyzeddwige a parameter-
ized bound for the worst-case execution time, and the aisalyserified with sim-
ulation. Finally, we propose a possible future hardwarermsibn to improve the

performance.

6.2 Design Issues

6.2.1 Statically Determined Interrupt and Exception Handling Sequence

In recursive virtualization, we observe that the level whgets to handle
an exception or an interrupt is always well defined. Basicéillghe exception or
interrupt is generated internally by software, it is haddiep-down (from higher
to lower numerical level number); but if the exception oremtipt is generated

externally, it is handled bottom-up (from lower to highenmerical level number).

Specifically in the context of the x86 architecture, all faype (including

hidden page faul#PF in shadow paging), trap-type, abort-type exceptions (ex-
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cept machine check exceptigiVC), all instruction intercepts, all I/O intercepts, all
software interrupts (INT) and processor shutdown (triplglt) areinternal events
while all non-maskable interrupts (NMI), system managemeterrupts (SMI),
maskable external interrupts (INTR), external processitiaiization (INIT), ma-

chine check exceptio#MC and processor freeze (FERR) avdernal events.

6.2.2 Forward Propagation

App‘\l App 2 App 3

) propagate

\\OS 1 0Ss 2 w\ 0S3
) propagate /[ propagate

\\ Hypervisor 2 w\ Hypervisor 3
] propagate ~/ propagate

\\ Hypervisor 1
/

keyboard event ~ / clock event

Figure 6.1: Forward propagation

When a hypervisor receives an external event, it either coasuhe event
itself, or needs to forward the event to the correct gueshénhtierarchy. We call
thisforward propagation Refer to figure 6.1, and suppose the processor is currently

assigned to App 2 while the keyboard is assigned to App 1. Naevernal timer

LAn SMI could be caused by internally trapping 1/O instrunipor asserted externally. Ideally,
we would like it to be handled top-down in the first case, anitidmo-up in the second case.

Debug exceptiongDB is another special case. When the use of recursive virttializes to
debug a new hypervisor or OS, the bottommost hypervisor nisly t8 own the exception together
with the debug registers, in which case the exception shmaitthndled bottom-up. In all other cases,
the hypervisor should leave the debug registers to its guast handle the exception top-down.
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interrupts should be forwarded to OS 2 while at the same tixbereal keyboard

interrupts should be delivered to App 1.

6.2.3 Reverse Propagation

App 1 App 2 App 3
\os1 0s2 |- 0s3
) propagate \
Hypervisor 2 ~ Hypervisor 3
tra ) propagate / propagate
Pl trap\\ Hypervisor 1

Figure 6.2: Reverse propagation

Internal events should be delivered in a top-down manneweder, without
hardware support, such events are always delivered to tivenbmost hypervisor
first. Thus the hierarchy as a whole needs to simulate a taprdi@livery of such
events. In figure 6.2, exceptions generated in App 1 shouldebeered to OS 1,
and those from OS 3 should first be triaged by hypervisor 3hawsis by the dotted
arrows. However, real exceptions travel according to thid sorows, with hyper-
visors jointly executing a non-paravirtualized algorittorforward each exception

back to its correct level.

Our non-paravirtualization requirement forbids the botteost hypervisor
from intervening and acting as a proxy for all subsequergltevit also mandates

that each hypervisor can make decisions based only on itstaie not the state of
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its parent or children. Hence we need a “distributed” algponi for the implemen-

tation of top-down delivery. We call thigverse propagation

As each intermediate hypervisor processes an event (binal and ex-
ternal), it generates more (internal) events that are sevpropagated to the next
lower level hypervisor. This pattern continues until thétbmmost hypervisor fi-

nally gets to process the event.

6.2.4 Performance Measurement Methodology

The performance of each proposed algorithm is first analyzathemati-
cally and then simulated empirically. Current hardware ispwformant enough
for real implementation, so we verify the mathematical wsial with simulation.
The approximate number of clock cycles spent in interrupicéption delivery is
graphed against the hypervisor level number for each of tbpgsed algorithms
(figures 6.3, 6.4 and 6.5). The mathematical analysis is sta®ssolid line whereas
the empirical measurements from simulation are shown as izEihts with error

bounds.

Both the mathematical analysis and the empirical simulatguire some
data about the speed of certain hardware instructions (&BT) and events (e.g.
#CGP exception). We obtained some of the numbers from AMD publisttata [3],
and have performed measurements to determine the rest. edsunements are
done on a 6-core 2200MHz SVM-enabled AMD Istanbul proce@pteron 2427).

The numbers we obtained are recorded in table 6.1.

We re-purposed a custom OS (FrobOS, that VMware developed\ii
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# of clock cycles AMD [3] | FrobOS
ALUt mem reg/imm 4
ALU T reg reg/imm
BT mem imm

BT mem reg

CLI

#CGP exception 120
INC reg

IRET

Jcc/IMPdisp

LIDT

MOV mem reg/imm
MOV reg reg/imm
MOV reg mem
MOV reg SS
PUSHmMem/reg/imm
PUSHF 5
VMLOAD 102
VMSAVE 59
(round-trip) World Switch 794

W~ AP

80

WhwrRr WP B

Table 6.1: Characterization for AMD Istanbul (family 10HALU instructions include
ADD, AND, CMP, OR, SUB, XOR, etci Round-trip world switch timé measured as the com-
bined time for aVmMRUN instruction followed immediately by &#VIVEXI T event that is triggered by
an interceptedGP exception in the first guest instruction.

testing) to measure the number of clock cycles these ingingor events take na-
tively in 64-bit long mode. This hardware characterizatest is extended from the
same nanobenchmark used by Adams & Agesen [1]. Wherever casureament

overlaps with AMD’s (e.g.l RET instruction), our results are in agreement with

AMD.

In the simulation, the algorithms are rewritten in assendagle and then

implemented with each x86 instruction converted to a funmcthat accumulates
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the number of simulated clock cycles spent according tetédl. Instructions or
events that require reverse propagation are convertedaotgsive function calls
that follow the actual propagation sequence while accutimgiéhe simulated clock

cycles. Randomization is used when control flow depends @rreadtfactors.

We run the simulation 65536 times for each algorithm at ngsievels 1
to 5, and plot the minimum, average and maximum number okatgcles spent,

overlaying the mathematical analysis result.

6.3 Implementation without Hardware Support

Even though both AMD and Intel currently offer hardware sapor writ-
ing a hypervisor, it is still interesting and useful to lodkraplementation without
hardware support for the following reasons. Firstly, theeot hardware support is
mainly for single-level hypervisors; many software tecjugs are still needed for
deeper nesting. Secondly, the current hardware suppodsets only one of the
many possible things the x86 hardware could do, so we do rsit tei restrict our

discussion to the status quo.

6.3.1 Processor Operating Modes

When there is no hardware support for virtualization, we wargreferen-
tially protect the hypervisor from its guests rather thaa @5 from its application
programs. So for simplicity, without affecting the valiaf our results, we put the
hypervisor in ring O (kernel mode) and leave its guests thalg the OS in ring 3

(user mode). (The guest OS could still be protected from gpdiGation program
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by a combination of other techniques like binary transtaimd proper memory
management, but those are outside the scope of this chalstegcursive virtual-

ization, only the bottommost hypervisor enjoys ring 0 wtaleother descendant
levels reside in ring 3. The hypervisor achieves this by eriypshadowing the

Global Descriptor Tables (GDT) and Local Descriptor Tal§ld3T) of its guests.

6.3.2 Hypervisor IDTs and Shadow IDTs

The hypervisor maintains its own Interrupt Descriptor &@DT), which
is called thehypervisor IDT In general, it also maintainsshadow IDTfor each of

its guests.

In the shadow IDTs, any exception or interrupt that the hyiser does not
wish to meddle with is directly forwarded to the guest; othiee the IDT entry

points to the hypervisor’s own handler.

64-bit shadow| 32-bit shadow| 32/64
retain | install | retain | install | hyper
guest| new | guest| new | visor

gateDPL | keep 3 keep 3 3
CS. DPL 3 0 3 0 0
Cs.C 0 0 1 1 0

Table 6.2: Shadow IDT and Hypervisor IDT Access Control Bits

Table 6.2 shows the access control bits that should be setfdr entry in
the shadow IDT and hypervisor IDT. Owing to our simplicatiarthe choice of
processor operating modes for the hypervisor and the gwespick conforming

code segment in 32-bit protected mode and non-conformidg segment in 64-
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bit long mode. This decision gives us uniformity in savingl aestoring the stack

pointerSS: RSP. 2 In section 6.3.3, we will explain the use of the code segrsent

Descriptor Privilege LeveCS. DPL to decide when we should stop forwarding.

6.3.3 Forward Propagation

The discussion in this section refers to the pseudo-daxtenar d_pr o-
pagation(). The reader is referred to inline sub-routipeopagat e_t o-

_guest () insection 6.3.5.

Forward propagation does not propagate events beyondulenbere ex-

2When an interrupt occurs in 64-bit long mode, the stack segaet stack pointeSS: RSP
are always pushed onto the stack, thus interrupt forwardangss the hypervisor hierarchy could
be done seamlessly, and we allow non-conforming code segmserthat the processor’'s Current
Privilege Level CPL) changes td at the bottommost hypervisor adn all its descendant levels.

When an interrupt goes to a 32-bit protected mode handlestdek pointelSS: RSP may
or may not be pushed depending on whether thereGBlachange or a switch from the virtual-
8086 mode. In recursive virtualization, we want to contra@ly when thisSS: RSP is pushed,
otherwise the correct stack frame does not get properlpnedtafter the interrupt is serviced and
control returns to the application program.

For guests in virtual-8086 mode, the stack poir88r RSP and many other segment registers
are pushed when the bottommost hypervisor's shadow iqteinandler is called. They remain in the
stack until the top-level hypervisor either forwards thergvo the virtual-8086 guest’s handler, or
consumes the event and returns to the virtual-8086 gueas d$long as we forward all interrupts in
the TSS Interrupt Redirection Bitmap of the virtual-808&sgt, we are fine. (We want virtual mode
extensiorCR4. VME = 1 because we still need the 1/0 Redirection Bitmap BRUAGS. VI F)

For guests in protected mode, the stack segment and stadle®%: RSP are pushed when
the bottommost hypervisor's shadow interrupt handler iedgCPL changes fron3 to 0). CPU
tries to pop them when the event is forwarded to l&/ehndler CPL changes fron to 3), which
is not where it should get popped. When the top-level hypenagher forwards the event to the
guest handler or consumes the event and returns contra tpubstSS: RSP are not restored when
they should be@PL remains aB). Here we use conforming code segments in shadow IDT to force
the CPL to stay the same across the hierarchy. When the bottommestigpervisor services the
interrupt, it raises exception to its own hypervisor IDT igthis the only place wher€PL changes.
Thus when the interrupt is forwarded across the hierarchyjemnot have to worry about saving and
restoringSS: RSP.
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01 forward_propagation() {

02 cli

03 if (event is solely for me) {

04 consume the event

05 } else { // guest needs this event

06 if (event needs processing) {

07 preprocess the event

08 }

09 if (saved CS.DPL=0 in shadow GDT) or
10 (shadow RFLAGS. | F=0) {

11 add event to guest pending | NTRs
12 } else if (guest in INTR shadow) {
13 set RFLAGS. TF on stack frane

14 add event to guest pending | NTRs
15 } el se inline propagate._to_guest()
16 }

17 iret

18 }

ecution was interrupted, so that the guest does not see aeyssgment(S) de-
scriptor that it does not recognize. This is checked by imdeLS from the in-
terrupt stack frame into the shadow GDT of the current gudghe entry has a
Descriptor Privilege Levell@PL) = 0, current level code was interrupted, so the
guest should wait until the current level finishes execubefore it receives this
event. In this case, the event is inserted into the (soritetd)figuest pending inter-
rupts according to interrupt priority levels (IPL). Thesnging interrupts are taken
immediately when the current level finishes execution arss@s control onto its
guest, see the pseudo-code and explanatigr opagat e t o_guest () in sec-

tion 6.3.5.

Forward propagation should also observe the provisiontefriapt shadow
(line 12), where interrupt delivery is temporarily disableefore the completion of

the next instruction. If the guest is currently in interrighiadow (e.g. just after
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executing the instructiorSTI or MOV SS), the hypervisor sets the trap flag so that
control returns to the hypervisor immediately after theinipt shadow, at which

point the hypervisor can safely propagate the pendingrunés.

6.3.4 Reverse Propagation

01 reverse_propagation() {

02 cli

03 if (saved CS.DPL=0 in shadow GDT) or
04 (saved CS.DPL=0 in guest CGDT) {
05 lidt hypervisor |IDT

06 call actual handl er

07 lidt shadow | DT

08 } else inline propagate._to_guest()

09 iret

10 }

The discussion in this section refers to the pseudo-cadesr se_pr o-
pagation(). The reader is referred to inline sub-routipeopagat e_t o-

_guest () in section 6.3.5).

A hypervisor handles the exception or interrupt if the evsntiggered by
itself (applicable to bottommost level hypervisor only},ibthe event occurs at
precisely the next level (i.e. in the kernel of its immedigteest). TheCS pushed
onto the stack should haveb®L = 3 in the shadow GDT anBPL = 0 in the guest
GDT for the latter case. IDPL = 3 in both the shadow and guest GDT, the event
occurs in one of the descendant levels of the guest, hencddshe forwarded to

the guest.

Consider a general protection fault@) as an example of an event that re-

quires reverse propagation. When the actual handler atileveivoked, it is going
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to generate anothétGP which could be (reverse) propagated to level 1. The
use of return-from-interrupt instructidrRET to call the guest handler unwraps tail
recursion and eliminates the need for the hypervisor'siag handling routines to

bere-entrant on the premise that the hypervisor’s interrupt routinencarault.

6.3.5 Interrupt-Enable Flag RFLAGS.IF Shadowing

If any level other than the bottommost level hypervisor exes an instruc-
tion that may change the state of interrupt-enable RR§AGS. | F (e.g. CLI/
STl / | RET instructions), it causesGP exception which is reverse propagated (ex-
cept for virtual-8086 mode where shadowing=fLAGS. | F is done in hardware).
Upon receiving this exception, the parent hypervisor s#ésrs or returns a copy

of RFLAGS. | F bit (called shadovirRFLAGS. | F) for its guest.

For both forward and reverse propagation, when the evembizagated to
its next level guest, the hypervisor sets its ORIFLAGS. | F bit to enable exter-
nal interrupt. Referring to the pseudo-code foropagat e_t o_guest (), any
pending interrupts (from forward propagation, see seddi@?3) are checked and

propagated to the guest at this moment too.

From the point of view of a hypervisor (at any level), the niéd is that
no guest can grab a processor forever and prevent the hgpesdheduler (which
hooks onto timer interrupt and I/O events, etc) from runnihbis guarantees that
no guest can steal allocated CPU time from other guests aretssly affect the

availability of processor resources to other guests.
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01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

nli ne propagate_to_guest() {
/1l Sets up the IRET frane for caller
cl ear RFLAGS. TF on stack frame
if (guest in virtual-8086 node) {
push saved EFLAGS to saved SS: SP
push saved CS:IP to saved SS: SP
saved SP := saved SP - 4
saved EFLAGS. IF := 1
saved CS:IP := guest handler’s
i f (guest has pending INTRs) {
saved EFLAGS. VIP : =1
¥
} else if (64-bit node) {
push current SS: RSP
push current RFLAGS(IF: =1)
push guest handler’'s CS: R P
forall (guest pending INTRs) {
push current SS: RSP
push current RFLAGS(IF: =1)
push pendi ng handler’s CS: Rl P

} else { // protected node
push current RFLAGS(IF: =1)
push guest handler’s CS: R P
forall (guest pending INTRs) {
push current RFLAGS(IF: =1)
push pending handler’s CS: R P
}
}
}

6.3.6 Running time Analysis

Let us analyze the time it takes to propagate an interrupxcepion. The

actual time to service the interrupt or exception does rfecathe effectiveness of

the propagation.

For the bottommost hypervisor, the running times for botlwérd propa-

gation and reverse propagation without hardware-assitieclization support are

dominated by the time it takes to raise each interrupt / eb@ep, vy, and the time
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it takes for each interrupt retulnRET instructiont;zgr, assuming for simplicity
that all required memory to propagate the interrupt or etiopps pinned so we do

not have page faultPF exceptions adding further costs and complexity.

For higher-level hypervisors, some privileged instrustion the propaga-
tion itself require reverse propagation, which adds drarally to the total running

time as the number of levels nest deeper.

We make the following simplification according to the worase scenario:

e Although we disabled interruptCLI ) for the bottommost hypervisor dur-
ing propagation, we cannot prevent non-maskable inteidyptand system
management interru@M from occurring. We are not considering effects
from NM andSM in this analysis. Interested readers could add them to the

final worst-case total cost.

e Except for the bottommost hypervisor, interrupts are digteaabled in hard-
ware during propagation. External interrupts could ocdiney are forward
propagated and queued as pending at the appropriate leaelds to the la-
tency of the original propagation but does not increasedfat time overhead
spent to propagate that many number of interrupts and ercsptn fact, the
worse total time occurs when there are no other guest pentdergupts each
time we execut@r opagat e_t o_guest (), so that each interrupt has to be
propagated by itself and no piggyback optimization can heeddlhus we
can omit lines 17-21 and 25-28 pf opagat e_t o_guest () in the analy-

sis. We assume the frequency of external interrupts tfy bex.
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e We calculate only the time it takes to propagate an intertoiphe handler
in the appropriate level, and the time to return to the injged instruction,
I.e. the round-trip time to a null handler. The handler itsghy invoke other
privileged calls that require reverse propagation, busé¢hare beyond the

scope of this analysis.

Let T/ and T be the times it takes to forward propagate and reverse prop-

agate an interrupt / exception to levelrespectively. ObviouslyTlf ~ T

Q

2(t;nt + tirer). The constar is due to the extra logic in lines 5-7 okver se_
propagati on() (orline 4 inf orwar d_propagati on()) to get the current
privilege levelCPL correct (see the discussion on conforming code segmentin se

tion 6.3.2).

For pr opagat e_t o_guest (), lines 15 and 23 require reverse propa-
gation. Each time this subroutine is called, the worst casming time is ap-
proximately?; ,. Forforward_propagati on(), lines 2, 17 require reverse
propagation. The worst case occurs when lines 2, 15 and 1&xaaited. For
rever se_propagation(), lines 2, 5, 7 and 9 require reverse propagation. So

TI = Ty = AT = 4" 2(t Nt + tigeT)-

From table 6.1¢;n7 + t;rer = 120 + 80 = 200 cycles. The equation is
graphed as solid line in figure 6.3, overlaid with simulatresult as data points

with uncertainty range.

The mathematical analysis closely matches but slighthetegtimates that

from the simulation. This is because the mathematical arsagonsiders only the
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T,=200*2*4"
Reverse Propagation (simulation) ---+--- +
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Figure 6.3: Reverse propagation without hardware-assistelization takes ex-
ponential time.

key steps that take up the largest number of clock cyclesigmmiles others.

6.4 Implementation with Hardware Support for Single-Level Hy-
pervisor

AMD has Secure Virtual Machine (SVM, also known as AMD Paaeific
Technology) while Intel has Virtual Machine Extension (VM&so known as Van-
derpool Technology x86, or VT-x). They provide direct haates support for a

single-level hypervisor.

6.4.1 Processor Operating Modes

With hardware-assisted virtualization, the hypervisat tire OS both reside

in ring O (kernel mode) while the application program is ingi3 (user mode).
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In recursive virtualization, all hypervisors and OSes areing O, and only the
application program is in ring 3. Thus, thag aliasingproblem is slightly different

from the case without hardware supports.

6.4.2 Intercept Handling

Instead of relying mainly o#GP exception, a hypervisor using hardware
support can specify precisely which events to interceph&@VMCB Control Block
or VMX Controls in VMCS. An intercepted event results #VMEXI T, which is
handled by the code immediately after t®RUN (for AMD) or the instruction
specified in the/MCS when invokingVM_LAUNCH VIVRESUME instruction (for In-
tel). The guest is not restarted until the hypervisor exeiyRUN or VVRESUVE

again.

We could extend this architecture to recursive virtual@atn two ways. In
the first approach, paravirtualization would call for an goatent bottom-level hy-
pervisor that does all the work and keeps track of all stdtenmation for all levels.
However, we prefer the second approach, where each hypetales care of only
its next level (i.e. immediate guests). According to set®.1, any event is either
forward propagated or reverse propagated across thedtigr@ee figure 6.2). Here
we present the pseudo-code for reverse propagatiemer se_pr opagat i on-
svm() is for AMD’s SVM Architecture. The corresponding one forétis VMX
Architecture, and the ones for forward propagation undeh laochitectures are

very similar.

gVMCB/ gVMCS is the guest VMCB/VMCS used to run the guest (hyper-
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01 reverse_propagati onsvn() {
02 initialize gvMCB

03 clear proxy flag

04 while (true) {

05 RAX : = proxy ? pVMCB . gVMCB
06 VMLOAD
07 while (true) {
08 restore additional registers
09 VVRUN
10 save additional registers
11 if (handling #VMEXIT is easy) {
12 handl e #VMEXI T
13 } el se break
14 }
15 VIVBAVE
16 if (proxy) and (guest intercepts this) {
18 clear proxy flag
19 gVMCB. State : = pVMCB. St at e
20 } else if (guest trying to VMRUN) {
21 set proxy flag
22 gVMCB.rip := gVMCB.rip + 3
23 pVMCB. Ctrl := gVMCB. Ctrl
bi twi se-or gVMCB.rax->Ctrl
24 pVMCB. State := gVMCB. rax->State
25 } el se handl e other #VMEXIT
26
27 }

visor or OS), whilepVMCB/ pVMCS is a proxy VMCB/VMCS for simulating the
guest’s attempt tVRUN or VMLAUNCH VMRESUME. While gVMCB/ gVMCS con-
tains all the machine state of the guesYMCB/ pVMCS contains the machine
state of the guestgVMCB/ gVMCS (pointed to bygVMCB. r ax upon#VNMEXI T
when the guest tries to ddVRUN, or given in VMX-Instruction Information Field
of VMCS upon#VNMEXI T due to guest’'s attempted execution \@W/PTRLD). In
pVMCB/ pVMCS, we intercept anything that the guest wants to intercepteoowr-
selves want to intercept. Tlpe oxy flag is used to distinguish whether the hypervi-

sor is running the immediate guest or running an image onlbehike immediate
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guest.

If the hypervisor is running an immediate guest, it dealshwithatever
#VMEXI T it catches. But if the hypervisor is running an image on bebhthe
immediate guest, it appropriately decides whether to foivilae#VMVEXI T event
to the guest handler or consumes the event itself. If it wemtsrward the event to
the guest handler, it simply re-starts the guest at theuattm following VIVRUN
or at the location specified MMCS when invokingVM_AUNCH VIVRESUME, with
thegVMCB/ gVMCS updated with the state information frgpVMCB/ pVMCS.

Since it is mandatory to interceptVRUN in AMD SVM and VMLAUNCH/
VMRESUME in Intel VMX, the hypervisor would only proxyVRUN or VML AUNCH/
VMRESUME for its immediate guest. Hence it takes care of only the reasllin the
hierarchy. When a level hypervisor tries to/MRUN or VMLAUNCH VIVRESUNME,
the levell hypervisor intercepts it and forwards it to the legehypervisor. The
level 2 hypervisor then sets up a proXyvRUN or VMLAUNCH VVRESUME for the
level 3 hypervisor, which is again caught by the levehypervisor. And now the
level 1 hypervisor sets up a proxy for the le\&proxy. The levell hypervisor has
no knowledge that théMRUN or VMLAUNCH' VMRESUNME of the level2 hypervisor

it tries to proxy for is itself a proxy for the levélhypervisor!

6.4.3 Running Time Analysis

Similar to the running time analysis of the previous sectiwa determine
the round-trip time to a null handler for the effectivenegshe propagation algo-

rithm, and disregard any time spent inside the actual hasdle
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For the bottommost hypervisor, the running time is domidatethe#VIVEXI T
and VM resume events. These are the events that involve esgit world switch
between the hypervisor and the guest. et be the time it takes for each world
switch. We havd; = 2ty5. For all higher levels, the entry point when an intercept
is forwarded to the next level hypervisor is theVEXI T event at line 10 (immedi-
ately following theVIVRUN instruction) inr ever se_pr opagat i on_svn{), and
the running time is measured until control loops back toMNMBUN instruction at
line 9. TheVMSAVE, VMLOAD andVMRUN instructions on lines 15, 6 and 9 respec-
tively require reverse propagation of their own. THis,= 377, = 3" ! - 2tyys.

From table 6.1¢y,¢ = 794 cycles. The equation is graphed as solid line in

figure 6.4, overlaid with simulation results as data points wncertainty range.

10° 3 T T

T T
T,=794%2+3" —
SVM Reverse Propagation (simulation) ---+---

number of clock cycles (T,)

102 1 1 1 1 1
1 2 3 4 5

hypervisor level number (n)

Figure 6.4: Reverse propagation with hardware-assistedalization also takes
exponential time.

With the current hardware-assisted virtualization suppanning time for
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propagating intercepts in recursive virtualization ifl siiponential in terms of the
level number that the intercept needs to be forwarded to.udhahe exponential
factor is less than the case without hardware-assistegalizaition, the base case

tw s is still prohibitively expensivet{y s > t;nr + tirer)-

The mathematical analysis again closely matches but Bfigimderesti-
mates the running time than the simulation result. This cabee we only consider
the key steps that take up the largest number of clock cynléisei mathematical

analysis and ignore the rest.

6.5 Possible Hardware Extensions to Support Recursive Inter-
cept Delivery

In this section, we suggest hardware improvement that castidally bring

down the running time for intercept delivery in recursivewalization.

6.5.1 Hardware Intercept Delivery

The whole interrupt, exception and intercept forwardingldde done bet-
ter if we adopt a simple hardware algorithm. This algorithtnanplishes correct

delivery of intercepts to the hypervisor at the correctlleve

6.5.1.1 Ancestor and Descendant Linked Lists

First of all, hardware needs to keep track of the chain ofdnadrical hy-
pervisors loaded at any moment. This can be achieved by g@dpointer to the

VM HOSTSAVE_AREA (for AMD) and VMCS Host-State Area (for Intel) to point

121



back to their parenyM HOSTSAVE_AREA or VMCS Host-State Area respectively.
Thus, no matter which level in the hierarchy is currentlymmg, this pointer chain
links all the ancesto¥M HOSTSAVE _AREA or VMCS Host-State Area in a linked
list. Similarly, from the parent area, hardware can find thethevel by keeping

their currently running/MCB or VMCS Guest-State Area in their parent’s area.

6.5.1.2 Intercept Redirect Bit

Instead of forcing all intercepts to statically fall intateer forward propa-
gation or reverse propagation, we can leave this option tpére hypervisor. We
propose that along with each intercept bit that a hypenapecifies in th&/MCB/
VMCS we define a redirect bit. For backward compatibility, theinexct bit could

be specified as follows:

When the intercept bit is not set, the value in the redireashgnored, and
the hypervisor won't get this intercept anyway. If the it bit is set but the
corresponding redirect bit is cleared (which is the defeaste), then the hypervisor
has priority over its guest in intercepting this event, vithis what happens with
current hardware. If both bits are set, then the processmkshwhether the guest
is intercepting this event. If it does, then the intercepgto the guest, otherwise

it goes to the hypervisor.

6.5.1.3 The Hardware Algorithm

Thus the processor algorithm to determine which level ofyisor to de-

liver an event is unified in pseudocodat er cept _del i ver y() . The originat-
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ing level is defined as the level where the currently exegutiode (pointed to by
the instruction pointe€S: Rl P) resides when the intercept occurs.

i ntercept delivery() {
i:=0;, j:=1
while (j< originating level) and
((level j intercept bit is 0) or
(level j redirect bit is 1)) {
if (level j intercepts) {
1 =7
}
Jji=5+1
}
if (j< originating level) or (i == 0) {
deliver the event to level j
} else {
deliver the event to |level i

}
}

The algorithm always finds a definite level to deliver the ¢vea it itself
will not generate double fault#0OF) or triple fault SHUTDOWN) exceptions. A
#DF or SHUTDOWN exception occurs only when a certain level has been seléxted
handle an event, and further faults occur while locatingcteesponding handler

in that same level.

For exceptions and interrupts (both internal and extertiad) top-level OS
(as well as any hypervisor which is currently not running gagst, during which it
behaves like a top-level OS) is poised to handle it anywaif,iakas the intercept
bit set and the redirect bit cleared. So if each underlyingehyisor decides either
not to handle an event or preferentially let its guest hatttdeevent, then equals
the originating level at the end of the while-loop, and the-kevel gets to handle

the event.
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For new intercepts that come only with the introduction opérywisor (e.qg.
instruction intercept), the intercept event is generatdd ibat least one underlying
hypervisor decides to intercept it. Hentequals originating level implies+£ 0 at
the end of the while loop. The originating level will nevett ¢ receive the event

(which it does not expect to receive).

If this algorithm is implemented in software, it would havetsame linear
running time (see section 6.5.1.4), but it would violate ig@ation requirement
between adjacent levels of hypervisors (see section 5.8Hi3 requirement is of-
ten needed in real-time systems. It is not possible to aeHiaear running time
in software without paravirtualization because each fodive step would incur
more reverse propagation that avalanche down the hierafdiypervisors. Imple-
menting this algorithm as a hardware extension avoidsiatg#re hypervisor into

paravirtualization.

6.5.1.4 Running Time Analysis

The running time is still dominated by the world switch cogts. From

table 6.1t,ys = 794 clock cycles. Now, hardware walks the ancestor and descen-

dants linked lists to determine the correct level whereragpt should be delivered.
This walk isO(n), wheren is the numerical value of the originating level. Thus the
total running time iSO (n + tws). This hardware algorithm is a great performance
improvement (figure 6.5) to the exponential running timesafe solutions, and

still keeps the hypervisors isolated from each other.

As the depth of nesting increases, the maximum delivery tmoeeases
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T, = 10n + 794 (analysis)
Empirical data (simulation) ---+---
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Figure 6.5: Propagation with hardware extension takesiitime.

linearly but the minimum delivery time flattens out. Our nethatical analysis

closely matches the average case.

6.5.2 Avoid Avalanche of Intercepts Cascading down the Hiarchy

If the aforementioned hardware solution is not implementieere are still
other ways we could improve performance of intercept defive recursive virtu-

alization, albeit to a lesser degree.

In recursive virtualization, intercepts often avalancloevd the hierarchy
before they are completely serviced, with each handler rgéing more than one
additional intercept to its parent hypervisor. In ordemnbprove performance, either

the world switch cost or number of intercepts need to be yreaduced, or both.

For reducing the world switch cost, we propose the optiongsftiveight

#VNVEXI T. Adams et. al. [1] found that the current architecture otliaare support
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for hypervisors assumed too much of the trap-and-emulatedan, leaving little
room for other approaches like binary translation to beagiffely implemented.
With the option of lightweight#VIVEXI T, some hypervisor handlers could run in

guest context, thus avoiding costly world switches backfarith.

Alternatively, for reducing the number of instruction irtepts, SVM/VMX
could allow a hypervisor to specify a mapping of instructioisequence of instruc-
tions in theVMCB/ VMCS, so that whenever the processor encounters an instruction
defined in the mapping while executing the guest, it exedhiemapped sequence
of instructions instead. The hypervisor effectively bintranslates instructions to

avoid excessive instruction intercepts.

6.6 Conclusion

There are many practical uses for recursive virtualizativa would like to
reap the same benefits in running real-time guests. Intesingexception forward-
ing is a key issue in building a real-time capable hypervisdée proposed the con-
cept offorward propagatiorandreverse propagatiorand formulated a hypervisor-
level distributed algorithm for its correct implementatioWe have shown in this

chapter that its performance bound can be reasonably peddic

With the current x86 architecture, running time is exporamb the num-
ber of nesting levels, whether we adopt the hardware-asisisttualization or not.
This exponential running time may be acceptable becauseuimer of users to
a hierarchical hypervisor also decreases exponentiatly the number of nesting

levels. However, the situation can be improved to lineanmig time if we assume
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simple hardware extension as outlined in the last section.
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Chapter 7

Conclusion

7.1 Future Work

With all the different types of resources virtualized resively for real-time
workloads using the framework constructed in this dissertaincluding the fully
preemptable, non-preemptable and limited preemptabtairess under the peri-
odic, sporadic or aperiodic task models, the future of tigad recursive virtualiza-
tion looks promising. From our analysis on the x86 architestwe are going to
generalize our works so that it may apply to broader comparehitectures. We
are going to review the existing methods and toss a wild gaiefssure possibilities

in this section.

7.1.1 Architectural Constraints to Real-Time Recursive Vitualization

The current computer architecture has a lot of limitatiorkimg it difficult
to be virtualized, difficult to be virtualized for real-timeorkloads, and difficult to

be recursively virtualized.

Section 1.3 reviewed the literature of known problems thakenthe x86
virtualization and x86 recursive virtualization difficulthese include, but not lim-

ited to, ring aliasing, ring compression, address spacepoession, non-faulting
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access to privileged state, etc.

As we have discussed in chapter 6, the biggest deterrenaltdimee virtu-
alization in the x86 architecture is the unbounded frequefoccurrence of inter-
rupts and exceptions, and the unbounded amount of timevaseyach interrupt /

exception when it arrives.

The need to maintain backward compatibility makes the x8Guction set
architecture difficult to evolve into one that could searsigsupport real-time re-

cursive virtualization.

7.1.2 Principles for Adapting Any Architecture for Real-Ti me Recursive Vir-
tualization

Despite all the constraints mentioned, any given architest could still
be used for real-time recursive virtualization, of coursigh some hardware and/or
software adaptation. We have discussed in chapters 5 and hbx86 architecture

could be adapted. The adaptation principles is then genedal

Generally speaking, adapting a given architecture for-tiead recursive

virtualization is a three-step process.

1. Make the architecture virtualizable
2. Make the architecture real-time capable

3. Make the architecture recursively virtualizable in dteae perspective

We are going to look at each of these three steps in turn. kMgach step,
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we need to look at three aspects: the instruction set aothres the memory man-

agement unit (MMU) and the interrupt / exception deliverycimenism.

7.1.2.1 Make the architecture virtualizable

There are a number of ways to virtualize any given architectuf the
architecture meets the requirement as listed by Popek ef42j| then a simple
trap-and-emulate approach is sufficient. Otherwise, #tesally speaking, full in-
terpretation is always available where all the machinestate stored and emulated
in memory. However, this is not performant enough to be of @magtical use. So,
depending on what is lacking, three common approaches veae to tackle the
problem, namely, paravirtualization, binary translateith software MMU, and

hardware assisted virtualization. Not all approaches péaable in all situations.

1. Paravirtualization The hypervisor and guest OS cooperate with each other
using predefined protocols. Problematic instruction®(those that involves
non-faulting access to privileged state) and/or memoryagament routines

are replaced with system call to the hypervisor.

This approach is the most performant but it also involveseaigamount of
work to tweak every guest OS at the source code level. In @tbads, it has
the fewest requirements on hardware capabilities but ibssiple only if the
guest OS source code is legally available for modificatichraalistribution.
The other pros and cons of paravirtualization has been skgclithoroughly

in section 5.3.1.
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2. Binary translation It is a clever invention that strikes the balance between
the fast speed in native execution and the flexibility of & ifutlerpretation.
Guest kernel binary code (instead of source code) is decaxedranslated
on-the-fly so that problematic instructions and/or memoanagement rou-
tines are translated into sequences of safe instructioesenm callouts to the

hypervisor.

Binary translation makes the fewest assumption about thst 2@ so it has
the advantage of being able to run unmodified guest OSes. Wowedoes
put some hardware requirements on the architecture toettaimplmenta-
tion of binary translation. For example, the binary tratwianust be able to
fully protect itself from inadvertent or even maliciousaatk from the guest
OS. As a counter-example, the 64-bit Intel CPUs do not offgmeant limit

check, and segment limit check is too expensive to be doretware, there-
fore binary translation cannot be used on 64-bit Intel CPUswihe guest
OS is also 64-bit. Some more discussion of binary transiag@vailable in

section 5.3.2.2.

3. Hardware assisted virtualizationLast but not least, we could modify the
hardware to support virtualization instead of restrictingselves to software
solutions only. Hardware assisted virtualization gerngradids a new mode
of processor execution called the root mode, which is déelice the hyper-
visor. Guest OSes run in non-root mode. Hardware makeseahdcessary

distinction between the two modes and acts accordingly.
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Existing hardware assisted virtualization all brings uskot the trap-and-
emulate paradigm, although this need not necessarily berlgeoption. Al-

ternatives include hardware design to support more eftiderary transla-
tion or even a combination of the above mentioned methodstid®e6.5.2
has a brief discussion of how hardware assisted virtugizaiould be made

to better support binary translation.

Except for paravirtualization, when we virtualize a givechatecture, we
always want our hypervisor to be transparent for securigoas, but it does not
mean that the presence of the hypervisor is totally undséstotherwise a trans-

parent and undetectable viral hypervisor could wreck havtiee computer system.

If a guest cannot tellwithout external knowledgewnhether it is running
directly on hardware or within a hypervisor, then we say tihat hypervisor is
transparent. It could, however, detect the presence ofythertiisor if it knows, for
example, the hardware configuration or CPU speed exterrialyrfot probed by
the code, e.g. being told by the end-user), or has accessextamal timer. Thus
faking the return values ofPUI D instruction to indicate less features available
to the guest does not in itself constitute non-transparebay an inconsistency
in return values when the guest is probing the total amoumtvaflable memory
by different means, or an incorrect hypervisor behaviornmkating a virtualized

hardware are examples of non-transparency.

Hence, as a security issue, a viral hypervisor could be paresit, but not

totally undetectable. Transparent hypervisor ensuresdhect functioning of all
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proper guests, be they OSes or hypervisors themselves. detectable hypervisor

is a theoretical curio but practically impossible in a realamine.

7.1.2.2 Make the architecture real-time capable

In order to make a given architecture real-time capable, @ezlrio identify
and classify all the resources into fully preemptable, pogemptable or limited
preemptable types, as in section 1.1. Virtualization ofyfpkeemptive resources
follow the summary outlined in section 1.2. Interested ezadre also referred to
Mok et. al. [37] [36] for a detailed analysis. Virtualizatiaf non-preemptable
resources are given in great length in chapters 2 and 3. Hnem®ore variation to
limited-preemptable resources. Some common types and aardlease study is
provided in chapter 4. One may need to develop similar swistif the task models

are different from what have considered in the chapter.

Basically, a (virtual or physical) resource is real-timeatalp if its availabil-
ity is highly predictable. The Bounded Delay Resource Parti(BDRP) approach
we adopted in this dissertation provides the predictgtéitd enables some well-

known scheduling algorithms to be run unmodified inside sattttions.

Known existing architectures have a big blow to timing pctalbility of
any running software. The incoming rate of external ingetsuare unbounded, and
the processing time of each interrupt is also unboundedsd& ierrupt handlers
could stack on one another during execution for an arbigremng time. In order to
make any given architecture real-time capable, we needftwansome hardware

contract on the maximum frequency of incoming externalrimigs, and instill
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some software discipline to keep each interrupt handlentifiebly short.

7.1.2.3 Make the architecture recursively virtualizable ina real-time perspec-
tive
There are two parts to this problem. (1) The resource vidaabn needs
to be capable of doing so recursively; (2) the computer gechire needs to have
a predictable and reasonable time bound on all of its aetitparticularly the

interrupt and exception delivery across the hierarchy pihyisors.

The Bounded Delay Resource Partition (BDRP) model adoptedsrdibi
sertation can be stacked up in recursive virtualizatioreoFem 5 and the discussion

that follows give the details of how this recursion could loael

When virtualization becomes recursive, some operationsrberohibitively
costly. This could cause real-time workloads, which ardrg¥sensitive, to fail
miserably. The most important thing would be the forwarding delivery of inter-
rupts, exceptions and intercepts across the hierarchymérinsors. It is involves
every time the hypervisor regains control of the system & ttlap-and-emulate
paradigm. It is also heavily relied upon by the software MMben doing binary
translation. Chapter 6 specifically deals with how the intty exception delivery

could be made predictable.

7.2 Conclusion

Abstract resources are classified into fully-preemptaide;preemptable or

limited-preemptable types and analyzed independentlyefoursive virtualization
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with a real-time perspective on the workloads. Specificallg non-preemptive
scheduling is found to suffer anomalies whereby an origyreadhedulable task set
may become unschedulable under reduction in system loaslambmaly is coined
asrobustness Non-preemptive scheduling in general, and non-preemptbust-

ness in particular is analyzed in depth, leading to somessacg and sufficient

conditions to guarantee non-preemptive robustness.

The Bounded Delay Resource Partition (BDRP) model is borroweah fr
the fully-preemptable resources and applied to non-présig and some vari-
ants of limited-preemptable resources with some promisgsylts. The model
allows for recursive virtualization with real-time worldd because existing com-
mon schedulers like Earliest-Deadline-First (EDF) anceBiPriority (FP) can be
applied within such a partition without modification, thiene integrates seamlessly
with the whole framework. The application of the model iscdissed in a VMware

ESX server case study.

With all the theoretical models of real-time recursive watization of ab-
stract resources in place, we look at the challenges fromalacoenputer architec-
ture. The x86 architecture is chosen because it is populdreadily available.
We looked at various aspects of recursive virtualizatioth@x86 architecture and
then drilled into the one that affects real-time perfornetite most, namely, the
recursive forwarding and delivery of interrupts, excepsiand intercepts across
the hierarchy of hypervisors in recursive virtualizatioBxperiments were done
to characterize the timing properties of various schenmeguding two software

schemes one with and one without the latest hardware absistealization tech-
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nology, and a hardware scheme proposed for future hardwéeaston. Finally,
we distilled the whole process and discussed how it couldppdiead to real-time

recursively virtualize any computer architectures.
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Appendix 1

Acronyms

The following acronyms were used throughout this dissertat

[#DB] Debug Exception

[#DF] Double Fault

[#GP] General Protection Fault

[#MC] Machine Check Exception
[#PF] Page Fault

[#VMEXIT] Virtual Machine Exit Event
[ADD] Addition (Instruction)

[ALU] Arithmetic and Logic Unit
[AMD] Advanced Micro Devices, Inc.
[AND] Bitwise AND (Instruction)

[ASID] Address Space Identifier (AMD)
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[BDRP] Bounded Delay Resource Partition
[BT] Binary Translation / Bit Test (Instruction)
[CLI] Clear Interrupt Enable Flag (Instruction)
[CMP] Compare (Instruction)

[CP] Concrete Periodic

[CPL] Current Privilege Level

[CPU] Central Processing Unit

[CR3] Control Register 3, for physical address of top-level pagestedion table
[CR4] Control Register 4

[CS] Code Segment/ Concrete Sporadic
[DEV] Device Exclusion Vector

[DPL] Descriptor Privilege Level

[EDF] Earliest Deadline First

[FERR] Processor Freeze (Event)

[EFLAGS] 32-bit Extended Flags Register
[FP] Fixed Priority

[FrobOS] Frob OS (VMware)
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[gCR3] Guest CR3

[gVMCB] Guest VMCB (AMD)

[gVMCS] Guest VMCS (Intel)

[GDT] Global Descriptor Table

[GENI] Global Environment for Network Innovations
[IDT] Interrupt Descriptor Table

[IF] Interrupt Enable Flag (RFLAGS)

[INC] Increment (Instruction)

[INIT] External Processor Initialization (Event)
[INT] Software Interrupt (Instruction)

[INTR] Maskable External Interrupts (Event)
[INVLPG] Invalidate TLB Page (Instruction)
[INVLPGA] Invalidate TLB Page Global Address Space (Instruction, AMD
[I/O] Input/Output

[[IOMMU] Input Output Memory Management Unit
[IPL] Interrupt Priority Level

[IRET] Interrupt Return (Instruction)
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[Jcc] Conditional Jump (Instruction)

[JMP] Unconditional Jump (Instruction)

[JVM] Java Virtual Machine

[LDT] Local Descriptor Table

[LGDT] Load Global Descriptor Table (Instruction)
[LIDT] Load Interrupt Descriptor Table (Instruction)
[MMU] Memory Management Unit

[MOV] Move (Instruction)

[MTRR] Memory Type Range Register

[NCP] Non-Concrete Periodic

[NCR3] Nested CR3 Register

[NCS] Non-Concrete Sporadic

[NMI] Non-Maskable Interrupt (Event)

[NPEDF] Non-Preemptive Earliest Deadline First
[NPFP] Non-Preemptive Fixed Priority

[NPFP/RMA] Non-Preemptive Fixed Priority Scheduler with Rate Monataks-

signment of Priority
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[NSF] National Science Foundation

[OR] Bitwise Inclusive OR (Instruction)
[OS] Operating System

[PAT] Page Attribute Table

[PC] Personal Computer

[PCPU] Physical CPU

[PEDF] Preemptive Earliest Deadline First
[PFP] Preemptive Fixed Priority

[PFP/RMA] Preemptive Fixed Priority Scheduler with Rate Monotonic igss

ment of Priority
[PUSH] Push to Stack (Instruction)
[PUSHF] Push RFLAGS to Stack (Instruction)
[PVMCB] Proxy VMCB (AMD)
[PVMCS] Proxy VMCS (Intel)
[RAX] 64-bit Accumulator Register
[RFLAGS] 64-bit Flags Register

[RIP] 64-bit Instruction Pointer
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[RMA] Rate Monotonic Assignment of Priority
[RSP] 64-bit Stack Pointer

[RVI] Rapid Virtualization Indexing (AMD)

[SMI] System Management Interrupt (Event)
[SS] Stack Segment

[STI] Set Interrupt Enable Flag (Instruction)
[SUB] Subtract (Instruction)

[SVM] Secure Virtual Machine (AMD)

[TF] Trap Flag (RFLAGS)

[TLB] Translation Lookaside Buffer

[TSS] Task State Segment

[VCPU] Virtual CPU

[VIF] Virtual Interrupt Enable Flag (RFLAGS, AMD)
[VM] Virtual Machine

[VMCB] Virtual Machine Control Block (AMD)
[VMCS] Virtual Machine Control Structure (Intel)

[VME] Virtual Mode Extension (CR4, AMD)
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[VMLAUNCH] Virtual Machine Launch (Intel)
[VMLOAD] Virtual Machine Load (AMD)
[VMM] Virtual Machine Monitor, i.e. Hypervisor
[VMPTRLD] Virtual Machine Pointer Load
[VMRESUME] Virtual Machine Resume (Intel)
[VMRUN] Virtual Machine Run (AMD)
[VMSAVE] Virtual Machine Save (AMD)

[VMX] Virtual Machine Extension (Intel)

[VT-d] Virtualization Technology for Directed 1/O (Intel)
[VT-x] Virtualization Technology x86 (Intel)
[WCET] Worst-Case Execution Time

[XOR] Bitwise Exclusive OR (Instruction)

[ZCP] Zero-Concrete Periodic

[ZCS] Zero-Concrete Sporadic
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