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Abstract 

We investigate the spill-over effects of the German Energiewende on the Dutch power 

market, which is closely connected to the German market. We estimate the impact of the 

German supply of wind and solar electricity on the Dutch day-ahead price of electricity and 

the utilisation of the conventional power plants. We take cross-border capacity constraints 

into account and use hourly plant-level data over 2006-2014. We find that the price elasticity 

of German wind on Dutch day-ahead prices is -0.03. However, this effect vanishes when the 

cross-border capacity is fully utilised. We find a modest negative impact on the utilisation of 

the Dutch power plants. As such, we conclude that the German Energiewende has had modest 

spill-over effects to the Dutch market. The recent dramatic performance of the Dutch gas-

fired plants can be attributed to the changes in the relative prices of coal versus natural gas. 
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1. Introduction 

Many countries are implementing policies to stimulate renewable energy. Although these 

policies are meant to reach national policy targets, they may have significant spill-overs 

regarding the power markets in neighbouring countries. This holds in particular if countries 

pursue dramatic changes in their energy mix. A clear example of such a country is Germany, 

which is fundamentally transforming its domestic energy generation by replacing 

conventional power plants by renewable sources such as windmills and solar panels. This 

energy transition, which is called the Energiewende (energy turnaround), is a multi-decade 

effort to transform German society into a low-carbon renewables-based energy economy 

(Hitaj et al., 2014). Within less than a decade, its renewable energy capacity has almost tripled 

to 70 GW (see Figure 1).  

The radical change of the electricity sector has several effects which should be 

considered in order to evaluate the efficiency and effectiveness of the Energiewende. These 

effects are related to the impact on energy consumers who have to pay the subsidies, the 

reliability of the networks which have to deal with increasing supply from renewables, the 

incentives to invest in storage capacity, the role of demand-side management and the 

necessity of capacity markets (see Kopsakangas-Savolainen and Svento, 2013; Cludius et al., 

2014; Krishnamurty and Kriström, 2015). Besides these within-country effects, there are 

likely also cross-border effects since electricity markets are increasingly linked (Würzburg et 

al., 2013; Dupont et al., 2014; Huber et al., 2014). For example, the Polish TSO has 

complained about tensions in its network due to oversupply of German electricity, while some 

Dutch heavy users of electricity complain that they are in a competitive disadvantage as 

Dutch interconnections are not capable of importing cheap power from Germany (Gerbaulet 

et al., 2014).  
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Figure 1 Wind and solar capacity in Germany and the Netherlands, 2006-2014 (source: 

ACM) 

 

In this paper, we focus on the international spill-overs to neighbouring electricity 

markets. We investigate the spill-over effects for the Netherlands, which neighbours Germany 

and is directly connected to the German electricity market through a number of physical 

connections within a meshed network. While the German power market has changed 

substantially because of the Energiewende (Von Hirschhausen, 2014), it is much less well-

known that the Dutch market also underwent dramatic changes albeit it not in terms of an 

energy transition (see Figure 1). Within the EU, the Netherlands is still one of the countries 

with a relatively low level of renewable energy capacity and traditionally it has been highly 

reliant on natural gas for power production (see Verreth et al., 2015). The dramatic change 

within the Dutch market refers to the deteriorating profitability of conventional electricity 

generation. The major power firms in the Netherlands reported huge losses on their activities 
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in the electricity market as a result of electricity prices below the level of marginal costs of 

many of their power plants. Consequently, several plants have been switched off, or even 

broken down in order to be sold abroad. The utilization of Dutch power plants which are still 

operating fell back dramatically. The number of plants without any production during a 

particular year increased strongly, as is shown by the left-hand panel of Figure 2. The right-

hand panel, depicting the utilisation of plants in relation to their capacity, shows that 

relatively small plants are not used anymore. 

 

 

Figure 2 Utilisation of the centralised power plants in the Dutch market measured by the 

number of hours with production>0, 2006-2014 (number of hours per year) (source: ACM)  

 

These developments seem to suggest that a next stage in the liberalization of electricity 

wholesale markets is on its way. Until to a few years ago, the market was characterized by the 

privatization process of previously publicly owned utilities which resulted in a bonanza of 
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international mergers and acquisitions. The Dutch incumbent utilities Essent and Nuon were 

acquired by German RWE and the Swedish Vattenfall, respectively. In addition to this 

process of internationalisation on the firm level, national electricity markets became 

increasingly connected through new physical connections and improved capacity-allocations 

mechanisms (Mulder and Schoonbeek, 2013). Now, with the strong increase in distributed 

and renewable energy generation, the business model of the incumbents faces enormous 

challenges, as also has been expressed by the one of the largest power firms operating in the 

Dutch market who attributed the closure of a gas-fired power plant to the increasing supply 

from (German) renewables.1 

The key question to be answered in this paper is to what extent the dramatic changes 

in the energy business in the Netherlands can really be attributed to the German 

Energiewende. Our analysis is related to Kopsakangas-Savolainen and Svento (2013), 

Matisoff et al. (2014), Mauritzen (2013), Mulder and Scholtens (2013), Traber and Kemfert 

(2011), and Weigt et al. (2009), who also analyse the impact of renewable energy on the 

conventional business model of power producing companies and on the energy system as a 

whole. Using unique hourly plant-level data on the Dutch power market for the period 2006-

2014, and accounting for climate factors and cross-border capacity constraints, we find that 

the renewable electricity production in Germany reduced the power price in the Dutch market. 

Furthermore, we establish that this effect is capped by constraints resulting from cross-border 

transmission capacity. In addition, we show that the increase of electricity from Germany 

reduced the residual demand for the Dutch incumbent suppliers. Coal-fired power plants, 

however, remained producing on a fairly constant level on an annual basis, but their dispatch 

showed a higher level of flexibility. As a result, the utilisation of these plants has somewhat 

                                                           

1 See the press release on: 

https://www.essent.nl/content/overessent/actueel/archief/2014/marktomstandigheden_leiden_tot_mottenballen_g

asgestookte_centrale_claus_c.html. 
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declined. The Dutch natural gas-fired plants show a strong decline in their utilisation. 

However, we show that this is mainly caused by the increase in the relative price of gas 

compared to the price of coal. Overall, we conclude that, at least so far, the German energy 

transition has had very modest effects on the Dutch power market. 

The remainder of this paper is structured as follows. We first give an overview of the 

literature on the impact of renewable energy on electricity markets in Section 2. Then, in 

Section 3, we provide some background about the electricity markets in Germany and the 

Netherlands and how these markets are related. In Section 4, we explain our research method 

to assess the impact of the Energiewende on the Dutch power market. The estimation results 

are presented and analysed in section 5. Section 6 holds the conclusion and discusses policy 

implications. 

 

2. Impact of renewables on electricity markets 

An increase in generation capacity of renewable energy techniques may influence the 

power market through different channels (Traber et al, 2011; Fell and Lin, 2013; Hirth 2013; 

Würzburg et al., 2013; Cludius et al., 2014; Ketterer, 2014; Smith and Urpelainen, 2014). 

Firstly, more supply of renewables may reduce the electricity price because of the merit-order 

effect (see also e.g. Paraschiv et al., 2014; Smith and Urpelainen, 2014). This is illustrated in 

Figure 3 where the appearance of renewable-generation capacity with low marginal costs 

moves the merit order to the right (see also Fell and Linn, 2013). As a result, the equilibrium 

price decreases from P0 to P1. A consequence of this price reduction is that the average 

revenues per unit of conventional supply decline as well. Hence, the coverage of the fixed 

costs for these power plants reduces. Secondly, an increase in the supply of renewable energy 

reduces the volume of the conventional production because of the merit-order effect. This is 

illustrated in Figure 2 by the difference between Q*0 and Q1, which depicts the decline in 
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production by conventional power plants. This effect results from two mechanisms. 

Renewable capacity replaces conventional capacity, which is equal to the difference between 

Q*0 and Q0, but owing to the decline in the equilibrium price (from P0 to P1), the demand and, 

hence, the equilibrium level of total production increases from Q0 to Q1. The reduction in the 

utilisation of the power plants also results in a lower coverage of the fixed costs of the 

conventional plants. Thirdly, an increase in the supply of the intermitted renewable may raise 

the variability in the production by conventional plants which impacts on their generation 

costs. The increased variability in itself means higher cycle costs (including start-up and 

maintenance costs) (Traber et al., 2011; Kumar et al., 2012; Bruninx et al., 2014; Paraschiv et 

al., 2014). In addition, if a power plant is forced to produce below its maximum capacity, the 

fuel efficiency declines. Hence, more renewable energy may also result in higher marginal 

costs and a lower fuel efficiency of the conventional power plants. These two effects raise the 

part of the merit order that is related to these plants. 

Estimates about the impact of renewables on price levels have been reported in several 

studies (Jónsson et al., 2010; Holttinen et al., 2014; Paraschiv et al., 2014). The surge in 

renewable energy in Germany has reduced electricity prices, not only in Germany (Cludius et 

al., 2014; Ketterer, 2014), but also in the Dutch market (Mulder and Scholtens, 2013). Policy 

played a key role (Hitaj, 2013; Hitaj et al., 2014; Smith and Urpelainen, 2014; Krishnamurthy 

and Kriström, 2015). Ketterer (2014) models the influence of intermittent wind-power 

production on the level and volatility of the electricity prices in Germany by using a 

generalised autoregressive conditional heteroskedasticity (GARCH) model. She finds that 

higher wind-power production decreases the German price level but initially lead to higher 

daily volatility. However, since a regulatory change in 2010, this volatility-increasing impact 

of wind has reduced, but did not disappear completely. 
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Figure 3 Effects of investments in renewable energy on the electricity market 

 

As such, this result is somewhat different from that of Jónsson et al. (2010) and 

Mauritzen (2013). Also for a number of other countries, the impact of renewable energy on 

prices has been estimated. Conolly et al. (2011) do so for Ireland and Liu et al. (2011) explore 

the case of China. Gelabert et al. (2011) study the impacts of renewable generation on daily 

Spanish electricity prices. Woo et al. (2011) study the impact of wind power on 15-minute 

price levels and variance in Texas using a time-series model that includes generation from 

wind and nuclear, the natural gas price, and demand as exogenous variables. Green and 

Vasilakos (2010) estimate the impact of wind power generation on hourly equilibrium prices 

and volumes with data on expected wind power production and demand in the UK. They find 

that the volatility of prices is higher when there is more variability in wind power production 

and that volatility increases if market power is exercised. 
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The impact of renewable energy on the utilisation of conventional plants is analysed 

by Mauritzen (2013). Focusing on cross-border electricity transmission between Norway and 

Denmark, he finds that when Denmark produces more wind power, its exports to Norway 

increase while Norway’s hydropower plants produce less. When Danish wind-power 

production decreases, power flows are in the opposite direction. This is in line with the results 

of Green and Vasilakos (2012), who argue that the hydropower capacity of Norway, Sweden, 

and Finland acts as storage for Danish wind power capacity (see also Lund et al., 2011). 

Traber et al. (2011) conclude that an increase in the supply of wind energy reduces the load 

factor of in particular gas-fired power plants. Comparing an ‘advanced wind’ scenario with a 

‘no wind’ scenario, they find that the utilisation of gas-fired turbines is about 40% lower in 

the former scenario, while the coal-fired plants show only a small drop in utilisation. 

Regarding the impact of renewable energy on the generation costs of conventional 

power plants, Bruninx et al. (2014) find that an increase in wind energy raises the balancing 

costs owing to a larger uncertainty on the future wind power supply. This cost increase is 

estimated at about 5 euro/MWh, which is about 10% of the average power price. Abrell and 

Kunz (2013), however, find only a modest effect of about 0.3% of this uncertainty on system 

operating costs. These authors also find that an increase in uncertainty about wind power 

supply reduces the production by lignite plants by about 0.9%, while it increases the 

production by coal-fired and gas-fired plants. This change in production portfolio is caused by 

the need to raise the flexibility of the power system. 

Regarding the impact of renewable energy on the volatility of conventional power 

plant generation, Holtinnen (2005) finds for the Nordic countries that a share of wind 

production in total supply of 15% requires a flexible capacity of about 3% of total installed 

wind capacity. For Denmark, the required level of flexibility was lower owing to the higher 

variability in load. 
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From the above concise overview follows mixed evidence on the impact of renewable 

energy on the energy market. Apparently, this impact depends on other characteristics of these 

markets, such as the merit order of conventional power plants, the portfolio of power plants, 

the level of interconnection with neighbouring countries, and the variability and flexibility of 

load. In order to contribute to this literature, we analyse each of the above mechanisms for the 

Dutch market and German renewables. Using unique hourly plant-level data about electricity 

generation in the Netherlands as well with hourly data on prices, climate, and several factors 

affecting demand and supply, we will estimate how German renewable supply affected the 

power market in the Netherlands over 2006-2014.   

 

 

3. The power markets in Germany and the Netherlands 

 

3.1 The German Energiewende 

The Energiewende is a multi-decade effort to transform the German society into a low-

carbon, renewables-based economy. The process started with a feed-in-tariff for wind power 

in 1991, but has been expanded considerably in the past couple of years (Hitaj et al., 2014). 

Especially the years 2010 and 2011 are of importance. First, in 2010, to ‘sweeten’ the lifetime 

extension of Germany’s nuclear reactors due to heavy lobbying by the power companies, the 

government added some green elements into the decision such as increasing the share of 

renewables and setting GHG emissions targets (Von Hirschhausen, 2014). However, the 

disaster with the Fukushima Daiichi nuclear power plants resulted in the closure of 

Germany’s oldest nuclear power plants and the phasing out of nuclear energy entirely by 2022 

(Von Hirschhausen, 2014). The objectives of the Energiewende have been reconfirmed by the 

change of government that occurred in autumn 2013.  
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Currently, the program is on track of increasing the share of renewables for electricity 

generation to 50% in 2030 and 80% in 2050 and in final energy use to 30% in 2030 and 60% 

in 2050. In 2014, about 25% of total electricity production came from renewable energy 

sources (mainly wind, biomass and solar), while this share was no more than 7% in 2000 

(Statistisches Bundesambt).  The share of nuclear power has reduced to about 15% in 2014. 

Kunz and Weigt (2014) show that the phasing out of nuclear power plants does not seem to 

have pronounced effects on the energy system. Furthermore, the increased share of 

renewables does not seem to challenge energy system security (Neuhoff et al., 2014). An 

important issue in Germany, however, is the cost of the Energiewende (Cludius et al., 2014). 

In this respect, Von Hirschhausen (2014) analyses the social costs of different techniques and 

concludes that the Energiewende will be very favourable in the long term. In the short term, 

however, this energy transition causes significant costs for energy consumers as well as for 

the incumbent energy producers.  

Especially for the incumbents, the business environment has changed dramatically in 

the recent past (Kungl, 2014). In the traditional system, production was differentiated into 

base load, medium load and peak load. The base-load plants ran on a continuous basis. The 

medium term load operated according to the demand curve which changed in the course of the 

day. Peak-load power was used to handle short-term demand changes. Nuclear was used as a 

source for the base load, as was lignite. Coal was the main medium load and natural gas was 

used for peak load. However, such a system does not easily accommodate the rising share of 

renewables. This requires much more flexible power plants and less base load due to the 

intermittency of the renewables and their very low marginal costs. On top of that, especially 

solar power is a huge competitor for the traditional peak-load power generators. This simply 

results from the fact that the time profile of photovoltaic power is highly in line with that of 

electricity demand (Hirth, 2013).  
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3.2 Dutch power production 

Although the Dutch government also is pursuing a policy of energy transition, this 

policy has been much less effective than the German one, while the current policy objectives 

are less ambitious than those of the Germans (PBL, 2014). The share of renewables in the 

total electricity production has grown from 8% in 2006 to approximately 13% in 2014 (Table 

1). The Dutch electricity industry is still characterized by a mixed portfolio of mainly thermal 

generation plants, in particular gas-fired plants which took care of 50 to 70% of total domestic 

production. The production by coal-fired power plants was fairly stable over the past period, 

but gas-fired plants recently showed a relatively steep decline in their level of production. A 

significant part of supply comes from import.  

 

Table 1  

Supply of electricity in Dutch power market by origin, 2006-2014 (in TWh) 

Origin of supply 2006 2007 2008 2009 2010 2011 2012 2013 2014 

Domestic  

- gas-fired plants 57 61 65 68 74 68 54 54 49 

- coal-fired plants 23 25 23 23 22 21 24 25 29 

- other fossil- 

fuels plants 

4 5 5 4 4 5 4 4 4 

- wind power 3 3 4 5 4 5 5 6 6 

- other renewable 

power 

5 4 5 6 7 7 7 7 6 

- total  99 105 108 114 118 113 103 101 103 

International  

- import 27 23 25 15 16 21 32 33 33 

- export 6 5 9 11 13 12 15 15 18 

- net import 21 18 16 4 3 9 17 18 15 

Source: CBS.  
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In the recent years, the Dutch market witnessed dramatic changes. More specifically, the 

merit order based on the centralised units in the Dutch market changed significantly over the 

past couple of years (see Figure 4). This merit order shifted to the left as a result of the closure 

of a number of plants, while it also became steeper because of the change in the prices of gas, 

coal and CO2 (see Figure 5). While the prices of gas and coal were relatively close until 2010, 

afterwards the price of coal reduced gradually while the price of gas increased to historically 

high levels (see Figure 5). As a result, the marginal costs of gas-fired plants rose while those 

of the coal-fired plants declined. 

 

 

 

Figure 4 The annual average merit-order of centralised production units in the Dutch power 

market, 2006-2014 (Source: ACM)  
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Figure 5 Prices of gas, coal and CO2, 2006-2014, per day (Source: Bloomberg) 

 

3.3 Connections between German and Dutch market 

The Dutch electricity network is connected to the German (2.5 GW), Belgian (1.4 

GW), Norwegian (0.7 GW) and the British (1.0 GW) networks (TenneT, 2014b). The 

connections with Norway (NorNed line) and the UK (BritNed line) are DC lines, while the 

Dutch network is connected to the German and Belgian networks through AC lines. The 

utilisation of these lines has been improved by a number of measures, including the 

introduction of market coupling and netting (Mulder and Schoonbeek, 2013). Because of the 

meshed character of the networks, loop flows have a major influence on the availability of the 
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cross-border transmission capacity (TenneT, 2014a).2 This availability may fluctuate strongly 

from day to day and even from hour to hour, in particular depending on the level of supply by 

renewables in different locations within the network and the level of demand in other parts of 

the network. Although the technical cross-border import capacity has been constant at a level 

of about 2.5 GW over the period 2006-2014, the actual available capacity fluctuates strongly. 

This implies that the cross-border flows do not only depend on price differences, but also on 

the transmission capacity that has been made available for commercial transactions by the 

TSO. Table 2 shows how the (average annual) cross-border price differences and the cross-

border flows have evolved over time since 2006. Cross-border capacity constraints may help 

explain the price differences between the Dutch and the German power markets (see Figure 6) 

in spite of the increase in the imports (see Table 1). Apparently, traders were not always able 

to fully utilise differences in prices between both markets. The  price differences in more 

recent years reveal that the available cross-border capacity in the German-Dutch direction is 

fully utilised (TenneT, 2014c). 

  

                                                           

2 “A loop flow in a specific system is caused by a transaction within another system. Example: a shift in the 

power production from the South of Germany to the North of Germany will result in a north-south flow in 

Germany which will partially be transported as a loop flow through the Netherlands.” (TenneT, 2014a) 
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Table 2 

Difference in day-ahead price between Dutch and German market and size of imports and 

exports, 2007-2014 

  

APX > EEX   APX < EEX 

average price 

difference 

number of 

hours 

average 

import  

average price 

difference 

number of 

hours 

average 

export 

                

2007 8,44 5262 1823 -5,77 3224 270 

2008 10,34 5584 1852 -6,30 3187 339 

2009 5,38 4105 1254 -4,18 4619 886 

2010 4,14 4317 790 -2,98 3399 417 

2011 10,07 830 1825 -5,21 162 2295 

2012 12,41 3862 2171 -13,82 45 1964 

2013 17,44 7087 2088 -3,14 2 2816 

2014 11,85 5810 2140 -2,07 49 0 

                

Source: Bloomberg (prices); ACM (import and export) 
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Figure 6 Difference between Dutch and German day-ahead prices, 2006-2014 (per hour) 

(source: Bloomberg) 

 

 

 4. Method 

The aim of this study is to estimate the impact of the German energy transition on the 

Dutch power market. As explained above, the energy transition may have an effect on the 

price of electricity as well as on the utilisation of the conventional power plants. We analyse 

both these mechanisms by using unique hourly data about energy generation per power plant 

in the Netherlands and by taking into account constraints on the cross-border transport 

capacity, climate factors, as well data on intensity of competition and the level of demand.3  

 

                                                           

3 See Mulder (2015) for a description of the database.  
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4.1 Estimating the impact on the electricity price 

In order to determine the effect on electricity prices, we estimate a reduced-form 

model of the day-ahead electricity price (P) in the Dutch market by regressing this variable on 

a number of variables affecting demand and/or supply, based on Mulder and Scholtens 

(2013). The main economic factors affecting the electricity price are the level of electricity 

demand, the intensity of competition and the marginal costs of production. A higher demand 

for electricity (D) implies that the demand curve shifts to the right along the merit order, 

raising the equilibrium price, and vice versa. The intensity of competition in the electricity 

industry is incorporated through the Residual Supply Index (RSI) of the firm providing the 

system marginal plant. The RSI measures the aggregate supply capacity remaining in the 

market after subtracting that firm’s capacity, relative to total demand (see Mulder and 

Scholtens, 2013). Including a variable measuring competition is important since it appears 

that it connects with innovation in renewable energy (see Nesta et al., 2014). As measures for 

the marginal costs of production, we use fuel prices, notably the prices of gas (Pgas), coal 

(Pcoal) and carbon permits (PCO2) (see also Weber and Neuhoff, 2010; Hintermann, 2014).   

We also take into account the impact of environmental restrictions on thermal power 

plants which use river water for cooling purposes. If temperature in river water exceeds the 

threshold of 23 degrees Celsius, these power plants are forced to reduce the production for 

environmental reasons. Just as Mulder and Scholtens (2013), we implement this effect 

through a variable measuring the number of degrees the actual river temperature exceeds the 

threshold temperature. Moreover we account for the merit-order effect of the supply coming 

from Dutch wind mills. As data on actual wind-electricity supply is not available, we 

approach this supply through hourly data on wind speed (see Hirth, 2013; Elberg and 
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Hagspiel, 2015).4 Finally, we control for time patterns by including quarterly (D_q), daily 

(D_d) as well as hourly (D_h) dummies. 

The impact of the German Energiewende is measured in two different ways. The 

effect of German wind power is directly measured by the actual hourly feed-in by wind mills 

(W_GWGER), based on data published by the German TSOs. As solar feed in this time series 

only exists as off 2011, we use data on daily sunshine as a proxy for the influence of the feed-

in by solar panels (SGER). 

Our current model differs from that of Mulder and Scholtens (2013) in a number of 

important aspects. First, our model is estimated on an hourly basis instead of on a daily basis 

in order to incorporate the within-day volatility. Kettener (2014) and Mauritzen (2013), for 

instance, have shown that the (hourly) intermittency of the renewable energy supply may have 

a significant impact on price volatility. Second, we explicitly control for the presence of 

cross-border constraints which hinder further price arbitrage between the Dutch and the 

German market. Mauritzen (2013) has shown that these types of constraints play a significant 

role on the cross-border effects between Germany and Denmark. As the precise level of the 

constraints depends on the outcome of unknown technical calculations related to the loop 

flows, we cannot directly measure this constraint. The existence of a constraint on price 

arbitrage can, however, be indirectly measured by the existence of a price differential. If 

electricity prices between the Dutch and the German differ, traders are apparently hindered to 

make a profit by arbitraging on these differences (TenneT, 2014c). Therefore, we argue that a 

cross-border constraint is present if the day-ahead prices between these markets differ. We 

measure the presence of the cross-border constraint as a (1-0) dummy variable (D_CBC). We 

test whether the impact of German wind and solar energy on Dutch prices is lower when the 

cross-border capacity is fully utilized. In our view, this is a novelty to the literature. For 

                                                           

4 See Mulder and Scholtens (2013) for the translation of data on wind speed into estimates of wind power. 
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example, Würzburg et al. (2013) relate to the somewhat indirect measure of (daily) changes in 

exports and imports instead of capacity. Instead, we directly account for the capacity of the 

interconnector and rely on hourly data. The test regarding the impact of German renewable 

energy is conducted by including interaction terms between D_CBC and the wind and solar 

supply, respectively. Hence, the first model to be estimated is as follows: 
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�������
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/����,��
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																			+	
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																		+	∑ <=�_>=�=?� +	∑ @A�_BA,�,A?� +	∑ CD�_ℎD,� +	F�� D?�     (1) 

 

The model is estimated in logs as the impact of the explanatory variables on the 

electricity prices are likely not linear. Hence, the coefficients can be read as elasticities. The 

variables RTR and S cannot be expressed in logs as they are zero from time to time. 

Moreover, we take the lag values of Demand and the fuel prices in order to control for 

possible endogeneity effects. 

 

4.2 Estimating the impact on the utilisation of the power plants  

 Next, we test whether the utilisation of the generation capacity  of both types of plants 

has changed in line with the increased supply of renewable electricity in Germany. We feel 

that this too is a novelty of our approach in relation to the literature (e.g. Weigt et al., 2009; 

Traber and Kemfert, 2011; Matisoff et al., 2014). A first impression of this effect is obtained 

by inspecting the daily standard deviation of the production levels per type of plant. If the 

production levels of these plants become more volatile in response to the fluctuating levels of 

renewable energy, the fuel efficiency of the plants is affected as well. We test this by 



21 

 

regressing the degree of utilisation of the coal and gas fired power plants (U) on the same 

group of explanatory variables as used to explain the day-ahead price (see eq. 2). We assume, 

in line with e.g. Hirth (2013) and Matisoff et al. (2014), that this variable is related to supply 

coming from renewable sources and relative fuel prices. On top of that, we account for CO2 

prices, as Weber and Neuhoff (2010) show that they have an impact on different generation 

technologies (see also Fan et al., 2010). 
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4.3 Data and statistical tests 

 The descriptives of the variables used in our models are provided in Table 3. This 

table shows that the Dutch electricity generation portfolio is dominated by gas-fired plants: on 

average over the period 2006-2014, the production by gas-fired plants was about 50% higher 

than the production by coal-fired plants. The group of gas-fired plants shows a larger variety 

in plant utilisation than the coal-fired power plants. The latter also have a much higher 

average level of utilisation. In Table 3, we also observe that the level of (residual) demand for 

the centralized units is highly volatile since the highest level is about five times higher than 

the lowest level. The price of natural gas fluctuated strongly and much more than the price of 

coal. Regarding the supply of wind electricity in Germany, we see that this too is highly 

volatile, with a minimum level close to zero and a maximum level of 29.5 GWh. The 

correlation coefficients between the different variables of our models are presented in Table 4. 

Given that most coefficients are quite low, we may assume  that the independent variables in 

the models are independent from each other. 
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Table 3 

Descriptives of the variables used in the regression models, 2006-2014 

Variable 

(symbol; unit) 

Mean Standard deviation Min Max 

Day-ahead power price (P; euro/MWh) 49.5 23.8 0.01 850 

Characteristics coal-fired power plants    

- aggregated production per hour (Gcoal;MWh) 2801.7 673.4 504.7 4499.5 

- average degree of utilisation  (Ucoal; %) 80 15 24 1 

Characteristics gas-fired power plants    

- aggregated production per hour (Ggas; MWh) 4160.2 1588.6 509.5 9682.8 

- average degree of utilisation (Ugas; %) 49 17 7 1 

Demand (D; MWh) 9242.6 1762.2 2872.2 15536.5 

Residual Market Index  (RSI; index) 1.4 0.4 0.7 7.3 

Price of natural gas (Pgas; euro/MWh) 20.5 5.8 2.5 50 

Price of coal (Pcoal; euro/ton) 9.8 2.7 5.3 20.0 

Ratio Pcoal/Pgas (index) 0.5 0.1 0.2 3.0 

Price of CO2 (PCO2; euro/ton) 11.1 7.1 0.0 30.0 

River temperature above threshold (RTR; 

degrees Celsius) 

0.0 0.2 0 1 

Wind power in the Netherlands (WNL; Watt) 227.4 335.6 0.0 8406.7 

Wind supply in Germany (W_GWGER; GWh) 4.7 4.3 0.0 29.5 

Sunshine in Germany (SGER) 0.3 0.2 0 1.0 

Sources: Bloomberg (prices); ACM (production levels; RSI); German TSOs (Amprion, 50Hertz, 

TenneT and Transnet; wind supply); KNMI (wind speed Netherlands); DWD (sunshine Germany); 

Rijkswaterstaat (RTR). 
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Table 4 

Correlation matrix of all variables used in the regression models 

 P Pcoal Pgas PCO2 WNL W_GWG

ER 

SGER DCBC Gcoal Ggas Ucoal 

Pcoal 0.29           

Pgas 0.35 0.50          

PCO2 0.29 0.37 0.12         

WNL -0.02 0.02 0.01 -0.02        

W_GWGER -0.10 0.02 0.06 -0.12 0.65       

SGER -0.03 -0.01 -0.10 0.05 -0.20 -0.26      

DCBC -0.02 -0.27 -0.26 0.08 0.07 0.06 -0.005     

Gcoal 0.25 -0.11 0.06 -0.13 0.05 0.09 -0.17 0.01    

Ggas 0.50 0.05 -0.11 0.11 -0.006 -0.08 -0.12 -0.10 0.35   

Ucoal 0.31 -0.03 0.22 -0.23 0.01 0.04 -0.14 -0.04 0.70 0.33  

Ugas 0.52 0.02 -0.19 0.21 0.001 -0.12 -0.08 0.03 0.28 0.92 0.28 

 

 

In order to control for autocorrelation within the dependent variable, we include a number of 

autoregressive terms based on the inspection of the correllogram. As an alternative, we tested 

with seasonal autoregressive terms, but this did not affect the results. For the independent 

variables for demand and the fuel prices, we include the lagged value in order to control for 

possible endogeneity. We also tested the variables on a unit root by applying the augmented 

Dickey-Fuller Test (see Table 5). As (only) the price of CO2 appears to have a unit root, we 

include the first difference of this variable. The full results of the estimations are given in the 

Appendix. 
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Table 5 

Results of unit root test 

 

  
Unit root test                                  

(level and intercept only)   

Unit root test                           

(first difference and intercept only) 

t-statistic t-statistic 

        

P -18,64*** - 

PCO2 -2,46 -52,92*** 

Pcoal -2,10 -63,62*** 

Pcoal / Pgas -6,71*** - 

D -19,51*** - 

Ucoal -16,66*** - 

Ugas -18,85*** - 

Pgas -3,92*** - 

Gcoal -13,77*** - 

Ggas -21,19*** - 

RSI -21,51*** - 

RTR -11,28*** - 

SGER -19,03*** - 

W_GWGER -22,44*** - 

WNL -26,77*** - 

        

Note: *; **; *** refer to 10%, 5% and 1% significance levels, respectively. 

Test critical values: 1% level (-3.430265); 5% level (-2.861387); 10% level (-2.566729). 
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5. Results 

 

5.1 Impact on the day-ahead price of electricity 

Table 6 shows the estimation results for a) the full period 2006-2014 and b) two 

subsequent periods in order to determine whether specific effects changed over time.5 The 

regression analysis shows that hourly day-ahead electricity price is positively related to the 

level of demand. It is negatively related to the ratio between the price of coal and the price of 

gas. If coal becomes relatively more expensive, the electricity price declines. This is related to 

the fact that plants lower in the merit order are more often dispatched. If the gas prices 

increases compared to the price coal, the electricity price also goes up. The electricity price 

appears to be negatively related to the intensity of competition as measured by the RSI, but 

this impact decreases over time indicating that the market structure became less important for 

competition, which is in line with the findings of Mulder (2015). 

From the full overview of the results in Table A.1 in Appendix A, we see that the 

prices are relatively high in the first and the fourth quarter (i.e. the autumn and winter 

seasons) compared to the other two quarters (i.e. spring and summer). Moreover, the daily 

dummies show that the prices during working days exceed the prices at Sundays (d=1), while 

the hourly dummies clearly show the relatively low prices from midnight until 8 am, while the 

price peaks at noon and again early in the evening. We also see that the within-day volatility 

has decreased, since the coefficients of the time dummies have lower values in the period 

2011-2014 compared to those in the period 2006-2010.  

 

  

                                                           

5  
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Table 6 

Results of the regression analysis on the hourly day-ahead electricity price, 2006-2014 

Log(APX) 2006/2010 2011/2014 2006/2014 

constant -2.9*** 2.2*** -0.5*** 

log(Dt-1) 0.7*** 0.2*** 0.5*** 

log(RSI) -0.2*** -0.1*** -0.2*** 

Pcoal / Pgas -0.2*** 0.02 -0.2*** 

d.log(PCO2 t-1) 0.01 -0.1 0.004 

RTR 0.04 -0.01 0.02 

log(WNL) -0.01*** -0.01*** -0.01*** 

log(W_GWGER) -0.05*** -0.02*** -0.03*** 

log(W_GWGER) * D_CBC 0.02 0.02*** 0.01*** 

SGER -0.03 -0.05*** -0.06*** 

SGER * D_CBC 0.02 0.04*** 0.04*** 

AR(1) 0.8*** 0.8*** 0.8*** 

AR(2) -0.05*** -0.1*** -0.06*** 

AR(24) 0.1*** 0.1*** 0.1*** 

    

R2 adjusted 0.84 0.84 0.84 

DW statistic 1.99 1.96 1.98 

Note: *; **; *** refer to 10%, 5% and 1% significance levels, respectively.  

See Table A.1 for the full overview of the results. 

 

Regarding the impact of the German Energiewende on the Dutch power market, we 

find that the supply by German wind turbines negatively affects the Dutch day-ahead power 

prices. The average effect over the period 2006-2014 is an elasticity of about -0.03, which 

was also found by Mauritzen (2013). Furthermore, we find that this effect is significantly 

lower when the cross-border transmission capacity is constrained: In the second period, there 
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appears to be only a small downwards net effect of German wind supply on Dutch power 

prices when the cross-border capacity is fully utilised. Hence, in case the import capacity is 

fully utilised, any change in German wind production does hardly affect the Dutch electricity 

market. A comparable mechanism is found for the German solar production. During hours 

when the cross-border capacity is not restrictive, the impact of German solar on Dutch 

electricity prices has strongly increased over time and reduced Dutch electricity prices. This is 

depicted in Figure 7. 

 

 

Figure 7 Usage of cross-border capacity in relation to difference in day-ahead prices between 

Dutch (APX) and German (EEX) market, 2006-2014 (per hour) (source: Bloomberg) 

 

 In order to assess the relative importance of different factors related to the German 

Energiewende for the Dutch electricity prices, we compare elasticities for the different 

factors. From Table 6, we observe that the elasticity for the influence of German wind power 
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is relatively low compared to that of other factors. For the full period under investigation, we 

find that a 1% increase in German wind-power production reduces Dutch day-ahead power 

prices by 0.03% when there are no constraints on the cross-border transport capacity. The 

elasticities for the prices of natural gas and coal as well the elasticity for demand are much 

higher, indicating that the Dutch day-ahead electricity price is more strongly determined by 

the fuel costs of Dutch power production and the level of demand. Table 6 also reveals that 

the changes in fuel prices directly affect the level of the merit order, while changes in the 

level of demand determine which part of the merit order is needed for market equilibrium. 

These results are in line with those by Fell and Linn (2013) and Matisoff et al. (2014). Hence, 

we conclude that the German Energiewende affected Dutch electricity prices, but that this 

effect is rather modest compared to the much bigger influence from the prices of natural gas 

and coal due to the dominant role of fossils as the powering fuel source for Dutch power 

generators. 

 

5.2 Impact on the utilisation of plants 

The utilisation of the coal-fired plants appears to be negatively related to the relative 

price of coal, while the opposite holds true for the natural gas-fired power plants (see Table 

7).6 The higher the price of coal compared to that of natural gas, the lower the level of 

dispatch of coal-fired plants and the higher the level of capacity utilisation by natural gas-

fired plants (see also Matisoff et al., 2014).  

 

  

                                                           

6 As in Table 3, we skipped the dummies in Table 4, but Table A.2 in the Appendix A gives the complete results. 
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Table 7 

Results of the regression analysis on plant type utilisation, 2006-2014 

Utilisation of plants 

(production/capacity) 

Coal-fired plants Natural gas-fired plants 

2006-2010 2011-2014 2006-2010 2011-2014 

constant 0.77*** 0.99*** 0.46*** 0.31*** 

Pcoal / Pgas -0.01* -0.39*** 0.001 0.09** 

d.PCO2 0.001** 0.003 0.002*** 0.001 

WNL -0.000002 -0.000006*** -0.000002 -0.000008*** 

W_GWGER -0.001 -0.002*** -0.00002 -0.001*** 

W_GWGER * D_CBC -0.0002 -0.00004 0.00007 -0.0002*** 

SGER 0.01 -0.01** -0.003 -0.001 

SGER * D_CBC 0.01 0.001 0.001 -0.001 

AR(1) 1.21*** 1.21*** 1.30*** 1.39*** 

AR(2) -0.27*** -0.28*** -0.34*** -0.43*** 

AR(24) 0.03*** 0.03*** 0.02*** 0.02*** 

     

R2 adjusted 0.97 0.95 0.98 0.98 

DW statistic 1.97 2.0 2.02 2.0 

Note: *; **; *** refer to 10%, 5% and 1% significance levels, respectively.  

See Table A.2 for the full overview of the results. 
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Both plant types clearly show similar time patterns in the dispatch: utilisation is 

highest in the first quarter of the year, much higher during working days than during weekend 

days, and much higher as well during day time and in the evening than at night. Note that 

these time patterns are consistent with the time patterns which were found in the day-ahead 

electricity price. 

The electricity supply by German wind mills and PV facilities appears to have only a 

very moderate effect on the dispatch by the Dutch power plants. The relation with wind 

energy is almost negligible, meaning that the level of production by the Dutch plants is hardly 

affected by how much energy is produced by wind mills in Germany. One GWh more feed-in 

of wind electricity in Germany, results (on average) in 0.2% lower utilisation of the Dutch 

conventional power plants. The level of capacity utilisation by the Dutch conventional power 

plants is much more affected by the relative prices of coal and natural gas. 

From Table 8 we derive that the volatility in the dispatch of both fossil power plant 

types, in particular the coal-fired plants, increased since 2006. While the average annual level 

of production by the coal-fired plants hardly increased, the standard deviation in 2013 and 

2014 was about 50% higher than in 2006. The gas-fired plants also show higher annual 

standard deviations while annual average level declined. Moreover, the difference between 

the minimum annual and the maximum level of production during a year became larger. It 

seems that not only natural gas-fired plants are increasingly used for supplying flexibility to 

the market, but coal-fired plants as well. 
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Table 8 

Volatility in generation levels per type of fossil-fuel power plant, 2006-2014 (in MWh) 

 Mean Standard 

deviation 

Minimum Maximum Max - Min 

Coal-fired plants 

2006 2702 503 1120 3837 2717 

2007 2866 616 1050 4116 3066 

2008 2749 606 896 4109 3213 

2009 2889 637 1147 4076 2929 

2010 2778 692 949 4101 3152 

2011 2423 570 835 4108 3273 

2012 2981 690 904 4193 3289 

2013 2817 751 504 3951 3447 

2014 3023 771 1035 4500 3465 

Natural gas-fired plants     

2006 4155 1407 1464 7469 6005 

2007 4307 1437 1735 8079 6344 

2008 4191 1451 1437 7970 6533 

2009 4435 1515 807 8092 7285 

2010 5001 1455 1645 8326 6681 

2011 4304 1364 1107 8350 7243 

2012 3997 1901 1288 9682 8394 

2013 3481 1689 846 8579 7733 

2014 3514 1437 1120 8268 7148 

Source: ACM 

 

In order to determine whether this increased flexibility is related to the increased 

supply of renewable electricity, we also analyse the correlation coefficients between the 

volatility in the different types of fossil power generation. Table 9 shows that the correlation 
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coefficient between the daily standard deviation of the hourly production levels of coal-fired 

power plants in the Dutch market on the one hand and that of the hourly wind-electricity 

production in the German market on the other, is positive and increasing.7 For the natural gas-

fired plants, we do not find such a relationship. This suggests that the coal-fired plants are 

increasingly used to offer flexibility to the grid in order to balance the volatile supply coming 

from German wind electricity. The growing importance for coal-fired plants for balancing the 

grid is likely to be related to the increasing importance of these plants which is caused by the 

changing relative prices of gas and coal, as discussed above. As a result, gas-fired plants 

became more and more out of the money, implying that they were also less available for 

offering flexibility. From these data, we learn that the Dutch conventional power plants show 

more fluctuating levels of capacity utilisation and that the increased volatility of in particular 

coal-fired plants to a very small extent may be related to the volatile supply coming from 

German renewables.  

 

 

6. Conclusion 

The German Energiewende is expected to have major effects on power markets 

because of the fundamental changes in the way electricity is produced (Weigt, 2009; Traber et 

al., 2011; Ketterer, 2014; Von Hirschhausen, 2014). In this paper we analysed how this 

energy transition has affected the Dutch electricity market which is connected to the German 

one: their interconnectors provide capacity for about 25% of average Dutch electricity 

demand. As the utilisation of many conventional power plants in the Dutch market has 

strongly reduced in the recent past, we wonder to what extent the changes in the Dutch 

electricity market are related to the Energiewende in Germany.  

                                                           

7 As data on sunshine is only available on a daily level, this correlation coefficient cannot be calculated. 
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Table 9 

Correlation coefficient between the daily standard deviations of the hourly conventional 

production in the Dutch market and the daily standard deviations of the hourly wind-

electricity production in German market, 2006-2014 

 Coal-fired plants Natural gas-fired plants 

2006 0.13 0.34 

2007 0.13 -0.01 

2008 0.32 -0.15 

2009 0.29 -0.07 

2010 0.49 0.22 

2011 0.48 0.20 

2012 0.29 0.11 

2013 0.57 -0.16 

2014 0.40 0.20 

Source: ACM (Dutch production); German TSOs (German wind production) 

 

Using high-frequency data over the period 2006-2014, we find evidence that the 

German Energiewende has had a moderate impact on the Dutch electricity market so far. 

When the wind blows or when the sun shines in Germany, the day-ahead electricity price in 

the Dutch market is reduced. The price elasticity of wind is about -0.03, which is in line with 

the results from other studies (see Mauritzen, 2013; Würzburg et al., 2013; Cludius et al., 

2014; Ketterer, 2014). We establish that the price impact of renewable energy vanishes when 

the cross-border transportation capacity is fully utilised. The constraints on the cross-border 

capacity also imply that German wind power producers are less able to benefit from exporting 

electricity at relatively favourable prices during windy hours, as Hirth (2013) found for the 

German-French border.  
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 Moreover, we find that the level of capacity utilisation of the fossil power plants in the 

Dutch market is mainly affected by the relative fuel prices. The strong decline in the 

production by natural gas-fired plants has to be attributed to the relatively high natural gas 

prices on the one hand and the low prices for coal and CO2 on the other. This finding is well 

in line with the results of Matisoff et al. (2014) on the effects of coal and natural gas prices on 

dispatch of power plants in the US. Hence, the dramatic events in the Dutch market cannot be 

attributed to the energy transition in Germany and the increased supply of renewable energy, 

in spite of the mechanisms found by Traber et al. (2011). The events in the Dutch market 

predominantly follow from the changes in the relative fossil fuel prices. Furthermore, it 

appears that not only natural gas-fired plants are used to supply flexibility to the market, but 

that increasingly the coal-fired plants offer these services. The reduced role of gas-fired plants 

as suppliers of flexibility is directly related to the high relative price of natural gas since this 

price level makes it unprofitable for them to operate. Notwithstanding the increased 

variability of their dispatch, the degree of utilisation of the coal plants reduced only slightly in 

response to the increased supply of German wind electricity. 

 The results of this paper show that fundamental changes in the electricity market in a 

large country do not necessarily have a huge impact on the markets in neighbouring countries. 

In particular, this seems to hold if their cross-border capacity is fully utilised. The high level 

of cross-border capacity utilisation seems to protect power producers in a market dominated 

by fossil-fuel plants from low prices in neighbouring markets with significant shares of 

renewable energy, while this may hinder consumers to benefit from these low prices. 

Although cross-border capacity constraints enable countries to implement national energy 

policies without bothering too much about possible adverse consequences for neighbouring 

countries, from a consumer point of view, an integrated electricity market with equal prices is 
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preferred. Cross-border differences in power prices may, therefore, reduce the societal 

acceptance of renewable-energy policies. 

 This paper contributes to the discussion on the welfare effects of national renewable-

energy policies in integrating markets (see Fell and Lin, 2013; Kopsakangas-Savolainen and 

Svento, 2013; Würzburg et al., 2013; Ketterer, 2014; Krishnamurthy and Kriström, 2015). 

With the current challenges regarding climate change and security of energy supply as well as 

the need to efficiently use public resources, it is important to understand not only the costs of 

solving transport-capacity constraints, but also the benefits for reaching policy objectives 

regarding the transition of the energy system. 
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APPENDIX 

 

Table A.1  

Results of the regression analysis on the hourly day-ahead electricity price, 2006-2014 

Log(APX) 2006/2010 2011/2014 2006/2014 

constant -2.9*** 2.2*** -0.5*** 

log(Dt-1) 0.7*** 0.2*** 0.5*** 

log(RSI) -0.2*** -0.1*** -0.2*** 

Pcoal / Pgas -0.2*** 0.02 -0.2*** 

d.log(PCO2 t-1) 0.01 -0.1 0.004 

RTR 0.04 -0.01 0.02 

log(WNL) -0.01*** -0.01*** -0.01*** 

log(W_GWGER) -0.05*** -0.02*** -0.03*** 

log(W_GWGER) * D_CBC 0.02 0.02*** 0.01*** 

SGER -0.03 -0.05*** -0.06*** 

SGER * D_CBC 0.02 0.04*** 0.04*** 

D_q2 -0.05* -0.02 -0.04** 

D_q3 -0.002 -0.06*** -0.03 

D_q4 0.07** 0.01 0.04** 

D_d2 0.06*** 0.04*** 0.05*** 

D_d3 0.1*** 0.1*** 0.1*** 

D_d4 0.1*** 0.1*** 0.1*** 

D_d5 0.1*** 0.1*** 0.1*** 

D_d6 0.1*** 0.1*** 0.1*** 

D_d7 0.1*** 0.03*** 0.1*** 

D_h2 -0.1*** -0.1*** -0.1*** 

D_h3 -0.2*** -0.1*** -0.1*** 

D_h4 -0.3*** -0.2*** -0.3*** 

D_h5 -0.4*** -0.2*** -0.3*** 
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D_h6 -0.2*** -0.2*** -0.2*** 

D_h7 -0.002 -0.002 -0.008 

D_h8 0.2*** 0.2*** 0.2*** 

D_h9 0.3*** 0.2*** 0.3*** 

D_h10 0.3*** 0.2*** 0.3*** 

D_h11 0.4*** 0.2*** 0.3*** 

D_h12 0.4*** 0.3*** 0.4*** 

D_h13 0.3*** 0.2*** 0.3*** 

D_h14 0.3*** 0.2*** 0.3*** 

D_h15 0.2*** 0.1*** 0.2*** 

D_h16 0.2*** 0.1*** 0.1*** 

D_h17 0.2*** 0.1*** 0.1*** 

D_h18 0.3*** 0.2*** 0.3*** 

D_h19 0.3*** 0.3*** 0.3*** 

D_h20 0.3*** 0.3*** 0.3*** 

D_h21 0.2*** 0.2*** 0.3*** 

D_h22 0.2*** 0.2*** 0.2*** 

D_h23 0.2*** 0.2*** 0.2*** 

D_h24 0.1*** 0.1*** 0.1*** 

AR(1) 0.8*** 0.8*** 0.8*** 

AR(2) -0.1*** -0.1*** -0.1*** 

AR(24) 0.1*** 0.1*** 0.1*** 

    

R2 adjusted 0.84 0.84 0.84 

DW statistic 1.99 1.96 1.98 

Note: *; **; *** refer to 10%, 5% and 1% significance levels, respectively. 
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Table A.2 Results of the regression analysis on plant type utilisation, 2006-2014 

Utilisation of plants 

(production/capacity) 

Coal-fired plants Natural gas-fired plants 

2006-2010 2011-2014 2006-2010 2011-2014 

constant 0.77*** 0.99*** 0.46*** 0.31*** 

Pcoal / Pgas -0.01* -0.39*** 0.001 0.09** 

d.PCO2 0.001** 0.003 0.002*** 0.001 

WNL -0.000002 -0.000006*** -0.000002 -0.000008*** 

W_GWGER -0.001 -0.002*** -0.00002 -0.001*** 

W_GWGER * D_CBC -0.0002 -0.00004 0.00007 -0.0002*** 

SGER 0.01 -0.01** -0.003 -0.001 

SGER * D_CBC 0.01 0.001 0.001 -0.001 

D_q2 -0.04*** -0.03** -0.03*** -0.04*** 

D_q3 -0.06*** 0.00003 -0.03*** -0.05*** 

D_q4 -0.04*** 0.03*** 0.01 -0.004 

D_d2 -0.01*** -0.02*** 0.01*** 0.01*** 

D_d3 -0.01*** -0.02*** 0.01*** 0.02*** 

D_d4 -0.01*** -0.02*** 0.03* 0.01*** 

D_d5 -0.01*** -0.01*** 0.001 0.01*** 

D_d6 -0.01*** -0.01*** -0.003** 0.01*** 

D_d7 0.01 -0.02*** -0.003** -0.001 

D_h2 -0.04*** -0.04*** -0.03*** -0.03*** 

D_h3 -0.07*** -0.07*** -0.05*** -0.05*** 

D_h4 -0.09*** -0.09*** -0.06*** -0.05*** 

D_h5 -0.09*** -0.09*** -0.06*** -0.05*** 

D_h6 -0.07*** -0.06*** -0.04*** -0.03*** 

D_h7 -0.03*** -0.02*** 0.01*** 0.02*** 

D_h8 0.03*** 0.01*** 0.09*** 0.09*** 

D_h9 0.07*** 0.05*** 0.15*** 0.13*** 

D_h10 0.10*** 0.07*** 0.18*** 0.15*** 
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D_h11 0.11*** 0.08*** 0.19*** 0.17*** 

D_h12 0.11*** 0.08*** 0.19*** 0.17*** 

D_h13 0.11*** 0.08*** 0.19*** 0.17*** 

D_h14 0.11*** 0.08*** 0.19*** 0.17*** 

D_h15 0.11*** 0.07*** 0.18*** 0.16*** 

D_h16 0.10*** 0.07*** 0.17*** 0.16*** 

D_h17 0.10*** 0.07*** 0.17*** 0.16*** 

D_h18 0.10*** 0.08*** 0.17*** 0.17*** 

D_h19 0.11*** 0.08*** 0.17*** 0.17*** 

D_h20 0.11*** 0.08*** 0.17*** 0.16*** 

D_h21 0.10*** 0.08*** 0.15*** 0.14*** 

D_h22 0.10*** 0.07*** 0.13*** 0.11*** 

D_h23 0.10*** 0.06*** 0.10*** 0.08*** 

D_h24 0.08*** 0.04*** 0.05*** 0.05*** 

AR(1) 1.21*** 1.21*** 1.30*** 1.39*** 

AR(2) -0.27*** -0.28*** -0.34*** -0.43*** 

AR(24) 0.03*** 0.03*** 0.12*** 0.02*** 

     

R2 adjusted 0.97 0.95 0.98 0.98 

DW statistic 1.97 2.00 2.02 2.00 

Note: *; **; *** refer to 10%, 5% and 1% significance levels, respectively. 
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