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Abstract: We discuss the relation between generalised fluxes and mixed-symmetry po-

tentials. We refer to the fluxes that cannot be described even locally in the framework of

supergravity as ‘non-geometric’. We first consider the NS fluxes, and point out that the

non-geometric R flux is dual to a mixed-symmetry potential with a set of nine antisym-

metric indices. We then consider the T-duality family of fluxes whose prototype is the

Scherk-Schwarz reduction of the S-dual of the RR scalar of IIB supergravity. Using the

relation with mixed-symmetry potentials, we are able to give a complete classification of

these fluxes, including the ones that are non-geometric. The non-geometric fluxes again

turn out to be dual to potentials containing nine antisymmetric indices. Our analysis sug-

gests that all these fluxes can be understood in the context of double field theory, although

for the non-geometric ones one expects a violation of the strong constraint.
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1 Introduction

Supergravity theories arise as the low-energy effective actions of string theories. In gen-

eral, when one considers string theory on a background that preserves some amount of

supersymmetry, the resulting supergravity theory contains moduli, i.e. scalars that are

not stabilised by any potential. On the other hand, it is of phenomenological interest to

construct models in which such moduli are stabilised. This is in general achieved by intro-

ducing fluxes, which means that some field-strengths with indices in the internal directions

have a non-trivial background value. The fluxes induce a gauging in the lower-dimensional

supergravity theory, which is indeed related by supersymmetry to a potential that may

stabilise the scalars.

String theories are conjectured to be related by discrete non-perturbative dualities.

It is natural to ask what happens when one performs such dualities in the presence of

fluxes. One thing that can happen in particular is that a flux is mapped by duality to

a ‘non-geometric’ flux, that is something that cannot be obtained in terms of the fields

of the higher-dimensional supergravity theory. The non-geometric nature of these fluxes

mimics the fact that the string dualities themselves cannot be simply understood in terms

of geometric isometries. From the point of view of the low-energy effective action, string

dualities appear as continuous global symmetries of the supergravity theory. The way a

gauging is mapped to another gauging by duality is encoded in the so-called ‘embedding

tensor’ [1], which means that the constant parameter that identifies the gauging can be

formally considered as a tensor of the global symmetry group. This paper is concerned

with maximal supergravity theories, and all the possible embedding tensors of these theories

have been classified [2–5].

In this paper we are focused on how fluxes transform under T-duality, which is a

perturbative duality symmetry of string theory exchanging momenta and winding modes

of the string. In the case of maximal theories in 10 − d dimensions, this symmetry is

O(d, d;Z). In particular, one can consider how T-duality acts on the Ramond-Ramond

(RR) fluxes. The simplest example of such fluxes is the Scherk-Schwarz (SS) reduction of

IIB supergravity to nine dimensions, in which the RR scalar C acquires a linear dependence
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on the internal coordinate x9, i.e. C = C(xm) + Mx9, where M is a constant and m =

0, . . . , 8. This ansatz leads to a consistent truncation to D = 9, because C only occurs

in the IIB action via derivatives, and the resulting nine-dimensional theory is a gauged

supergravity. In nine dimensions, the only T-duality symmetry is the one exchanging IIA

and IIB supergravity. Therefore, one expects that what T-duality does in this case is to

provide a IIA supergravity origin for the same nine-dimensional gauging. This is just the

dimensional reduction of Romans’ massive IIA theory [6].

In lower dimensions D = 10 − d with d > 1 one can have more general RR fluxes

by giving a constant vacuum expectation value to any of the RR p-form field strengths

Gp, provided that p is less or equal to d. Considering a democratic formulation, in which

both the electric and magnetic RR potentials are introduced, Gp can be any even form in

IIA and any odd form in IIB supergravity. In the absence of fluxes, the low-energy super-

gravity theory possesses a global SO(d, d) symmetry, and the RR gaugings are identified

by an embedding tensor θα, which is a chiral spinor of SO(d, d).1 Such spinor has 2d−1

components, and it decomposes in even-rank or odd-rank antisymmetric representations

of SL(d,R) according to the convention chosen for its chirality: denoting with
(

d

n

)

the

SL(d,R) antisymmetric representation with n downstairs indices,2 one gets

(2d−1)S = 1⊕
(

d

2

)

⊕
(

d

4

)

⊕ . . . , (1.1)

(2d−1)C = d⊕
(

d

3

)

⊕
(

d

5

)

⊕ . . . , (1.2)

where the two chiral-spinor representations of SO(d, d) are identified by the index S and

C as usual. The first equation corresponds to the decomposition in terms of the IIA

fluxes and the second to the one in terms of the IIB fluxes. Each term on the right-hand

side of the above two equations corresponds to a geometric flux Ga1...ap = ∂[a1Ca2...ap],

where Ca1...ap−1
is a 10-dimensonal RR potential. The only exception is the singlet in

equation (1.1), which corresponds to the dimensional reduction of the mass parameter of

Romans’ IIA supergravity. As equation (1.1) and equation (1.2) show, going from IIA to

IIB supergravity corresponds to changing the convention for the chirality property of θα.

We list in table 1 the explicit decomposition of equation (1.1) and equation (1.2) in each

dimension.

A similar analysis can be performed for the so-called NS fluxes, which are those re-

lated by T-duality to the NS 3-form flux Habc, with a = 1, . . . , d. In any dimension, the

embedding tensor arising from these fluxes is θMNP , with M = 1, . . . , 2d, belonging to

the three-index completely antisymmetric representation of SO(d, d), which decomposes in

terms of SL(d,R) representations to give the well-known chain of NS fluxes [7]

θMNP → Habc fab
c Qa

bc Rabc . (1.3)

In this equation, the flux Habc and the metric flux fab
c are clearly both geometric. The

Q flux can be written as Qa
bc = ∂aβ

bc, which is a SS reduction of a suitable combination

1The symmetry in the NS sector is O(d, d). Note that there is no chirality in O(d, d).
2Similarly, in the paper we denote with

(

d

n

)

the antisymmetric representation with n upstairs indices.
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D θα G Ga1a2 Ga1...a4 Ga1...a6 Ga Ga1a2a3 Ga1...a5

9 1 1 1

8 2 1 1 2

7 4 1 3 3 1

6 8 1 6 1 4 4

5 16 1 10 5 5 10 1

4 32 1 15 15 1 6 20 6

Table 1. The decomposition of the RR embedding tensor θα, which is a chiral spinor of SO(d, d),

in terms of the RR fluxes of the IIA (left of vertical double line in the middle) and IIB theory

(right of vertical double line in the middle), written as representations of SL(d,R) in D = 10 − d

dimensions.

βab of the NS 2-form Bab and the metric gab. Since along a closed loop in the SS direction

the field βab transforms with a shift, this implies that the metric is not globally well-

defined and hence the Q flux is dubbed ‘locally geometric’. There is no possible geometric

interpretation for the R flux within supergravity. This is similar to what happens to the

RR flux in nine dimensions, which cannot be obtained geometrically from the IIA massless

theory. The difference is that in the case of the RR flux, as discussed above, the T-dual

origin of the flux arises in terms of a deformation of the ten-dimensional IIA theory, which

is the massive IIA theory of Romans. However, there is no equivalent to the Romans theory

in the NS sector. Hence, it is impossible to have a higher-dimensional origin of a purely R

flux within supergravity.

In Double Field Theory (DFT) [8–14] the non-geometric nature of the R flux manifests

itself in a very clear way. In the context we are discussing, DFT provides a fully O(d, d)-

covariant way of obtaining the NS fluxes by doubling the internal coordinates and hence the

R flux can be written as a SS reduction in doubled space, i.e. Rabc = ∂̃[aβbc]. Supergravity

is recovered from DFT by imposing the so-called strong constraint, that forces all the

fields to depend only on half of the coordinates. If one chooses the geometric coordinates

to be the x’s, clearly having a SS ansatz in which a field depends on one particular x̃

does not formally violate the strong constraint but moves away from the supergravity

frame. Actually, also the action of T-duality on the nine-dimensional RR gauging can be

understood in DFT [15]. Indeed, the ansatz C = C(xm) +Mx9, with m = 0, . . . , 8, where

C is the RR scalar of the IIB theory, is mapped by T-duality to3 C9 = C9(x
m) + Mx̃9,

where C9 is the component of the RR 1-form Cµ along the internal direction. In this case,

though, because of the way the RR fields are described in DFT [16, 17] and the linear

dependence on x̃9, this violation of the strong constraint is still consistent and precisely

leads to the Romans theory [15].

The analysis of [15] shows that the Romans mass parameter can be thought as the

0-form field strength G0 of the 1-form C1 in doubled space, i.e. G0 = ∂̃µCµ. On the other

3This should not be confused with the 9-form C9 which is introduced in the next paragraph.
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hand, the democratic formulation of the RR fields implies that in IIA supergravity one

can introduce a 9-form C9 whose field strength G10 is the Hodge dual of the Romans mass

parameter G0. The special thing about this duality relation is that it maps a non-geometric

configuration for the 1-form C1 to a fully geometric configuration for C9. In general, in any

dimension D one can introduce D − 1-form potentials which are dual to the embedding

tensor. It can be shown that all such D − 1 forms in maximal supergravity theories are

obtained from the mixed-symmetry potentials that arise in the decomposition of the adjoint

representation of E11 [18] corresponding to the ten-dimensional IIA and IIB theories [19].

These mixed-symmetry potentials can be divided into three sets:

• the actual fields of the ten-dimensional theory, that are the metric, the scalars and

all the forms (electric and magnetic duals), together with the ‘dual graviton’, which

is a mixed-symmetry potential in the (7,1) Young-Tableaux representation;

• mixed-symmetry potentials with one set of eight antisymmetric indices, i.e. in (8,. . . )

Young tableaux representations;

• mixed-symmetry potentials with one set of nine antisymmetric indices (the RR 9-

form C9 is a special case in this set, because it has nine antisymmetric indices but it

is not a mixed-symmetry potential).

The full list of mixed-symmetry potentials that give rise to the D− 1 form dual to the

NS embedding tensor θMNP was given in [20]. In this paper we first want to expand in

this direction. In particular, we will show that

• the geometric fluxes H and f are dual to potentials belonging to the first set;

• the locally geometric flux Q is dual to a potential belonging to the second set;

• the non-geometric flux R is dual to a potential belonging to the third set.

The first correspondence between fluxes and mixed-symmetry potentials is straightforward,

see also the next section. In order to understand the second correspondence, one can use

the observation [21] that the mixed-symmetry fields in the second set can be thought of

as generalised duals of the standard supergravity fields [22–24]. Therefore, they do not

correspond to new fields and one can expect that they are dual to redefinitions of the

supergravity fields depending on the standard coordinates. The mixed-symmetry fields in

the third set are instead fields that do not satisfy any generalised duality relation in ten

dimensions, they arise as deformation parameters only when they are reduced to D − 1

forms. In this sense, the RR 9-form is an exception because it is already a form in ten

dimensions, which is the dual counterpart of the statement that the violation of the strong

constraint in the RR sector discussed in [15] is still consistent within DFT. To summarise,

the main result of our analysis is that mixed-symmetry ‘dual’ potentials in normal space

are equivalent to standard potentials in double space with a possible nontrivial dependence

on x̃µ. Furthermore, the inconsistency of the standard potentials in double space due

to the violation of the strong constraint is equivalent to the impossibility of describing

mixed-symmetry potentials in supergravity in a consistent way.
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The main result of this paper will be the generalisation of this analysis to another family

of fluxes, which are those related by T-duality to the IIB SS reduction of the S-dual of the

axion C. As we will discuss, the embedding tensor for the resulting gaugings belongs to the

‘gravitino’ irreducible representation of SO(d, d), which is θMα for d odd and θMα̇ for d even

(the conventions for the spinor indices are fixed by denoting with θα the embedding tensor

for the RR gaugings in any dimension). The mixed-symmetry potentials that generate by

dimensional reduction the D − 1 form potentials dual to this embedding tensor have been

listed in [25]. We will show in this paper that the correspondence, discussed above for the

NS sector, between locally geometric and non-geometric fluxes on the one side and mixed-

symmetry potentials with eight and nine antisymmetric indices on the other side still holds.

In particular, this implies that all these new gaugings can in principle be described in the

context of DFT precisely as the NS fluxes.

The plan of the paper is as follows. In section 2 we first review the NS fluxes. Fur-

thermore, we discuss the duality with mixed-symmetry potentials. In section 3 we repeat

the same analysis for the family of fluxes to which the SS reduction of the S-dual of the

IIB axion belongs. Finally, section 4 contains our conclusions.

2 NS fluxes revisited

In this section we consider the NS fluxes, that are the fluxes related by T-duality to the

Habc 3-form flux. We want to show that all these fluxes can be classified in terms of their

dual fields, that are mixed-symmetry potentials in 10 dimensions. In particular, we will

show that the non-geometric fluxes are dual to a mixed-symmetry potential that contains

a set of nine antisymmetric indices.

The general classification of gaugings of maximal supergravity theories in any dimen-

sion in terms of the embedding tensor reveals that the gaugings resulting from turning on

NS fluxes belong to the embedding tensor θMNP in the completely antisymmetric three-

index representation of O(d, d). Decomposing this representation in terms of representa-

tions of SL(d,R) representations according to

(2d⊗ 2d⊗ 2d)A = (d⊗ d⊗ d)A ⊕ [(d⊗ d)A ⊗ d]⊕ [d⊗ (d⊗ d)A]⊕ (d⊗ d⊗ d)A (2.1)

one obtains the well-known T-dual family of fluxes in equation (1.3) containing, together

with the 3-form flux Habc and the metric flux fab
c, the two generalised fluxes Qa

bc and

Rabc [7]. In seven dimensions, the embedding tensor θMNP belongs to the 10 ⊕ 10 of

SO(3, 3), where the reducibility of the representation is due to the splitting in selfdual and

anti-selfdual part. The fluxes Habc and Qa
bc belong to the 10, while the fluxes fab

c and

Rabc belong to the 10. Performing a single T-duality corresponds to swapping these two

representations.

Starting from D = 10 the Habc flux arises for the first time in seven dimensions

(H789 = ∂7B89). The field B89 has a linear dependence on x7 and the flux can be seen as

a SS reduction from D = 8 to D = 7 along the x7 coordinate. By performing a T-duality

along, say, x9, the flux is mapped to f78
9 as equation (1.3) shows. This comes from a

SS reduction of the metric components. From the D = 10 point of view the background

– 5 –
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fields (gµν , Bµν,φ) are related by the well known Buscher-rules. When T-dualising along

the isometry direction x (the remaining directions are indicated by i) these rules read as

follows:

g′ij = gij −
1

gxx
(gixgjx −BixBjx) , (2.2)

B′
ij = Bij +

2

gxx
g[i|x|Bj]x , (2.3)

g′ix = −Bix

gxx
B′

ix = − gix
gxx

g′xx =
1

gxx
, (2.4)

φ′ = φ− 1

2
ln|gxx| . (2.5)

If one performs a further T-duality, say along x8, this leads to a Q7
89 flux, which arises

as a SS reduction for the ten dimensional field βµν which is defined in β-supergravity [26–28]

as follows:

βµν = −((g −Bg(−1)B)−1)µσBσρg
ρν . (2.6)

In particular, in D = 8 this gives

β89 = − B89

detg + (B89)2
, (2.7)

where detg is the determinant of the metric in the 8 and 9 directions. Defining the complex

scalar ρ = B89 + i
√
detg, that parametrises the SL(2,R)/SO(2) part of the scalar isometry

that transforms the B field, performing two T-dualities along the 8 and 9 directions leads

to the transformation ρ → −1/ρ, in agreement with the fact that β89 in equation (2.7) is

the real part of −1/ρ.

Although T-duality implies the presence of the R789 flux, performing a further T-

duality along x7 is problematic because the field β89 has a linear dependence on x7. This is

the reason why this flux is dubbed purely ‘non-geometric’. As discussed in the introduction,

in the RR case one encounters a similar problem when one wants to understand from the

IIA perspective the 1-form flux corresponding to a SS reduction of the IIB axion. The

difference is that in that case Romans’ massive IIA supergravity [6] precisely provides this

T-dual origin. In the case of the R789 flux, instead, such a massive supergravity theory in

dimension higher than seven does not exist.

One can understand the same non-geometric properties as arising by considering the

branes that are sources for these fluxes. In particular, the brane that sources the Q7
89 =

∂7β
89 flux is the so-called 522-brane smeared along the x7 direction. This brane is known as

a T-fold since when one circles around the brane in transverse space the metric does not

come back to the same point [29]. The nontrivial monodromy can be understood as a shift

in the β-field, that in the 522 background takes the simple form

β89 = − B89

g88g99 + (B89)2
. (2.8)

When smearing along x7 one obtains a harmonic function that is linear in the only remain-

ing transverse direction, while for consistency the field β89 must acquire a linear dependence
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on x7, exactly as in the D7-brane case. As before, the question is how can one perform a

T-duality along x7.

Double field theory (DFT) provides an approach to deal with this issue. In DFT, all

fields depend on XM = (xµ, x̃µ) where xµ are the usual space-time coordinates and x̃µ are

the winding coordinates. The theory is equipped with the so-called strong constraint, i.e.

any combination of fields A, B must satisfy

∂M∂MA = 0 , ∂MA∂MB = 0 . (2.9)

These constraints imply that one can always rotate to a frame where the fields depend on

half of the coordinates. In DFT, T-duality swaps x and x̃, which implies that the SS ansatz

β89 = β89(x) + Q7
89x7 corresponding to the Q-flux is mapped to β̃89 = β̃89(x) + R789x̃7.

In the supergravity frame, i.e. the frame where all the fields depend on x only, the Q-

flux ansatz satisfies the strong constraint. But after performing a T-duality to obtain the

R-flux, the dual background necessarily will depend on a dual coordinate, thus violating

the supergravity frame. The dual coordinate dependence in the R-flux ansatz is actually

compatible with a generalized SS reduction of DFT, in the sense that reductions on both

standard and dual internal coordinates are allowed [30–33]. Exactly the same applies for the

corresponding domain-wall solutions: if one performs a T-duality along x7 on the smeared

522-brane solution discussed above in DFT, one obtains a so-called R5-brane, which is a

domain wall in seven dimensions with β depending linearly on x̃7.

This is analogous to what happens in the RR sector. In that case the ansatz C =

C(x) +mx9 is mapped to Cµ = Cµ(x) + δµ9mx̃9 [15] when one performs a T-duality along

x9. The difference with the previous case is that in the case of the RR sector the violation

of the strong constraint leads to a well-defined ten-dimensional theory, which is Romans’

massive IIA supergravity theory [15]. In the case of the NS sector, instead, such a violation

will not lead to a consistent theory in ten dimension (or in nine and eight, for that matter).

This result is the DFT equivalent of the statement that in the case of the RR fluxes the

massive deformation corresponds to a massive theory in ten dimensions, while in the case

of the NS fluxes such a massive theory does not exist in dimension higher than seven.

As we mentioned in the introduction, it is well known that one can consider the mass

of the Romans theory as the dual of the 10-form field strength of the 9-form RR potential

C9. Similarly, the embedding tensor θMNP is dual in any dimension D to a D − 1-form

potential DD−1,MNP . Starting from d ≥ 3 or, equivalently, D ≤ 7, the duality relation

(neglecting the contribution from any other field) has the schematic form

1
√

|g|
ǫµ1...µD∂µ1

Dµ2..µD,MNP = MM
QMN

RMP
SθQRS , (2.10)

where M parametrises the coset O(d, d)/[O(d)×O(d)] and can be thought of as the DFT

generalised metric H of O(d, d) with G and B only dependent on the D-dimensional space-

time coordinates. These M’s are needed to have a duality relation that transforms covari-

antly under O(d, d).

– 7 –
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The field DD−1,MNP arises from the dimensional reduction of the ten-dimensional

mixed-symmetry fields [20]4

D6 D7,1 D8,2 D9,3 . (2.11)

More precisely, each potential in equation (2.11), after reduction to D dimensions, is dual

to each of the fluxes listed in equation (1.3). For instance, the 6-form D6 is dual to

the H-flux Habc because by reduction one gets a (D − 1)-form DD−1,a1...ad−3
which is

equivalent to DD−1
abc as a representation of SL(d,R). The same applies to the other

mixed-symmetry fields given in equation (2.11). This means that one can split the duality

relation equation (2.10) into four different D-dimensional relations, one for each flux, as

follows:

D6 :
1

√

|g|
ǫµ1...µD∂µ1

Dµ2..µD

abc = MadMbeMcfHdef ,

D7,1 :
1

√

|g|
ǫµ1...µD∂µ1

Dµ2..µD

ab
c = MadMbeMcffde

f ,

D8,2 :
1

√

|g|
ǫµ1...µD∂µ1

Dµ2..µD

a
bc = MadMbeMcfQd

ef ,

D9,3 :
1

√

|g|
ǫµ1...µD∂µ1

Dµ2..µD,abc = MadMbeMcfR
def . (2.12)

The last two duality relations show that the globally non-geometric Q flux is related to

a mixed-symmetry tensor with 8 antisymmetric indices while the locally non-geometric R

flux corresponds to a mixed-symmetry tensor with 9 antisymmetric indices.

Although it is not known how to introduce mixed-symmetry potentials at the inter-

acting level into IIA or IIB supergravity, it is nevertheless instructive to think about how

in principle the above duality relations could be uplifted to ten dimensions, given that all

the fields involved are ten-dimensional fields. For the first relation this is obvious since it

does not involve a mixed-symmetry potential. Indeed, because the left-hand side can be

uplifted to ǫµ1...µ10∂µ1
Dµ2..µ7

and one ends up with the duality relation between B2 and

D6 in ten dimensions. The second relation is only consistent if the lower index c denotes

an isometric direction. This means that one gets ǫµ1...µ10∂µ1
Dµ2..µ8,c where one of the ten

indices µ1 . . . µ10 are parallel to c, but the field does not depend on xc. Similarly, in the

other two cases the lower indices bc and abc correspond to isometric directions. In partic-

ular, in the last case one ends up with ǫµ1...µ10∂µ1
Dµ2..µ10,abc which means that also three

of the µ indices of the field must coincide with the isometric indices abc.

If one considers the uplift to ten dimensions of the duality relations in the way discussed

above, the D fields always depend on the standard coordinates, with the exception of

those corresponding to the isometric directions. The characteristics of the fluxes on the

4In these expressions we denote with Dm,n a field with indices in the Young tableau representation with

two columns, one of length m and one of length n. For instance, this means that the D7,1 field has eight

indices in total, seven of which are totally antisymmetric and such that antisymmetrising all eight indices

one obtains zero.
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right-hand side of the duality relations is thus mapped to the index properties of the

corresponding mixed-symmetry potential. In particular, the global non-geometric nature

of the Q flux is translated into the fact that the dual potential is a mixed-symmetry

potential with a set of eight antisymmetric indices, while the local non-geometric nature

of the R flux corresponds to the fact that the dual potential is in this case a mixed-

symmetry potential with a set of nine antisymmetric indices. We take this as a general

rule. The incompatibility of the R flux with the strong constraint in DFT (i.e. the fact

that it corresponds to a SS reduction in x̃) is equivalent to the impossibility of writing a

consistent coupling to the mixed-symmetry potential D9,3 in ten-dimensional supergravity.

The difference with the Romans case is that there one has a 9-form potential C9 that is not

a mixed-symmetry field. This implies that C9 is a well defined potential in ten-dimensions,

and its field strength is dual to the Romans mass parameter.

The potentials of equation (2.11) are all contained in the decomposition of the adjoint

representation of E11 in mixed-symmetry fields of the ten-dimensional IIA and IIB super-

gravities [19]. This was precisely the result that was used in [20] to list these potentials in

the context of the classification of the 1/2-BPS solitonic branes in maximal supergravity.

These branes have a tension that scales like g−2
S in the string frame (where gS is the string

coupling). In [25] this was extended to consider the branes with a tension scaling like g−3
S ,

and the mixed-symmetry potentials associated to these branes have been classified. Using

this as input, we will generalize the analysis of this section and consider the gaugings that

are sourced by domain walls with a tension scaling like g−3
S . This is the aim of the next

section.

3 The P -fluxes

In this section we want to extend the analysis performed in section 2 to the so-called P -

fluxes. As the simplest example of a P -flux, consider a IIB SS reduction to nine dimensions

where the field that has a linear dependence on the internal coordinate is the scalar field γ,

which is the S-dual of the axion C and it is defined as the real part of τ̃ = −1/τ . In nine

dimensions, this flux is a singlet under T-duality, but in lower dimensions it is mapped

to other geometric and non-geometric P -fluxes. Another example of a flux belonging to

this T-dual family is the S dual of the Q flux discussed in the previous section. A partial

classification of these fluxes, with particular attention to those of them that are locally

geometric, was obtained in [34] (see also [35] for an analysis of these fluxes and their

relation to branes). A general classification of P -fluxes is the subject of this section.

In any dimension, the embedding tensor of the gaugings resulting from the fluxes we are

considering in this section belongs to the vector-spinor ‘gravitino’ irreducible representation

of SO(d, d). More precisely, using the conventions for the RR fields such that the RR

embedding tensor is θα, with α a chiral-spinor index, this embedding tensor is θMα for D

odd and θMα̇ for D even.5 The dimension of the representation is (2d−1)×2d−1. In 9D we

have SO(1, 1), and the representation is clearly one-dimensional which implies that this flux

5This can be explicitly checked by decomposing the representations of the global symmetry groups found

in [2–5] in various dimensions as representations of SO(d, d).
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is a singlet as just mentioned. In general, to identify all the possible fluxes, one decomposes

the gravitino representation in terms of representations of SL(d,R), precisely as one does for

the NS fluxes that result in the embedding tensor θMNP (see the previous section). There

are two different decompositions, corresponding to the two possible conventions that one

can use for the chiral index α which are given in equation (1.1) and equation (1.2). The

IIA case for d odd and the IIB case for d even give

(d⊕ d)⊗
[

1⊕
(

d

2

)

⊕
(

d

4

)

⊕ . . .

]

⊖
[

d⊕
(

d

3

)

⊕
(

d

5

)

⊕ . . .

]

, (3.1)

while the IIA case for d even and the IIB case for d odd give

(d⊕ d)⊗
[

d⊕
(

d

3

)

⊕
(

d

5

)

⊕ . . .

]

⊖
[

1⊕
(

d

2

)

⊕
(

d

4

)

⊕ . . .

]

. (3.2)

It is understood that in these expressions the representations at the right of the symbol ⊖
are subtracted to the ones on its left due to irreducibility.

At first sight, the expressions given above seem to give different representations ac-

cording to whether d is even or odd for both IIA and IIB, which is inconvenient because

we want a unique set of fluxes for each theory. The fact that the set of fluxes indeed is

unique stems from the fact that in SL(d,R), due to the existence of the ǫ invariant tensor,

the following equivalence between representations holds:
(

d

n

)

≡
(

d

d− n

)

. (3.3)

As a consequence, when one sums over all even-rank or odd-rank antisymmetric represen-

tations, for d is even one has the following identities

1⊕
(

d

2

)

⊕
(

d

4

)

⊕ . . . = 1⊕
(

d

2

)

⊕
(

d

4

)

⊕ . . .

d⊕
(

d

3

)

⊕
(

d

5

)

⊕ . . . = d⊕
(

d

3

)

⊕
(

d

5

)

⊕ . . . , (3.4)

while if d is odd one gets the equations

1⊕
(

d

2

)

⊕
(

d

4

)

⊕ . . . = d⊕
(

d

3

)

⊕
(

d

5

)

⊕ . . .

d⊕
(

d

3

)

⊕
(

d

5

)

⊕ . . . = 1⊕
(

d

2

)

⊕
(

d

4

)

⊕ . . . . (3.5)

Substituting these expressions into equation (3.1) and equation (3.2), one finds a unique

expression for each theory. In particular, one gets

(d⊕ d)⊗
[

d⊕
(

d

3

)

⊕
(

d

5

)

⊕ . . .

]

⊖
[

1⊕
(

d

2

)

⊕
(

d

4

)

⊕ . . .

]

(3.6)

in the IIA case and

(d⊕ d)⊗
[

1⊕
(

d

2

)

⊕
(

d

4

)

⊕ . . .

]

⊖
[

d⊕
(

d

3

)

⊕
(

d

5

)

⊕ . . .

]

(3.7)

in the IIB case.
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D θMA P b
a P b1...b3

a P b1...b5
a P ab P ab1...b3 P ab1...b5 Pa P b1b2

a P b1...b4
a P b1...b6

a P ab1b2 P ab1...b4 P ab1...b6

9 1 1 1

8 6 3 3 2 2 2

7 20 8 3 6 3 3 6⊕ 3 8

6 56 15 10⊕ 6 10 15 4 20⊕ 4 4 20 4

5 144 24 40⊕ 10 5 15 45 5 5 45⊕ 5 15⊕ 10 40 24

4 352 35 105⊕ 15 21⊕ 15 21 105 35 6 84⊕ 6 70⊕ 20 6 70 84 6

Table 2. In this table we give the decomposition in terms of SL(d,R) representations of the θMA

embedding tensor for both the IIA case (left of double vertical line in the middle) and the IIB case

(right of double vertical line in the middle). The embedding tensor θMA is given by θMα for D odd

and by θMα̇ for D even.

Writing down the SL(d,R) representations given in equation (3.6) and equation (3.7)

in components, one obtains the fluxes

P b
a P b1b2b3

a P b1...b5
a . . .

P ab P ab1b2b3 P ab1...b5 . . . (3.8)

originating from the IIA theory and

Pa P b1b2
a P b1...b4

a P b1...b6
a . . .

P ab1b2 P ab1b2b3b4 P ab1...b6 . . . (3.9)

originating from the IIB theory. In these expressions, the indices b1 . . . bn are completely

antisymmetrised, and the representations with all upstairs indices ab1 . . . bn are irreducible

with vanishing completely antisymmetric part. The representations with the a index down-

stairs and some b indices upstairs are reducible, with the condition that the singlet is

always removed. The reader can check that the fluxes given in equation (3.8) and equa-

tion (3.9) with the aforementioned conditions precisely give the representations listed in

equation (3.6) and equation (3.7), respectively. We give in table 2 the full list of represen-

tations corresponding to the various fluxes as representations of SL(d,R) in any dimension.

The general expressions given in equation (3.6) and equation (3.7) show that all these

gaugings can be obtained as SS reductions in double space for the fields that are the T-duals

of the field γ mentioned at the beginning of this section. These fields are

γa γa1...a3 γa1...a5 . . . (3.10)

in the case of IIA supergravity and

γ γa1a2 γa1...a4 . . . (3.11)

in the caee of IIB supergravity [34]. In particular, the geometric gaugings are

P b1...bn
a = ∂aγ

b1...bm , (3.12)

while the non-geometric ones are

P ab1...bn = ∂̃aγb1...bn − ∂̃[aγb1...bn] . (3.13)

– 11 –



J
H
E
P
1
1
(
2
0
1
5
)
0
2
0

The analysis that we have just performed shows that all the fluxes we are consider-

ing admit a realisation as generalised SS fluxes in double field theory. We have made a

distinction between the fluxes with a lower index, that one expects to be locally geomet-

ric [34] and for which the strong constraint should not be violated, and the fluxes with all

upstairs indices, that are non-geometric and do not satisfy the strong constraint. In the

previous section we have shown that the NS fluxes are dual to D − 1-forms coming from

mixed-symmetry potentials in ten dimensions, and we have shown that the non-geometric

R flux is dual to the potential D9,3 with a set of nine antisymmetric indices. We will

now determine all the potentials that are dual to the fluxes listed in equation (3.8) and

equation (3.9). We will show that also in this case the non-geometric fluxes are dual to

potentials with a set of nine antisymmetric indices.

The D − 1-form field that is dual to the embedding tensor we are discussing in this

section is the D − 1-form ED−1,Mα̇. Neglecting the contribution from the other fields the

duality relation, which is the analogue of the NS duality relation (2.10) in the previous

section, reads
1

√

|g|
ǫµ1...µD∂µ1

Eµ2..µD,Mα̇ = MM
NCα̇β̇S

β̇γ̇θNγ̇ (3.14)

for d even and
1

√

|g|
ǫµ1...µD∂µ1

Eµ2..µD,Mα̇ = MM
NCα̇βS

βγθNγ (3.15)

for d odd. Here Cα̇β̇ and Cα̇β are the O(d, d) charge conjugation matrices for d even

and d odd, respectively. The matrices S
α̇β̇ and S

αβ in the above duality relations are the

equivalent of M in the spinor representation. Note that the chirality properties of the

O(d, d) charge conjugation matrices are precisely the ones that are needed to write down

duality relations that are consistent with the chirality properties of the potentials and

fluxes.

The field ED−1,Mα̇ arises in any dimension from the reduction of the ten-dimensional

mixed-symmetry fields

E8,1 E8,3 E8,5 E9,1,1 E9,3,1 E9,5,1 (3.16)

in the IIA case and

E8 E8,2 E8,4 E8,6 E9,2,1 E9,4,1 E9,6,1 (3.17)

in the IIB case. These potentials have been already listed in [25] in the context of the

classification of the 1/2-BPS branes whose tension scales like g−3
S , and here we are using

exactly the notation of that paper. By explicitly performing the dimensional reduction,

one can show how these fields precisely build the gravitino representation for the D − 1

form in D dimensions. The result is summarised in table 3.

By comparing table 2 and table 3 it is clear that the geometric fluxes, that is the

ones of the form P b1...bn
a , are dual to the mixed-symmetry potentials with a set of 8 an-

tisymmetric indices, while the non-geometric fluxes, of the form P ab1...bn , are dual to the
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D EMα̇ E8,1 E8,3 E8,5 E9,1,1 E9,3,1 E9,5,1 E8 E8,2 E8,4 E8,6 E9,2,1 E9,4,1 E9,6,1

9 1 1 1

8 6 3 3 2 2 2

7 20 8 3 6 3 3 6⊕ 3 8

6 56 15 10⊕ 6 10 15 4 20⊕ 4 4 20 4

5 144 24 40⊕ 10 5 15 45 5 5 45⊕ 5 15⊕ 10 40 24

4 352 35 105⊕ 15 21⊕ 15 21 105 35 6 84⊕ 6 70⊕ 20 6 70 84 6

Table 3. In this table we give the SL(d,R) representations that build up the vector-spinor repre-

sentation EMα̇ for both the IIA case (left of double vertical line in the middle) and the IIB case

(right of double vertical line in the middle).

mixed-symmetry potentials with 9 antisymmetric indices. This can be seen explicitly by

decomposing the duality relation in equation (3.15) in terms of the fluxes, which leads to

1
√

|g|
ǫµ1...µD∂µ1

Eµ2..µD

a
b1...bn = MacMb1d1 . . .MbndnP

d1...dn
c

1
√

|g|
ǫµ1...µD∂µ1

Eµ2..µD,a,b1...bn = MacMb1d1 . . .MbndnP
c,d1...dn , (3.18)

where n is odd for IIA and even for IIB. The first duality relation involves the locally-

geometric fluxes, while the second the non-geometric ones. As in the previous section,

these relations can formally be uplifted to ten dimensions, keeping in mind that the lower

b and a indices have to be treated as isometric, i.e. the field does not depend on the

corresponding coordinates. With this restriction taken into account, the potentials on the

left-hand side only depend on the standard coordinates, while the γ fields generating the

fluxes on the right-hand side depend on x or x̃ according to whether the flux is locally

geometric or non-geometric.

To summarise, we have shown that all the P fluxes can be realised as generalised SS

reductions in double space, implying that all these fluxes must admit a description in DFT.

Exactly as for the NS fluxes, we have also shown that the geometric P fluxes are dual to

mixed-symmetry potentials with 8 antisymmetric indices, while the non-geometric ones are

dual to mixed-symmetry potentials with 9 antisymmetric indices.

4 Conclusions

In this paper we have considered how the duality relations between D − 1-forms and the

embedding tensor in any dimension can be rewritten in terms of mixed-symmetry potentials

on one side and generalised fluxes on the other. In particular, we have considered the NS

fluxes and the P fluxes, and we have shown that the locally geometric fluxes are dual to

mixed-symmetry potentials with 8 antisymmetric indices, while the non-geometric fluxes

are dual to mixed-symmetry potentials with 9 antisymmetric indices. In these relations,

the mixed-symmetry potentials depend on the normal coordinates, and the non-geometric

nature of the flux translates to the impossibility of coupling consistently the potential in

supergravity.
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The P fluxes have a natural characterisation as SS reductions in double space. It

would be interesting to extend DFT in order to include these fluxes. In particular, the γ

potentials group together to form a spinor representation of SO(10, 10), but the fact that

these fields are related to the other fields of the theory might be difficult to implement

in DFT. In particular, the S-duality of IIB supergravity, which allows to define the nine-

dimensional P flux that was the starting point of our analysis in section 3, also exchanges

B2 and C2, and it is therefore not manifest in DFT.

It would be worth studying whether the duality relations between mixed-symmetry

potentials and fluxes admit a formulation in DFT. The potentials listed in equation (2.11)

originate from a DFT field DMNPQ with four antisymmetric indices of SO(10, 10), as

results from decomposing the E11 Kac-Moody algebra in representations of SO(10, 10).

There should be a way to define such a field to be the dual to the generalised metric HMN

of DFT.6 Similarly, the potentials listed in equation (3.16) and equation (3.17) arise from

the SO(10, 10) field EMN,α̇, in the tensor-spinor irreducible representation, and one expects

this field to be dual to the RR spinor of DFT.

These duality relations, if they can be formulated in some way, can also be seen as the

origin of the existence of the so-called ‘wrapping rules’ [25, 36] satisfied by the branes that

are electrically charged with respect to the various potentials of the supergravity theories.

For the fundamental branes, the wrapping rule states that the fundamental string always

sees a doubled cycle when it wraps. The branes electrically charged under the D potentials,

that we call the α = −2 branes (where T ∼ gαS is the tension of the brane in the string

frame) contain the duals of the fundamental branes, and for these the wrapping rule is the

dual, i.e. they double when they do not wrap a cycle. The fact that this wrapping rule

extends to the α = −2 branes that are not dual to fundamental branes would be a natural

consequence of a DFT duality relation, that reduces to the standard duality relations only

if projected in normal space. Similarly, the α = −3 branes, that are electrically charged

under the E fields, always double upon dimensional reduction, regardless of whether they

wrap or do not wrap a cycle. These branes are dual to the D-branes, that always see a

standard geometry, i.e. they never double, and therefore the wrapping rules of the α = −3

branes would be a straightforward consequence of the DFT duality relation, if it existed.

As a natural extension, one can consider how the analysis performed in this work can

be extended to fluxes that are sourced by domain walls with even more negative values of

α, that are more and more non-perturbative in string theory. All such domain walls, and

their corresponding mixed-symmetry potentials, have been classified [38]. It would also be

interesting to study how this analysis is generalised to theories with less supersymmetry

and reductions on non-flat manifolds. This is crucial if one wants to understand what the

presence of these fluxes can teach us. In particular, the P flux that is the S-dual of the Q

flux has been considered recently [39] in a more phenomenological context.

The take-home message of this paper is that we have established a relation between

two rather different research activities: non-geometric fluxes and DFT on the one side

6One can write down a first-order formulation of the DFT action at the linearized level and in this way

derive a dual formulation [37]. It is, however, not clear that this leads to the duality relation discussed in

the text.
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and mixed-symmetry potentials and supergravity on the other side. Both have their own

issues. Non-geometric fluxes can be understood to result from a generalized SS reduction

in DFT but the extra dependence on the winding coordinates, which is necessary for the SS

reduction, violates the strong constraint. For an attempt to give a geometrical description

of such non-geometric fluxes, see [30–33, 40]. On the other hand, the issue with mixed-

symmetry potentials is that we only know how to describe them at the linearized level.

Nevertheless, their existence is predicted by E11 [18] and mixed-symmetry potentials are

expected to play a role in constructing stringy extensions of supergravity. In short, our

work suggests that a mild violation of the strong constraint, needed for a SS reduction, is

equivalent to an extension of supergravity involving mixed-symmetry potentials. We hope

that this interrelationship might stimulate new developments in both the DFT and the

supergravity approach.
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[33] D. Geissbuhler, D. Marques, C. Núñez and V.A. Penas, Exploring Double Field Theory,

JHEP 06 (2013) 101 [arXiv:1304.1472] [INSPIRE].

[34] G. Aldazabal, E. Andres, P.G. Camara and M. Graña, U-dual fluxes and Generalized

Geometry, JHEP 11 (2010) 083 [arXiv:1007.5509] [INSPIRE].

[35] Y. Sakatani, Exotic branes and non-geometric fluxes, JHEP 03 (2015) 135

[arXiv:1412.8769] [INSPIRE].

[36] E.A. Bergshoeff and F. Riccioni, Dual doubled geometry, Phys. Lett. B 702 (2011) 281

[arXiv:1106.0212] [INSPIRE].

[37] E.A. Bergshoeff, O. Hohm, V.A. Penas and F. Riccioni, work in progress.

[38] E.A. Bergshoeff, A. Kleinschmidt and F. Riccioni, Supersymmetric Domain Walls,

Phys. Rev. D 86 (2012) 085043 [arXiv:1206.5697] [INSPIRE].

[39] U. Danielsson and G. Dibitetto, Type IIB on S3 × S3 through Q and P fluxes,

arXiv:1507.04476 [INSPIRE].

[40] C.M. Hull and R.A. Reid-Edwards, Non-geometric backgrounds, doubled geometry and

generalised T-duality, JHEP 09 (2009) 014 [arXiv:0902.4032] [INSPIRE].

– 17 –

http://dx.doi.org/10.1002/prop.201200085
http://arxiv.org/abs/1204.1979
http://inspirehep.net/search?p=find+EPRINT+arXiv:1204.1979
http://dx.doi.org/10.1103/PhysRevLett.104.251603
http://arxiv.org/abs/1004.2521
http://inspirehep.net/search?p=find+EPRINT+arXiv:1004.2521
http://dx.doi.org/10.1007/JHEP11(2011)052
http://arxiv.org/abs/1109.0290
http://inspirehep.net/search?p=find+EPRINT+arXiv:1109.0290
http://dx.doi.org/10.1007/JHEP11(2011)116
http://arxiv.org/abs/1109.4280
http://inspirehep.net/search?p=find+EPRINT+arXiv:1109.4280
http://dx.doi.org/10.1007/JHEP04(2012)020
http://arxiv.org/abs/1201.2924
http://inspirehep.net/search?p=find+EPRINT+arXiv:1201.2924
http://dx.doi.org/10.1007/JHEP06(2013)101
http://arxiv.org/abs/1304.1472
http://inspirehep.net/search?p=find+EPRINT+arXiv:1304.1472
http://dx.doi.org/10.1007/JHEP11(2010)083
http://arxiv.org/abs/1007.5509
http://inspirehep.net/search?p=find+EPRINT+arXiv:1007.5509
http://dx.doi.org/10.1007/JHEP03(2015)135
http://arxiv.org/abs/1412.8769
http://inspirehep.net/search?p=find+EPRINT+arXiv:1412.8769
http://dx.doi.org/10.1016/j.physletb.2011.07.009
http://arxiv.org/abs/1106.0212
http://inspirehep.net/search?p=find+EPRINT+arXiv:1106.0212
http://dx.doi.org/10.1103/PhysRevD.86.085043
http://arxiv.org/abs/1206.5697
http://inspirehep.net/search?p=find+EPRINT+arXiv:1206.5697
http://arxiv.org/abs/1507.04476
http://inspirehep.net/search?p=find+EPRINT+arXiv:1507.04476
http://dx.doi.org/10.1088/1126-6708/2009/09/014
http://arxiv.org/abs/0902.4032
http://inspirehep.net/search?p=find+EPRINT+arXiv:0902.4032

	Introduction
	NS fluxes revisited
	The P-fluxes
	Conclusions

